1 /* 2 * Driver for AMBA serial ports 3 * 4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 5 * 6 * Copyright 1999 ARM Limited 7 * Copyright (C) 2000 Deep Blue Solutions Ltd. 8 * Copyright (C) 2010 ST-Ericsson SA 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 * 24 * This is a generic driver for ARM AMBA-type serial ports. They 25 * have a lot of 16550-like features, but are not register compatible. 26 * Note that although they do have CTS, DCD and DSR inputs, they do 27 * not have an RI input, nor do they have DTR or RTS outputs. If 28 * required, these have to be supplied via some other means (eg, GPIO) 29 * and hooked into this driver. 30 */ 31 32 33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 34 #define SUPPORT_SYSRQ 35 #endif 36 37 #include <linux/module.h> 38 #include <linux/ioport.h> 39 #include <linux/init.h> 40 #include <linux/console.h> 41 #include <linux/sysrq.h> 42 #include <linux/device.h> 43 #include <linux/tty.h> 44 #include <linux/tty_flip.h> 45 #include <linux/serial_core.h> 46 #include <linux/serial.h> 47 #include <linux/amba/bus.h> 48 #include <linux/amba/serial.h> 49 #include <linux/clk.h> 50 #include <linux/slab.h> 51 #include <linux/dmaengine.h> 52 #include <linux/dma-mapping.h> 53 #include <linux/scatterlist.h> 54 #include <linux/delay.h> 55 #include <linux/types.h> 56 #include <linux/of.h> 57 #include <linux/of_device.h> 58 #include <linux/pinctrl/consumer.h> 59 #include <linux/sizes.h> 60 #include <linux/io.h> 61 #include <linux/acpi.h> 62 63 #define UART_NR 14 64 65 #define SERIAL_AMBA_MAJOR 204 66 #define SERIAL_AMBA_MINOR 64 67 #define SERIAL_AMBA_NR UART_NR 68 69 #define AMBA_ISR_PASS_LIMIT 256 70 71 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE) 72 #define UART_DUMMY_DR_RX (1 << 16) 73 74 /* There is by now at least one vendor with differing details, so handle it */ 75 struct vendor_data { 76 unsigned int ifls; 77 unsigned int lcrh_tx; 78 unsigned int lcrh_rx; 79 bool oversampling; 80 bool dma_threshold; 81 bool cts_event_workaround; 82 bool always_enabled; 83 bool fixed_options; 84 85 unsigned int (*get_fifosize)(struct amba_device *dev); 86 }; 87 88 static unsigned int get_fifosize_arm(struct amba_device *dev) 89 { 90 return amba_rev(dev) < 3 ? 16 : 32; 91 } 92 93 static struct vendor_data vendor_arm = { 94 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8, 95 .lcrh_tx = UART011_LCRH, 96 .lcrh_rx = UART011_LCRH, 97 .oversampling = false, 98 .dma_threshold = false, 99 .cts_event_workaround = false, 100 .always_enabled = false, 101 .fixed_options = false, 102 .get_fifosize = get_fifosize_arm, 103 }; 104 105 static struct vendor_data vendor_sbsa = { 106 .oversampling = false, 107 .dma_threshold = false, 108 .cts_event_workaround = false, 109 .always_enabled = true, 110 .fixed_options = true, 111 }; 112 113 static unsigned int get_fifosize_st(struct amba_device *dev) 114 { 115 return 64; 116 } 117 118 static struct vendor_data vendor_st = { 119 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF, 120 .lcrh_tx = ST_UART011_LCRH_TX, 121 .lcrh_rx = ST_UART011_LCRH_RX, 122 .oversampling = true, 123 .dma_threshold = true, 124 .cts_event_workaround = true, 125 .always_enabled = false, 126 .fixed_options = false, 127 .get_fifosize = get_fifosize_st, 128 }; 129 130 /* Deals with DMA transactions */ 131 132 struct pl011_sgbuf { 133 struct scatterlist sg; 134 char *buf; 135 }; 136 137 struct pl011_dmarx_data { 138 struct dma_chan *chan; 139 struct completion complete; 140 bool use_buf_b; 141 struct pl011_sgbuf sgbuf_a; 142 struct pl011_sgbuf sgbuf_b; 143 dma_cookie_t cookie; 144 bool running; 145 struct timer_list timer; 146 unsigned int last_residue; 147 unsigned long last_jiffies; 148 bool auto_poll_rate; 149 unsigned int poll_rate; 150 unsigned int poll_timeout; 151 }; 152 153 struct pl011_dmatx_data { 154 struct dma_chan *chan; 155 struct scatterlist sg; 156 char *buf; 157 bool queued; 158 }; 159 160 /* 161 * We wrap our port structure around the generic uart_port. 162 */ 163 struct uart_amba_port { 164 struct uart_port port; 165 struct clk *clk; 166 const struct vendor_data *vendor; 167 unsigned int dmacr; /* dma control reg */ 168 unsigned int im; /* interrupt mask */ 169 unsigned int old_status; 170 unsigned int fifosize; /* vendor-specific */ 171 unsigned int lcrh_tx; /* vendor-specific */ 172 unsigned int lcrh_rx; /* vendor-specific */ 173 unsigned int old_cr; /* state during shutdown */ 174 bool autorts; 175 unsigned int fixed_baud; /* vendor-set fixed baud rate */ 176 char type[12]; 177 #ifdef CONFIG_DMA_ENGINE 178 /* DMA stuff */ 179 bool using_tx_dma; 180 bool using_rx_dma; 181 struct pl011_dmarx_data dmarx; 182 struct pl011_dmatx_data dmatx; 183 bool dma_probed; 184 #endif 185 }; 186 187 /* 188 * Reads up to 256 characters from the FIFO or until it's empty and 189 * inserts them into the TTY layer. Returns the number of characters 190 * read from the FIFO. 191 */ 192 static int pl011_fifo_to_tty(struct uart_amba_port *uap) 193 { 194 u16 status, ch; 195 unsigned int flag, max_count = 256; 196 int fifotaken = 0; 197 198 while (max_count--) { 199 status = readw(uap->port.membase + UART01x_FR); 200 if (status & UART01x_FR_RXFE) 201 break; 202 203 /* Take chars from the FIFO and update status */ 204 ch = readw(uap->port.membase + UART01x_DR) | 205 UART_DUMMY_DR_RX; 206 flag = TTY_NORMAL; 207 uap->port.icount.rx++; 208 fifotaken++; 209 210 if (unlikely(ch & UART_DR_ERROR)) { 211 if (ch & UART011_DR_BE) { 212 ch &= ~(UART011_DR_FE | UART011_DR_PE); 213 uap->port.icount.brk++; 214 if (uart_handle_break(&uap->port)) 215 continue; 216 } else if (ch & UART011_DR_PE) 217 uap->port.icount.parity++; 218 else if (ch & UART011_DR_FE) 219 uap->port.icount.frame++; 220 if (ch & UART011_DR_OE) 221 uap->port.icount.overrun++; 222 223 ch &= uap->port.read_status_mask; 224 225 if (ch & UART011_DR_BE) 226 flag = TTY_BREAK; 227 else if (ch & UART011_DR_PE) 228 flag = TTY_PARITY; 229 else if (ch & UART011_DR_FE) 230 flag = TTY_FRAME; 231 } 232 233 if (uart_handle_sysrq_char(&uap->port, ch & 255)) 234 continue; 235 236 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag); 237 } 238 239 return fifotaken; 240 } 241 242 243 /* 244 * All the DMA operation mode stuff goes inside this ifdef. 245 * This assumes that you have a generic DMA device interface, 246 * no custom DMA interfaces are supported. 247 */ 248 #ifdef CONFIG_DMA_ENGINE 249 250 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE 251 252 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg, 253 enum dma_data_direction dir) 254 { 255 dma_addr_t dma_addr; 256 257 sg->buf = dma_alloc_coherent(chan->device->dev, 258 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL); 259 if (!sg->buf) 260 return -ENOMEM; 261 262 sg_init_table(&sg->sg, 1); 263 sg_set_page(&sg->sg, phys_to_page(dma_addr), 264 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr)); 265 sg_dma_address(&sg->sg) = dma_addr; 266 sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE; 267 268 return 0; 269 } 270 271 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg, 272 enum dma_data_direction dir) 273 { 274 if (sg->buf) { 275 dma_free_coherent(chan->device->dev, 276 PL011_DMA_BUFFER_SIZE, sg->buf, 277 sg_dma_address(&sg->sg)); 278 } 279 } 280 281 static void pl011_dma_probe(struct uart_amba_port *uap) 282 { 283 /* DMA is the sole user of the platform data right now */ 284 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev); 285 struct device *dev = uap->port.dev; 286 struct dma_slave_config tx_conf = { 287 .dst_addr = uap->port.mapbase + UART01x_DR, 288 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 289 .direction = DMA_MEM_TO_DEV, 290 .dst_maxburst = uap->fifosize >> 1, 291 .device_fc = false, 292 }; 293 struct dma_chan *chan; 294 dma_cap_mask_t mask; 295 296 uap->dma_probed = true; 297 chan = dma_request_slave_channel_reason(dev, "tx"); 298 if (IS_ERR(chan)) { 299 if (PTR_ERR(chan) == -EPROBE_DEFER) { 300 uap->dma_probed = false; 301 return; 302 } 303 304 /* We need platform data */ 305 if (!plat || !plat->dma_filter) { 306 dev_info(uap->port.dev, "no DMA platform data\n"); 307 return; 308 } 309 310 /* Try to acquire a generic DMA engine slave TX channel */ 311 dma_cap_zero(mask); 312 dma_cap_set(DMA_SLAVE, mask); 313 314 chan = dma_request_channel(mask, plat->dma_filter, 315 plat->dma_tx_param); 316 if (!chan) { 317 dev_err(uap->port.dev, "no TX DMA channel!\n"); 318 return; 319 } 320 } 321 322 dmaengine_slave_config(chan, &tx_conf); 323 uap->dmatx.chan = chan; 324 325 dev_info(uap->port.dev, "DMA channel TX %s\n", 326 dma_chan_name(uap->dmatx.chan)); 327 328 /* Optionally make use of an RX channel as well */ 329 chan = dma_request_slave_channel(dev, "rx"); 330 331 if (!chan && plat->dma_rx_param) { 332 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param); 333 334 if (!chan) { 335 dev_err(uap->port.dev, "no RX DMA channel!\n"); 336 return; 337 } 338 } 339 340 if (chan) { 341 struct dma_slave_config rx_conf = { 342 .src_addr = uap->port.mapbase + UART01x_DR, 343 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 344 .direction = DMA_DEV_TO_MEM, 345 .src_maxburst = uap->fifosize >> 2, 346 .device_fc = false, 347 }; 348 struct dma_slave_caps caps; 349 350 /* 351 * Some DMA controllers provide information on their capabilities. 