1 /* 2 * n_gsm.c GSM 0710 tty multiplexor 3 * Copyright (c) 2009/10 Intel Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 17 * 18 * * THIS IS A DEVELOPMENT SNAPSHOT IT IS NOT A FINAL RELEASE * 19 * 20 * TO DO: 21 * Mostly done: ioctls for setting modes/timing 22 * Partly done: hooks so you can pull off frames to non tty devs 23 * Restart DLCI 0 when it closes ? 24 * Test basic encoding 25 * Improve the tx engine 26 * Resolve tx side locking by adding a queue_head and routing 27 * all control traffic via it 28 * General tidy/document 29 * Review the locking/move to refcounts more (mux now moved to an 30 * alloc/free model ready) 31 * Use newest tty open/close port helpers and install hooks 32 * What to do about power functions ? 33 * Termios setting and negotiation 34 * Do we need a 'which mux are you' ioctl to correlate mux and tty sets 35 * 36 */ 37 38 #include <linux/types.h> 39 #include <linux/major.h> 40 #include <linux/errno.h> 41 #include <linux/signal.h> 42 #include <linux/fcntl.h> 43 #include <linux/sched.h> 44 #include <linux/interrupt.h> 45 #include <linux/tty.h> 46 #include <linux/ctype.h> 47 #include <linux/mm.h> 48 #include <linux/string.h> 49 #include <linux/slab.h> 50 #include <linux/poll.h> 51 #include <linux/bitops.h> 52 #include <linux/file.h> 53 #include <linux/uaccess.h> 54 #include <linux/module.h> 55 #include <linux/timer.h> 56 #include <linux/tty_flip.h> 57 #include <linux/tty_driver.h> 58 #include <linux/serial.h> 59 #include <linux/kfifo.h> 60 #include <linux/skbuff.h> 61 #include <linux/gsmmux.h> 62 63 static int debug; 64 module_param(debug, int, 0600); 65 66 #define T1 (HZ/10) 67 #define T2 (HZ/3) 68 #define N2 3 69 70 /* Use long timers for testing at low speed with debug on */ 71 #ifdef DEBUG_TIMING 72 #define T1 HZ 73 #define T2 (2 * HZ) 74 #endif 75 76 /* 77 * Semi-arbitary buffer size limits. 0710 is normally run with 32-64 byte 78 * limits so this is plenty 79 */ 80 #define MAX_MRU 512 81 #define MAX_MTU 512 82 83 /* 84 * Each block of data we have queued to go out is in the form of 85 * a gsm_msg which holds everything we need in a link layer independant 86 * format 87 */ 88 89 struct gsm_msg { 90 struct gsm_msg *next; 91 u8 addr; /* DLCI address + flags */ 92 u8 ctrl; /* Control byte + flags */ 93 unsigned int len; /* Length of data block (can be zero) */ 94 unsigned char *data; /* Points into buffer but not at the start */ 95 unsigned char buffer[0]; 96 }; 97 98 /* 99 * Each active data link has a gsm_dlci structure associated which ties 100 * the link layer to an optional tty (if the tty side is open). To avoid 101 * complexity right now these are only ever freed up when the mux is 102 * shut down. 103 * 104 * At the moment we don't free DLCI objects until the mux is torn down 105 * this avoid object life time issues but might be worth review later. 106 */ 107 108 struct gsm_dlci { 109 struct gsm_mux *gsm; 110 int addr; 111 int state; 112 #define DLCI_CLOSED 0 113 #define DLCI_OPENING 1 /* Sending SABM not seen UA */ 114 #define DLCI_OPEN 2 /* SABM/UA complete */ 115 #define DLCI_CLOSING 3 /* Sending DISC not seen UA/DM */ 116 117 /* Link layer */ 118 spinlock_t lock; /* Protects the internal state */ 119 struct timer_list t1; /* Retransmit timer for SABM and UA */ 120 int retries; 121 /* Uplink tty if active */ 122 struct tty_port port; /* The tty bound to this DLCI if there is one */ 123 struct kfifo *fifo; /* Queue fifo for the DLCI */ 124 struct kfifo _fifo; /* For new fifo API porting only */ 125 int adaption; /* Adaption layer in use */ 126 u32 modem_rx; /* Our incoming virtual modem lines */ 127 u32 modem_tx; /* Our outgoing modem lines */ 128 int dead; /* Refuse re-open */ 129 /* Flow control */ 130 int throttled; /* Private copy of throttle state */ 131 int constipated; /* Throttle status for outgoing */ 132 /* Packetised I/O */ 133 struct sk_buff *skb; /* Frame being sent */ 134 struct sk_buff_head skb_list; /* Queued frames */ 135 /* Data handling callback */ 136 void (*data)(struct gsm_dlci *dlci, u8 *data, int len); 137 }; 138 139 /* DLCI 0, 62/63 are special or reseved see gsmtty_open */ 140 141 #define NUM_DLCI 64 142 143 /* 144 * DLCI 0 is used to pass control blocks out of band of the data 145 * flow (and with a higher link priority). One command can be outstanding 146 * at a time and we use this structure to manage them. They are created 147 * and destroyed by the user context, and updated by the receive paths 148 * and timers 149 */ 150 151 struct gsm_control { 152 u8 cmd; /* Command we are issuing */ 153 u8 *data; /* Data for the command in case we retransmit */ 154 int len; /* Length of block for retransmission */ 155 int done; /* Done flag */ 156 int error; /* Error if any */ 157 }; 158 159 /* 160 * Each GSM mux we have is represented by this structure. If we are 161 * operating as an ldisc then we use this structure as our ldisc 162 * state. We need to sort out lifetimes and locking with respect 163 * to the gsm mux array. For now we don't free DLCI objects that 164 * have been instantiated until the mux itself is terminated. 165 * 166 * To consider further: tty open versus mux shutdown. 