xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 11357f10)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/sysrq.h>
24 #include <linux/device.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial_core.h>
28 #include <linux/serial.h>
29 #include <linux/amba/bus.h>
30 #include <linux/amba/serial.h>
31 #include <linux/clk.h>
32 #include <linux/slab.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/scatterlist.h>
36 #include <linux/delay.h>
37 #include <linux/types.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44 
45 #define UART_NR			14
46 
47 #define SERIAL_AMBA_MAJOR	204
48 #define SERIAL_AMBA_MINOR	64
49 #define SERIAL_AMBA_NR		UART_NR
50 
51 #define AMBA_ISR_PASS_LIMIT	256
52 
53 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
54 #define UART_DUMMY_DR_RX	(1 << 16)
55 
56 enum {
57 	REG_DR,
58 	REG_ST_DMAWM,
59 	REG_ST_TIMEOUT,
60 	REG_FR,
61 	REG_LCRH_RX,
62 	REG_LCRH_TX,
63 	REG_IBRD,
64 	REG_FBRD,
65 	REG_CR,
66 	REG_IFLS,
67 	REG_IMSC,
68 	REG_RIS,
69 	REG_MIS,
70 	REG_ICR,
71 	REG_DMACR,
72 	REG_ST_XFCR,
73 	REG_ST_XON1,
74 	REG_ST_XON2,
75 	REG_ST_XOFF1,
76 	REG_ST_XOFF2,
77 	REG_ST_ITCR,
78 	REG_ST_ITIP,
79 	REG_ST_ABCR,
80 	REG_ST_ABIMSC,
81 
82 	/* The size of the array - must be last */
83 	REG_ARRAY_SIZE,
84 };
85 
86 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
87 	[REG_DR] = UART01x_DR,
88 	[REG_FR] = UART01x_FR,
89 	[REG_LCRH_RX] = UART011_LCRH,
90 	[REG_LCRH_TX] = UART011_LCRH,
91 	[REG_IBRD] = UART011_IBRD,
92 	[REG_FBRD] = UART011_FBRD,
93 	[REG_CR] = UART011_CR,
94 	[REG_IFLS] = UART011_IFLS,
95 	[REG_IMSC] = UART011_IMSC,
96 	[REG_RIS] = UART011_RIS,
97 	[REG_MIS] = UART011_MIS,
98 	[REG_ICR] = UART011_ICR,
99 	[REG_DMACR] = UART011_DMACR,
100 };
101 
102 /* There is by now at least one vendor with differing details, so handle it */
103 struct vendor_data {
104 	const u16		*reg_offset;
105 	unsigned int		ifls;
106 	unsigned int		fr_busy;
107 	unsigned int		fr_dsr;
108 	unsigned int		fr_cts;
109 	unsigned int		fr_ri;
110 	unsigned int		inv_fr;
111 	bool			access_32b;
112 	bool			oversampling;
113 	bool			dma_threshold;
114 	bool			cts_event_workaround;
115 	bool			always_enabled;
116 	bool			fixed_options;
117 
118 	unsigned int (*get_fifosize)(struct amba_device *dev);
119 };
120 
121 static unsigned int get_fifosize_arm(struct amba_device *dev)
122 {
123 	return amba_rev(dev) < 3 ? 16 : 32;
124 }
125 
126 static struct vendor_data vendor_arm = {
127 	.reg_offset		= pl011_std_offsets,
128 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
129 	.fr_busy		= UART01x_FR_BUSY,
130 	.fr_dsr			= UART01x_FR_DSR,
131 	.fr_cts			= UART01x_FR_CTS,
132 	.fr_ri			= UART011_FR_RI,
133 	.oversampling		= false,
134 	.dma_threshold		= false,
135 	.cts_event_workaround	= false,
136 	.always_enabled		= false,
137 	.fixed_options		= false,
138 	.get_fifosize		= get_fifosize_arm,
139 };
140 
141 static const struct vendor_data vendor_sbsa = {
142 	.reg_offset		= pl011_std_offsets,
143 	.fr_busy		= UART01x_FR_BUSY,
144 	.fr_dsr			= UART01x_FR_DSR,
145 	.fr_cts			= UART01x_FR_CTS,
146 	.fr_ri			= UART011_FR_RI,
147 	.access_32b		= true,
148 	.oversampling		= false,
149 	.dma_threshold		= false,
150 	.cts_event_workaround	= false,
151 	.always_enabled		= true,
152 	.fixed_options		= true,
153 };
154 
155 #ifdef CONFIG_ACPI_SPCR_TABLE
156 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
157 	.reg_offset		= pl011_std_offsets,
158 	.fr_busy		= UART011_FR_TXFE,
159 	.fr_dsr			= UART01x_FR_DSR,
160 	.fr_cts			= UART01x_FR_CTS,
161 	.fr_ri			= UART011_FR_RI,
162 	.inv_fr			= UART011_FR_TXFE,
163 	.access_32b		= true,
164 	.oversampling		= false,
165 	.dma_threshold		= false,
166 	.cts_event_workaround	= false,
167 	.always_enabled		= true,
168 	.fixed_options		= true,
169 };
170 #endif
171 
172 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
173 	[REG_DR] = UART01x_DR,
174 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
175 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
176 	[REG_FR] = UART01x_FR,
177 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
178 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
179 	[REG_IBRD] = UART011_IBRD,
180 	[REG_FBRD] = UART011_FBRD,
181 	[REG_CR] = UART011_CR,
182 	[REG_IFLS] = UART011_IFLS,
183 	[REG_IMSC] = UART011_IMSC,
184 	[REG_RIS] = UART011_RIS,
185 	[REG_MIS] = UART011_MIS,
186 	[REG_ICR] = UART011_ICR,
187 	[REG_DMACR] = UART011_DMACR,
188 	[REG_ST_XFCR] = ST_UART011_XFCR,
189 	[REG_ST_XON1] = ST_UART011_XON1,
190 	[REG_ST_XON2] = ST_UART011_XON2,
191 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
192 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
193 	[REG_ST_ITCR] = ST_UART011_ITCR,
194 	[REG_ST_ITIP] = ST_UART011_ITIP,
195 	[REG_ST_ABCR] = ST_UART011_ABCR,
196 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
197 };
198 
199 static unsigned int get_fifosize_st(struct amba_device *dev)
200 {
201 	return 64;
202 }
203 
204 static struct vendor_data vendor_st = {
205 	.reg_offset		= pl011_st_offsets,
206 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
207 	.fr_busy		= UART01x_FR_BUSY,
208 	.fr_dsr			= UART01x_FR_DSR,
209 	.fr_cts			= UART01x_FR_CTS,
210 	.fr_ri			= UART011_FR_RI,
211 	.oversampling		= true,
212 	.dma_threshold		= true,
213 	.cts_event_workaround	= true,
214 	.always_enabled		= false,
215 	.fixed_options		= false,
216 	.get_fifosize		= get_fifosize_st,
217 };
218 
219 /* Deals with DMA transactions */
220 
221 struct pl011_sgbuf {
222 	struct scatterlist sg;
223 	char *buf;
224 };
225 
226 struct pl011_dmarx_data {
227 	struct dma_chan		*chan;
228 	struct completion	complete;
229 	bool			use_buf_b;
230 	struct pl011_sgbuf	sgbuf_a;
231 	struct pl011_sgbuf	sgbuf_b;
232 	dma_cookie_t		cookie;
233 	bool			running;
234 	struct timer_list	timer;
235 	unsigned int last_residue;
236 	unsigned long last_jiffies;
237 	bool auto_poll_rate;
238 	unsigned int poll_rate;
239 	unsigned int poll_timeout;
240 };
241 
242 struct pl011_dmatx_data {
243 	struct dma_chan		*chan;
244 	struct scatterlist	sg;
245 	char			*buf;
246 	bool			queued;
247 };
248 
249 /*
250  * We wrap our port structure around the generic uart_port.
251  */
252 struct uart_amba_port {
253 	struct uart_port	port;
254 	const u16		*reg_offset;
255 	struct clk		*clk;
256 	const struct vendor_data *vendor;
257 	unsigned int		dmacr;		/* dma control reg */
258 	unsigned int		im;		/* interrupt mask */
259 	unsigned int		old_status;
260 	unsigned int		fifosize;	/* vendor-specific */
261 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
262 	char			type[12];
263 	bool			rs485_tx_started;
264 	unsigned int		rs485_tx_drain_interval; /* usecs */
265 #ifdef CONFIG_DMA_ENGINE
266 	/* DMA stuff */
267 	bool			using_tx_dma;
268 	bool			using_rx_dma;
269 	struct pl011_dmarx_data dmarx;
270 	struct pl011_dmatx_data	dmatx;
271 	bool			dma_probed;
272 #endif
273 };
274 
275 static unsigned int pl011_tx_empty(struct uart_port *port);
276 
277 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
278 	unsigned int reg)
279 {
280 	return uap->reg_offset[reg];
281 }
282 
283 static unsigned int pl011_read(const struct uart_amba_port *uap,
284 	unsigned int reg)
285 {
286 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
287 
288 	return (uap->port.iotype == UPIO_MEM32) ?
289 		readl_relaxed(addr) : readw_relaxed(addr);
290 }
291 
292 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
293 	unsigned int reg)
294 {
295 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
296 
297 	if (uap->port.iotype == UPIO_MEM32)
298 		writel_relaxed(val, addr);
299 	else
300 		writew_relaxed(val, addr);
301 }
302 
303 /*
304  * Reads up to 256 characters from the FIFO or until it's empty and
305  * inserts them into the TTY layer. Returns the number of characters
306  * read from the FIFO.
307  */
308 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
309 {
310 	unsigned int ch, flag, fifotaken;
311 	int sysrq;
312 	u16 status;
313 
314 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
315 		status = pl011_read(uap, REG_FR);
316 		if (status & UART01x_FR_RXFE)
317 			break;
318 
319 		/* Take chars from the FIFO and update status */
320 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
321 		flag = TTY_NORMAL;
322 		uap->port.icount.rx++;
323 
324 		if (unlikely(ch & UART_DR_ERROR)) {
325 			if (ch & UART011_DR_BE) {
326 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
327 				uap->port.icount.brk++;
328 				if (uart_handle_break(&uap->port))
329 					continue;
330 			} else if (ch & UART011_DR_PE)
331 				uap->port.icount.parity++;
332 			else if (ch & UART011_DR_FE)
333 				uap->port.icount.frame++;
334 			if (ch & UART011_DR_OE)
335 				uap->port.icount.overrun++;
336 
337 			ch &= uap->port.read_status_mask;
338 
339 			if (ch & UART011_DR_BE)
340 				flag = TTY_BREAK;
341 			else if (ch & UART011_DR_PE)
342 				flag = TTY_PARITY;
343 			else if (ch & UART011_DR_FE)
344 				flag = TTY_FRAME;
345 		}
346 
347 		spin_unlock(&uap->port.lock);
348 		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
349 		spin_lock(&uap->port.lock);
350 
351 		if (!sysrq)
352 			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
353 	}
354 
355 	return fifotaken;
356 }
357 
358 
359 /*
360  * All the DMA operation mode stuff goes inside this ifdef.
361  * This assumes that you have a generic DMA device interface,
362  * no custom DMA interfaces are supported.