352 * If the controller does, check for suitable residue processing 353 * otherwise assime all is well. 354 */ 355 if (0 == dma_get_slave_caps(chan, &caps)) { 356 if (caps.residue_granularity == 357 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) { 358 dma_release_channel(chan); 359 dev_info(uap->port.dev, 360 "RX DMA disabled - no residue processing\n"); 361 return; 362 } 363 } 364 dmaengine_slave_config(chan, &rx_conf); 365 uap->dmarx.chan = chan; 366 367 uap->dmarx.auto_poll_rate = false; 368 if (plat && plat->dma_rx_poll_enable) { 369 /* Set poll rate if specified. */ 370 if (plat->dma_rx_poll_rate) { 371 uap->dmarx.auto_poll_rate = false; 372 uap->dmarx.poll_rate = plat->dma_rx_poll_rate; 373 } else { 374 /* 375 * 100 ms defaults to poll rate if not 376 * specified. This will be adjusted with 377 * the baud rate at set_termios. 378 */ 379 uap->dmarx.auto_poll_rate = true; 380 uap->dmarx.poll_rate = 100; 381 } 382 /* 3 secs defaults poll_timeout if not specified. */ 383 if (plat->dma_rx_poll_timeout) 384 uap->dmarx.poll_timeout = 385 plat->dma_rx_poll_timeout; 386 else 387 uap->dmarx.poll_timeout = 3000; 388 } else if (!plat && dev->of_node) { 389 uap->dmarx.auto_poll_rate = of_property_read_bool( 390 dev->of_node, "auto-poll"); 391 if (uap->dmarx.auto_poll_rate) { 392 u32 x; 393 394 if (0 == of_property_read_u32(dev->of_node, 395 "poll-rate-ms", &x)) 396 uap->dmarx.poll_rate = x; 397 else 398 uap->dmarx.poll_rate = 100; 399 if (0 == of_property_read_u32(dev->of_node, 400 "poll-timeout-ms", &x)) 401 uap->dmarx.poll_timeout = x; 402 else 403 uap->dmarx.poll_timeout = 3000; 404 } 405 } 406 dev_info(uap->port.dev, "DMA channel RX %s\n", 407 dma_chan_name(uap->dmarx.chan)); 408 } 409 } 410 411 static void pl011_dma_remove(struct uart_amba_port *uap) 412 { 413 if (uap->dmatx.chan) 414 dma_release_channel(uap->dmatx.chan); 415 if (uap->dmarx.chan) 416 dma_release_channel(uap->dmarx.chan); 417 } 418 419 /* Forward declare these for the refill routine */ 420 static int pl011_dma_tx_refill(struct uart_amba_port *uap); 421 static void pl011_start_tx_pio(struct uart_amba_port *uap); 422 423 /* 424 * The current DMA TX buffer has been sent. 425 * Try to queue up another DMA buffer. 426 */ 427 static void pl011_dma_tx_callback(void *data) 428 { 429 struct uart_amba_port *uap = data; 430 struct pl011_dmatx_data *dmatx = &uap->dmatx; 431 unsigned long flags; 432 u16 dmacr; 433 434 spin_lock_irqsave(&uap->port.lock, flags); 435 if (uap->dmatx.queued) 436 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1, 437 DMA_TO_DEVICE); 438 439 dmacr = uap->dmacr; 440 uap->dmacr = dmacr & ~UART011_TXDMAE; 441 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 442 443 /* 444 * If TX DMA was disabled, it means that we've stopped the DMA for 445 * some reason (eg, XOFF received, or we want to send an X-char.) 446 * 447 * Note: we need to be careful here of a potential race between DMA 448 * and the rest of the driver - if the driver disables TX DMA while 449 * a TX buffer completing, we must update the tx queued status to 450 * get further refills (hence we check dmacr). 451 */ 452 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) || 453 uart_circ_empty(&uap->port.state->xmit)) { 454 uap->dmatx.queued = false; 455 spin_unlock_irqrestore(&uap->port.lock, flags); 456 return; 457 } 458 459 if (pl011_dma_tx_refill(uap) <= 0) 460 /* 461 * We didn't queue a DMA buffer for some reason, but we 462 * have data pending to be sent. Re-enable the TX IRQ. 463 */ 464 pl011_start_tx_pio(uap); 465 466 spin_unlock_irqrestore(&uap->port.lock, flags); 467 } 468 469 /* 470 * Try to refill the TX DMA buffer. 471 * Locking: called with port lock held and IRQs disabled. 472 * Returns: 473 * 1 if we queued up a TX DMA buffer. 474 * 0 if we didn't want to handle this by DMA 475 * <0 on error 476 */ 477 static int pl011_dma_tx_refill(struct uart_amba_port *uap) 478 { 479 struct pl011_dmatx_data *dmatx = &uap->dmatx; 480 struct dma_chan *chan = dmatx->chan; 481 struct dma_device *dma_dev = chan->device; 482 struct dma_async_tx_descriptor *desc; 483 struct circ_buf *xmit = &uap->port.state->xmit; 484 unsigned int count; 485 486 /* 487 * Try to avoid the overhead involved in using DMA if the 488 * transaction fits in the first half of the FIFO, by using 489 * the standard interrupt handling. This ensures that we 490 * issue a uart_write_wakeup() at the appropriate time. 491 */ 492 count = uart_circ_chars_pending(xmit); 493 if (count < (uap->fifosize >> 1)) { 494 uap->dmatx.queued = false; 495 return 0; 496 } 497 498 /* 499 * Bodge: don't send the last character by DMA, as this 500 * will prevent XON from notifying us to restart DMA. 501 */ 502 count -= 1; 503 504 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */ 505 if (count > PL011_DMA_BUFFER_SIZE) 506 count = PL011_DMA_BUFFER_SIZE; 507 508 if (xmit->tail < xmit->head) 509 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count); 510 else { 511 size_t first = UART_XMIT_SIZE - xmit->tail; 512 size_t second; 513 514 if (first > count) 515 first = count; 516 second = count - first; 517 518 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first); 519 if (second) 520 memcpy(&dmatx->buf[first], &xmit->buf[0], second); 521 } 522 523 dmatx->sg.length = count; 524 525 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) { 526 uap->dmatx.queued = false; 527 dev_dbg(uap->port.dev, "unable to map TX DMA\n"); 528 return -EBUSY; 529 } 530 531 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV, 532 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 533 if (!desc) { 534 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE); 535 uap->dmatx.queued = false; 536 /* 537 * If DMA cannot be used right now, we complete this 538 * transaction via IRQ and let the TTY layer retry. 539 */ 540 dev_dbg(uap->port.dev, "TX DMA busy\n"); 541 return -EBUSY; 542 } 543 544 /* Some data to go along to the callback */ 545 desc->callback = pl011_dma_tx_callback; 546 desc->callback_param = uap; 547 548 /* All errors should happen at prepare time */ 549 dmaengine_submit(desc); 550 551 /* Fire the DMA transaction */ 552 dma_dev->device_issue_pending(chan); 553 554 uap->dmacr |= UART011_TXDMAE; 555 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 556 uap->dmatx.queued = true; 557 558 /* 559 * Now we know that DMA will fire, so advance the ring buffer 560 * with the stuff we just dispatched. 561 */ 562 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1); 563 uap->port.icount.tx += count; 564 565 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 566 uart_write_wakeup(&uap->port); 567 568 return 1; 569 } 570 571 /* 572 * We received a transmit interrupt without a pending X-char but with 573 * pending characters. 574 * Locking: called with port lock held and IRQs disabled. 575 * Returns: 576 * false if we want to use PIO to transmit 577 * true if we queued a DMA buffer 578 */ 579 static bool pl011_dma_tx_irq(struct uart_amba_port *uap) 580 { 581 if (!uap->using_tx_dma) 582 return false; 583 584 /* 585 * If we already have a TX buffer queued, but received a 586 * TX interrupt, it will be because we've just sent an X-char. 587 * Ensure the TX DMA is enabled and the TX IRQ is disabled. 588 */ 589 if (uap->dmatx.queued) { 590 uap->dmacr |= UART011_TXDMAE; 591 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 592 uap->im &= ~UART011_TXIM; 593 writew(uap->im, uap->port.membase + UART011_IMSC); 594 return true; 595 } 596 597 /* 598 * We don't have a TX buffer queued, so try to queue one. 599 * If we successfully queued a buffer, mask the TX IRQ. 600 */ 601 if (pl011_dma_tx_refill(uap) > 0) { 602 uap->im &= ~UART011_TXIM; 603 writew(uap->im, uap->port.membase + UART011_IMSC); 604 return true; 605 } 606 return false; 607 } 608 609 /* 610 * Stop the DMA transmit (eg, due to received XOFF). 611 * Locking: called with port lock held and IRQs disabled. 612 */ 613 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 614 { 615 if (uap->dmatx.queued) { 616 uap->dmacr &= ~UART011_TXDMAE; 617 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 618 } 619 } 620 621 /* 622 * Try to start a DMA transmit, or in the case of an XON/OFF 623 * character queued for send, try to get that character out ASAP. 624 * Locking: called with port lock held and IRQs disabled. 625 * Returns: 626 * false if we want the TX IRQ to be enabled 627 * true if we have a buffer queued 628 */ 629 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 630 { 631 u16 dmacr; 632 633 if (!uap->using_tx_dma) 634 return false; 635 636 if (!uap->port.x_char) { 637 /* no X-char, try to push chars out in DMA mode */ 638 bool ret = true; 639 640 if (!uap->dmatx.queued) { 641 if (pl011_dma_tx_refill(uap) > 0) { 642 uap->im &= ~UART011_TXIM; 643 writew(uap->im, uap->port.membase + 644 UART011_IMSC); 645 } else 646 ret = false; 647 } else if (!