167 */ 168 169 struct gsm_mux { 170 struct tty_struct *tty; /* The tty our ldisc is bound to */ 171 spinlock_t lock; 172 173 /* Events on the GSM channel */ 174 wait_queue_head_t event; 175 176 /* Bits for GSM mode decoding */ 177 178 /* Framing Layer */ 179 unsigned char *buf; 180 int state; 181 #define GSM_SEARCH 0 182 #define GSM_START 1 183 #define GSM_ADDRESS 2 184 #define GSM_CONTROL 3 185 #define GSM_LEN 4 186 #define GSM_DATA 5 187 #define GSM_FCS 6 188 #define GSM_OVERRUN 7 189 #define GSM_LEN0 8 190 #define GSM_LEN1 9 191 #define GSM_SSOF 10 192 unsigned int len; 193 unsigned int address; 194 unsigned int count; 195 int escape; 196 int encoding; 197 u8 control; 198 u8 fcs; 199 u8 received_fcs; 200 u8 *txframe; /* TX framing buffer */ 201 202 /* Methods for the receiver side */ 203 void (*receive)(struct gsm_mux *gsm, u8 ch); 204 void (*error)(struct gsm_mux *gsm, u8 ch, u8 flag); 205 /* And transmit side */ 206 int (*output)(struct gsm_mux *mux, u8 *data, int len); 207 208 /* Link Layer */ 209 unsigned int mru; 210 unsigned int mtu; 211 int initiator; /* Did we initiate connection */ 212 int dead; /* Has the mux been shut down */ 213 struct gsm_dlci *dlci[NUM_DLCI]; 214 int constipated; /* Asked by remote to shut up */ 215 216 spinlock_t tx_lock; 217 unsigned int tx_bytes; /* TX data outstanding */ 218 #define TX_THRESH_HI 8192 219 #define TX_THRESH_LO 2048 220 struct gsm_msg *tx_head; /* Pending data packets */ 221 struct gsm_msg *tx_tail; 222 223 /* Control messages */ 224 struct timer_list t2_timer; /* Retransmit timer for commands */ 225 int cretries; /* Command retry counter */ 226 struct gsm_control *pending_cmd;/* Our current pending command */ 227 spinlock_t control_lock; /* Protects the pending command */ 228 229 /* Configuration */ 230 int adaption; /* 1 or 2 supported */ 231 u8 ftype; /* UI or UIH */ 232 int t1, t2; /* Timers in 1/100th of a sec */ 233 int n2; /* Retry count */ 234 235 /* Statistics (not currently exposed) */ 236 unsigned long bad_fcs; 237 unsigned long malformed; 238 unsigned long io_error; 239 unsigned long bad_size; 240 unsigned long unsupported; 241 }; 242 243 244 /* 245 * Mux objects - needed so that we can translate a tty index into the 246 * relevant mux and DLCI. 247 */ 248 249 #define MAX_MUX 4 /* 256 minors */ 250 static struct gsm_mux *gsm_mux[MAX_MUX]; /* GSM muxes */ 251 static spinlock_t gsm_mux_lock; 252 253 /* 254 * This section of the driver logic implements the GSM encodings 255 * both the basic and the 'advanced'. Reliable transport is not 256 * supported. 257 */ 258 259 #define CR 0x02 260 #define EA 0x01 261 #define PF 0x10 262 263 /* I is special: the rest are ..*/ 264 #define RR 0x01 265 #define UI 0x03 266 #define RNR 0x05 267 #define REJ 0x09 268 #define DM 0x0F 269 #define SABM 0x2F 270 #define DISC 0x43 271 #define UA 0x63 272 #define UIH 0xEF 273 274 /* Channel commands */ 275 #define CMD_NSC 0x09 276 #define CMD_TEST 0x11 277 #define CMD_PSC 0x21 278 #define CMD_RLS 0x29 279 #define CMD_FCOFF 0x31 280 #define CMD_PN 0x41 281 #define CMD_RPN 0x49 282 #define CMD_FCON 0x51 283 #define CMD_CLD 0x61 284 #define CMD_SNC 0x69 285 #define CMD_MSC 0x71 286 287 /* Virtual modem bits */ 288 #define MDM_FC 0x01 289 #define MDM_RTC 0x02 290 #define MDM_RTR 0x04 291 #define MDM_IC 0x20 292 #define MDM_DV 0x40 293 294 #define GSM0_SOF 0xF9 295 #define GSM1_SOF 0x7E 296 #define GSM1_ESCAPE 0x7D 297 #define GSM1_ESCAPE_BITS 0x20 298 #define XON 0x11 299 #define XOFF 0x13 300 301 static const struct tty_port_operations gsm_port_ops; 302 303 /* 304 * CRC table for GSM 0710 305 */ 306 307 static const u8 gsm_fcs8[256] = { 308 0x00, 0x91, 0xE3, 0x72, 0x07, 0x96, 0xE4, 0x75, 309 0x0E, 0x9F, 0xED, 0x7C, 0x09, 0x98, 0xEA, 0x7B, 310 0x1C, 0x8D, 0xFF, 0x6E, 0x1B, 0x8A, 0xF8, 0x69, 311 0x12, 0x83, 0xF1, 0x60, 0x15, 0x84, 0xF6, 0x67, 312 0x38, 0xA9, 0xDB, 0x4A, 0x3F, 0xAE, 0xDC, 0x4D, 313 0x36, 0xA7, 0xD5, 0x44, 0x31, 0xA0, 0xD2, 0x43, 314 0x24, 0xB5, 0xC7, 0x56, 0x23, 0xB2, 0xC0, 0x51, 315 0x2A, 0xBB, 0xC9, 0x58, 0x2D, 0xBC, 0xCE, 0x5F, 316 0x70, 0xE1, 0x93, 0x02, 0x77, 0xE6, 0x94, 0x05, 317 0x7E, 0xEF, 0x9D, 0x0C, 0x79, 0xE8, 0x9A, 0x0B, 318 0x6C, 0xFD, 0x8F, 0x1E, 0x6B, 0xFA, 0x88, 0x19, 319 0x62, 0xF3, 0x81, 0x10, 0x65, 0xF4, 0x86, 0x17, 320 0x48, 0xD9, 0xAB, 0x3A, 0x4F, 0xDE, 0xAC, 0x3D, 321 0x46, 0xD7, 0xA5, 0x34, 0x41, 0xD0, 0xA2, 0x33, 322 0x54, 0xC5, 0xB7, 0x26, 0x53, 0xC2, 0xB0, 0x21, 323 0x5A, 0xCB, 0xB9, 0x28, 0x5D, 0xCC, 0xBE, 0x2F, 324 0xE0, 0x71, 0x03, 0x92, 0xE7, 0x76, 0x04, 0x95, 325 0xEE, 0x7F, 0x0D, 0x9C, 0xE9, 0x78, 0x0A, 0x9B, 326 0xFC, 0x6D, 0x1F, 0x8E, 0xFB, 0x6A, 0x18, 0x89, 327 0xF2, 0x63, 0x11, 0x80, 0xF5, 0x64, 0x16, 0x87, 328 0xD8, 0x49, 0x3B, 0xAA, 0xDF, 0x4E, 0x3C, 0xAD, 329 0xD6, 0x47, 0x35, 0xA4, 0xD1, 0x40, 0x32, 0xA3, 330 0xC4, 0x55, 0x27, 0xB6, 0xC3, 0x52, 0x20, 0xB1, 331 0xCA, 0x5B, 0x29, 0xB8, 0xCD, 0x5C, 0x2E, 0xBF, 332 0x90, 0x01, 0x73, 0xE2, 0x97, 0x06, 0x74, 0xE5, 333 0x9E, 0x0F, 0x7D, 0xEC, 0x99, 0x08, 0x7A, 0xEB, 334 0x8C, 0x1D, 0x6F, 0xFE, 0x8B, 0x1A, 0x68, 0xF9, 335 0x82, 0x13, 0x61, 0xF0, 0x85, 0x14, 0x66, 0xF7, 336 0xA8, 0x39, 0x4B, 0xDA, 0xAF, 0x3E, 0x4C, 0xDD, 337 0xA6, 0x37, 0x45, 0xD4, 0xA1, 0x30, 0x42, 0xD3, 338 0xB4, 0x25, 0x57, 0xC6, 0xB3, 0x22, 0x50, 0xC1, 339 0xBA, 0x2B, 0x59, 0xC8, 0xBD, 0x2C, 0x5E, 0xCF 340 }; 341 342 #define INIT_FCS 0xFF 343 #define GOOD_FCS 0xCF 344 345 /** 346 * gsm_fcs_add - update FCS 347 * @fcs: Current FCS 348 * @c: Next data 349 * 350 * Update the FCS to include c. Uses the algorithm in the specification 351 * notes. 