363  */
364 #ifdef CONFIG_DMA_ENGINE
365 
366 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
367 
368 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
369 	enum dma_data_direction dir)
370 {
371 	dma_addr_t dma_addr;
372 
373 	sg->buf = dma_alloc_coherent(chan->device->dev,
374 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
375 	if (!sg->buf)
376 		return -ENOMEM;
377 
378 	sg_init_table(&sg->sg, 1);
379 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
380 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
381 	sg_dma_address(&sg->sg) = dma_addr;
382 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
383 
384 	return 0;
385 }
386 
387 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
388 	enum dma_data_direction dir)
389 {
390 	if (sg->buf) {
391 		dma_free_coherent(chan->device->dev,
392 			PL011_DMA_BUFFER_SIZE, sg->buf,
393 			sg_dma_address(&sg->sg));
394 	}
395 }
396 
397 static void pl011_dma_probe(struct uart_amba_port *uap)
398 {
399 	/* DMA is the sole user of the platform data right now */
400 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
401 	struct device *dev = uap->port.dev;
402 	struct dma_slave_config tx_conf = {
403 		.dst_addr = uap->port.mapbase +
404 				 pl011_reg_to_offset(uap, REG_DR),
405 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
406 		.direction = DMA_MEM_TO_DEV,
407 		.dst_maxburst = uap->fifosize >> 1,
408 		.device_fc = false,
409 	};
410 	struct dma_chan *chan;
411 	dma_cap_mask_t mask;
412 
413 	uap->dma_probed = true;
414 	chan = dma_request_chan(dev, "tx");
415 	if (IS_ERR(chan)) {
416 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
417 			uap->dma_probed = false;
418 			return;
419 		}
420 
421 		/* We need platform data */
422 		if (!plat || !plat->dma_filter) {
423 			dev_info(uap->port.dev, "no DMA platform data\n");
424 			return;
425 		}
426 
427 		/* Try to acquire a generic DMA engine slave TX channel */
428 		dma_cap_zero(mask);
429 		dma_cap_set(DMA_SLAVE, mask);
430 
431 		chan = dma_request_channel(mask, plat->dma_filter,
432 						plat->dma_tx_param);
433 		if (!chan) {
434 			dev_err(uap->port.dev, "no TX DMA channel!\n");
435 			return;
436 		}
437 	}
438 
439 	dmaengine_slave_config(chan, &tx_conf);
440 	uap->dmatx.chan = chan;
441 
442 	dev_info(uap->port.dev, "DMA channel TX %s\n",
443 		 dma_chan_name(uap->dmatx.chan));
444 
445 	/* Optionally make use of an RX channel as well */
446 	chan = dma_request_slave_channel(dev, "rx");
447 
448 	if (!chan && plat && plat->dma_rx_param) {
449 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
450 
451 		if (!chan) {
452 			dev_err(uap->port.dev, "no RX DMA channel!\n");
453 			return;
454 		}
455 	}
456 
457 	if (chan) {
458 		struct dma_slave_config rx_conf = {
459 			.src_addr = uap->port.mapbase +
460 				pl011_reg_to_offset(uap, REG_DR),
461 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
462 			.direction = DMA_DEV_TO_MEM,
463 			.src_maxburst = uap->fifosize >> 2,
464 			.device_fc = false,
465 		};
466 		struct dma_slave_caps caps;
467 
468 		/*
469 		 * Some DMA controllers provide information on their capabilities.
470 		 * If the controller does, check for suitable residue processing
471 		 * otherwise assime all is well.
472 		 */
473 		if (0 == dma_get_slave_caps(chan, &caps)) {
474 			if (caps.residue_granularity ==
475 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
476 				dma_release_channel(chan);
477 				dev_info(uap->port.dev,
478 					"RX DMA disabled - no residue processing\n");
479 				return;
480 			}
481 		}
482 		dmaengine_slave_config(chan, &rx_conf);
483 		uap->dmarx.chan = chan;
484 
485 		uap->dmarx.auto_poll_rate = false;
486 		if (plat && plat->dma_rx_poll_enable) {
487 			/* Set poll rate if specified. */
488 			if (plat->dma_rx_poll_rate) {
489 				uap->dmarx.auto_poll_rate = false;
490 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
491 			} else {
492 				/*
493 				 * 100 ms defaults to poll rate if not
494 				 * specified. This will be adjusted with
495 				 * the baud rate at set_termios.
496 				 */
497 				uap->dmarx.auto_poll_rate = true;
498 				uap->dmarx.poll_rate =  100;
499 			}
500 			/* 3 secs defaults poll_timeout if not specified. */
501 			if (plat->dma_rx_poll_timeout)
502 				uap->dmarx.poll_timeout =
503 					plat->dma_rx_poll_timeout;
504 			else
505 				uap->dmarx.poll_timeout = 3000;
506 		} else if (!plat && dev->of_node) {
507 			uap->dmarx.auto_poll_rate = of_property_read_bool(
508 						dev->of_node, "auto-poll");
509 			if (uap->dmarx.auto_poll_rate) {
510 				u32 x;
511 
512 				if (0 == of_property_read_u32(dev->of_node,
513 						"poll-rate-ms", &x))
514 					uap->dmarx.poll_rate = x;
515 				else
516 					uap->dmarx.poll_rate = 100;
517 				if (0 == of_property_read_u32(dev->of_node,
518 						"poll-timeout-ms", &x))
519 					uap->dmarx.poll_timeout = x;
520 				else
521 					uap->dmarx.poll_timeout = 3000;
522 			}
523 		}
524 		dev_info(uap->port.dev, "DMA channel RX %s\n",
525 			 dma_chan_name(uap->dmarx.chan));
526 	}
527 }
528 
529 static void pl011_dma_remove(struct uart_amba_port *uap)
530 {
531 	if (uap->dmatx.chan)
532 		dma_release_channel(uap->dmatx.chan);
533 	if (uap->dmarx.chan)
534 		dma_release_channel(uap->dmarx.chan);
535 }
536 
537 /* Forward declare these for the refill routine */
538 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
539 static void pl011_start_tx_pio(struct uart_amba_port *uap);
540 
541 /*
542  * The current DMA TX buffer has been sent.
543  * Try to queue up another DMA buffer.
544  */
545 static void pl011_dma_tx_callback(void *data)
546 {
547 	struct uart_amba_port *uap = data;
548 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
549 	unsigned long flags;
550 	u16 dmacr;
551 
552 	spin_lock_irqsave(&uap->port.lock, flags);
553 	if (uap->dmatx.queued)
554 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
555 			     DMA_TO_DEVICE);
556 
557 	dmacr = uap->dmacr;
558 	uap->dmacr = dmacr & ~UART011_TXDMAE;
559 	pl011_write(uap->dmacr, uap, REG_DMACR);
560 
561 	/*
562 	 * If TX DMA was disabled, it means that we've stopped the DMA for
563 	 * some reason (eg, XOFF received, or we want to send an X-char.)
564 	 *
565 	 * Note: we need to be careful here of a potential race between DMA
566 	 * and the rest of the driver - if the driver disables TX DMA while
567 	 * a TX buffer completing, we must update the tx queued status to
568 	 * get further refills (hence we check dmacr).
569 	 */
570 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
571 	    uart_circ_empty(&uap->port.state->xmit)) {
572 		uap->dmatx.queued = false;
573 		spin_unlock_irqrestore(&uap->port.lock, flags);
574 		return;
575 	}
576 
577 	if (pl011_dma_tx_refill(uap) <= 0)
578 		/*
579 		 * We didn't queue a DMA buffer for some reason, but we
580 		 * have data pending to be sent.  Re-enable the TX IRQ.
581 		 */
582 		pl011_start_tx_pio(uap);
583 
584 	spin_unlock_irqrestore(&uap->port.lock, flags);
585 }
586 
587 /*
588  * Try to refill the TX DMA buffer.
589  * Locking: called with port lock held and IRQs disabled.
590  * Returns:
591  *   1 if we queued up a TX DMA buffer.
592  *   0 if we didn't want to handle this by DMA
593  *  <0 on error
594  */
595 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
596 {
597 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
598 	struct dma_chan *chan = dmatx->chan;
599 	struct dma_device *dma_dev = chan->device;
600 	struct dma_async_tx_descriptor *desc;
601 	struct circ_buf *xmit = &uap->port.state->xmit;
602 	unsigned int count;
603 
604 	/*
605 	 * Try to avoid the overhead involved in using DMA if the
606 	 * transaction fits in the first half of the FIFO, by using
607 	 * the standard interrupt handling.  This ensures that we
608 	 * issue a uart_write_wakeup() at the appropriate time.
609 	 */
610 	count = uart_circ_chars_pending(xmit);
611 	if (count < (uap->fifosize >> 1)) {
612 		uap->dmatx.queued = false;
613 		return 0;
614 	}
615 
616 	/*
617 	 * Bodge: don't send the last character by DMA, as this
618 	 * will prevent XON from notifying us to restart DMA.
619 	 */
620 	count -= 1;
621 
622 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
623 	if (count > PL011_DMA_BUFFER_SIZE)
624 		count = PL011_DMA_BUFFER_SIZE;
625 
626 	if (xmit->tail < xmit->head)
627 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
628 	else {
629 		size_t first = UART_XMIT_SIZE - xmit->tail;
630 		size_t second;
631 
632 		if (first > count)
633 			first = count;
634 		second = count - first;
635 
636 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
637 		if (second)
638 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
639 	}
640 
641 	dmatx->sg.length = count;
642 
643 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
644 		uap->dmatx.queued = false;
645 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
646 		return -EBUSY;
647 	}
648 
649 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
650 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
651 	if (!desc) {
652 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
653 		uap->dmatx.queued = false;
654 		/*
655 		 * If DMA cannot be used right now, we complete this
656 		 * transaction via IRQ and let the TTY layer retry.
657 		 */
658 		dev_dbg(uap->port.dev, "TX DMA busy\n");
659 		return -EBUSY;
660 	}
661 
662 	/* Some data to go along to the callback */
663 	desc->callback = pl011_dma_tx_callback;
664 	desc->callback_param = uap;
665 
666 	/* All errors should happen at prepare time */
667 	dmaengine_submit(desc);
668 
669 	/* Fire the DMA transaction */
670 	dma_dev->device_issue_pending(chan);
671 
672 	uap->dmacr |= UART011_TXDMAE;
673 	pl011_write(uap->dmacr, uap, REG_DMACR);
674 	uap->dmatx.queued = true;
675 
676 	/*
677 	 * Now we know that DMA will fire, so advance the ring buffer
678 	 * with the stuff we just dispatched.
679 	 */
680 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
681 	uap->port.icount.tx += count;
682 
683 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
684 		uart_write_wakeup(&uap->port);
685 
686 	return 1;
687 }
688 
689 /*
690  * We received a transmit interrupt without a pending X-char but with
691  * pending characters.
692  * Locking: called with port lock held and IRQs disabled.
693  * Returns:
694  *   false if we want to use PIO to transmit
695  *   true if we queued a DMA buffer
696  */
697 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
698 {
699 	if (!uap->using_tx_dma)
700 		return false;
701 
702 	/*
703 	 * If we already have a TX buffer queued, but received a
704 	 * TX interrupt, it will be because we've just sent an X-char.
705 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
706 	 */
707 	if (uap->dmatx.queued) {
708 		uap->dmacr |= UART011_TXDMAE;
709 		pl011_write(uap->dmacr, uap, REG_DMACR);
710 		uap->im &= ~UART011_TXIM;
711 		pl011_write(uap->im, uap, REG_IMSC);
712 		return true;
713 	}
714 
715 	/*
716 	 * We don't have a TX buffer queued, so try to queue one.
717 	 * If we successfully queued a buffer, mask the TX IRQ.
718 	 */
719 	if (pl011_dma_tx_refill(uap) > 0) {
720 		uap->im &= ~UART011_TXIM;
721 		pl011_write(uap->im, uap, REG_IMSC);
722 		return true;
723 	}
724 	return false;
725 }
726 
727 /*
728  * Stop the DMA transmit (eg, due to received XOFF).