(uap->dmacr & UART011_TXDMAE)) { 648 uap->dmacr |= UART011_TXDMAE; 649 writew(uap->dmacr, 650 uap->port.membase + UART011_DMACR); 651 } 652 return ret; 653 } 654 655 /* 656 * We have an X-char to send. Disable DMA to prevent it loading 657 * the TX fifo, and then see if we can stuff it into the FIFO. 658 */ 659 dmacr = uap->dmacr; 660 uap->dmacr &= ~UART011_TXDMAE; 661 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 662 663 if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) { 664 /* 665 * No space in the FIFO, so enable the transmit interrupt 666 * so we know when there is space. Note that once we've 667 * loaded the character, we should just re-enable DMA. 668 */ 669 return false; 670 } 671 672 writew(uap->port.x_char, uap->port.membase + UART01x_DR); 673 uap->port.icount.tx++; 674 uap->port.x_char = 0; 675 676 /* Success - restore the DMA state */ 677 uap->dmacr = dmacr; 678 writew(dmacr, uap->port.membase + UART011_DMACR); 679 680 return true; 681 } 682 683 /* 684 * Flush the transmit buffer. 685 * Locking: called with port lock held and IRQs disabled. 686 */ 687 static void pl011_dma_flush_buffer(struct uart_port *port) 688 __releases(&uap->port.lock) 689 __acquires(&uap->port.lock) 690 { 691 struct uart_amba_port *uap = 692 container_of(port, struct uart_amba_port, port); 693 694 if (!uap->using_tx_dma) 695 return; 696 697 /* Avoid deadlock with the DMA engine callback */ 698 spin_unlock(&uap->port.lock); 699 dmaengine_terminate_all(uap->dmatx.chan); 700 spin_lock(&uap->port.lock); 701 if (uap->dmatx.queued) { 702 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 703 DMA_TO_DEVICE); 704 uap->dmatx.queued = false; 705 uap->dmacr &= ~UART011_TXDMAE; 706 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 707 } 708 } 709 710 static void pl011_dma_rx_callback(void *data); 711 712 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 713 { 714 struct dma_chan *rxchan = uap->dmarx.chan; 715 struct pl011_dmarx_data *dmarx = &uap->dmarx; 716 struct dma_async_tx_descriptor *desc; 717 struct pl011_sgbuf *sgbuf; 718 719 if (!rxchan) 720 return -EIO; 721 722 /* Start the RX DMA job */ 723 sgbuf = uap->dmarx.use_buf_b ? 724 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 725 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1, 726 DMA_DEV_TO_MEM, 727 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 728 /* 729 * If the DMA engine is busy and cannot prepare a 730 * channel, no big deal, the driver will fall back 731 * to interrupt mode as a result of this error code. 732 */ 733 if (!desc) { 734 uap->dmarx.running = false; 735 dmaengine_terminate_all(rxchan); 736 return -EBUSY; 737 } 738 739 /* Some data to go along to the callback */ 740 desc->callback = pl011_dma_rx_callback; 741 desc->callback_param = uap; 742 dmarx->cookie = dmaengine_submit(desc); 743 dma_async_issue_pending(rxchan); 744 745 uap->dmacr |= UART011_RXDMAE; 746 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 747 uap->dmarx.running = true; 748 749 uap->im &= ~UART011_RXIM; 750 writew(uap->im, uap->port.membase + UART011_IMSC); 751 752 return 0; 753 } 754 755 /* 756 * This is called when either the DMA job is complete, or 757 * the FIFO timeout interrupt occurred. This must be called 758 * with the port spinlock uap->port.lock held. 759 */ 760 static void pl011_dma_rx_chars(struct uart_amba_port *uap, 761 u32 pending, bool use_buf_b, 762 bool readfifo) 763 { 764 struct tty_port *port = &uap->port.state->port; 765 struct pl011_sgbuf *sgbuf = use_buf_b ? 766 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 767 int dma_count = 0; 768 u32 fifotaken = 0; /* only used for vdbg() */ 769 770 struct pl011_dmarx_data *dmarx = &uap->dmarx; 771 int dmataken = 0; 772 773 if (uap->dmarx.poll_rate) { 774 /* The data can be taken by polling */ 775 dmataken = sgbuf->sg.length - dmarx->last_residue; 776 /* Recalculate the pending size */ 777 if (pending >= dmataken) 778 pending -= dmataken; 779 } 780 781 /* Pick the remain data from the DMA */ 782 if (pending) { 783 784 /* 785 * First take all chars in the DMA pipe, then look in the FIFO. 786 * Note that tty_insert_flip_buf() tries to take as many chars 787 * as it can. 788 */ 789 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken, 790 pending); 791 792 uap->port.icount.rx += dma_count; 793 if (dma_count < pending) 794 dev_warn(uap->port.dev, 795 "couldn't insert all characters (TTY is full?)\n"); 796 } 797 798 /* Reset the last_residue for Rx DMA poll */ 799 if (uap->dmarx.poll_rate) 800 dmarx->last_residue = sgbuf->sg.length; 801 802 /* 803 * Only continue with trying to read the FIFO if all DMA chars have 804 * been taken first. 805 */ 806 if (dma_count == pending && readfifo) { 807 /* Clear any error flags */ 808 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS, 809 uap->port.membase + UART011_ICR); 810 811 /* 812 * If we read all the DMA'd characters, and we had an 813 * incomplete buffer, that could be due to an rx error, or 814 * maybe we just timed out. Read any pending chars and check 815 * the error status. 816 * 817 * Error conditions will only occur in the FIFO, these will 818 * trigger an immediate interrupt and stop the DMA job, so we 819 * will always find the error in the FIFO, never in the DMA 820 * buffer. 821 */ 822 fifotaken = pl011_fifo_to_tty(uap); 823 } 824 825 spin_unlock(&uap->port.lock); 826 dev_vdbg(uap->port.dev, 827 "Took %d chars from DMA buffer and %d chars from the FIFO\n", 828 dma_count, fifotaken); 829 tty_flip_buffer_push(port); 830 spin_lock(&uap->port.lock); 831 } 832 833 static void pl011_dma_rx_irq(struct uart_amba_port *uap) 834 { 835 struct pl011_dmarx_data *dmarx = &uap->dmarx; 836 struct dma_chan *rxchan = dmarx->chan; 837 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? 838 &dmarx->sgbuf_b : &dmarx->sgbuf_a; 839 size_t pending; 840 struct dma_tx_state state; 841 enum dma_status dmastat; 842 843 /* 844 * Pause the transfer so we can trust the current counter, 845 * do this before we pause the PL011 block, else we may 846 * overflow the FIFO. 847 */ 848 if (dmaengine_pause(rxchan)) 849 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 850 dmastat = rxchan->device->device_tx_status(rxchan, 851 dmarx->cookie, &state); 852 if (dmastat != DMA_PAUSED) 853 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 854 855 /* Disable RX DMA - incoming data will wait in the FIFO */ 856 uap->dmacr &= ~UART011_RXDMAE; 857 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 858 uap->dmarx.running = false; 859 860 pending = sgbuf->sg.length - state.residue; 861 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 862 /* Then we terminate the transfer - we now know our residue */ 863 dmaengine_terminate_all(rxchan); 864 865 /* 866 * This will take the chars we have so far and insert 867 * into the framework. 868 */ 869 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true); 870 871 /* Switch buffer & re-trigger DMA job */ 872 dmarx->use_buf_b = !dmarx->use_buf_b; 873 if (pl011_dma_rx_trigger_dma(uap)) { 874 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 875 "fall back to interrupt mode\n"); 876 uap->im |= UART011_RXIM; 877 writew(uap->im, uap->port.membase + UART011_IMSC); 878 } 879 } 880 881 static void pl011_dma_rx_callback(void *data) 882 { 883 struct uart_amba_port *uap = data; 884 struct pl011_dmarx_data *dmarx = &uap->dmarx; 885 struct dma_chan *rxchan = dmarx->chan; 886 bool lastbuf = dmarx->use_buf_b; 887 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? 888 &dmarx->sgbuf_b : &dmarx->sgbuf_a; 889 size_t pending; 890 struct dma_tx_state state; 891 int ret; 892 893 /* 894 * This completion interrupt occurs typically when the 895 * RX buffer is totally stuffed but no timeout has yet 896 * occurred. When that happens, we just want the RX 897 * routine to flush out the secondary DMA buffer while 898 * we immediately trigger the next DMA job. 899 */ 900 spin_lock_irq(&uap->port.lock); 901 /* 902 * Rx data can be taken by the UART interrupts during 903 * the DMA irq handler. So we check the residue here. 904 */ 905 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); 906 pending = sgbuf->sg.length - state.residue; 907 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 908 /* Then we terminate the transfer - we now know our residue */ 909 dmaengine_terminate_all(rxchan); 910 911 uap->dmarx.running = false; 912 dmarx->use_buf_b = !lastbuf; 913 ret = pl011_dma_rx_trigger_dma(uap); 914 915 pl011_dma_rx_chars(uap, pending, lastbuf, false); 916 spin_unlock_irq(&uap->port.lock); 917 /* 918 * Do this check after we picked the DMA chars so we don't 919 * get some IRQ immediately from RX. 920 */ 921 if (ret) { 922 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 923 "fall back to interrupt mode\n"); 924 uap->im |= UART011_RXIM; 925 writew(uap->im, uap->port.membase + UART011_IMSC); 926 } 927 } 928 929 /* 930 * Stop accepting received characters, when we're shutting down or 931 * suspending this port. 932 * Locking: called with port lock held and IRQs disabled. 933 */ 934 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 935 { 936 /* FIXME. Just disable the DMA enable */ 937 uap->dmacr &= ~UART011_RXDMAE; 938 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 939 } 940 941 /* 942 * Timer handler for Rx DMA polling. 