352 */ 353 354 static inline u8 gsm_fcs_add(u8 fcs, u8 c) 355 { 356 return gsm_fcs8[fcs ^ c]; 357 } 358 359 /** 360 * gsm_fcs_add_block - update FCS for a block 361 * @fcs: Current FCS 362 * @c: buffer of data 363 * @len: length of buffer 364 * 365 * Update the FCS to include c. Uses the algorithm in the specification 366 * notes. 367 */ 368 369 static inline u8 gsm_fcs_add_block(u8 fcs, u8 *c, int len) 370 { 371 while (len--) 372 fcs = gsm_fcs8[fcs ^ *c++]; 373 return fcs; 374 } 375 376 /** 377 * gsm_read_ea - read a byte into an EA 378 * @val: variable holding value 379 * c: byte going into the EA 380 * 381 * Processes one byte of an EA. Updates the passed variable 382 * and returns 1 if the EA is now completely read 383 */ 384 385 static int gsm_read_ea(unsigned int *val, u8 c) 386 { 387 /* Add the next 7 bits into the value */ 388 *val <<= 7; 389 *val |= c >> 1; 390 /* Was this the last byte of the EA 1 = yes*/ 391 return c & EA; 392 } 393 394 /** 395 * gsm_encode_modem - encode modem data bits 396 * @dlci: DLCI to encode from 397 * 398 * Returns the correct GSM encoded modem status bits (6 bit field) for 399 * the current status of the DLCI and attached tty object 400 */ 401 402 static u8 gsm_encode_modem(const struct gsm_dlci *dlci) 403 { 404 u8 modembits = 0; 405 /* FC is true flow control not modem bits */ 406 if (dlci->throttled) 407 modembits |= MDM_FC; 408 if (dlci->modem_tx & TIOCM_DTR) 409 modembits |= MDM_RTC; 410 if (dlci->modem_tx & TIOCM_RTS) 411 modembits |= MDM_RTR; 412 if (dlci->modem_tx & TIOCM_RI) 413 modembits |= MDM_IC; 414 if (dlci->modem_tx & TIOCM_CD) 415 modembits |= MDM_DV; 416 return modembits; 417 } 418 419 /** 420 * gsm_print_packet - display a frame for debug 421 * @hdr: header to print before decode 422 * @addr: address EA from the frame 423 * @cr: C/R bit from the frame 424 * @control: control including PF bit 425 * @data: following data bytes 426 * @dlen: length of data 427 * 428 * Displays a packet in human readable format for debugging purposes. The 429 * style is based on amateur radio LAP-B dump display. 430 */ 431 432 static void gsm_print_packet(const char *hdr, int addr, int cr, 433 u8 control, const u8 *data, int dlen) 434 { 435 if (!(debug & 1)) 436 return; 437 438 pr_info("%s %d) %c: ", hdr, addr, "RC"[cr]); 439 440 switch (control & ~PF) { 441 case SABM: 442 pr_cont("SABM"); 443 break; 444 case UA: 445 pr_cont("UA"); 446 break; 447 case DISC: 448 pr_cont("DISC"); 449 break; 450 case DM: 451 pr_cont("DM"); 452 break; 453 case UI: 454 pr_cont("UI"); 455 break; 456 case UIH: 457 pr_cont("UIH"); 458 break; 459 default: 460 if (!(control & 0x01)) { 461 pr_cont("I N(S)%d N(R)%d", 462 (control & 0x0E) >> 1, (control & 0xE) >> 5); 463 } else switch (control & 0x0F) { 464 case RR: 465 pr_cont("RR(%d)", (control & 0xE0) >> 5); 466 break; 467 case RNR: 468 pr_cont("RNR(%d)", (control & 0xE0) >> 5); 469 break; 470 case REJ: 471 pr_cont("REJ(%d)", (control & 0xE0) >> 5); 472 break; 473 default: 474 pr_cont("[%02X]", control); 475 } 476 } 477 478 if (control & PF) 479 pr_cont("(P)"); 480 else 481 pr_cont("(F)"); 482 483 if (dlen) { 484 int ct = 0; 485 while (dlen--) { 486 if (ct % 8 == 0) { 487 pr_cont("\n"); 488 pr_debug(" "); 489 } 490 pr_cont("%02X ", *data++); 491 ct++; 492 } 493 } 494 pr_cont("\n"); 495 } 496 497 498 /* 499 * Link level transmission side 500 */ 501 502 /** 503 * gsm_stuff_packet - bytestuff a packet 504 * @ibuf: input 505 * @obuf: output 506 * @len: length of input 507 * 508 * Expand a buffer by bytestuffing it. The worst case size change 509 * is doubling and the caller is responsible for handing out 510 * suitable sized buffers. 511 */ 512 513 static int gsm_stuff_frame(const u8 *input, u8 *output, int len) 514 { 515 int olen = 0; 516 while (len--) { 517 if (*input == GSM1_SOF || *input == GSM1_ESCAPE 518 || *input == XON || *input == XOFF) { 519 *output++ = GSM1_ESCAPE; 520 *output++ = *input++ ^ GSM1_ESCAPE_BITS; 521 olen++; 522 } else 523 *output++ = *input++; 524 olen++; 525 } 526 return olen; 527 } 528 529 static void hex_packet(const unsigned char *p, int len) 530 { 531 int i; 532 for (i = 0; i < len; i++) { 533 if (i && (i % 16) == 0) { 534 pr_cont("\n"); 535 pr_debug(""); 536 } 537 pr_cont("%02X ", *p++); 538 } 539 pr_cont("\n"); 540 } 541 542 /** 543 * gsm_send - send a control frame 544 * @gsm: our GSM mux 545 * @addr: address for control frame 546 * @cr: command/response bit 547 * @control: control byte including PF bit 548 * 549 * Format up and transmit a control frame. These do not go via the 550 * queueing logic as they should be transmitted ahead of data when 551 * they are needed. 