729  * Locking: called with port lock held and IRQs disabled.
730  */
731 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
732 {
733 	if (uap->dmatx.queued) {
734 		uap->dmacr &= ~UART011_TXDMAE;
735 		pl011_write(uap->dmacr, uap, REG_DMACR);
736 	}
737 }
738 
739 /*
740  * Try to start a DMA transmit, or in the case of an XON/OFF
741  * character queued for send, try to get that character out ASAP.
742  * Locking: called with port lock held and IRQs disabled.
743  * Returns:
744  *   false if we want the TX IRQ to be enabled
745  *   true if we have a buffer queued
746  */
747 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
748 {
749 	u16 dmacr;
750 
751 	if (!uap->using_tx_dma)
752 		return false;
753 
754 	if (!uap->port.x_char) {
755 		/* no X-char, try to push chars out in DMA mode */
756 		bool ret = true;
757 
758 		if (!uap->dmatx.queued) {
759 			if (pl011_dma_tx_refill(uap) > 0) {
760 				uap->im &= ~UART011_TXIM;
761 				pl011_write(uap->im, uap, REG_IMSC);
762 			} else
763 				ret = false;
764 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
765 			uap->dmacr |= UART011_TXDMAE;
766 			pl011_write(uap->dmacr, uap, REG_DMACR);
767 		}
768 		return ret;
769 	}
770 
771 	/*
772 	 * We have an X-char to send.  Disable DMA to prevent it loading
773 	 * the TX fifo, and then see if we can stuff it into the FIFO.
774 	 */
775 	dmacr = uap->dmacr;
776 	uap->dmacr &= ~UART011_TXDMAE;
777 	pl011_write(uap->dmacr, uap, REG_DMACR);
778 
779 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
780 		/*
781 		 * No space in the FIFO, so enable the transmit interrupt
782 		 * so we know when there is space.  Note that once we've
783 		 * loaded the character, we should just re-enable DMA.
784 		 */
785 		return false;
786 	}
787 
788 	pl011_write(uap->port.x_char, uap, REG_DR);
789 	uap->port.icount.tx++;
790 	uap->port.x_char = 0;
791 
792 	/* Success - restore the DMA state */
793 	uap->dmacr = dmacr;
794 	pl011_write(dmacr, uap, REG_DMACR);
795 
796 	return true;
797 }
798 
799 /*
800  * Flush the transmit buffer.
801  * Locking: called with port lock held and IRQs disabled.
802  */
803 static void pl011_dma_flush_buffer(struct uart_port *port)
804 __releases(&uap->port.lock)
805 __acquires(&uap->port.lock)
806 {
807 	struct uart_amba_port *uap =
808 	    container_of(port, struct uart_amba_port, port);
809 
810 	if (!uap->using_tx_dma)
811 		return;
812 
813 	dmaengine_terminate_async(uap->dmatx.chan);
814 
815 	if (uap->dmatx.queued) {
816 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
817 			     DMA_TO_DEVICE);
818 		uap->dmatx.queued = false;
819 		uap->dmacr &= ~UART011_TXDMAE;
820 		pl011_write(uap->dmacr, uap, REG_DMACR);
821 	}
822 }
823 
824 static void pl011_dma_rx_callback(void *data);
825 
826 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
827 {
828 	struct dma_chan *rxchan = uap->dmarx.chan;
829 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
830 	struct dma_async_tx_descriptor *desc;
831 	struct pl011_sgbuf *sgbuf;
832 
833 	if (!rxchan)
834 		return -EIO;
835 
836 	/* Start the RX DMA job */
837 	sgbuf = uap->dmarx.use_buf_b ?
838 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
839 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
840 					DMA_DEV_TO_MEM,
841 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
842 	/*
843 	 * If the DMA engine is busy and cannot prepare a
844 	 * channel, no big deal, the driver will fall back
845 	 * to interrupt mode as a result of this error code.
846 	 */
847 	if (!desc) {
848 		uap->dmarx.running = false;
849 		dmaengine_terminate_all(rxchan);
850 		return -EBUSY;
851 	}
852 
853 	/* Some data to go along to the callback */
854 	desc->callback = pl011_dma_rx_callback;
855 	desc->callback_param = uap;
856 	dmarx->cookie = dmaengine_submit(desc);
857 	dma_async_issue_pending(rxchan);
858 
859 	uap->dmacr |= UART011_RXDMAE;
860 	pl011_write(uap->dmacr, uap, REG_DMACR);
861 	uap->dmarx.running = true;
862 
863 	uap->im &= ~UART011_RXIM;
864 	pl011_write(uap->im, uap, REG_IMSC);
865 
866 	return 0;
867 }
868 
869 /*
870  * This is called when either the DMA job is complete, or
871  * the FIFO timeout interrupt occurred. This must be called
872  * with the port spinlock uap->port.lock held.
873  */
874 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
875 			       u32 pending, bool use_buf_b,
876 			       bool readfifo)
877 {
878 	struct tty_port *port = &uap->port.state->port;
879 	struct pl011_sgbuf *sgbuf = use_buf_b ?
880 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
881 	int dma_count = 0;
882 	u32 fifotaken = 0; /* only used for vdbg() */
883 
884 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
885 	int dmataken = 0;
886 
887 	if (uap->dmarx.poll_rate) {
888 		/* The data can be taken by polling */
889 		dmataken = sgbuf->sg.length - dmarx->last_residue;
890 		/* Recalculate the pending size */
891 		if (pending >= dmataken)
892 			pending -= dmataken;
893 	}
894 
895 	/* Pick the remain data from the DMA */
896 	if (pending) {
897 
898 		/*
899 		 * First take all chars in the DMA pipe, then look in the FIFO.
900 		 * Note that tty_insert_flip_buf() tries to take as many chars
901 		 * as it can.
902 		 */
903 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
904 				pending);
905 
906 		uap->port.icount.rx += dma_count;
907 		if (dma_count < pending)
908 			dev_warn(uap->port.dev,
909 				 "couldn't insert all characters (TTY is full?)\n");
910 	}
911 
912 	/* Reset the last_residue for Rx DMA poll */
913 	if (uap->dmarx.poll_rate)
914 		dmarx->last_residue = sgbuf->sg.length;
915 
916 	/*
917 	 * Only continue with trying to read the FIFO if all DMA chars have
918 	 * been taken first.
919 	 */
920 	if (dma_count == pending && readfifo) {
921 		/* Clear any error flags */
922 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
923 			    UART011_FEIS, uap, REG_ICR);
924 
925 		/*
926 		 * If we read all the DMA'd characters, and we had an
927 		 * incomplete buffer, that could be due to an rx error, or
928 		 * maybe we just timed out. Read any pending chars and check
929 		 * the error status.
930 		 *
931 		 * Error conditions will only occur in the FIFO, these will
932 		 * trigger an immediate interrupt and stop the DMA job, so we
933 		 * will always find the error in the FIFO, never in the DMA
934 		 * buffer.
935 		 */
936 		fifotaken = pl011_fifo_to_tty(uap);
937 	}
938 
939 	dev_vdbg(uap->port.dev,
940 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
941 		 dma_count, fifotaken);
942 	tty_flip_buffer_push(port);
943 }
944 
945 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
946 {
947 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
948 	struct dma_chan *rxchan = dmarx->chan;
949 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
950 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
951 	size_t pending;
952 	struct dma_tx_state state;
953 	enum dma_status dmastat;
954 
955 	/*
956 	 * Pause the transfer so we can trust the current counter,
957 	 * do this before we pause the PL011 block, else we may
958 	 * overflow the FIFO.
959 	 */
960 	if (dmaengine_pause(rxchan))
961 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
962 	dmastat = rxchan->device->device_tx_status(rxchan,
963 						   dmarx->cookie, &state);
964 	if (dmastat != DMA_PAUSED)
965 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
966 
967 	/* Disable RX DMA - incoming data will wait in the FIFO */
968 	uap->dmacr &= ~UART011_RXDMAE;
969 	pl011_write(uap->dmacr, uap, REG_DMACR);
970 	uap->dmarx.running = false;
971 
972 	pending = sgbuf->sg.length - state.residue;
973 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
974 	/* Then we terminate the transfer - we now know our residue */
975 	dmaengine_terminate_all(rxchan);
976 
977 	/*
978 	 * This will take the chars we have so far and insert
979 	 * into the framework.
980 	 */
981 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
982 
983 	/* Switch buffer & re-trigger DMA job */
984 	dmarx->use_buf_b = !dmarx->use_buf_b;
985 	if (pl011_dma_rx_trigger_dma(uap)) {
986 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
987 			"fall back to interrupt mode\n");
988 		uap->im |= UART011_RXIM;
989 		pl011_write(uap->im, uap, REG_IMSC);
990 	}
991 }
992 
993 static void pl011_dma_rx_callback(void *data)
994 {
995 	struct uart_amba_port *uap = data;
996 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
997 	struct dma_chan *rxchan = dmarx->chan;
998 	bool lastbuf = dmarx->use_buf_b;
999 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1000 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1001 	size_t pending;
1002 	struct dma_tx_state state;
1003 	int ret;
1004 
1005 	/*
1006 	 * This completion interrupt occurs typically when the
1007 	 * RX buffer is totally stuffed but no timeout has yet
1008 	 * occurred. When that happens, we just want the RX
1009 	 * routine to flush out the secondary DMA buffer while
1010 	 * we immediately trigger the next DMA job.
1011 	 */
1012 	spin_lock_irq(&uap->port.lock);
1013 	/*
1014 	 * Rx data can be taken by the UART interrupts during
1015 	 * the DMA irq handler. So we check the residue here.
1016 	 */
1017 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1018 	pending = sgbuf->sg.length - state.residue;
1019 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1020 	/* Then we terminate the transfer - we now know our residue */
1021 	dmaengine_terminate_all(rxchan);
1022 
1023 	uap->dmarx.running = false;
1024 	dmarx->use_buf_b = !lastbuf;
1025 	ret = pl011_dma_rx_trigger_dma(uap);
1026 
1027 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1028 	spin_unlock_irq(&uap->port.lock);
1029 	/*
1030 	 * Do this check after we picked the DMA chars so we don't
1031 	 * get some IRQ immediately from RX.
1032 	 */
1033 	if (ret) {
1034 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1035 			"fall back to interrupt mode\n");
1036 		uap->im |= UART011_RXIM;
1037 		pl011_write(uap->im, uap, REG_IMSC);
1038 	}
1039 }
1040 
1041 /*
1042  * Stop accepting received characters, when we're shutting down or
1043  * suspending this port.
1044  * Locking: called with port lock held and IRQs disabled.
1045  */
1046 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1047 {
1048 	/* FIXME.  Just disable the DMA enable */
1049 	uap->dmacr &= ~UART011_RXDMAE;
1050 	pl011_write(uap->dmacr, uap, REG_DMACR);
1051 }
1052 
1053 /*
1054  * Timer handler for Rx DMA polling.
1055  * Every polling, It checks the residue in the dma buffer and transfer
1056  * data to the tty. Also, last_residue is updated for the next polling.