943 * Every polling, It checks the residue in the dma buffer and transfer 944 * data to the tty. Also, last_residue is updated for the next polling. 945 */ 946 static void pl011_dma_rx_poll(unsigned long args) 947 { 948 struct uart_amba_port *uap = (struct uart_amba_port *)args; 949 struct tty_port *port = &uap->port.state->port; 950 struct pl011_dmarx_data *dmarx = &uap->dmarx; 951 struct dma_chan *rxchan = uap->dmarx.chan; 952 unsigned long flags = 0; 953 unsigned int dmataken = 0; 954 unsigned int size = 0; 955 struct pl011_sgbuf *sgbuf; 956 int dma_count; 957 struct dma_tx_state state; 958 959 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 960 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); 961 if (likely(state.residue < dmarx->last_residue)) { 962 dmataken = sgbuf->sg.length - dmarx->last_residue; 963 size = dmarx->last_residue - state.residue; 964 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken, 965 size); 966 if (dma_count == size) 967 dmarx->last_residue = state.residue; 968 dmarx->last_jiffies = jiffies; 969 } 970 tty_flip_buffer_push(port); 971 972 /* 973 * If no data is received in poll_timeout, the driver will fall back 974 * to interrupt mode. We will retrigger DMA at the first interrupt. 975 */ 976 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies) 977 > uap->dmarx.poll_timeout) { 978 979 spin_lock_irqsave(&uap->port.lock, flags); 980 pl011_dma_rx_stop(uap); 981 uap->im |= UART011_RXIM; 982 writew(uap->im, uap->port.membase + UART011_IMSC); 983 spin_unlock_irqrestore(&uap->port.lock, flags); 984 985 uap->dmarx.running = false; 986 dmaengine_terminate_all(rxchan); 987 del_timer(&uap->dmarx.timer); 988 } else { 989 mod_timer(&uap->dmarx.timer, 990 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate)); 991 } 992 } 993 994 static void pl011_dma_startup(struct uart_amba_port *uap) 995 { 996 int ret; 997 998 if (!uap->dma_probed) 999 pl011_dma_probe(uap); 1000 1001 if (!uap->dmatx.chan) 1002 return; 1003 1004 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA); 1005 if (!uap->dmatx.buf) { 1006 dev_err(uap->port.dev, "no memory for DMA TX buffer\n"); 1007 uap->port.fifosize = uap->fifosize; 1008 return; 1009 } 1010 1011 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE); 1012 1013 /* The DMA buffer is now the FIFO the TTY subsystem can use */ 1014 uap->port.fifosize = PL011_DMA_BUFFER_SIZE; 1015 uap->using_tx_dma = true; 1016 1017 if (!uap->dmarx.chan) 1018 goto skip_rx; 1019 1020 /* Allocate and map DMA RX buffers */ 1021 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 1022 DMA_FROM_DEVICE); 1023 if (ret) { 1024 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 1025 "RX buffer A", ret); 1026 goto skip_rx; 1027 } 1028 1029 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b, 1030 DMA_FROM_DEVICE); 1031 if (ret) { 1032 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 1033 "RX buffer B", ret); 1034 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 1035 DMA_FROM_DEVICE); 1036 goto skip_rx; 1037 } 1038 1039 uap->using_rx_dma = true; 1040 1041 skip_rx: 1042 /* Turn on DMA error (RX/TX will be enabled on demand) */ 1043 uap->dmacr |= UART011_DMAONERR; 1044 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 1045 1046 /* 1047 * ST Micro variants has some specific dma burst threshold 1048 * compensation. Set this to 16 bytes, so burst will only 1049 * be issued above/below 16 bytes. 1050 */ 1051 if (uap->vendor->dma_threshold) 1052 writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16, 1053 uap->port.membase + ST_UART011_DMAWM); 1054 1055 if (uap->using_rx_dma) { 1056 if (pl011_dma_rx_trigger_dma(uap)) 1057 dev_dbg(uap->port.dev, "could not trigger initial " 1058 "RX DMA job, fall back to interrupt mode\n"); 1059 if (uap->dmarx.poll_rate) { 1060 init_timer(&(uap->dmarx.timer)); 1061 uap->dmarx.timer.function = pl011_dma_rx_poll; 1062 uap->dmarx.timer.data = (unsigned long)uap; 1063 mod_timer(&uap->dmarx.timer, 1064 jiffies + 1065 msecs_to_jiffies(uap->dmarx.poll_rate)); 1066 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; 1067 uap->dmarx.last_jiffies = jiffies; 1068 } 1069 } 1070 } 1071 1072 static void pl011_dma_shutdown(struct uart_amba_port *uap) 1073 { 1074 if (!(uap->using_tx_dma || uap->using_rx_dma)) 1075 return; 1076 1077 /* Disable RX and TX DMA */ 1078 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY) 1079 barrier(); 1080 1081 spin_lock_irq(&uap->port.lock); 1082 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE); 1083 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 1084 spin_unlock_irq(&uap->port.lock); 1085 1086 if (uap->using_tx_dma) { 1087 /* In theory, this should already be done by pl011_dma_flush_buffer */ 1088 dmaengine_terminate_all(uap->dmatx.chan); 1089 if (uap->dmatx.queued) { 1090 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 1091 DMA_TO_DEVICE); 1092 uap->dmatx.queued = false; 1093 } 1094 1095 kfree(uap->dmatx.buf); 1096 uap->using_tx_dma = false; 1097 } 1098 1099 if (uap->using_rx_dma) { 1100 dmaengine_terminate_all(uap->dmarx.chan); 1101 /* Clean up the RX DMA */ 1102 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE); 1103 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE); 1104 if (uap->dmarx.poll_rate) 1105 del_timer_sync(&uap->dmarx.timer); 1106 uap->using_rx_dma = false; 1107 } 1108 } 1109 1110 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1111 { 1112 return uap->using_rx_dma; 1113 } 1114 1115 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1116 { 1117 return uap->using_rx_dma && uap->dmarx.running; 1118 } 1119 1120 #else 1121 /* Blank functions if the DMA engine is not available */ 1122 static inline void pl011_dma_probe(struct uart_amba_port *uap) 1123 { 1124 } 1125 1126 static inline void pl011_dma_remove(struct uart_amba_port *uap) 1127 { 1128 } 1129 1130 static inline void pl011_dma_startup(struct uart_amba_port *uap) 1131 { 1132 } 1133 1134 static inline void pl011_dma_shutdown(struct uart_amba_port *uap) 1135 { 1136 } 1137 1138 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap) 1139 { 1140 return false; 1141 } 1142 1143 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 1144 { 1145 } 1146 1147 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 1148 { 1149 return false; 1150 } 1151 1152 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap) 1153 { 1154 } 1155 1156 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 1157 { 1158 } 1159 1160 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 1161 { 1162 return -EIO; 1163 } 1164 1165 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1166 { 1167 return false; 1168 } 1169 1170 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1171 { 1172 return false; 1173 } 1174 1175 #define pl011_dma_flush_buffer NULL 1176 #endif 1177 1178 static void pl011_stop_tx(struct uart_port *port) 1179 { 1180 struct uart_amba_port *uap = 1181 container_of(port, struct uart_amba_port, port); 1182 1183 uap->im &= ~UART011_TXIM; 1184 writew(uap->im, uap->port.membase + UART011_IMSC); 1185 pl011_dma_tx_stop(uap); 1186 } 1187 1188 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq); 1189 1190 /* Start TX with programmed I/O only (no DMA) */ 1191 static void pl011_start_tx_pio(struct uart_amba_port *uap) 1192 { 1193 uap->im |= UART011_TXIM; 1194 writew(uap->im, uap->port.membase + UART011_IMSC); 1195 pl011_tx_chars(uap, false); 1196 } 1197 1198 static void pl011_start_tx(struct uart_port *port) 1199 { 1200 struct uart_amba_port *uap = 1201 container_of(port, struct uart_amba_port, port); 1202 1203 if (!pl011_dma_tx_start(uap)) 1204 pl011_start_tx_pio(uap); 1205 } 1206 1207 static void pl011_stop_rx(struct uart_port *port) 1208 { 1209 struct uart_amba_port *uap = 1210 container_of(port, struct uart_amba_port, port); 1211 1212 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM| 1213 UART011_PEIM|UART011_BEIM|UART011_OEIM); 1214 writew(uap->im, uap->port.membase + UART011_IMSC); 1215 1216 pl011_dma_rx_stop(uap); 1217 } 1218 1219 static void pl011_enable_ms(struct uart_port *port) 1220 { 1221 struct uart_amba_port *uap = 1222 container_of(port, struct uart_amba_port, port); 1223 1224 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM; 1225 writew(uap->im, uap->port.membase + UART011_IMSC); 1226 } 1227 1228 static void pl011_rx_chars(struct uart_amba_port *uap) 1229 __releases(&uap->port.lock) 1230 __acquires(&uap->port.lock) 1231 { 1232 pl011_fifo_to_tty(uap); 1233 1234 spin_unlock(&uap->port.lock); 1235 tty_flip_buffer_push(&uap->port.state->port); 1236 /* 1237 * If we were temporarily out of DMA mode for a while, 1238 * attempt to switch back to DMA mode again. 