552 * 553 * FIXME: Lock versus data TX path 554 */ 555 556 static void gsm_send(struct gsm_mux *gsm, int addr, int cr, int control) 557 { 558 int len; 559 u8 cbuf[10]; 560 u8 ibuf[3]; 561 562 switch (gsm->encoding) { 563 case 0: 564 cbuf[0] = GSM0_SOF; 565 cbuf[1] = (addr << 2) | (cr << 1) | EA; 566 cbuf[2] = control; 567 cbuf[3] = EA; /* Length of data = 0 */ 568 cbuf[4] = 0xFF - gsm_fcs_add_block(INIT_FCS, cbuf + 1, 3); 569 cbuf[5] = GSM0_SOF; 570 len = 6; 571 break; 572 case 1: 573 case 2: 574 /* Control frame + packing (but not frame stuffing) in mode 1 */ 575 ibuf[0] = (addr << 2) | (cr << 1) | EA; 576 ibuf[1] = control; 577 ibuf[2] = 0xFF - gsm_fcs_add_block(INIT_FCS, ibuf, 2); 578 /* Stuffing may double the size worst case */ 579 len = gsm_stuff_frame(ibuf, cbuf + 1, 3); 580 /* Now add the SOF markers */ 581 cbuf[0] = GSM1_SOF; 582 cbuf[len + 1] = GSM1_SOF; 583 /* FIXME: we can omit the lead one in many cases */ 584 len += 2; 585 break; 586 default: 587 WARN_ON(1); 588 return; 589 } 590 gsm->output(gsm, cbuf, len); 591 gsm_print_packet("-->", addr, cr, control, NULL, 0); 592 } 593 594 /** 595 * gsm_response - send a control response 596 * @gsm: our GSM mux 597 * @addr: address for control frame 598 * @control: control byte including PF bit 599 * 600 * Format up and transmit a link level response frame. 601 */ 602 603 static inline void gsm_response(struct gsm_mux *gsm, int addr, int control) 604 { 605 gsm_send(gsm, addr, 0, control); 606 } 607 608 /** 609 * gsm_command - send a control command 610 * @gsm: our GSM mux 611 * @addr: address for control frame 612 * @control: control byte including PF bit 613 * 614 * Format up and transmit a link level command frame. 615 */ 616 617 static inline void gsm_command(struct gsm_mux *gsm, int addr, int control) 618 { 619 gsm_send(gsm, addr, 1, control); 620 } 621 622 /* Data transmission */ 623 624 #define HDR_LEN 6 /* ADDR CTRL [LEN.2] DATA FCS */ 625 626 /** 627 * gsm_data_alloc - allocate data frame 628 * @gsm: GSM mux 629 * @addr: DLCI address 630 * @len: length excluding header and FCS 631 * @ctrl: control byte 632 * 633 * Allocate a new data buffer for sending frames with data. Space is left 634 * at the front for header bytes but that is treated as an implementation 635 * detail and not for the high level code to use 636 */ 637 638 static struct gsm_msg *gsm_data_alloc(struct gsm_mux *gsm, u8 addr, int len, 639 u8 ctrl) 640 { 641 struct gsm_msg *m = kmalloc(sizeof(struct gsm_msg) + len + HDR_LEN, 642 GFP_ATOMIC); 643 if (m == NULL) 644 return NULL; 645 m->data = m->buffer + HDR_LEN - 1; /* Allow for FCS */ 646 m->len = len; 647 m->addr = addr; 648 m->ctrl = ctrl; 649 m->next = NULL; 650 return m; 651 } 652 653 /** 654 * gsm_data_kick - poke the queue 655 * @gsm: GSM Mux 656 * 657 * The tty device has called us to indicate that room has appeared in 658 * the transmit queue. Ram more data into the pipe if we have any 659 * 660 * FIXME: lock against link layer control transmissions 661 */ 662 663 static void gsm_data_kick(struct gsm_mux *gsm) 664 { 665 struct gsm_msg *msg = gsm->tx_head; 666 int len; 667 int skip_sof = 0; 668 669 /* FIXME: We need to apply this solely to data messages */ 670 if (gsm->constipated) 671 return; 672 673 while (gsm->tx_head != NULL) { 674 msg = gsm->tx_head; 675 if (gsm->encoding != 0) { 676 gsm->txframe[0] = GSM1_SOF; 677 len = gsm_stuff_frame(msg->data, 678 gsm->txframe + 1, msg->len); 679 gsm->txframe[len + 1] = GSM1_SOF; 680 len += 2; 681 } else { 682 gsm->txframe[0] = GSM0_SOF; 683 memcpy(gsm->txframe + 1 , msg->data, msg->len); 684 gsm->txframe[msg->len + 1] = GSM0_SOF; 685 len = msg->len + 2; 686 } 687 688 if (debug & 4) { 689 pr_debug("gsm_data_kick:\n"); 690 hex_packet(gsm->txframe, len); 691 } 692 693 if (gsm->output(gsm, gsm->txframe + skip_sof, 694 len - skip_sof) < 0) 695 break; 696 /* FIXME: Can eliminate one SOF in many more cases */ 697 gsm->tx_head = msg->next; 698 if (gsm->tx_head == NULL) 699 gsm->tx_tail = NULL; 700 gsm->tx_bytes -= msg->len; 701 kfree(msg); 702 /* For a burst of frames skip the extra SOF within the 703 burst */ 704 skip_sof = 1; 705 } 706 } 707 708 /** 709 * __gsm_data_queue - queue a UI or UIH frame 710 * @dlci: DLCI sending the data 711 * @msg: message queued 712 * 713 * Add data to the transmit queue and try and get stuff moving 714 * out of the mux tty if not already doing so. The Caller must hold 715 * the gsm tx lock. 716 */ 717 718 static void __gsm_data_queue(struct gsm_dlci *dlci, struct gsm_msg *msg) 719 { 720 struct gsm_mux *gsm = dlci->gsm; 721 u8 *dp = msg->data; 722 u8 *fcs = dp + msg->len; 723 724 /* Fill in the header */ 725 if (gsm->encoding == 0) { 726 if (msg->len < 128) 727 *--dp = (msg->len << 1) | EA; 728 else { 729 *--dp = (msg->len >> 7); /* bits 7 - 15 */ 730 *--dp = (msg->len & 127) << 1; /* bits 0 - 6 */ 731 } 732 } 733 734 *--dp = msg->ctrl; 735 if (gsm->initiator) 736 *--dp = (msg->addr << 2) | 2 | EA; 737 else 738 *--dp = (msg->addr << 2) | EA; 739 *fcs = gsm_fcs_add_block(INIT_FCS, dp , msg->data - dp); 740 /* Ugly protocol layering violation */ 741 if (msg->ctrl == UI || msg->ctrl == (UI|PF)) 742 *fcs = gsm_fcs_add_block(*fcs, msg->data, msg->len); 743 *fcs = 0xFF - *fcs; 744 745 gsm_print_packet("Q> ", msg->addr, gsm->initiator, msg->ctrl, 746 msg->data, msg->len); 747 748 /* Move the header back and adjust the length, also allow for the FCS 749 now tacked on the end */ 750 msg->len += (msg->data - dp) + 1; 751 msg->data = dp; 752 753 /* Add to the actual output queue */ 754 if (gsm->tx_tail) 755 gsm->tx_tail->next = msg; 756 else 757 gsm->tx_head = msg; 758 gsm->tx_tail = msg; 759 gsm->tx_bytes += msg->len; 760 gsm_data_kick(gsm); 761 } 762 763 /** 764 * gsm_data_queue - queue a UI or UIH frame 765 * @dlci: DLCI sending the data 766 * @msg: message queued 767 * 768 * Add data to the transmit queue and try and get stuff moving 769 * out of the mux tty if not already doing so. Take the 770 * the gsm tx lock and dlci lock. 771 */ 772 773 static void gsm_data_queue(struct gsm_dlci *dlci, struct gsm_msg *msg) 774 { 775 unsigned long flags; 776 spin_lock_irqsave(&dlci->gsm->tx_lock, flags); 777 __gsm_data_queue(dlci, msg); 778 spin_unlock_irqrestore(&dlci->gsm->tx_lock, flags); 779 } 780 781 /** 782 * gsm_dlci_data_output - try and push data out of a DLCI 783 * @gsm: mux 784 * @dlci: the DLCI to pull data from 785 * 786 * Pull data from a DLCI and send it into the transmit queue if there 787 * is data. Keep to the MRU of the mux. This path handles the usual tty 788 * interface which is a byte stream with optional modem data. 789 * 790 * Caller must hold the tx_lock of the mux. 791 */ 792 793 static int gsm_dlci_data_output(struct gsm_mux *gsm, struct gsm_dlci *dlci) 794 { 795 struct gsm_msg *msg; 796 u8 *dp; 797 int len, size; 798 int h = dlci->adaption - 1; 799 800 len = kfifo_len(dlci->fifo); 801 if (len == 0) 802 return 0; 803 804 /* MTU/MRU count only the data bits */ 805 if (len > gsm->mtu) 806 len = gsm->mtu; 807 808 size = len + h; 809 810 msg = gsm_data_alloc(gsm, dlci->addr, size, gsm->ftype); 811 /* FIXME: need a timer or something to kick this so it can't 812 get stuck with no work outstanding and no buffer free */ 813 if (msg == NULL) 814 return -ENOMEM; 815 dp = msg->data; 816 switch (dlci->adaption) { 817 case 1: /* Unstructured */ 818 break; 819 case 2: /* Unstructed with modem bits. Always one byte as we never 820 send inline break data */ 821 *dp += gsm_encode_modem(dlci); 822 len--; 823 break; 824 } 825 WARN_ON(kfifo_out_locked(dlci->fifo, dp , len, &dlci->lock) != len); 826 __gsm_data_queue(dlci, msg); 827 /* Bytes of data we used up */ 828 return size; 829 } 830 831 /** 832 * gsm_dlci_data_output_framed - try and push data out of a DLCI 833 * @gsm: mux 834 * @dlci: the DLCI to pull data from 835 * 836 * Pull data from a DLCI and send it into the transmit queue if there 837 * is data. Keep to the MRU of the mux. This path handles framed data 838 * queued as skbuffs to the DLCI. 839 * 840 * Caller must hold the tx_lock of the mux. 841 */ 842 843 static int gsm_dlci_data_output_framed(struct gsm_mux *gsm, 844 struct gsm_dlci *dlci) 845 { 846 struct gsm_msg *msg; 847 u8 *dp; 848 int len, size; 849 int last = 0, first = 0; 850 int overhead = 0; 851 852 /* One byte per frame is used for B/F flags */ 853 if (dlci->adaption == 4) 854 overhead = 1; 855 856 /* dlci->skb is locked by tx_lock */ 857 if (dlci->skb == NULL) { 858 dlci->skb = skb_dequeue(&dlci->skb_list); 859 if (dlci->skb == NULL) 860 return 0; 861 first = 1; 862 } 863 len = dlci->skb->len + overhead; 864 865 /* MTU/MRU count only the data bits */ 866 if (len > gsm->mtu) { 867 if (dlci->adaption == 3) { 868 /* Over long frame, bin it */ 869 kfree_skb(dlci->skb); 870 dlci->skb = NULL; 871 return 0; 872 } 873 len = gsm->mtu; 874 } else 875 last = 1; 876 877 size = len + overhead; 878 msg = gsm_data_alloc(gsm, dlci->addr, size, gsm->ftype); 879 880 /* FIXME: need a timer or something to kick this so it can't 881 get stuck with no work outstanding and no buffer free */ 882 if (msg == NULL) 883 return -ENOMEM; 884 dp = msg->data; 885 886 if (dlci->adaption == 4) { /* Interruptible framed (Packetised Data) */ 887 /* Flag byte to carry the start/end info */ 888 *dp++ = last << 7 | first << 6 | 1; /* EA */ 889 len--; 890 } 891 memcpy(dp, skb_pull(dlci->skb, len), len); 892 __gsm_data_queue(dlci, msg); 893 if (last) 894 dlci->skb = NULL; 895 return size; 896 } 897 898 /** 899 * gsm_dlci_data_sweep - look for data to send 900 * @gsm: the GSM mux 901 * 902 * Sweep the GSM mux channels in priority order looking for ones with 903 * data to send. We could do with optimising this scan a bit. We aim 904 * to fill the queue totally or up to TX_THRESH_HI bytes. Once we hit 905 * TX_THRESH_LO we get called again 906 * 907 * FIXME: We should round robin between groups and in theory you can 908 * renegotiate DLCI priorities with optional stuff. Needs optimising. 909 */ 910 911 static void gsm_dlci_data_sweep(struct gsm_mux *gsm) 912 { 913 int len; 914 /* Priority ordering: We should do priority with RR of the groups */ 915 int i = 1; 916 917 while (i < NUM_DLCI) { 918 struct gsm_dlci *dlci; 919 920 if (gsm->tx_bytes > TX_THRESH_HI) 921 break; 922 dlci = gsm->dlci[i]; 923 if (dlci == NULL || dlci->constipated) { 924 i++; 925 continue; 926 } 927 if (dlci->adaption < 3) 928 len = gsm_dlci_data_output(gsm, dlci); 929 else 930 len = gsm_dlci_data_output_framed(gsm, dlci); 931 if (len < 0) 932 break; 933 /* DLCI empty - try the next */ 934 if (len == 0) 935 i++; 936 } 937 } 938 939 /** 940 * gsm_dlci_data_kick - transmit if possible 941 * @dlci: DLCI to kick 942 * 943 * Transmit data from this DLCI if the queue is empty. We can't rely on 944 * a tty wakeup except when we filled the pipe so we need to fire off 945 * new data ourselves in other cases. 