1057  */
1058 static void pl011_dma_rx_poll(struct timer_list *t)
1059 {
1060 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1061 	struct tty_port *port = &uap->port.state->port;
1062 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1063 	struct dma_chan *rxchan = uap->dmarx.chan;
1064 	unsigned long flags;
1065 	unsigned int dmataken = 0;
1066 	unsigned int size = 0;
1067 	struct pl011_sgbuf *sgbuf;
1068 	int dma_count;
1069 	struct dma_tx_state state;
1070 
1071 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1072 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1073 	if (likely(state.residue < dmarx->last_residue)) {
1074 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1075 		size = dmarx->last_residue - state.residue;
1076 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1077 				size);
1078 		if (dma_count == size)
1079 			dmarx->last_residue =  state.residue;
1080 		dmarx->last_jiffies = jiffies;
1081 	}
1082 	tty_flip_buffer_push(port);
1083 
1084 	/*
1085 	 * If no data is received in poll_timeout, the driver will fall back
1086 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1087 	 */
1088 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1089 			> uap->dmarx.poll_timeout) {
1090 
1091 		spin_lock_irqsave(&uap->port.lock, flags);
1092 		pl011_dma_rx_stop(uap);
1093 		uap->im |= UART011_RXIM;
1094 		pl011_write(uap->im, uap, REG_IMSC);
1095 		spin_unlock_irqrestore(&uap->port.lock, flags);
1096 
1097 		uap->dmarx.running = false;
1098 		dmaengine_terminate_all(rxchan);
1099 		del_timer(&uap->dmarx.timer);
1100 	} else {
1101 		mod_timer(&uap->dmarx.timer,
1102 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1103 	}
1104 }
1105 
1106 static void pl011_dma_startup(struct uart_amba_port *uap)
1107 {
1108 	int ret;
1109 
1110 	if (!uap->dma_probed)
1111 		pl011_dma_probe(uap);
1112 
1113 	if (!uap->dmatx.chan)
1114 		return;
1115 
1116 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1117 	if (!uap->dmatx.buf) {
1118 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1119 		uap->port.fifosize = uap->fifosize;
1120 		return;
1121 	}
1122 
1123 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1124 
1125 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1126 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1127 	uap->using_tx_dma = true;
1128 
1129 	if (!uap->dmarx.chan)
1130 		goto skip_rx;
1131 
1132 	/* Allocate and map DMA RX buffers */
1133 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1134 			       DMA_FROM_DEVICE);
1135 	if (ret) {
1136 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1137 			"RX buffer A", ret);
1138 		goto skip_rx;
1139 	}
1140 
1141 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1142 			       DMA_FROM_DEVICE);
1143 	if (ret) {
1144 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1145 			"RX buffer B", ret);
1146 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1147 				 DMA_FROM_DEVICE);
1148 		goto skip_rx;
1149 	}
1150 
1151 	uap->using_rx_dma = true;
1152 
1153 skip_rx:
1154 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1155 	uap->dmacr |= UART011_DMAONERR;
1156 	pl011_write(uap->dmacr, uap, REG_DMACR);
1157 
1158 	/*
1159 	 * ST Micro variants has some specific dma burst threshold
1160 	 * compensation. Set this to 16 bytes, so burst will only
1161 	 * be issued above/below 16 bytes.
1162 	 */
1163 	if (uap->vendor->dma_threshold)
1164 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1165 			    uap, REG_ST_DMAWM);
1166 
1167 	if (uap->using_rx_dma) {
1168 		if (pl011_dma_rx_trigger_dma(uap))
1169 			dev_dbg(uap->port.dev, "could not trigger initial "
1170 				"RX DMA job, fall back to interrupt mode\n");
1171 		if (uap->dmarx.poll_rate) {
1172 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1173 			mod_timer(&uap->dmarx.timer,
1174 				jiffies +
1175 				msecs_to_jiffies(uap->dmarx.poll_rate));
1176 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1177 			uap->dmarx.last_jiffies = jiffies;
1178 		}
1179 	}
1180 }
1181 
1182 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1183 {
1184 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1185 		return;
1186 
1187 	/* Disable RX and TX DMA */
1188 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1189 		cpu_relax();
1190 
1191 	spin_lock_irq(&uap->port.lock);
1192 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1193 	pl011_write(uap->dmacr, uap, REG_DMACR);
1194 	spin_unlock_irq(&uap->port.lock);
1195 
1196 	if (uap->using_tx_dma) {
1197 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1198 		dmaengine_terminate_all(uap->dmatx.chan);
1199 		if (uap->dmatx.queued) {
1200 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1201 				     DMA_TO_DEVICE);
1202 			uap->dmatx.queued = false;
1203 		}
1204 
1205 		kfree(uap->dmatx.buf);
1206 		uap->using_tx_dma = false;
1207 	}
1208 
1209 	if (uap->using_rx_dma) {
1210 		dmaengine_terminate_all(uap->dmarx.chan);
1211 		/* Clean up the RX DMA */
1212 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1213 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1214 		if (uap->dmarx.poll_rate)
1215 			del_timer_sync(&uap->dmarx.timer);
1216 		uap->using_rx_dma = false;
1217 	}
1218 }
1219 
1220 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1221 {
1222 	return uap->using_rx_dma;
1223 }
1224 
1225 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1226 {
1227 	return uap->using_rx_dma && uap->dmarx.running;
1228 }
1229 
1230 #else
1231 /* Blank functions if the DMA engine is not available */
1232 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1233 {
1234 }
1235 
1236 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1237 {
1238 }
1239 
1240 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1241 {
1242 }
1243 
1244 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1245 {
1246 	return false;
1247 }
1248 
1249 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1250 {
1251 }
1252 
1253 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1254 {
1255 	return false;
1256 }
1257 
1258 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1259 {
1260 }
1261 
1262 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1263 {
1264 }
1265 
1266 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1267 {
1268 	return -EIO;
1269 }
1270 
1271 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1272 {
1273 	return false;
1274 }
1275 
1276 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1277 {
1278 	return false;
1279 }
1280 
1281 #define pl011_dma_flush_buffer	NULL
1282 #endif
1283 
1284 static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1285 {
1286 	/*
1287 	 * To be on the safe side only time out after twice as many iterations
1288 	 * as fifo size.
1289 	 */
1290 	const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1291 	struct uart_port *port = &uap->port;
1292 	int i = 0;
1293 	u32 cr;
1294 
1295 	/* Wait until hardware tx queue is empty */
1296 	while (!pl011_tx_empty(port)) {
1297 		if (i > MAX_TX_DRAIN_ITERS) {
1298 			dev_warn(port->dev,
1299 				 "timeout while draining hardware tx queue\n");
1300 			break;
1301 		}
1302 
1303 		udelay(uap->rs485_tx_drain_interval);
1304 		i++;
1305 	}
1306 
1307 	if (port->rs485.delay_rts_after_send)
1308 		mdelay(port->rs485.delay_rts_after_send);
1309 
1310 	cr = pl011_read(uap, REG_CR);
1311 
1312 	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1313 		cr &= ~UART011_CR_RTS;
1314 	else
1315 		cr |= UART011_CR_RTS;
1316 
1317 	/* Disable the transmitter and reenable the transceiver */
1318 	cr &= ~UART011_CR_TXE;
1319 	cr |= UART011_CR_RXE;
1320 	pl011_write(cr, uap, REG_CR);
1321 
1322 	uap->rs485_tx_started = false;
1323 }
1324 
1325 static void pl011_stop_tx(struct uart_port *port)
1326 {
1327 	struct uart_amba_port *uap =
1328 	    container_of(port, struct uart_amba_port, port);
1329 
1330 	uap->im &= ~UART011_TXIM;
1331 	pl011_write(uap->im, uap, REG_IMSC);
1332 	pl011_dma_tx_stop(uap);
1333 
1334 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1335 		pl011_rs485_tx_stop(uap);
1336 }
1337 
1338 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1339 
1340 /* Start TX with programmed I/O only (no DMA) */
1341 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1342 {
1343 	if (pl011_tx_chars(uap, false)) {
1344 		uap->im |= UART011_TXIM;
1345 		pl011_write(uap->im, uap, REG_IMSC);
1346 	}
1347 }
1348 
1349 static void pl011_start_tx(struct uart_port *port)
1350 {
1351 	struct uart_amba_port *uap =
1352 	    container_of(port, struct uart_amba_port, port);
1353 
1354 	if (!pl011_dma_tx_start(uap))
1355 		pl011_start_tx_pio(uap);
1356 }
1357 
1358 static void pl011_stop_rx(struct uart_port *port)
1359 {
1360 	struct uart_amba_port *uap =
1361 	    container_of(port, struct uart_amba_port, port);
1362 
1363 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1364 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1365 	pl011_write(uap->im, uap, REG_IMSC);
1366 
1367 	pl011_dma_rx_stop(uap);
1368 }
1369 
1370 static void pl011_enable_ms(struct uart_port *port)
1371 {
1372 	struct uart_amba_port *uap =
1373 	    container_of(port, struct uart_amba_port, port);
1374 
1375 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1376 	pl011_write(uap->im, uap, REG_IMSC);
1377 }
1378 
1379 static void pl011_rx_chars(struct uart_amba_port *uap)
1380 __releases(&uap->port.lock)
1381 __acquires(&uap->port.lock)
1382 {
1383 	pl011_fifo_to_tty(uap);
1384 
1385 	spin_unlock(&uap->port.lock);
1386 	tty_flip_buffer_push(&uap->port.state->port);
1387 	/*
1388 	 * If we were temporarily out of DMA mode for a while,
1389 	 * attempt to switch back to DMA mode again.