1239 */ 1240 if (pl011_dma_rx_available(uap)) { 1241 if (pl011_dma_rx_trigger_dma(uap)) { 1242 dev_dbg(uap->port.dev, "could not trigger RX DMA job " 1243 "fall back to interrupt mode again\n"); 1244 uap->im |= UART011_RXIM; 1245 writew(uap->im, uap->port.membase + UART011_IMSC); 1246 } else { 1247 #ifdef CONFIG_DMA_ENGINE 1248 /* Start Rx DMA poll */ 1249 if (uap->dmarx.poll_rate) { 1250 uap->dmarx.last_jiffies = jiffies; 1251 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; 1252 mod_timer(&uap->dmarx.timer, 1253 jiffies + 1254 msecs_to_jiffies(uap->dmarx.poll_rate)); 1255 } 1256 #endif 1257 } 1258 } 1259 spin_lock(&uap->port.lock); 1260 } 1261 1262 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c, 1263 bool from_irq) 1264 { 1265 if (unlikely(!from_irq) && 1266 readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 1267 return false; /* unable to transmit character */ 1268 1269 writew(c, uap->port.membase + UART01x_DR); 1270 uap->port.icount.tx++; 1271 1272 return true; 1273 } 1274 1275 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq) 1276 { 1277 struct circ_buf *xmit = &uap->port.state->xmit; 1278 int count = uap->fifosize >> 1; 1279 1280 if (uap->port.x_char) { 1281 if (!pl011_tx_char(uap, uap->port.x_char, from_irq)) 1282 return; 1283 uap->port.x_char = 0; 1284 --count; 1285 } 1286 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) { 1287 pl011_stop_tx(&uap->port); 1288 return; 1289 } 1290 1291 /* If we are using DMA mode, try to send some characters. */ 1292 if (pl011_dma_tx_irq(uap)) 1293 return; 1294 1295 do { 1296 if (likely(from_irq) && count-- == 0) 1297 break; 1298 1299 if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq)) 1300 break; 1301 1302 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 1303 } while (!uart_circ_empty(xmit)); 1304 1305 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1306 uart_write_wakeup(&uap->port); 1307 1308 if (uart_circ_empty(xmit)) 1309 pl011_stop_tx(&uap->port); 1310 } 1311 1312 static void pl011_modem_status(struct uart_amba_port *uap) 1313 { 1314 unsigned int status, delta; 1315 1316 status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY; 1317 1318 delta = status ^ uap->old_status; 1319 uap->old_status = status; 1320 1321 if (!delta) 1322 return; 1323 1324 if (delta & UART01x_FR_DCD) 1325 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD); 1326 1327 if (delta & UART01x_FR_DSR) 1328 uap->port.icount.dsr++; 1329 1330 if (delta & UART01x_FR_CTS) 1331 uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS); 1332 1333 wake_up_interruptible(&uap->port.state->port.delta_msr_wait); 1334 } 1335 1336 static void check_apply_cts_event_workaround(struct uart_amba_port *uap) 1337 { 1338 unsigned int dummy_read; 1339 1340 if (!uap->vendor->cts_event_workaround) 1341 return; 1342 1343 /* workaround to make sure that all bits are unlocked.. */ 1344 writew(0x00, uap->port.membase + UART011_ICR); 1345 1346 /* 1347 * WA: introduce 26ns(1 uart clk) delay before W1C; 1348 * single apb access will incur 2 pclk(133.12Mhz) delay, 1349 * so add 2 dummy reads 1350 */ 1351 dummy_read = readw(uap->port.membase + UART011_ICR); 1352 dummy_read = readw(uap->port.membase + UART011_ICR); 1353 } 1354 1355 static irqreturn_t pl011_int(int irq, void *dev_id) 1356 { 1357 struct uart_amba_port *uap = dev_id; 1358 unsigned long flags; 1359 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT; 1360 u16 imsc; 1361 int handled = 0; 1362 1363 spin_lock_irqsave(&uap->port.lock, flags); 1364 imsc = readw(uap->port.membase + UART011_IMSC); 1365 status = readw(uap->port.membase + UART011_RIS) & imsc; 1366 if (status) { 1367 do { 1368 check_apply_cts_event_workaround(uap); 1369 1370 writew(status & ~(UART011_TXIS|UART011_RTIS| 1371 UART011_RXIS), 1372 uap->port.membase + UART011_ICR); 1373 1374 if (status & (UART011_RTIS|UART011_RXIS)) { 1375 if (pl011_dma_rx_running(uap)) 1376 pl011_dma_rx_irq(uap); 1377 else 1378 pl011_rx_chars(uap); 1379 } 1380 if (status & (UART011_DSRMIS|UART011_DCDMIS| 1381 UART011_CTSMIS|UART011_RIMIS)) 1382 pl011_modem_status(uap); 1383 if (status & UART011_TXIS) 1384 pl011_tx_chars(uap, true); 1385 1386 if (pass_counter-- == 0) 1387 break; 1388 1389 status = readw(uap->port.membase + UART011_RIS) & imsc; 1390 } while (status != 0); 1391 handled = 1; 1392 } 1393 1394 spin_unlock_irqrestore(&uap->port.lock, flags); 1395 1396 return IRQ_RETVAL(handled); 1397 } 1398 1399 static unsigned int pl011_tx_empty(struct uart_port *port) 1400 { 1401 struct uart_amba_port *uap = 1402 container_of(port, struct uart_amba_port, port); 1403 unsigned int status = readw(uap->port.membase + UART01x_FR); 1404 return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT; 1405 } 1406 1407 static unsigned int pl011_get_mctrl(struct uart_port *port) 1408 { 1409 struct uart_amba_port *uap = 1410 container_of(port, struct uart_amba_port, port); 1411 unsigned int result = 0; 1412 unsigned int status = readw(uap->port.membase + UART01x_FR); 1413 1414 #define TIOCMBIT(uartbit, tiocmbit) \ 1415 if (status & uartbit) \ 1416 result |= tiocmbit 1417 1418 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR); 1419 TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR); 1420 TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS); 1421 TIOCMBIT(UART011_FR_RI, TIOCM_RNG); 1422 #undef TIOCMBIT 1423 return result; 1424 } 1425 1426 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl) 1427 { 1428 struct uart_amba_port *uap = 1429 container_of(port, struct uart_amba_port, port); 1430 unsigned int cr; 1431 1432 cr = readw(uap->port.membase + UART011_CR); 1433 1434 #define TIOCMBIT(tiocmbit, uartbit) \ 1435 if (mctrl & tiocmbit) \ 1436 cr |= uartbit; \ 1437 else \ 1438 cr &= ~uartbit 1439 1440 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS); 1441 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR); 1442 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1); 1443 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2); 1444 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE); 1445 1446 if (uap->autorts) { 1447 /* We need to disable auto-RTS if we want to turn RTS off */ 1448 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN); 1449 } 1450 #undef TIOCMBIT 1451 1452 writew(cr, uap->port.membase + UART011_CR); 1453 } 1454 1455 static void pl011_break_ctl(struct uart_port *port, int break_state) 1456 { 1457 struct uart_amba_port *uap = 1458 container_of(port, struct uart_amba_port, port); 1459 unsigned long flags; 1460 unsigned int lcr_h; 1461 1462 spin_lock_irqsave(&uap->port.lock, flags); 1463 lcr_h = readw(uap->port.membase + uap->lcrh_tx); 1464 if (break_state == -1) 1465 lcr_h |= UART01x_LCRH_BRK; 1466 else 1467 lcr_h &= ~UART01x_LCRH_BRK; 1468 writew(lcr_h, uap->port.membase + uap->lcrh_tx); 1469 spin_unlock_irqrestore(&uap->port.lock, flags); 1470 } 1471 1472 #ifdef CONFIG_CONSOLE_POLL 1473 1474 static void pl011_quiesce_irqs(struct uart_port *port) 1475 { 1476 struct uart_amba_port *uap = 1477 container_of(port, struct uart_amba_port, port); 1478 unsigned char __iomem *regs = uap->port.membase; 1479 1480 writew(readw(regs + UART011_MIS), regs + UART011_ICR); 1481 /* 1482 * There is no way to clear TXIM as this is "ready to transmit IRQ", so 1483 * we simply mask it. start_tx() will unmask it. 1484 * 1485 * Note we can race with start_tx(), and if the race happens, the 1486 * polling user might get another interrupt just after we clear it. 1487 * But it should be OK and can happen even w/o the race, e.g. 1488 * controller immediately got some new data and raised the IRQ. 1489 * 1490 * And whoever uses polling routines assumes that it manages the device 1491 * (including tx queue), so we're also fine with start_tx()'s caller 1492 * side. 1493 */ 1494 writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC); 1495 } 1496 1497 static int pl011_get_poll_char(struct uart_port *port) 1498 { 1499 struct uart_amba_port *uap = 1500 container_of(port, struct uart_amba_port, port); 1501 unsigned int status; 1502 1503 /* 1504 * The caller might need IRQs lowered, e.g. if used with KDB NMI 1505 * debugger. 1506 */ 1507 pl011_quiesce_irqs(port); 1508 1509 status = readw(uap->port.membase + UART01x_FR); 1510 if (status & UART01x_FR_RXFE) 1511 return NO_POLL_CHAR; 1512 1513 return readw(uap->port.membase + UART01x_DR); 1514 } 1515 1516 static void pl011_put_poll_char(struct uart_port *port, 1517 unsigned char ch) 1518 { 1519 struct uart_amba_port *uap = 1520 container_of(port, struct uart_amba_port, port); 1521 1522 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 1523 barrier(); 1524 1525 writew(ch, uap->port.membase + UART01x_DR); 1526 } 1527 1528 #endif /* CONFIG_CONSOLE_POLL */ 1529 1530 static int pl011_hwinit(struct uart_port *port) 1531 { 1532 struct uart_amba_port *uap = 1533 container_of(port, struct uart_amba_port, port); 1534 int retval; 1535 1536 /* Optionaly enable pins to be muxed in and configured */ 1537 pinctrl_pm_select_default_state(port->dev); 1538 1539 /* 1540 * Try to enable the clock producer. 1541 */ 1542 retval = clk_prepare_enable(uap->clk); 1543 if (retval) 1544 return retval; 1545 1546 uap->port.uartclk = clk_get_rate(uap->clk); 1547 1548 /* Clear pending error and receive interrupts */ 1549 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS | 1550 UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR); 1551 1552 /* 1553 * Save interrupts enable mask, and enable RX interrupts in case if 1554 * the interrupt is used for NMI entry. 