946 */ 947 948 static void gsm_dlci_data_kick(struct gsm_dlci *dlci) 949 { 950 unsigned long flags; 951 952 spin_lock_irqsave(&dlci->gsm->tx_lock, flags); 953 /* If we have nothing running then we need to fire up */ 954 if (dlci->gsm->tx_bytes == 0) 955 gsm_dlci_data_output(dlci->gsm, dlci); 956 else if (dlci->gsm->tx_bytes < TX_THRESH_LO) 957 gsm_dlci_data_sweep(dlci->gsm); 958 spin_unlock_irqrestore(&dlci->gsm->tx_lock, flags); 959 } 960 961 /* 962 * Control message processing 963 */ 964 965 966 /** 967 * gsm_control_reply - send a response frame to a control 968 * @gsm: gsm channel 969 * @cmd: the command to use 970 * @data: data to follow encoded info 971 * @dlen: length of data 972 * 973 * Encode up and queue a UI/UIH frame containing our response. 974 */ 975 976 static void gsm_control_reply(struct gsm_mux *gsm, int cmd, u8 *data, 977 int dlen) 978 { 979 struct gsm_msg *msg; 980 msg = gsm_data_alloc(gsm, 0, dlen + 2, gsm->ftype); 981 if (msg == NULL) 982 return; 983 msg->data[0] = (cmd & 0xFE) << 1 | EA; /* Clear C/R */ 984 msg->data[1] = (dlen << 1) | EA; 985 memcpy(msg->data + 2, data, dlen); 986 gsm_data_queue(gsm->dlci[0], msg); 987 } 988 989 /** 990 * gsm_process_modem - process received modem status 991 * @tty: virtual tty bound to the DLCI 992 * @dlci: DLCI to affect 993 * @modem: modem bits (full EA) 994 * 995 * Used when a modem control message or line state inline in adaption 996 * layer 2 is processed. Sort out the local modem state and throttles 997 */ 998 999 static void gsm_process_modem(struct tty_struct *tty, struct gsm_dlci *dlci, 1000 u32 modem) 1001 { 1002 int mlines = 0; 1003 u8 brk = modem >> 6; 1004 1005 /* Flow control/ready to communicate */ 1006 if (modem & MDM_FC) { 1007 /* Need to throttle our output on this device */ 1008 dlci->constipated = 1; 1009 } 1010 if (modem & MDM_RTC) { 1011 mlines |= TIOCM_DSR | TIOCM_DTR; 1012 dlci->constipated = 0; 1013 gsm_dlci_data_kick(dlci); 1014 } 1015 /* Map modem bits */ 1016 if (modem & MDM_RTR) 1017 mlines |= TIOCM_RTS | TIOCM_CTS; 1018 if (modem & MDM_IC) 1019 mlines |= TIOCM_RI; 1020 if (modem & MDM_DV) 1021 mlines |= TIOCM_CD; 1022 1023 /* Carrier drop -> hangup */ 1024 if (tty) { 1025 if ((mlines & TIOCM_CD) == 0 && (dlci->modem_rx & TIOCM_CD)) 1026 if (!(tty->termios->c_cflag & CLOCAL)) 1027 tty_hangup(tty); 1028 if (brk & 0x01) 1029 tty_insert_flip_char(tty, 0, TTY_BREAK); 1030 } 1031 dlci->modem_rx = mlines; 1032 } 1033 1034 /** 1035 * gsm_control_modem - modem status received 1036 * @gsm: GSM channel 1037 * @data: data following command 1038 * @clen: command length 1039 * 1040 * We have received a modem status control message. This is used by 1041 * the GSM mux protocol to pass virtual modem line status and optionally 1042 * to indicate break signals. Unpack it, convert to Linux representation 1043 * and if need be stuff a break message down the tty. 1044 */ 1045 1046 static void gsm_control_modem(struct gsm_mux *gsm, u8 *data, int clen) 1047 { 1048 unsigned int addr = 0; 1049 unsigned int modem = 0; 1050 struct gsm_dlci *dlci; 1051 int len = clen; 1052 u8 *dp = data; 1053 struct tty_struct *tty; 1054 1055 while (gsm_read_ea(&addr, *dp++) == 0) { 1056 len--; 1057 if (len == 0) 1058 return; 1059 } 1060 /* Must be at least one byte following the EA */ 1061 len--; 1062 if (len <= 0) 1063 return; 1064 1065 addr >>= 1; 1066 /* Closed port, or invalid ? */ 1067 if (addr == 0 || addr >= NUM_DLCI || gsm->dlci[addr] == NULL) 1068 return; 1069 dlci = gsm->dlci[addr]; 1070 1071 while (gsm_read_ea(&modem, *dp++) == 0) { 1072 len--; 1073 if (len == 0) 1074 return; 1075 } 1076 tty = tty_port_tty_get(&dlci->port); 1077 gsm_process_modem(tty, dlci, modem); 1078 if (tty) { 1079 tty_wakeup(tty); 1080 tty_kref_put(tty); 1081 } 1082 gsm_control_reply(gsm, CMD_MSC, data, clen); 1083 } 1084 1085 /** 1086 * gsm_control_rls - remote line status 1087 * @gsm: GSM channel 1088 * @data: data bytes 1089 * @clen: data length 1090 * 1091 * The modem sends us a two byte message on the control channel whenever 1092 * it wishes to send us an error state from the virtual link. Stuff 1093 * this into the uplink tty if present 1094 */ 1095 1096 static void gsm_control_rls(struct gsm_mux *gsm, u8 *data, int clen) 1097 { 1098 struct tty_struct *tty; 1099 unsigned int addr = 0 ; 1100 u8 bits; 1101 int len = clen; 1102 u8 *dp = data; 1103 1104 while (gsm_read_ea(&addr, *dp++) == 0) { 1105 len--; 1106 if (len == 0) 1107 return; 1108 } 1109 /* Must be at least one byte following ea */ 1110 len--; 1111 if (len <= 0) 1112 return; 1113 addr >>= 1; 1114 /* Closed port, or invalid ? */ 1115 if (addr == 0 || addr >= NUM_DLCI || gsm->dlci[addr] == NULL) 1116 return; 1117 /* No error ? */ 1118 bits = *dp; 1119 if ((bits & 1) == 0) 1120 return; 1121 /* See if we have an uplink tty */ 1122 tty = tty_port_tty_get(&gsm->dlci[addr]->port); 1123 1124 if (tty) { 1125 if (bits & 2) 1126 tty_insert_flip_char(tty, 0, TTY_OVERRUN); 1127 if (bits & 4) 1128 tty_insert_flip_char(tty, 0, TTY_PARITY); 1129 if (bits & 8) 1130 tty_insert_flip_char(tty, 0, TTY_FRAME); 1131 tty_flip_buffer_push(tty); 1132 tty_kref_put(tty); 