1390 	 */
1391 	if (pl011_dma_rx_available(uap)) {
1392 		if (pl011_dma_rx_trigger_dma(uap)) {
1393 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1394 				"fall back to interrupt mode again\n");
1395 			uap->im |= UART011_RXIM;
1396 			pl011_write(uap->im, uap, REG_IMSC);
1397 		} else {
1398 #ifdef CONFIG_DMA_ENGINE
1399 			/* Start Rx DMA poll */
1400 			if (uap->dmarx.poll_rate) {
1401 				uap->dmarx.last_jiffies = jiffies;
1402 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1403 				mod_timer(&uap->dmarx.timer,
1404 					jiffies +
1405 					msecs_to_jiffies(uap->dmarx.poll_rate));
1406 			}
1407 #endif
1408 		}
1409 	}
1410 	spin_lock(&uap->port.lock);
1411 }
1412 
1413 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1414 			  bool from_irq)
1415 {
1416 	if (unlikely(!from_irq) &&
1417 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1418 		return false; /* unable to transmit character */
1419 
1420 	pl011_write(c, uap, REG_DR);
1421 	uap->port.icount.tx++;
1422 
1423 	return true;
1424 }
1425 
1426 static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1427 {
1428 	struct uart_port *port = &uap->port;
1429 	u32 cr;
1430 
1431 	/* Enable transmitter */
1432 	cr = pl011_read(uap, REG_CR);
1433 	cr |= UART011_CR_TXE;
1434 
1435 	/* Disable receiver if half-duplex */
1436 	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1437 		cr &= ~UART011_CR_RXE;
1438 
1439 	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1440 		cr &= ~UART011_CR_RTS;
1441 	else
1442 		cr |= UART011_CR_RTS;
1443 
1444 	pl011_write(cr, uap, REG_CR);
1445 
1446 	if (port->rs485.delay_rts_before_send)
1447 		mdelay(port->rs485.delay_rts_before_send);
1448 
1449 	uap->rs485_tx_started = true;
1450 }
1451 
1452 /* Returns true if tx interrupts have to be (kept) enabled  */
1453 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1454 {
1455 	struct circ_buf *xmit = &uap->port.state->xmit;
1456 	int count = uap->fifosize >> 1;
1457 
1458 	if (uap->port.x_char) {
1459 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1460 			return true;
1461 		uap->port.x_char = 0;
1462 		--count;
1463 	}
1464 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1465 		pl011_stop_tx(&uap->port);
1466 		return false;
1467 	}
1468 
1469 	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1470 	    !uap->rs485_tx_started)
1471 		pl011_rs485_tx_start(uap);
1472 
1473 	/* If we are using DMA mode, try to send some characters. */
1474 	if (pl011_dma_tx_irq(uap))
1475 		return true;
1476 
1477 	do {
1478 		if (likely(from_irq) && count-- == 0)
1479 			break;
1480 
1481 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1482 			break;
1483 
1484 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1485 	} while (!uart_circ_empty(xmit));
1486 
1487 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1488 		uart_write_wakeup(&uap->port);
1489 
1490 	if (uart_circ_empty(xmit)) {
1491 		pl011_stop_tx(&uap->port);
1492 		return false;
1493 	}
1494 	return true;
1495 }
1496 
1497 static void pl011_modem_status(struct uart_amba_port *uap)
1498 {
1499 	unsigned int status, delta;
1500 
1501 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1502 
1503 	delta = status ^ uap->old_status;
1504 	uap->old_status = status;
1505 
1506 	if (!delta)
1507 		return;
1508 
1509 	if (delta & UART01x_FR_DCD)
1510 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1511 
1512 	if (delta & uap->vendor->fr_dsr)
1513 		uap->port.icount.dsr++;
1514 
1515 	if (delta & uap->vendor->fr_cts)
1516 		uart_handle_cts_change(&uap->port,
1517 				       status & uap->vendor->fr_cts);
1518 
1519 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1520 }
1521 
1522 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1523 {
1524 	if (!uap->vendor->cts_event_workaround)
1525 		return;
1526 
1527 	/* workaround to make sure that all bits are unlocked.. */
1528 	pl011_write(0x00, uap, REG_ICR);
1529 
1530 	/*
1531 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1532 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1533 	 * so add 2 dummy reads
1534 	 */
1535 	pl011_read(uap, REG_ICR);
1536 	pl011_read(uap, REG_ICR);
1537 }
1538 
1539 static irqreturn_t pl011_int(int irq, void *dev_id)
1540 {
1541 	struct uart_amba_port *uap = dev_id;
1542 	unsigned long flags;
1543 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1544 	int handled = 0;
1545 
1546 	spin_lock_irqsave(&uap->port.lock, flags);
1547 	status = pl011_read(uap, REG_RIS) & uap->im;
1548 	if (status) {
1549 		do {
1550 			check_apply_cts_event_workaround(uap);
1551 
1552 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1553 					       UART011_RXIS),
1554 				    uap, REG_ICR);
1555 
1556 			if (status & (UART011_RTIS|UART011_RXIS)) {
1557 				if (pl011_dma_rx_running(uap))
1558 					pl011_dma_rx_irq(uap);
1559 				else
1560 					pl011_rx_chars(uap);
1561 			}
1562 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1563 				      UART011_CTSMIS|UART011_RIMIS))
1564 				pl011_modem_status(uap);
1565 			if (status & UART011_TXIS)
1566 				pl011_tx_chars(uap, true);
1567 
1568 			if (pass_counter-- == 0)
1569 				break;
1570 
1571 			status = pl011_read(uap, REG_RIS) & uap->im;
1572 		} while (status != 0);
1573 		handled = 1;
1574 	}
1575 
1576 	spin_unlock_irqrestore(&uap->port.lock, flags);
1577 
1578 	return IRQ_RETVAL(handled);
1579 }
1580 
1581 static unsigned int pl011_tx_empty(struct uart_port *port)
1582 {
1583 	struct uart_amba_port *uap =
1584 	    container_of(port, struct uart_amba_port, port);
1585 
1586 	/* Allow feature register bits to be inverted to work around errata */
1587 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1588 
1589 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1590 							0 : TIOCSER_TEMT;
1591 }
1592 
1593 static unsigned int pl011_get_mctrl(struct uart_port *port)
1594 {
1595 	struct uart_amba_port *uap =
1596 	    container_of(port, struct uart_amba_port, port);
1597 	unsigned int result = 0;
1598 	unsigned int status = pl011_read(uap, REG_FR);
1599 
1600 #define TIOCMBIT(uartbit, tiocmbit)	\
1601 	if (status & uartbit)		\
1602 		result |= tiocmbit
1603 
1604 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1605 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1606 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1607 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1608 #undef TIOCMBIT
1609 	return result;
1610 }
1611 
1612 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1613 {
1614 	struct uart_amba_port *uap =
1615 	    container_of(port, struct uart_amba_port, port);
1616 	unsigned int cr;
1617 
1618 	cr = pl011_read(uap, REG_CR);
1619 
1620 #define	TIOCMBIT(tiocmbit, uartbit)		\
1621 	if (mctrl & tiocmbit)		\
1622 		cr |= uartbit;		\
1623 	else				\
1624 		cr &= ~uartbit
1625 
1626 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1627 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1628 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1629 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1630 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1631 
1632 	if (port->status & UPSTAT_AUTORTS) {
1633 		/* We need to disable auto-RTS if we want to turn RTS off */
1634 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1635 	}
1636 #undef TIOCMBIT
1637 
1638 	pl011_write(cr, uap, REG_CR);
1639 }
1640 
1641 static void pl011_break_ctl(struct uart_port *port, int break_state)
1642 {
1643 	struct uart_amba_port *uap =
1644 	    container_of(port, struct uart_amba_port, port);
1645 	unsigned long flags;
1646 	unsigned int lcr_h;
1647 
1648 	spin_lock_irqsave(&uap->port.lock, flags);
1649 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1650 	if (break_state == -1)
1651 		lcr_h |= UART01x_LCRH_BRK;
1652 	else
1653 		lcr_h &= ~UART01x_LCRH_BRK;
1654 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1655 	spin_unlock_irqrestore(&uap->port.lock, flags);
1656 }
1657 
1658 #ifdef CONFIG_CONSOLE_POLL
1659 
1660 static void pl011_quiesce_irqs(struct uart_port *port)
1661 {
1662 	struct uart_amba_port *uap =
1663 	    container_of(port, struct uart_amba_port, port);
1664 
1665 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1666 	/*
1667 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1668 	 * we simply mask it. start_tx() will unmask it.
1669 	 *
1670 	 * Note we can race with start_tx(), and if the race happens, the
1671 	 * polling user might get another interrupt just after we clear it.
1672 	 * But it should be OK and can happen even w/o the race, e.g.
1673 	 * controller immediately got some new data and raised the IRQ.
1674 	 *
1675 	 * And whoever uses polling routines assumes that it manages the device
1676 	 * (including tx queue), so we're also fine with start_tx()'s caller
1677 	 * side.
1678 	 */
1679 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1680 		    REG_IMSC);
1681 }
1682 
1683 static int pl011_get_poll_char(struct uart_port *port)
1684 {
1685 	struct uart_amba_port *uap =
1686 	    container_of(port, struct uart_amba_port, port);
1687 	unsigned int status;
1688 
1689 	/*
1690 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1691 	 * debugger.
1692 	 */
1693 	pl011_quiesce_irqs(port);
1694 
1695 	status = pl011_read(uap, REG_FR);
1696 	if (status & UART01x_FR_RXFE)
1697 		return NO_POLL_CHAR;
1698 
1699 	return pl011_read(uap, REG_DR);
1700 }
1701 
1702 static void pl011_put_poll_char(struct uart_port *port,
1703 			 unsigned char ch)
1704 {
1705 	struct uart_amba_port *uap =
1706 	    container_of(port, struct uart_amba_port, port);
1707 
1708 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1709 		cpu_relax();
1710 
1711 	pl011_write(ch, uap, REG_DR);
1712 }
1713 
1714 #endif /* CONFIG_CONSOLE_POLL */
1715 
1716 static int pl011_hwinit(struct uart_port *port)
1717 {
1718 	struct uart_amba_port *uap =
1719 	    container_of(port, struct uart_amba_port, port);
1720 	int retval;
1721 
1722 	/* Optionaly enable pins to be muxed in and configured */
1723 	pinctrl_pm_select_default_state(port->dev);
1724 
1725 	/*
1726 	 * Try to enable the clock producer.
1727 	 */
1728 	retval = clk_prepare_enable(uap->clk);
1729 	if (retval)
1730 		return retval;
1731 
1732 	uap->port.uartclk = clk_get_rate(uap->clk);
1733 
1734 	/* Clear pending error and receive interrupts */
1735 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1736 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1737 		    uap, REG_ICR);
1738 
1739 	/*
1740 	 * Save interrupts enable mask, and enable RX interrupts in case if
1741 	 * the interrupt is used for NMI entry.
1742 	 */
1743 	uap->im = pl011_read(uap, REG_IMSC);
1744 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1745 
1746 	if (dev_get_platdata(uap->port.dev)) {
1747 		struct amba_pl011_data *plat;
1748 
1749 		plat = dev_get_platdata(uap->port.dev);
1750 		if (plat->init)
1751 			plat->init();
1752 	}
1753 	return 0;
1754 }
1755 
1756 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1757 {
1758 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1759 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1760 }
1761 
1762 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1763 {
1764 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1765 	if (pl011_split_lcrh(uap)) {
1766 		int i;
1767 		/*
1768 		 * Wait 10 PCLKs before writing LCRH_TX register,
1769 		 * to get this delay write read only register 10 times
1770 		 */
1771 		for (i = 0; i < 10; ++i)
1772 			pl011_write(0xff, uap, REG_MIS);
1773 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1774 	}
1775 }
1776 
1777 static int pl011_allocate_irq(struct uart_amba_port *uap)
1778 {
1779 	pl011_write(uap->im, uap, REG_IMSC);
1780 
1781 	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1782 }
1783 
1784 /*
1785  * Enable interrupts, only timeouts when using DMA
1786  * if initial RX DMA job failed, start in interrupt mode
1787  * as well.
1788  */
1789 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1790 {
1791 	unsigned int i;
1792 
1793 	spin_lock_irq(&uap->port.lock);
1794 
1795 	/* Clear out any spuriously appearing RX interrupts */
1796 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1797 
1798 	/*
1799 	 * RXIS is asserted only when the RX FIFO transitions from below
1800 	 * to above the trigger threshold.  If the RX FIFO is already
1801 	 * full to the threshold this can't happen and RXIS will now be
1802 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1803 	 */
1804 	for (i = 0; i < uap->fifosize * 2; ++i) {
1805 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1806 			break;
1807 
1808 		pl011_read(uap, REG_DR);
1809 	}
1810 
1811 	uap->im = UART011_RTIM;
1812 	if (!pl011_dma_rx_running(uap))
1813 		uap->im |= UART011_RXIM;
1814 	pl011_write(uap->im, uap, REG_IMSC);
1815 	spin_unlock_irq(&uap->port.lock);
1816 }
1817 
1818 static int pl011_startup(struct uart_port *port)
1819 {
1820 	struct uart_amba_port *uap =
1821 	    container_of(port, struct uart_amba_port, port);
1822 	unsigned int cr;
1823 	int retval;
1824 
1825 	retval = pl011_hwinit(port);
1826 	if (retval)
1827 		goto clk_dis;
1828 
1829 	retval = pl011_allocate_irq(uap);
1830 	if (retval)
1831 		goto clk_dis;
1832 
1833 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1834 
1835 	spin_lock_irq(&uap->port.lock);
1836 
1837 	cr = pl011_read(uap, REG_CR);
1838 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1839 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1840 
1841 	if (!(port->rs485.flags & SER_RS485_ENABLED))
1842 		cr |= UART011_CR_TXE;
1843 
1844 	pl011_write(cr, uap, REG_CR);
1845 
1846 	spin_unlock_irq(&uap->port.lock);
1847 
1848 	/*
1849 	 * initialise the old status of the modem signals
1850 	 */
1851 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1852 
1853 	/* Startup DMA */
1854 	pl011_dma_startup(uap);
1855 
1856 	pl011_enable_interrupts(uap);
1857 
1858 	return 0;
1859 
1860  clk_dis:
1861 	clk_disable_unprepare(uap->clk);
1862 	return retval;
1863 }
1864 
1865 static int sbsa_uart_startup(struct uart_port *port)
1866 {
1867 	struct uart_amba_port *uap =
1868 		container_of(port, struct uart_amba_port, port);
1869 	int retval;
1870 
1871 	retval = pl011_hwinit(port);
1872 	if (retval)
1873 		return retval;
1874 
1875 	retval = pl011_allocate_irq(uap);
1876 	if (retval)
1877 		return retval;
1878 
1879 	/* The SBSA UART does not support any modem status lines. */
1880 	uap->old_status = 0;
1881 
1882 	pl011_enable_interrupts(uap);
1883 
1884 	return 0;
1885 }
1886 
1887 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1888 					unsigned int lcrh)
1889 {
1890       unsigned long val;
1891 
1892       val = pl011_read(uap, lcrh);
1893       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1894       pl011_write(val, uap, lcrh);
1895 }
1896 
1897 /*
1898  * disable the port. It should not disable RTS and DTR.