1555 */ 1556 uap->im = readw(uap->port.membase + UART011_IMSC); 1557 writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC); 1558 1559 if (dev_get_platdata(uap->port.dev)) { 1560 struct amba_pl011_data *plat; 1561 1562 plat = dev_get_platdata(uap->port.dev); 1563 if (plat->init) 1564 plat->init(); 1565 } 1566 return 0; 1567 } 1568 1569 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h) 1570 { 1571 writew(lcr_h, uap->port.membase + uap->lcrh_rx); 1572 if (uap->lcrh_rx != uap->lcrh_tx) { 1573 int i; 1574 /* 1575 * Wait 10 PCLKs before writing LCRH_TX register, 1576 * to get this delay write read only register 10 times 1577 */ 1578 for (i = 0; i < 10; ++i) 1579 writew(0xff, uap->port.membase + UART011_MIS); 1580 writew(lcr_h, uap->port.membase + uap->lcrh_tx); 1581 } 1582 } 1583 1584 static int pl011_allocate_irq(struct uart_amba_port *uap) 1585 { 1586 writew(uap->im, uap->port.membase + UART011_IMSC); 1587 1588 return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap); 1589 } 1590 1591 /* 1592 * Enable interrupts, only timeouts when using DMA 1593 * if initial RX DMA job failed, start in interrupt mode 1594 * as well. 1595 */ 1596 static void pl011_enable_interrupts(struct uart_amba_port *uap) 1597 { 1598 spin_lock_irq(&uap->port.lock); 1599 1600 /* Clear out any spuriously appearing RX interrupts */ 1601 writew(UART011_RTIS | UART011_RXIS, 1602 uap->port.membase + UART011_ICR); 1603 uap->im = UART011_RTIM; 1604 if (!pl011_dma_rx_running(uap)) 1605 uap->im |= UART011_RXIM; 1606 writew(uap->im, uap->port.membase + UART011_IMSC); 1607 spin_unlock_irq(&uap->port.lock); 1608 } 1609 1610 static int pl011_startup(struct uart_port *port) 1611 { 1612 struct uart_amba_port *uap = 1613 container_of(port, struct uart_amba_port, port); 1614 unsigned int cr; 1615 int retval; 1616 1617 retval = pl011_hwinit(port); 1618 if (retval) 1619 goto clk_dis; 1620 1621 retval = pl011_allocate_irq(uap); 1622 if (retval) 1623 goto clk_dis; 1624 1625 writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS); 1626 1627 spin_lock_irq(&uap->port.lock); 1628 1629 /* restore RTS and DTR */ 1630 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR); 1631 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE; 1632 writew(cr, uap->port.membase + UART011_CR); 1633 1634 spin_unlock_irq(&uap->port.lock); 1635 1636 /* 1637 * initialise the old status of the modem signals 1638 */ 1639 uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY; 1640 1641 /* Startup DMA */ 1642 pl011_dma_startup(uap); 1643 1644 pl011_enable_interrupts(uap); 1645 1646 return 0; 1647 1648 clk_dis: 1649 clk_disable_unprepare(uap->clk); 1650 return retval; 1651 } 1652 1653 static int sbsa_uart_startup(struct uart_port *port) 1654 { 1655 struct uart_amba_port *uap = 1656 container_of(port, struct uart_amba_port, port); 1657 int retval; 1658 1659 retval = pl011_hwinit(port); 1660 if (retval) 1661 return retval; 1662 1663 retval = pl011_allocate_irq(uap); 1664 if (retval) 1665 return retval; 1666 1667 /* The SBSA UART does not support any modem status lines. */ 1668 uap->old_status = 0; 1669 1670 pl011_enable_interrupts(uap); 1671 1672 return 0; 1673 } 1674 1675 static void pl011_shutdown_channel(struct uart_amba_port *uap, 1676 unsigned int lcrh) 1677 { 1678 unsigned long val; 1679 1680 val = readw(uap->port.membase + lcrh); 1681 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN); 1682 writew(val, uap->port.membase + lcrh); 1683 } 1684 1685 /* 1686 * disable the port. It should not disable RTS and DTR. 1687 * Also RTS and DTR state should be preserved to restore 1688 * it during startup(). 1689 */ 1690 static void pl011_disable_uart(struct uart_amba_port *uap) 1691 { 1692 unsigned int cr; 1693 1694 uap->autorts = false; 1695 spin_lock_irq(&uap->port.lock); 1696 cr = readw(uap->port.membase + UART011_CR); 1697 uap->old_cr = cr; 1698 cr &= UART011_CR_RTS | UART011_CR_DTR; 1699 cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 1700 writew(cr, uap->port.membase + UART011_CR); 1701 spin_unlock_irq(&uap->port.lock); 1702 1703 /* 1704 * disable break condition and fifos 1705 */ 1706 pl011_shutdown_channel(uap, uap->lcrh_rx); 1707 if (uap->lcrh_rx != uap->lcrh_tx) 1708 pl011_shutdown_channel(uap, uap->lcrh_tx); 1709 } 1710 1711 static void pl011_disable_interrupts(struct uart_amba_port *uap) 1712 { 1713 spin_lock_irq(&uap->port.lock); 1714 1715 /* mask all interrupts and clear all pending ones */ 1716 uap->im = 0; 1717 writew(uap->im, uap->port.membase + UART011_IMSC); 1718 writew(0xffff, uap->port.membase + UART011_ICR); 1719 1720 spin_unlock_irq(&uap->port.lock); 1721 } 1722 1723 static void pl011_shutdown(struct uart_port *port) 1724 { 1725 struct uart_amba_port *uap = 1726 container_of(port, struct uart_amba_port, port); 1727 1728 pl011_disable_interrupts(uap); 1729 1730 pl011_dma_shutdown(uap); 1731 1732 free_irq(uap->port.irq, uap); 1733 1734 pl011_disable_uart(uap); 1735 1736 /* 1737 * Shut down the clock producer 1738 */ 1739 clk_disable_unprepare(uap->clk); 1740 /* Optionally let pins go into sleep states */ 1741 pinctrl_pm_select_sleep_state(port->dev); 1742 1743 if (dev_get_platdata(uap->port.dev)) { 1744 struct amba_pl011_data *plat; 1745 1746 plat = dev_get_platdata(uap->port.dev); 1747 if (plat->exit) 1748 plat->exit(); 1749 } 1750 1751 if (uap->port.ops->flush_buffer) 1752 uap->port.ops->flush_buffer(port); 1753 } 1754 1755 static void sbsa_uart_shutdown(struct uart_port *port) 1756 { 1757 struct uart_amba_port *uap = 1758 container_of(port, struct uart_amba_port, port); 1759 1760 pl011_disable_interrupts(uap); 1761 1762 free_irq(uap->port.irq, uap); 1763 1764 if (uap->port.ops->flush_buffer) 1765 uap->port.ops->flush_buffer(port); 1766 } 1767 1768 static void 1769 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios) 1770 { 1771 port->read_status_mask = UART011_DR_OE | 255; 1772 if (termios->c_iflag & INPCK) 1773 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE; 1774 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) 1775 port->read_status_mask |= UART011_DR_BE; 1776 1777 /* 1778 * Characters to ignore 1779 */ 1780 port->ignore_status_mask = 0; 1781 if (termios->c_iflag & IGNPAR) 1782 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE; 1783 if (termios->c_iflag & IGNBRK) { 1784 port->ignore_status_mask |= UART011_DR_BE; 1785 /* 1786 * If we're ignoring parity and break indicators, 1787 * ignore overruns too (for real raw support). 1788 */ 1789 if (termios->c_iflag & IGNPAR) 1790 port->ignore_status_mask |= UART011_DR_OE; 1791 } 1792 1793 /* 1794 * Ignore all characters if CREAD is not set. 1795 */ 1796 if ((termios->c_cflag & CREAD) == 0) 1797 port->ignore_status_mask |= UART_DUMMY_DR_RX; 1798 } 1799 1800 static void 1801 pl011_set_termios(struct uart_port *port, struct ktermios *termios, 1802 struct ktermios *old) 1803 { 1804 struct uart_amba_port *uap = 1805 container_of(port, struct uart_amba_port, port); 1806 unsigned int lcr_h, old_cr; 1807 unsigned long flags; 1808 unsigned int baud, quot, clkdiv; 1809 1810 if (uap->vendor->oversampling) 1811 clkdiv = 8; 1812 else 1813 clkdiv = 16; 1814 1815 /* 1816 * Ask the core to calculate the divisor for us. 1817 */ 1818 baud = uart_get_baud_rate(port, termios, old, 0, 1819 port->uartclk / clkdiv); 1820 #ifdef CONFIG_DMA_ENGINE 1821 /* 1822 * Adjust RX DMA polling rate with baud rate if not specified. 1823 */ 1824 if (uap->dmarx.auto_poll_rate) 1825 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud); 1826 #endif 1827 1828 if (baud > port->uartclk/16) 1829 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud); 1830 else 1831 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud); 1832 1833 switch (termios->c_cflag & CSIZE) { 1834 case CS5: 1835 lcr_h = UART01x_LCRH_WLEN_5; 1836 break; 1837 case CS6: 1838 lcr_h = UART01x_LCRH_WLEN_6; 1839 break; 1840 case CS7: 1841 lcr_h = UART01x_LCRH_WLEN_7; 1842 break; 1843 default: // CS8 1844 lcr_h = UART01x_LCRH_WLEN_8; 1845 break; 1846 } 1847 if (termios->c_cflag & CSTOPB) 1848 lcr_h |= UART01x_LCRH_STP2; 1849 if (termios->c_cflag & PARENB) { 1850 lcr_h |= UART01x_LCRH_PEN; 1851 if (!(termios->c_cflag & PARODD)) 1852 lcr_h |= UART01x_LCRH_EPS; 1853 } 1854 if (uap->fifosize > 1) 1855 lcr_h |= UART01x_LCRH_FEN; 1856 1857 spin_lock_irqsave(&port->lock, flags); 1858 1859 /* 1860 * Update the per-port timeout. 1861 */ 1862 uart_update_timeout(port, termios->c_cflag, baud); 1863 1864 pl011_setup_status_masks(port, termios); 1865 1866 if (UART_ENABLE_MS(port, termios->c_cflag)) 1867 pl011_enable_ms(port); 1868 1869 /* first, disable everything */ 1870 old_cr = readw(port->membase + UART011_CR); 1871 writew(0, port->membase + UART011_CR); 1872 1873 if (termios->c_cflag & CRTSCTS) { 1874 if (old_cr & UART011_CR_RTS) 1875 old_cr |= UART011_CR_RTSEN; 1876 1877 old_cr |= UART011_CR_CTSEN; 1878 uap->autorts = true; 1879 } else { 1880 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN); 1881 uap->autorts = false; 1882 } 1883 1884 if (uap->vendor->oversampling) { 1885 if (baud > port->uartclk / 16) 1886 old_cr |= ST_UART011_CR_OVSFACT; 1887 else 1888 old_cr &= ~ST_UART011_CR_OVSFACT; 1889 } 1890 1891 /* 1892 * Workaround for the ST Micro oversampling variants to 1893 * increase the bitrate slightly, by lowering the divisor, 1894 * to avoid delayed sampling of start bit at high speeds, 1895 * else we see data corruption. 