1133 } 1134 gsm_control_reply(gsm, CMD_RLS, data, clen); 1135 } 1136 1137 static void gsm_dlci_begin_close(struct gsm_dlci *dlci); 1138 1139 /** 1140 * gsm_control_message - DLCI 0 control processing 1141 * @gsm: our GSM mux 1142 * @command: the command EA 1143 * @data: data beyond the command/length EAs 1144 * @clen: length 1145 * 1146 * Input processor for control messages from the other end of the link. 1147 * Processes the incoming request and queues a response frame or an 1148 * NSC response if not supported 1149 */ 1150 1151 static void gsm_control_message(struct gsm_mux *gsm, unsigned int command, 1152 u8 *data, int clen) 1153 { 1154 u8 buf[1]; 1155 switch (command) { 1156 case CMD_CLD: { 1157 struct gsm_dlci *dlci = gsm->dlci[0]; 1158 /* Modem wishes to close down */ 1159 if (dlci) { 1160 dlci->dead = 1; 1161 gsm->dead = 1; 1162 gsm_dlci_begin_close(dlci); 1163 } 1164 } 1165 break; 1166 case CMD_TEST: 1167 /* Modem wishes to test, reply with the data */ 1168 gsm_control_reply(gsm, CMD_TEST, data, clen); 1169 break; 1170 case CMD_FCON: 1171 /* Modem wants us to STFU */ 1172 gsm->constipated = 1; 1173 gsm_control_reply(gsm, CMD_FCON, NULL, 0); 1174 break; 1175 case CMD_FCOFF: 1176 /* Modem can accept data again */ 1177 gsm->constipated = 0; 1178 gsm_control_reply(gsm, CMD_FCOFF, NULL, 0); 1179 /* Kick the link in case it is idling */ 1180 gsm_data_kick(gsm); 1181 break; 1182 case CMD_MSC: 1183 /* Out of band modem line change indicator for a DLCI */ 1184 gsm_control_modem(gsm, data, clen); 1185 break; 1186 case CMD_RLS: 1187 /* Out of band error reception for a DLCI */ 1188 gsm_control_rls(gsm, data, clen); 1189 break; 1190 case CMD_PSC: 1191 /* Modem wishes to enter power saving state */ 1192 gsm_control_reply(gsm, CMD_PSC, NULL, 0); 1193 break; 1194 /* Optional unsupported commands */ 1195 case CMD_PN: /* Parameter negotiation */ 1196 case CMD_RPN: /* Remote port negotation */ 1197 case CMD_SNC: /* Service negotation command */ 1198 default: 1199 /* Reply to bad commands with an NSC */ 1200 buf[0] = command; 1201 gsm_control_reply(gsm, CMD_NSC, buf, 1); 1202 break; 1203 } 1204 } 1205 1206 /** 1207 * gsm_control_response - process a response to our control 1208 * @gsm: our GSM mux 1209 * @command: the command (response) EA 1210 * @data: data beyond the command/length EA 1211 * @clen: length 1212 * 1213 * Process a response to an outstanding command. We only allow a single 1214 * control message in flight so this is fairly easy. All the clean up 1215 * is done by the caller, we just update the fields, flag it as done 1216 * and return 1217 */ 1218 1219 static void gsm_control_response(struct gsm_mux *gsm, unsigned int command, 1220 u8 *data, int clen) 1221 { 1222 struct gsm_control *ctrl; 1223 unsigned long flags; 1224 1225 spin_lock_irqsave(&gsm->control_lock, flags); 1226 1227 ctrl = gsm->pending_cmd; 1228 /* Does the reply match our command */ 1229 command |= 1; 1230 if (ctrl != NULL && (command == ctrl->cmd || command == CMD_NSC)) { 1231 /* Our command was replied to, kill the retry timer */ 1232 del_timer(&gsm->t2_timer); 1233 gsm->pending_cmd = NULL; 1234 /* Rejected by the other end */ 1235 if (command == CMD_NSC) 1236 ctrl->error = -EOPNOTSUPP; 1237 ctrl->done = 1; 1238 wake_up(&gsm->event); 1239 } 1240 spin_unlock_irqrestore(&gsm->control_lock, flags); 1241 } 1242 1243 /** 1244 * gsm_control_transmit - send control packet 1245 * @gsm: gsm mux 1246 * @ctrl: frame to send 1247 * 1248 * Send out a pending control command (called under control lock) 1249 */ 1250 1251 static void gsm_control_transmit(struct gsm_mux *gsm, struct gsm_control *ctrl) 1252 { 1253 struct gsm_msg *msg = gsm_data_alloc(gsm, 0, ctrl->len + 1, gsm->ftype); 1254 if (msg == NULL) 1255 return; 1256 msg->data[0] = (ctrl->cmd << 1) | 2 | EA; /* command */ 1257 memcpy(msg->data + 1, ctrl->data, ctrl->len); 1258 gsm_data_queue(gsm->dlci[0], msg); 1259 } 1260 1261 /** 1262 * gsm_control_retransmit - retransmit a control frame 1263 * @data: pointer to our gsm object 1264 * 1265 * Called off the T2 timer expiry in order to retransmit control frames 1266 * that have been lost in the system somewhere. The control_lock protects 1267 * us from colliding with another sender or a receive completion event. 1268 * In that situation the timer may still occur in a small window but 1269 * gsm->pending_cmd will be NULL and we just let the timer expire. 1270 */ 1271 1272 static void gsm_control_retransmit(unsigned long data) 1273 { 1274 struct gsm_mux *gsm = (struct gsm_mux *)data; 1275 struct gsm_control *ctrl; 1276 unsigned long flags; 1277 spin_lock_irqsave(&gsm->control_lock, flags); 1278 ctrl = gsm->pending_cmd; 1279 if (ctrl) { 1280 gsm->cretries--; 1281 if (gsm->cretries == 0) { 1282 gsm->pending_cmd = NULL; 1283 ctrl->error = -ETIMEDOUT; 1284 ctrl->done = 1; 1285 spin_unlock_irqrestore(&gsm->control_lock, flags); 1286 wake_up(&gsm->event); 1287 return; 1288 } 1289 gsm_control_transmit(gsm, ctrl); 1290 mod_timer(&gsm->t2_timer, jiffies + gsm->t2 * HZ / 100); 1291 } 1292 spin_unlock_irqrestore(&gsm->control_lock, flags); 1293 } 1294 1295 /** 1296 * gsm_control_send - send a control frame on DLCI 0 1297 * @gsm: the GSM channel 1298 * @command: command to send including CR bit 1299 * @data: bytes of data (must be kmalloced) 1300 * @len: length of the block to send 1301 * 1302 * Queue and dispatch a control command. Only one command can be 1303 * active at a time. In theory more can be outstanding but the matching 1304 * gets really complicated so for now stick to one outstanding. 