1899  * Also RTS and DTR state should be preserved to restore
1900  * it during startup().
1901  */
1902 static void pl011_disable_uart(struct uart_amba_port *uap)
1903 {
1904 	unsigned int cr;
1905 
1906 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1907 	spin_lock_irq(&uap->port.lock);
1908 	cr = pl011_read(uap, REG_CR);
1909 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1910 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1911 	pl011_write(cr, uap, REG_CR);
1912 	spin_unlock_irq(&uap->port.lock);
1913 
1914 	/*
1915 	 * disable break condition and fifos
1916 	 */
1917 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1918 	if (pl011_split_lcrh(uap))
1919 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1920 }
1921 
1922 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1923 {
1924 	spin_lock_irq(&uap->port.lock);
1925 
1926 	/* mask all interrupts and clear all pending ones */
1927 	uap->im = 0;
1928 	pl011_write(uap->im, uap, REG_IMSC);
1929 	pl011_write(0xffff, uap, REG_ICR);
1930 
1931 	spin_unlock_irq(&uap->port.lock);
1932 }
1933 
1934 static void pl011_shutdown(struct uart_port *port)
1935 {
1936 	struct uart_amba_port *uap =
1937 		container_of(port, struct uart_amba_port, port);
1938 
1939 	pl011_disable_interrupts(uap);
1940 
1941 	pl011_dma_shutdown(uap);
1942 
1943 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1944 		pl011_rs485_tx_stop(uap);
1945 
1946 	free_irq(uap->port.irq, uap);
1947 
1948 	pl011_disable_uart(uap);
1949 
1950 	/*
1951 	 * Shut down the clock producer
1952 	 */
1953 	clk_disable_unprepare(uap->clk);
1954 	/* Optionally let pins go into sleep states */
1955 	pinctrl_pm_select_sleep_state(port->dev);
1956 
1957 	if (dev_get_platdata(uap->port.dev)) {
1958 		struct amba_pl011_data *plat;
1959 
1960 		plat = dev_get_platdata(uap->port.dev);
1961 		if (plat->exit)
1962 			plat->exit();
1963 	}
1964 
1965 	if (uap->port.ops->flush_buffer)
1966 		uap->port.ops->flush_buffer(port);
1967 }
1968 
1969 static void sbsa_uart_shutdown(struct uart_port *port)
1970 {
1971 	struct uart_amba_port *uap =
1972 		container_of(port, struct uart_amba_port, port);
1973 
1974 	pl011_disable_interrupts(uap);
1975 
1976 	free_irq(uap->port.irq, uap);
1977 
1978 	if (uap->port.ops->flush_buffer)
1979 		uap->port.ops->flush_buffer(port);
1980 }
1981 
1982 static void
1983 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1984 {
1985 	port->read_status_mask = UART011_DR_OE | 255;
1986 	if (termios->c_iflag & INPCK)
1987 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1988 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1989 		port->read_status_mask |= UART011_DR_BE;
1990 
1991 	/*
1992 	 * Characters to ignore
1993 	 */
1994 	port->ignore_status_mask = 0;
1995 	if (termios->c_iflag & IGNPAR)
1996 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1997 	if (termios->c_iflag & IGNBRK) {
1998 		port->ignore_status_mask |= UART011_DR_BE;
1999 		/*
2000 		 * If we're ignoring parity and break indicators,
2001 		 * ignore overruns too (for real raw support).
2002 		 */
2003 		if (termios->c_iflag & IGNPAR)
2004 			port->ignore_status_mask |= UART011_DR_OE;
2005 	}
2006 
2007 	/*
2008 	 * Ignore all characters if CREAD is not set.
2009 	 */
2010 	if ((termios->c_cflag & CREAD) == 0)
2011 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
2012 }
2013 
2014 static void
2015 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2016 		     struct ktermios *old)
2017 {
2018 	struct uart_amba_port *uap =
2019 	    container_of(port, struct uart_amba_port, port);
2020 	unsigned int lcr_h, old_cr;
2021 	unsigned long flags;
2022 	unsigned int baud, quot, clkdiv;
2023 	unsigned int bits;
2024 
2025 	if (uap->vendor->oversampling)
2026 		clkdiv = 8;
2027 	else
2028 		clkdiv = 16;
2029 
2030 	/*
2031 	 * Ask the core to calculate the divisor for us.
2032 	 */
2033 	baud = uart_get_baud_rate(port, termios, old, 0,
2034 				  port->uartclk / clkdiv);
2035 #ifdef CONFIG_DMA_ENGINE
2036 	/*
2037 	 * Adjust RX DMA polling rate with baud rate if not specified.
2038 	 */
2039 	if (uap->dmarx.auto_poll_rate)
2040 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2041 #endif
2042 
2043 	if (baud > port->uartclk/16)
2044 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2045 	else
2046 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2047 
2048 	switch (termios->c_cflag & CSIZE) {
2049 	case CS5:
2050 		lcr_h = UART01x_LCRH_WLEN_5;
2051 		break;
2052 	case CS6:
2053 		lcr_h = UART01x_LCRH_WLEN_6;
2054 		break;
2055 	case CS7:
2056 		lcr_h = UART01x_LCRH_WLEN_7;
2057 		break;
2058 	default: // CS8
2059 		lcr_h = UART01x_LCRH_WLEN_8;
2060 		break;
2061 	}
2062 	if (termios->c_cflag & CSTOPB)
2063 		lcr_h |= UART01x_LCRH_STP2;
2064 	if (termios->c_cflag & PARENB) {
2065 		lcr_h |= UART01x_LCRH_PEN;
2066 		if (!(termios->c_cflag & PARODD))
2067 			lcr_h |= UART01x_LCRH_EPS;
2068 		if (termios->c_cflag & CMSPAR)
2069 			lcr_h |= UART011_LCRH_SPS;
2070 	}
2071 	if (uap->fifosize > 1)
2072 		lcr_h |= UART01x_LCRH_FEN;
2073 
2074 	bits = tty_get_frame_size(termios->c_cflag);
2075 
2076 	spin_lock_irqsave(&port->lock, flags);
2077 
2078 	/*
2079 	 * Update the per-port timeout.
2080 	 */
2081 	uart_update_timeout(port, termios->c_cflag, baud);
2082 
2083 	/*
2084 	 * Calculate the approximated time it takes to transmit one character
2085 	 * with the given baud rate. We use this as the poll interval when we
2086 	 * wait for the tx queue to empty.
2087 	 */
2088 	uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2089 
2090 	pl011_setup_status_masks(port, termios);
2091 
2092 	if (UART_ENABLE_MS(port, termios->c_cflag))
2093 		pl011_enable_ms(port);
2094 
2095 	if (port->rs485.flags & SER_RS485_ENABLED)
2096 		termios->c_cflag &= ~CRTSCTS;
2097 
2098 	old_cr = pl011_read(uap, REG_CR);
2099 
2100 	if (termios->c_cflag & CRTSCTS) {
2101 		if (old_cr & UART011_CR_RTS)
2102 			old_cr |= UART011_CR_RTSEN;
2103 
2104 		old_cr |= UART011_CR_CTSEN;
2105 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2106 	} else {
2107 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2108 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2109 	}
2110 
2111 	if (uap->vendor->oversampling) {
2112 		if (baud > port->uartclk / 16)
2113 			old_cr |= ST_UART011_CR_OVSFACT;
2114 		else
2115 			old_cr &= ~ST_UART011_CR_OVSFACT;
2116 	}
2117 
2118 	/*
2119 	 * Workaround for the ST Micro oversampling variants to
2120 	 * increase the bitrate slightly, by lowering the divisor,
2121 	 * to avoid delayed sampling of start bit at high speeds,
2122 	 * else we see data corruption.
2123 	 */
2124 	if (uap->vendor->oversampling) {
2125 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2126 			quot -= 1;
2127 		else if ((baud > 3250000) && (quot > 2))
2128 			quot -= 2;
2129 	}
2130 	/* Set baud rate */
2131 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2132 	pl011_write(quot >> 6, uap, REG_IBRD);
2133 
2134 	/*
2135 	 * ----------v----------v----------v----------v-----
2136 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2137 	 * REG_FBRD & REG_IBRD.
2138 	 * ----------^----------^----------^----------^-----
2139 	 */
2140 	pl011_write_lcr_h(uap, lcr_h);
2141 	pl011_write(old_cr, uap, REG_CR);
2142 
2143 	spin_unlock_irqrestore(&port->lock, flags);
2144 }
2145 
2146 static void
2147 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2148 		      struct ktermios *old)
2149 {
2150 	struct uart_amba_port *uap =
2151 	    container_of(port, struct uart_amba_port, port);
2152 	unsigned long flags;
2153 
2154 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2155 
2156 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2157 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2158 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2159 	termios->c_cflag |= CS8 | CLOCAL;
2160 
2161 	spin_lock_irqsave(&port->lock, flags);
2162 	uart_update_timeout(port, CS8, uap->fixed_baud);
2163 	pl011_setup_status_masks(port, termios);
2164 	spin_unlock_irqrestore(&port->lock, flags);
2165 }
2166 
2167 static const char *pl011_type(struct uart_port *port)
2168 {
2169 	struct uart_amba_port *uap =
2170 	    container_of(port, struct uart_amba_port, port);
2171 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2172 }
2173 
2174 /*
2175  * Configure/autoconfigure the port.
2176  */
2177 static void pl011_config_port(struct uart_port *port, int flags)
2178 {
2179 	if (flags & UART_CONFIG_TYPE)
2180 		port->type = PORT_AMBA;
2181 }
2182 
2183 /*
2184  * verify the new serial_struct (for TIOCSSERIAL).