1896 */ 1897 if (uap->vendor->oversampling) { 1898 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1)) 1899 quot -= 1; 1900 else if ((baud > 3250000) && (quot > 2)) 1901 quot -= 2; 1902 } 1903 /* Set baud rate */ 1904 writew(quot & 0x3f, port->membase + UART011_FBRD); 1905 writew(quot >> 6, port->membase + UART011_IBRD); 1906 1907 /* 1908 * ----------v----------v----------v----------v----- 1909 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER 1910 * UART011_FBRD & UART011_IBRD. 1911 * ----------^----------^----------^----------^----- 1912 */ 1913 pl011_write_lcr_h(uap, lcr_h); 1914 writew(old_cr, port->membase + UART011_CR); 1915 1916 spin_unlock_irqrestore(&port->lock, flags); 1917 } 1918 1919 static void 1920 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1921 struct ktermios *old) 1922 { 1923 struct uart_amba_port *uap = 1924 container_of(port, struct uart_amba_port, port); 1925 unsigned long flags; 1926 1927 tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud); 1928 1929 /* The SBSA UART only supports 8n1 without hardware flow control. */ 1930 termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD); 1931 termios->c_cflag &= ~(CMSPAR | CRTSCTS); 1932 termios->c_cflag |= CS8 | CLOCAL; 1933 1934 spin_lock_irqsave(&port->lock, flags); 1935 uart_update_timeout(port, CS8, uap->fixed_baud); 1936 pl011_setup_status_masks(port, termios); 1937 spin_unlock_irqrestore(&port->lock, flags); 1938 } 1939 1940 static const char *pl011_type(struct uart_port *port) 1941 { 1942 struct uart_amba_port *uap = 1943 container_of(port, struct uart_amba_port, port); 1944 return uap->port.type == PORT_AMBA ? uap->type : NULL; 1945 } 1946 1947 /* 1948 * Release the memory region(s) being used by 'port' 1949 */ 1950 static void pl011_release_port(struct uart_port *port) 1951 { 1952 release_mem_region(port->mapbase, SZ_4K); 1953 } 1954 1955 /* 1956 * Request the memory region(s) being used by 'port' 1957 */ 1958 static int pl011_request_port(struct uart_port *port) 1959 { 1960 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011") 1961 != NULL ? 0 : -EBUSY; 1962 } 1963 1964 /* 1965 * Configure/autoconfigure the port. 1966 */ 1967 static void pl011_config_port(struct uart_port *port, int flags) 1968 { 1969 if (flags & UART_CONFIG_TYPE) { 1970 port->type = PORT_AMBA; 1971 pl011_request_port(port); 1972 } 1973 } 1974 1975 /* 1976 * verify the new serial_struct (for TIOCSSERIAL). 1977 */ 1978 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser) 1979 { 1980 int ret = 0; 1981 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA) 1982 ret = -EINVAL; 1983 if (ser->irq < 0 || ser->irq >= nr_irqs) 1984 ret = -EINVAL; 1985 if (ser->baud_base < 9600) 1986 ret = -EINVAL; 1987 return ret; 1988 } 1989 1990 static struct uart_ops amba_pl011_pops = { 1991 .tx_empty = pl011_tx_empty, 1992 .set_mctrl = pl011_set_mctrl, 1993 .get_mctrl = pl011_get_mctrl, 1994 .stop_tx = pl011_stop_tx, 1995 .start_tx = pl011_start_tx, 1996 .stop_rx = pl011_stop_rx, 1997 .enable_ms = pl011_enable_ms, 1998 .break_ctl = pl011_break_ctl, 1999 .startup = pl011_startup, 2000 .shutdown = pl011_shutdown, 2001 .flush_buffer = pl011_dma_flush_buffer, 2002 .set_termios = pl011_set_termios, 2003 .type = pl011_type, 2004 .release_port = pl011_release_port, 2005 .request_port = pl011_request_port, 2006 .config_port = pl011_config_port, 2007 .verify_port = pl011_verify_port, 2008 #ifdef CONFIG_CONSOLE_POLL 2009 .poll_init = pl011_hwinit, 2010 .poll_get_char = pl011_get_poll_char, 2011 .poll_put_char = pl011_put_poll_char, 2012 #endif 2013 }; 2014 2015 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 2016 { 2017 } 2018 2019 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port) 2020 { 2021 return 0; 2022 } 2023 2024 static const struct uart_ops sbsa_uart_pops = { 2025 .tx_empty = pl011_tx_empty, 2026 .set_mctrl = sbsa_uart_set_mctrl, 2027 .get_mctrl = sbsa_uart_get_mctrl, 2028 .stop_tx = pl011_stop_tx, 2029 .start_tx = pl011_start_tx, 2030 .stop_rx = pl011_stop_rx, 2031 .startup = sbsa_uart_startup, 2032 .shutdown = sbsa_uart_shutdown, 2033 .set_termios = sbsa_uart_set_termios, 2034 .type = pl011_type, 2035 .release_port = pl011_release_port, 2036 .request_port = pl011_request_port, 2037 .config_port = pl011_config_port, 2038 .verify_port = pl011_verify_port, 2039 #ifdef CONFIG_CONSOLE_POLL 2040 .poll_init = pl011_hwinit, 2041 .poll_get_char = pl011_get_poll_char, 2042 .poll_put_char = pl011_put_poll_char, 2043 #endif 2044 }; 2045 2046 static struct uart_amba_port *amba_ports[UART_NR]; 2047 2048 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE 2049 2050 static void pl011_console_putchar(struct uart_port *port, int ch) 2051 { 2052 struct uart_amba_port *uap = 2053 container_of(port, struct uart_amba_port, port); 2054 2055 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 2056 barrier(); 2057 writew(ch, uap->port.membase + UART01x_DR); 2058 } 2059 2060 static void 2061 pl011_console_write(struct console *co, const char *s, unsigned int count) 2062 { 2063 struct uart_amba_port *uap = amba_ports[co->index]; 2064 unsigned int status, old_cr = 0, new_cr; 2065 unsigned long flags; 2066 int locked = 1; 2067 2068 clk_enable(uap->clk); 2069 2070 local_irq_save(flags); 2071 if (uap->port.sysrq) 2072 locked = 0; 2073 else if (oops_in_progress) 2074 locked = spin_trylock(&uap->port.lock); 2075 else 2076 spin_lock(&uap->port.lock); 2077 2078 /* 2079 * First save the CR then disable the interrupts 2080 */ 2081 if (!uap->vendor->always_enabled) { 2082 old_cr = readw(uap->port.membase + UART011_CR); 2083 new_cr = old_cr & ~UART011_CR_CTSEN; 2084 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 2085 writew(new_cr, uap->port.membase + UART011_CR); 2086 } 2087 2088 uart_console_write(&uap->port, s, count, pl011_console_putchar); 2089 2090 /* 2091 * Finally, wait for transmitter to become empty 2092 * and restore the TCR 2093 */ 2094 do { 2095 status = readw(uap->port.membase + UART01x_FR); 2096 } while (status & UART01x_FR_BUSY); 2097 if (!uap->vendor->always_enabled) 2098 writew(old_cr, uap->port.membase + UART011_CR); 2099 2100 if (locked) 2101 spin_unlock(&uap->port.lock); 2102 local_irq_restore(flags); 2103 2104 clk_disable(uap->clk); 2105 } 2106 2107 static void __init 2108 pl011_console_get_options(struct uart_amba_port *uap, int *baud, 2109 int *parity, int *bits) 2110 { 2111 if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) { 2112 unsigned int lcr_h, ibrd, fbrd; 2113 2114 lcr_h = readw(uap->port.membase + uap->lcrh_tx); 2115 2116 *parity = 'n'; 2117 if (lcr_h & UART01x_LCRH_PEN) { 2118 if (lcr_h & UART01x_LCRH_EPS) 2119 *parity = 'e'; 2120 else 2121 *parity = 'o'; 2122 } 2123 2124 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7) 2125 *bits = 7; 2126 else 2127 *bits = 8; 2128 2129 ibrd = readw(uap->port.membase + UART011_IBRD); 2130 fbrd = readw(uap->port.membase + UART011_FBRD); 2131 2132 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd); 2133 2134 if (uap->vendor->oversampling) { 2135 if (readw(uap->port.membase + UART011_CR) 2136 & ST_UART011_CR_OVSFACT) 2137 *baud *= 2; 2138 } 2139 } 2140 } 2141 2142 static int __init pl011_console_setup(struct console *co, char *options) 2143 { 2144 struct uart_amba_port *uap; 2145 int baud = 38400; 2146 int bits = 8; 2147 int parity = 'n'; 2148 int flow = 'n'; 2149 int ret; 2150 2151 /* 2152 * Check whether an invalid uart number has been specified, and 2153 * if so, search for the first available port that does have 2154 * console support. 2155 */ 2156 if (co->index >= UART_NR) 2157 co->index = 0; 2158 uap = amba_ports[co->index]; 2159 if (!uap) 2160 return -ENODEV; 2161 2162 /* Allow pins to be muxed in and configured */ 2163 pinctrl_pm_select_default_state(uap->port.dev); 2164 2165 ret = clk_prepare(uap->clk); 2166 if (ret) 2167 return ret; 2168 2169 if (dev_get_platdata(uap->port.dev)) { 2170 struct amba_pl011_data *plat; 2171 2172 plat = dev_get_platdata(uap->port.dev); 2173 if (plat->init) 2174 plat->init(); 2175 } 2176 2177 uap->port.uartclk = clk_get_rate(uap->clk); 2178 2179 if (uap->vendor->fixed_options) { 2180 baud = uap->fixed_baud; 2181 } else { 2182 if (options) 2183 uart_parse_options(options, 2184 &baud, &parity, &bits, &flow); 2185 else 2186 pl011_console_get_options(uap, &baud, &parity, &bits); 2187 } 2188 2189 return uart_set_options(&uap->port, co, baud, parity, bits, flow); 2190 } 2191 2192 static struct uart_driver amba_reg; 2193 static struct console amba_console = { 2194 .name = "ttyAMA", 2195 .write = pl011_console_write, 2196 .device = uart_console_device, 2197 .setup = pl011_console_setup, 2198 .flags = CON_PRINTBUFFER, 2199 .index = -1, 2200 .data = &amba_reg, 2201 }; 2202 2203 #define AMBA_CONSOLE (&amba_console) 2204 2205 static void pl011_putc(struct uart_port *port, int c) 2206 { 2207 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF) 2208 ; 2209 writeb(c, port->membase + UART01x_DR); 2210 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY) 2211 ; 2212 } 2213 2214 static void pl011_early_write(struct console *con, const char *s, unsigned n) 2215 { 2216 struct earlycon_device *dev = con->data; 2217 2218 uart_console_write(&dev->port, s, n, pl011_putc); 2219 } 2220 2221 static int __init pl011_early_console_setup(struct earlycon_device *device, 2222 const char *opt) 2223 { 2224 if (!device->port.membase) 2225 return -ENODEV; 2226 2227 device->con->write = pl011_early_write; 2228 return 0; 2229 } 2230 EARLYCON_DECLARE(pl011, pl011_early_console_setup); 2231 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup); 2232 2233 #else 2234 #define AMBA_CONSOLE NULL 2235 #endif 2236 2237 static struct uart_driver amba_reg = { 2238 .owner = THIS_MODULE, 2239 .driver_name = "ttyAMA", 2240 .dev_name = "ttyAMA", 2241 .major = SERIAL_AMBA_MAJOR, 2242 .minor = SERIAL_AMBA_MINOR, 2243 .nr = UART_NR, 2244 .cons = AMBA_CONSOLE, 2245 }; 2246 2247 static int pl011_probe_dt_alias(int index, struct device *dev) 2248 { 2249 struct device_node *np; 2250 static bool seen_dev_with_alias = false; 2251 static bool seen_dev_without_alias = false; 2252 int ret = index; 2253 2254 if (!IS_ENABLED(CONFIG_OF)) 2255 return ret; 2256 2257 np = dev->of_node; 2258 if (!np) 2259 return ret; 2260 2261 ret = of_alias_get_id(np, "serial"); 2262 if (IS_ERR_VALUE(ret)) { 2263 seen_dev_without_alias = true; 2264 ret = index; 2265 } else { 2266 seen_dev_with_alias = true; 2267 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) { 2268 dev_warn(dev, "requested serial port %d not available.\n", ret); 2269 ret = index; 2270 } 2271 } 2272 2273 if (seen_dev_with_alias && seen_dev_without_alias) 2274 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n"); 2275 2276 return ret; 2277 } 2278 2279 /* unregisters the driver also if no more ports are left */ 2280 static void pl011_unregister_port(struct uart_amba_port *uap) 2281 { 2282 int i; 2283 bool busy = false; 2284 2285 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) { 2286 if (amba_ports[i] == uap) 2287 amba_ports[i] = NULL; 2288 else if (amba_ports[i]) 2289 busy = true; 2290 } 2291 pl011_dma_remove(uap); 2292 if (!busy) 2293 uart_unregister_driver(&amba_reg); 2294 } 2295 2296 static int pl011_find_free_port(void) 2297 { 2298 int i; 2299 2300 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 2301 if (amba_ports[i] == NULL) 2302 return i; 2303 2304 return -EBUSY; 2305 } 2306 2307 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap, 2308 struct resource *mmiobase, int index) 2309 { 2310 void __iomem *base; 2311 2312 base = devm_ioremap_resource(dev, mmiobase); 2313 if (!base) 2314 return -ENOMEM; 2315 2316 index = pl011_probe_dt_alias(index, dev); 2317 2318 uap->old_cr = 0; 2319 uap->port.dev = dev; 2320 uap->port.mapbase = mmiobase->start; 2321 uap->port.membase = base; 2322 uap->port.iotype = UPIO_MEM; 2323 uap->port.fifosize = uap->fifosize; 2324 uap->port.flags = UPF_BOOT_AUTOCONF; 2325 uap->port.line = index; 2326 2327 amba_ports[index] = uap; 2328 2329 return 0; 2330 } 2331 2332 static int pl011_register_port(struct uart_amba_port *uap) 2333 { 2334 int ret; 2335 2336 /* Ensure interrupts from this UART are masked and cleared */ 2337 writew(0, uap->port.membase + UART011_IMSC); 2338 writew(0xffff, uap->port.membase + UART011_ICR); 2339 2340 if (!amba_reg.state) { 2341 ret = uart_register_driver(&amba_reg); 2342 if (ret < 0) { 2343 dev_err(uap->port.dev, 2344 "Failed to register AMBA-PL011 driver\n"); 2345 return ret; 2346 } 2347 } 2348 2349 ret = uart_add_one_port(&amba_reg, &uap->port); 2350 if (ret) 2351 pl011_unregister_port(uap); 2352 2353 return ret; 2354 } 2355 2356 static int pl011_probe(struct amba_device *dev, const struct amba_id *id) 2357 { 2358 struct uart_amba_port *uap; 2359 struct vendor_data *vendor = id->data; 2360 int portnr, ret; 2361 2362 portnr = pl011_find_free_port(); 2363 if (portnr < 0) 2364 return portnr; 2365 2366 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port), 2367 GFP_KERNEL); 2368 if (!uap) 2369 return -ENOMEM; 2370 2371 uap->clk = devm_clk_get(&dev->dev, NULL); 2372 if (IS_ERR(uap->clk)) 2373 return PTR_ERR(uap->clk); 2374 2375 uap->vendor = vendor; 2376 uap->lcrh_rx = vendor->lcrh_rx; 2377 uap->lcrh_tx = vendor->lcrh_tx; 2378 uap->fifosize = vendor->get_fifosize(dev); 2379 uap->port.irq = dev->irq[0]; 2380 uap->port.ops = &amba_pl011_pops; 2381 2382 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev)); 2383 2384 ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr); 2385 if (ret) 2386 return ret; 2387 2388 amba_set_drvdata(dev, uap); 2389 2390 return pl011_register_port(uap); 2391 } 2392 2393 static int pl011_remove(struct amba_device *dev) 2394 { 2395 struct uart_amba_port *uap = amba_get_drvdata(dev); 2396 2397 uart_remove_one_port(&amba_reg, &uap->port); 2398 pl011_unregister_port(uap); 2399 return 0; 2400 } 2401 2402 #ifdef CONFIG_PM_SLEEP 2403 static int pl011_suspend(struct device *dev) 2404 { 2405 struct uart_amba_port *uap = dev_get_drvdata(dev); 2406 2407 if (!uap) 2408 return -EINVAL; 2409 2410 return uart_suspend_port(&amba_reg, &uap->port); 2411 } 2412 2413 static int pl011_resume(struct device *dev) 2414 { 2415 struct uart_amba_port *uap = dev_get_drvdata(dev); 2416 2417 if (!uap) 2418 return -EINVAL; 2419 2420 return uart_resume_port(&amba_reg, &uap->port); 2421 } 2422 #endif 2423 2424 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume); 2425 2426 static int sbsa_uart_probe(struct platform_device *pdev) 2427 { 2428 struct uart_amba_port *uap; 2429 struct resource *r; 2430 int portnr, ret; 2431 int baudrate; 2432 2433 /* 2434 * Check the mandatory baud rate parameter in the DT node early 2435 * so that we can easily exit with the error. 2436 */ 2437 if (pdev->dev.of_node) { 2438 struct device_node *np = pdev->dev.of_node; 2439 2440 ret = of_property_read_u32(np, "current-speed", &baudrate); 2441 if (ret) 2442 return ret; 2443 } else { 2444 baudrate = 115200; 2445 } 2446 2447 portnr = pl011_find_free_port(); 2448 if (portnr < 0) 2449 return portnr; 2450 2451 uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port), 2452 GFP_KERNEL); 2453 if (!uap) 2454 return -ENOMEM; 2455 2456 uap->vendor = &vendor_sbsa; 2457 uap->fifosize = 32; 2458 uap->port.irq = platform_get_irq(pdev, 0); 2459 uap->port.ops = &sbsa_uart_pops; 2460 uap->fixed_baud = baudrate; 2461 2462 snprintf(uap->type, sizeof(uap->type), "SBSA"); 2463 2464 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2465 2466 ret = pl011_setup_port(&pdev->dev, uap, r, portnr); 2467 if (ret) 2468 return ret; 2469 2470 platform_set_drvdata(pdev, uap); 2471 2472 return pl011_register_port(uap); 2473 } 2474 2475 static int sbsa_uart_remove(struct platform_device *pdev) 2476 { 2477 struct uart_amba_port *uap = platform_get_drvdata(pdev); 2478 2479 uart_remove_one_port(&amba_reg, &uap->port); 2480 pl011_unregister_port(uap); 2481 return 0; 2482 } 2483 2484 static const struct of_device_id sbsa_uart_of_match[] = { 2485 { .compatible = "arm,sbsa-uart", }, 2486 {}, 2487 }; 2488 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match); 2489 2490 static const struct acpi_device_id sbsa_uart_acpi_match[] = { 2491 { "ARMH0011", 0 }, 2492 {}, 2493 }; 2494 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match); 2495 2496 static struct platform_driver arm_sbsa_uart_platform_driver = { 2497 .probe = sbsa_uart_probe, 2498 .remove = sbsa_uart_remove, 2499 .driver = { 2500 .name = "sbsa-uart", 2501 .of_match_table = of_match_ptr(sbsa_uart_of_match), 2502 .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match), 2503 }, 2504 }; 2505 2506 static struct amba_id pl011_ids[] = { 2507 { 2508 .id = 0x00041011, 2509 .mask = 0x000fffff, 2510 .data = &vendor_arm, 2511 }, 2512 { 2513 .id = 0x00380802, 2514 .mask = 0x00ffffff, 2515 .data = &vendor_st, 2516 }, 2517 { 0, 0 }, 2518 }; 2519 2520 MODULE_DEVICE_TABLE(amba, pl011_ids); 2521 2522 static struct amba_driver pl011_driver = { 2523 .drv = { 2524 .name = "uart-pl011", 2525 .pm = &pl011_dev_pm_ops, 2526 }, 2527 .id_table = pl011_ids, 2528 .probe = pl011_probe, 2529 .remove = pl011_remove, 2530 }; 2531 2532 static int __init pl011_init(void) 2533 { 2534 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n"); 2535 2536 if (platform_driver_register(&arm_sbsa_uart_platform_driver)) 2537 pr_warn("could not register SBSA UART platform driver\n"); 2538 return amba_driver_register(&pl011_driver); 2539 } 2540 2541 static void __exit pl011_exit(void) 2542 { 2543 platform_driver_unregister(&arm_sbsa_uart_platform_driver); 2544 amba_driver_unregister(&pl011_driver); 2545 } 2546 2547 /* 2548 * While this can be a module, if builtin it's most likely the console 2549 * So let's leave module_exit but move module_init to an earlier place 2550 */ 2551 arch_initcall(pl011_init); 2552 module_exit(pl011_exit); 2553 2554 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd"); 2555 MODULE_DESCRIPTION("ARM AMBA serial port driver"); 2556 MODULE_LICENSE("GPL"); 2557