2185  */
2186 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2187 {
2188 	int ret = 0;
2189 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2190 		ret = -EINVAL;
2191 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2192 		ret = -EINVAL;
2193 	if (ser->baud_base < 9600)
2194 		ret = -EINVAL;
2195 	if (port->mapbase != (unsigned long) ser->iomem_base)
2196 		ret = -EINVAL;
2197 	return ret;
2198 }
2199 
2200 static int pl011_rs485_config(struct uart_port *port,
2201 			      struct serial_rs485 *rs485)
2202 {
2203 	struct uart_amba_port *uap =
2204 		container_of(port, struct uart_amba_port, port);
2205 
2206 	if (port->rs485.flags & SER_RS485_ENABLED)
2207 		pl011_rs485_tx_stop(uap);
2208 
2209 	/* Make sure auto RTS is disabled */
2210 	if (rs485->flags & SER_RS485_ENABLED) {
2211 		u32 cr = pl011_read(uap, REG_CR);
2212 
2213 		cr &= ~UART011_CR_RTSEN;
2214 		pl011_write(cr, uap, REG_CR);
2215 		port->status &= ~UPSTAT_AUTORTS;
2216 	}
2217 
2218 	return 0;
2219 }
2220 
2221 static const struct uart_ops amba_pl011_pops = {
2222 	.tx_empty	= pl011_tx_empty,
2223 	.set_mctrl	= pl011_set_mctrl,
2224 	.get_mctrl	= pl011_get_mctrl,
2225 	.stop_tx	= pl011_stop_tx,
2226 	.start_tx	= pl011_start_tx,
2227 	.stop_rx	= pl011_stop_rx,
2228 	.enable_ms	= pl011_enable_ms,
2229 	.break_ctl	= pl011_break_ctl,
2230 	.startup	= pl011_startup,
2231 	.shutdown	= pl011_shutdown,
2232 	.flush_buffer	= pl011_dma_flush_buffer,
2233 	.set_termios	= pl011_set_termios,
2234 	.type		= pl011_type,
2235 	.config_port	= pl011_config_port,
2236 	.verify_port	= pl011_verify_port,
2237 #ifdef CONFIG_CONSOLE_POLL
2238 	.poll_init     = pl011_hwinit,
2239 	.poll_get_char = pl011_get_poll_char,
2240 	.poll_put_char = pl011_put_poll_char,
2241 #endif
2242 };
2243 
2244 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2245 {
2246 }
2247 
2248 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2249 {
2250 	return 0;
2251 }
2252 
2253 static const struct uart_ops sbsa_uart_pops = {
2254 	.tx_empty	= pl011_tx_empty,
2255 	.set_mctrl	= sbsa_uart_set_mctrl,
2256 	.get_mctrl	= sbsa_uart_get_mctrl,
2257 	.stop_tx	= pl011_stop_tx,
2258 	.start_tx	= pl011_start_tx,
2259 	.stop_rx	= pl011_stop_rx,
2260 	.startup	= sbsa_uart_startup,
2261 	.shutdown	= sbsa_uart_shutdown,
2262 	.set_termios	= sbsa_uart_set_termios,
2263 	.type		= pl011_type,
2264 	.config_port	= pl011_config_port,
2265 	.verify_port	= pl011_verify_port,
2266 #ifdef CONFIG_CONSOLE_POLL
2267 	.poll_init     = pl011_hwinit,
2268 	.poll_get_char = pl011_get_poll_char,
2269 	.poll_put_char = pl011_put_poll_char,
2270 #endif
2271 };
2272 
2273 static struct uart_amba_port *amba_ports[UART_NR];
2274 
2275 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2276 
2277 static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2278 {
2279 	struct uart_amba_port *uap =
2280 	    container_of(port, struct uart_amba_port, port);
2281 
2282 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2283 		cpu_relax();
2284 	pl011_write(ch, uap, REG_DR);
2285 }
2286 
2287 static void
2288 pl011_console_write(struct console *co, const char *s, unsigned int count)
2289 {
2290 	struct uart_amba_port *uap = amba_ports[co->index];
2291 	unsigned int old_cr = 0, new_cr;
2292 	unsigned long flags;
2293 	int locked = 1;
2294 
2295 	clk_enable(uap->clk);
2296 
2297 	local_irq_save(flags);
2298 	if (uap->port.sysrq)
2299 		locked = 0;
2300 	else if (oops_in_progress)
2301 		locked = spin_trylock(&uap->port.lock);
2302 	else
2303 		spin_lock(&uap->port.lock);
2304 
2305 	/*
2306 	 *	First save the CR then disable the interrupts
2307 	 */
2308 	if (!uap->vendor->always_enabled) {
2309 		old_cr = pl011_read(uap, REG_CR);
2310 		new_cr = old_cr & ~UART011_CR_CTSEN;
2311 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2312 		pl011_write(new_cr, uap, REG_CR);
2313 	}
2314 
2315 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2316 
2317 	/*
2318 	 *	Finally, wait for transmitter to become empty and restore the
2319 	 *	TCR. Allow feature register bits to be inverted to work around
2320 	 *	errata.
2321 	 */
2322 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2323 						& uap->vendor->fr_busy)
2324 		cpu_relax();
2325 	if (!uap->vendor->always_enabled)
2326 		pl011_write(old_cr, uap, REG_CR);
2327 
2328 	if (locked)
2329 		spin_unlock(&uap->port.lock);
2330 	local_irq_restore(flags);
2331 
2332 	clk_disable(uap->clk);
2333 }
2334 
2335 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2336 				      int *parity, int *bits)
2337 {
2338 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2339 		unsigned int lcr_h, ibrd, fbrd;
2340 
2341 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2342 
2343 		*parity = 'n';
2344 		if (lcr_h & UART01x_LCRH_PEN) {
2345 			if (lcr_h & UART01x_LCRH_EPS)
2346 				*parity = 'e';
2347 			else
2348 				*parity = 'o';
2349 		}
2350 
2351 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2352 			*bits = 7;
2353 		else
2354 			*bits = 8;
2355 
2356 		ibrd = pl011_read(uap, REG_IBRD);
2357 		fbrd = pl011_read(uap, REG_FBRD);
2358 
2359 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2360 
2361 		if (uap->vendor->oversampling) {
2362 			if (pl011_read(uap, REG_CR)
2363 				  & ST_UART011_CR_OVSFACT)
2364 				*baud *= 2;
2365 		}
2366 	}
2367 }
2368 
2369 static int pl011_console_setup(struct console *co, char *options)
2370 {
2371 	struct uart_amba_port *uap;
2372 	int baud = 38400;
2373 	int bits = 8;
2374 	int parity = 'n';
2375 	int flow = 'n';
2376 	int ret;
2377 
2378 	/*
2379 	 * Check whether an invalid uart number has been specified, and
2380 	 * if so, search for the first available port that does have
2381 	 * console support.
2382 	 */
2383 	if (co->index >= UART_NR)
2384 		co->index = 0;
2385 	uap = amba_ports[co->index];
2386 	if (!uap)
2387 		return -ENODEV;
2388 
2389 	/* Allow pins to be muxed in and configured */
2390 	pinctrl_pm_select_default_state(uap->port.dev);
2391 
2392 	ret = clk_prepare(uap->clk);
2393 	if (ret)
2394 		return ret;
2395 
2396 	if (dev_get_platdata(uap->port.dev)) {
2397 		struct amba_pl011_data *plat;
2398 
2399 		plat = dev_get_platdata(uap->port.dev);
2400 		if (plat->init)
2401 			plat->init();
2402 	}
2403 
2404 	uap->port.uartclk = clk_get_rate(uap->clk);
2405 
2406 	if (uap->vendor->fixed_options) {
2407 		baud = uap->fixed_baud;
2408 	} else {
2409 		if (options)
2410 			uart_parse_options(options,
2411 					   &baud, &parity, &bits, &flow);
2412 		else
2413 			pl011_console_get_options(uap, &baud, &parity, &bits);
2414 	}
2415 
2416 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2417 }
2418 
2419 /**
2420  *	pl011_console_match - non-standard console matching
2421  *	@co:	  registering console
2422  *	@name:	  name from console command line
2423  *	@idx:	  index from console command line
2424  *	@options: ptr to option string from console command line
2425  *
2426  *	Only attempts to match console command lines of the form:
2427  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2428  *	    console=pl011,0x<addr>[,<options>]
2429  *	This form is used to register an initial earlycon boot console and
2430  *	replace it with the amba_console at pl011 driver init.
2431  *
2432  *	Performs console setup for a match (as required by interface)
2433  *	If no <options> are specified, then assume the h/w is already setup.
2434  *
2435  *	Returns 0 if console matches; otherwise non-zero to use default matching
2436  */
2437 static int pl011_console_match(struct console *co, char *name, int idx,
2438 			       char *options)
2439 {
2440 	unsigned char iotype;
2441 	resource_size_t addr;
2442 	int i;
2443 
2444 	/*
2445 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2446 	 * have a distinct console name, so make sure we check for that.
2447 	 * The actual implementation of the erratum occurs in the probe
2448 	 * function.
2449 	 */
2450 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2451 		return -ENODEV;
2452 
2453 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2454 		return -ENODEV;
2455 
2456 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2457 		return -ENODEV;
2458 
2459 	/* try to match the port specified on the command line */
2460 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2461 		struct uart_port *port;
2462 
2463 		if (!amba_ports[i])
2464 			continue;
2465 
2466 		port = &amba_ports[i]->port;
2467 
2468 		if (port->mapbase != addr)
2469 			continue;
2470 
2471 		co->index = i;
2472 		port->cons = co;
2473 		return pl011_console_setup(co, options);
2474 	}
2475 
2476 	return -ENODEV;
2477 }
2478 
2479 static struct uart_driver amba_reg;
2480 static struct console amba_console = {
2481 	.name		= "ttyAMA",
2482 	.write		= pl011_console_write,
2483 	.device		= uart_console_device,
2484 	.setup		= pl011_console_setup,
2485 	.match		= pl011_console_match,
2486 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2487 	.index		= -1,
2488 	.data		= &amba_reg,
2489 };
2490 
2491 #define AMBA_CONSOLE	(&amba_console)
2492 
2493 static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2494 {
2495 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2496 		cpu_relax();
2497 	writel(c, port->membase + UART01x_DR);
2498 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2499 		cpu_relax();
2500 }
2501 
2502 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2503 {
2504 	struct earlycon_device *dev = con->data;
2505 
2506 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2507 }
2508 
2509 static void pl011_putc(struct uart_port *port, unsigned char c)
2510 {
2511 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2512 		cpu_relax();
2513 	if (port->iotype == UPIO_MEM32)
2514 		writel(c, port->membase + UART01x_DR);
2515 	else
2516 		writeb(c, port->membase + UART01x_DR);
2517 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2518 		cpu_relax();
2519 }
2520 
2521 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2522 {
2523 	struct earlycon_device *dev = con->data;
2524 
2525 	uart_console_write(&dev->port, s, n, pl011_putc);
2526 }
2527 
2528 #ifdef CONFIG_CONSOLE_POLL
2529 static int pl011_getc(struct uart_port *port)
2530 {
2531 	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2532 		return NO_POLL_CHAR;
2533 
2534 	if (port->iotype == UPIO_MEM32)
2535 		return readl(port->membase + UART01x_DR);
2536 	else
2537 		return readb(port->membase + UART01x_DR);
2538 }
2539 
2540 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2541 {
2542 	struct earlycon_device *dev = con->data;
2543 	int ch, num_read = 0;
2544 
2545 	while (num_read < n) {
2546 		ch = pl011_getc(&dev->port);
2547 		if (ch == NO_POLL_CHAR)
2548 			break;
2549 
2550 		s[num_read++] = ch;
2551 	}
2552 
2553 	return num_read;
2554 }
2555 #else
2556 #define pl011_early_read NULL
2557 #endif
2558 
2559 /*
2560  * On non-ACPI systems, earlycon is enabled by specifying
2561  * "earlycon=pl011,<address>" on the kernel command line.
2562  *
2563  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2564  * by specifying only "earlycon" on the command line.  Because it requires
2565  * SPCR, the console starts after ACPI is parsed, which is later than a
2566  * traditional early console.
2567  *
2568  * To get the traditional early console that starts before ACPI is parsed,
2569  * specify the full "earlycon=pl011,<address>" option.
2570  */
2571 static int __init pl011_early_console_setup(struct earlycon_device *device,
2572 					    const char *opt)
2573 {
2574 	if (!device->port.membase)
2575 		return -ENODEV;
2576 
2577 	device->con->write = pl011_early_write;
2578 	device->con->read = pl011_early_read;
2579 
2580 	return 0;
2581 }
2582 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2583 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2584 
2585 /*
2586  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2587  * Erratum 44, traditional earlycon can be enabled by specifying
2588  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2589  *
2590  * Alternatively, you can just specify "earlycon", and the early console
2591  * will be enabled with the information from the SPCR table.  In this
2592  * case, the SPCR code will detect the need for the E44 work-around,
2593  * and set the console name to "qdf2400_e44".
2594  */
2595 static int __init
2596 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2597 				const char *opt)
2598 {
2599 	if (!device->port.membase)
2600 		return -ENODEV;
2601 
2602 	device->con->write = qdf2400_e44_early_write;
2603 	return 0;
2604 }
2605 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2606 
2607 #else
2608 #define AMBA_CONSOLE	NULL
2609 #endif
2610 
2611 static struct uart_driver amba_reg = {
2612 	.owner			= THIS_MODULE,
2613 	.driver_name		= "ttyAMA",
2614 	.dev_name		= "ttyAMA",
2615 	.major			= SERIAL_AMBA_MAJOR,
2616 	.minor			= SERIAL_AMBA_MINOR,
2617 	.nr			= UART_NR,
2618 	.cons			= AMBA_CONSOLE,
2619 };
2620 
2621 static int pl011_probe_dt_alias(int index, struct device *dev)
2622 {
2623 	struct device_node *np;
2624 	static bool seen_dev_with_alias = false;
2625 	static bool seen_dev_without_alias = false;
2626 	int ret = index;
2627 
2628 	if (!IS_ENABLED(CONFIG_OF))
2629 		return ret;
2630 
2631 	np = dev->of_node;
2632 	if (!np)
2633 		return ret;
2634 
2635 	ret = of_alias_get_id(np, "serial");
2636 	if (ret < 0) {
2637 		seen_dev_without_alias = true;
2638 		ret = index;
2639 	} else {
2640 		seen_dev_with_alias = true;
2641 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2642 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2643 			ret = index;
2644 		}
2645 	}
2646 
2647 	if (seen_dev_with_alias && seen_dev_without_alias)
2648 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2649 
2650 	return ret;
2651 }
2652 
2653 /* unregisters the driver also if no more ports are left */
2654 static void pl011_unregister_port(struct uart_amba_port *uap)
2655 {
2656 	int i;
2657 	bool busy = false;
2658 
2659 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2660 		if (amba_ports[i] == uap)
2661 			amba_ports[i] = NULL;
2662 		else if (amba_ports[i])
2663 			busy = true;
2664 	}
2665 	pl011_dma_remove(uap);
2666 	if (!busy)
2667 		uart_unregister_driver(&amba_reg);
2668 }
2669 
2670 static int pl011_find_free_port(void)
2671 {
2672 	int i;
2673 
2674 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2675 		if (amba_ports[i] == NULL)
2676 			return i;
2677 
2678 	return -EBUSY;
2679 }
2680 
2681 static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2682 {
2683 	struct uart_port *port = &uap->port;
2684 	struct serial_rs485 *rs485 = &port->rs485;
2685 	int ret;
2686 
2687 	ret = uart_get_rs485_mode(port);
2688 	if (ret)
2689 		return ret;
2690 
2691 	/* clamp the delays to [0, 100ms] */
2692 	rs485->delay_rts_before_send = min(rs485->delay_rts_before_send, 100U);
2693 	rs485->delay_rts_after_send = min(rs485->delay_rts_after_send, 100U);
2694 
2695 	return 0;
2696 }
2697 
2698 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2699 			    struct resource *mmiobase, int index)
2700 {
2701 	void __iomem *base;
2702 	int ret;
2703 
2704 	base = devm_ioremap_resource(dev, mmiobase);
2705 	if (IS_ERR(base))
2706 		return PTR_ERR(base);
2707 
2708 	index = pl011_probe_dt_alias(index, dev);
2709 
2710 	uap->port.dev = dev;
2711 	uap->port.mapbase = mmiobase->start;
2712 	uap->port.membase = base;
2713 	uap->port.fifosize = uap->fifosize;
2714 	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2715 	uap->port.flags = UPF_BOOT_AUTOCONF;
2716 	uap->port.line = index;
2717 
2718 	ret = pl011_get_rs485_mode(uap);
2719 	if (ret)
2720 		return ret;
2721 
2722 	amba_ports[index] = uap;
2723 
2724 	return 0;
2725 }
2726 
2727 static int pl011_register_port(struct uart_amba_port *uap)
2728 {
2729 	int ret, i;
2730 
2731 	/* Ensure interrupts from this UART are masked and cleared */
2732 	pl011_write(0, uap, REG_IMSC);
2733 	pl011_write(0xffff, uap, REG_ICR);
2734 
2735 	if (!amba_reg.state) {
2736 		ret = uart_register_driver(&amba_reg);
2737 		if (ret < 0) {
2738 			dev_err(uap->port.dev,
2739 				"Failed to register AMBA-PL011 driver\n");
2740 			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2741 				if (amba_ports[i] == uap)
2742 					amba_ports[i] = NULL;
2743 			return ret;
2744 		}
2745 	}
2746 
2747 	ret = uart_add_one_port(&amba_reg, &uap->port);
2748 	if (ret)
2749 		pl011_unregister_port(uap);
2750 
2751 	return ret;
2752 }
2753 
2754 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2755 {
2756 	struct uart_amba_port *uap;
2757 	struct vendor_data *vendor = id->data;
2758 	int portnr, ret;
2759 
2760 	portnr = pl011_find_free_port();
2761 	if (portnr < 0)
2762 		return portnr;
2763 
2764 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2765 			   GFP_KERNEL);
2766 	if (!uap)
2767 		return -ENOMEM;
2768 
2769 	uap->clk = devm_clk_get(&dev->dev, NULL);
2770 	if (IS_ERR(uap->clk))
2771 		return PTR_ERR(uap->clk);
2772 
2773 	uap->reg_offset = vendor->reg_offset;
2774 	uap->vendor = vendor;
2775 	uap->fifosize = vendor->get_fifosize(dev);
2776 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2777 	uap->port.irq = dev->irq[0];
2778 	uap->port.ops = &amba_pl011_pops;
2779 	uap->port.rs485_config = pl011_rs485_config;
2780 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2781 
2782 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2783 	if (ret)
2784 		return ret;
2785 
2786 	amba_set_drvdata(dev, uap);
2787 
2788 	return pl011_register_port(uap);
2789 }
2790 
2791 static void pl011_remove(struct amba_device *dev)
2792 {
2793 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2794 
2795 	uart_remove_one_port(&amba_reg, &uap->port);
2796 	pl011_unregister_port(uap);
2797 }
2798 
2799 #ifdef CONFIG_PM_SLEEP
2800 static int pl011_suspend(struct device *dev)
2801 {
2802 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2803 
2804 	if (!uap)
2805 		return -EINVAL;
2806 
2807 	return uart_suspend_port(&amba_reg, &uap->port);
2808 }
2809 
2810 static int pl011_resume(struct device *dev)
2811 {
2812 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2813 
2814 	if (!uap)
2815 		return -EINVAL;
2816 
2817 	return uart_resume_port(&amba_reg, &uap->port);
2818 }
2819 #endif
2820 
2821 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2822 
2823 static int sbsa_uart_probe(struct platform_device *pdev)
2824 {
2825 	struct uart_amba_port *uap;
2826 	struct resource *r;
2827 	int portnr, ret;
2828 	int baudrate;
2829 
2830 	/*
2831 	 * Check the mandatory baud rate parameter in the DT node early
2832 	 * so that we can easily exit with the error.
2833 	 */
2834 	if (pdev->dev.of_node) {
2835 		struct device_node *np = pdev->dev.of_node;
2836 
2837 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2838 		if (ret)
2839 			return ret;
2840 	} else {
2841 		baudrate = 115200;
2842 	}
2843 
2844 	portnr = pl011_find_free_port();
2845 	if (portnr < 0)
2846 		return portnr;
2847 
2848 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2849 			   GFP_KERNEL);
2850 	if (!uap)
2851 		return -ENOMEM;
2852 
2853 	ret = platform_get_irq(pdev, 0);
2854 	if (ret < 0)
2855 		return ret;
2856 	uap->port.irq	= ret;
2857 
2858 #ifdef CONFIG_ACPI_SPCR_TABLE
2859 	if (qdf2400_e44_present) {
2860 		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2861 		uap->vendor = &vendor_qdt_qdf2400_e44;
2862 	} else
2863 #endif
2864 		uap->vendor = &vendor_sbsa;
2865 
2866 	uap->reg_offset	= uap->vendor->reg_offset;
2867 	uap->fifosize	= 32;
2868 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2869 	uap->port.ops	= &sbsa_uart_pops;
2870 	uap->fixed_baud = baudrate;
2871 
2872 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2873 
2874 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2875 
2876 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2877 	if (ret)
2878 		return ret;
2879 
2880 	platform_set_drvdata(pdev, uap);
2881 
2882 	return pl011_register_port(uap);
2883 }
2884 
2885 static int sbsa_uart_remove(struct platform_device *pdev)
2886 {
2887 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2888 
2889 	uart_remove_one_port(&amba_reg, &uap->port);
2890 	pl011_unregister_port(uap);
2891 	return 0;
2892 }
2893 
2894 static const struct of_device_id sbsa_uart_of_match[] = {
2895 	{ .compatible = "arm,sbsa-uart", },
2896 	{},
2897 };
2898 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2899 
2900 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2901 	{ "ARMH0011", 0 },
2902 	{ "ARMHB000", 0 },
2903 	{},
2904 };
2905 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2906 
2907 static struct platform_driver arm_sbsa_uart_platform_driver = {
2908 	.probe		= sbsa_uart_probe,
2909 	.remove		= sbsa_uart_remove,
2910 	.driver	= {
2911 		.name	= "sbsa-uart",
2912 		.pm	= &pl011_dev_pm_ops,
2913 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2914 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2915 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2916 	},
2917 };
2918 
2919 static const struct amba_id pl011_ids[] = {
2920 	{
2921 		.id	= 0x00041011,
2922 		.mask	= 0x000fffff,
2923 		.data	= &vendor_arm,
2924 	},
2925 	{
2926 		.id	= 0x00380802,
2927 		.mask	= 0x00ffffff,
2928 		.data	= &vendor_st,
2929 	},
2930 	{ 0, 0 },
2931 };
2932 
2933 MODULE_DEVICE_TABLE(amba, pl011_ids);
2934 
2935 static struct amba_driver pl011_driver = {
2936 	.drv = {
2937 		.name	= "uart-pl011",
2938 		.pm	= &pl011_dev_pm_ops,
2939 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2940 	},
2941 	.id_table	= pl011_ids,
2942 	.probe		= pl011_probe,
2943 	.remove		= pl011_remove,
2944 };
2945 
2946 static int __init pl011_init(void)
2947 {
2948 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2949 
2950 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2951 		pr_warn("could not register SBSA UART platform driver\n");
2952 	return amba_driver_register(&pl011_driver);
2953 }
2954 
2955 static void __exit pl011_exit(void)
2956 {
2957 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2958 	amba_driver_unregister(&pl011_driver);
2959 }
2960 
2961 /*
2962  * While this can be a module, if builtin it's most likely the console
2963  * So let's leave module_exit but move module_init to an earlier place
2964  */
2965 arch_initcall(pl011_init);
2966 module_exit(pl011_exit);
2967 
2968 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2969 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2970 MODULE_LICENSE("GPL");
2971