1305 */ 1306 1307 static struct gsm_control *gsm_control_send(struct gsm_mux *gsm, 1308 unsigned int command, u8 *data, int clen) 1309 { 1310 struct gsm_control *ctrl = kzalloc(sizeof(struct gsm_control), 1311 GFP_KERNEL); 1312 unsigned long flags; 1313 if (ctrl == NULL) 1314 return NULL; 1315 retry: 1316 wait_event(gsm->event, gsm->pending_cmd == NULL); 1317 spin_lock_irqsave(&gsm->control_lock, flags); 1318 if (gsm->pending_cmd != NULL) { 1319 spin_unlock_irqrestore(&gsm->control_lock, flags); 1320 goto retry; 1321 } 1322 ctrl->cmd = command; 1323 ctrl->data = data; 1324 ctrl->len = clen; 1325 gsm->pending_cmd = ctrl; 1326 gsm->cretries = gsm->n2; 1327 mod_timer(&gsm->t2_timer, jiffies + gsm->t2 * HZ / 100); 1328 gsm_control_transmit(gsm, ctrl); 1329 spin_unlock_irqrestore(&gsm->control_lock, flags); 1330 return ctrl; 1331 } 1332 1333 /** 1334 * gsm_control_wait - wait for a control to finish 1335 * @gsm: GSM mux 1336 * @control: control we are waiting on 1337 * 1338 * Waits for the control to complete or time out. Frees any used 1339 * resources and returns 0 for success, or an error if the remote 1340 * rejected or ignored the request. 1341 */ 1342 1343 static int gsm_control_wait(struct gsm_mux *gsm, struct gsm_control *control) 1344 { 1345 int err; 1346 wait_event(gsm->event, control->done == 1); 1347 err = control->error; 1348 kfree(control); 1349 return err; 1350 } 1351 1352 1353 /* 1354 * DLCI level handling: Needs krefs 1355 */ 1356 1357 /* 1358 * State transitions and timers 1359 */ 1360 1361 /** 1362 * gsm_dlci_close - a DLCI has closed 1363 * @dlci: DLCI that closed 1364 * 1365 * Perform processing when moving a DLCI into closed state. If there 1366 * is an attached tty this is hung up 1367 */ 1368 1369 static void gsm_dlci_close(struct gsm_dlci *dlci) 1370 { 1371 del_timer(&dlci->t1); 1372 if (debug & 8) 1373 pr_debug("DLCI %d goes closed.\n", dlci->addr); 1374 dlci->state = DLCI_CLOSED; 1375 if (dlci->addr != 0) { 1376 struct tty_struct *tty = tty_port_tty_get(&dlci->port); 1377 if (tty) { 1378 tty_hangup(tty); 1379 tty_kref_put(tty); 1380 } 1381 kfifo_reset(dlci->fifo); 1382 } else 1383 dlci->gsm->dead = 1; 1384 wake_up(&dlci->gsm->event); 1385 /* A DLCI 0 close is a MUX termination so we need to kick that 1386 back to userspace somehow */ 1387 } 1388 1389 /** 1390 * gsm_dlci_open - a DLCI has opened 1391 * @dlci: DLCI that opened 1392 * 1393 * Perform processing when moving a DLCI into open state. 1394 */ 1395 1396 static void gsm_dlci_open(struct gsm_dlci *dlci) 1397 { 1398 /* Note that SABM UA .. SABM UA first UA lost can mean that we go 1399 open -> open */ 1400 del_timer(&dlci->t1); 1401 /* This will let a tty open continue */ 1402 dlci->state = DLCI_OPEN; 1403 if (debug & 8) 1404 pr_debug("DLCI %d goes open.\n", dlci->addr); 1405 wake_up(&dlci->gsm->event); 1406 } 1407 1408 /** 1409 * gsm_dlci_t1 - T1 timer expiry 1410 * @dlci: DLCI that opened 1411 * 1412 * The T1 timer handles retransmits of control frames (essentially of 1413 * SABM and DISC). We resend the command until the retry count runs out 1414 * in which case an opening port goes back to closed and a closing port 1415 * is simply put into closed state (any further frames from the other 1416 * end will get a DM response) 1417 */ 1418 1419 static void gsm_dlci_t1(unsigned long data) 1420 { 1421 struct gsm_dlci *dlci = (struct gsm_dlci *)data; 1422 struct gsm_mux *gsm = dlci->gsm; 1423 1424 switch (dlci->state) { 1425 case DLCI_OPENING: 1426 dlci->retries--; 1427 if (dlci->retries) { 1428 gsm_command(dlci->gsm, dlci->addr, SABM|PF); 1429 mod_timer(&dlci->t1, jiffies + gsm->t1 * HZ / 100); 1430 } else 1431 gsm_dlci_close(dlci); 1432 break; 1433 case DLCI_CLOSING: 1434 dlci->retries--; 1435 if (dlci->retries) { 1436 gsm_command(dlci->gsm, dlci->addr, DISC|PF); 1437 mod_timer(&dlci->t1, jiffies + gsm->t1 * HZ / 100); 1438 } else 1439 gsm_dlci_close(dlci); 1440 break; 1441 } 1442 } 1443 1444 /** 1445 * gsm_dlci_begin_open - start channel open procedure 1446 * @dlci: DLCI to open 1447 * 1448 * Commence opening a DLCI from the Linux side. We issue SABM messages 1449 * to the modem which should then reply with a UA, at which point we 1450 * will move into open state. Opening is done asynchronously with retry 1451 * running off timers and the responses. 1452 */ 1453 1454 static void gsm_dlci_begin_open(struct gsm_dlci *dlci) 1455 { 1456 struct gsm_mux *gsm = dlci->gsm; 1457 if (dlci->state == DLCI_OPEN || dlci->state == DLCI_OPENING) 1458 return; 1459 dlci->retries = gsm->n2; 1460 dlci->state = DLCI_OPENING; 1461 gsm_command(dlci->gsm, dlci->addr, SABM|PF); 1462 mod_timer(&dlci->t1, jiffies + gsm->t1 * HZ / 100); 1463 } 1464 1465 /** 1466 * gsm_dlci_begin_close - start channel open procedure 1467 * @dlci: DLCI to open 1468 * 1469 * Commence closing a DLCI from the Linux side. We issue DISC messages 1470 * to the modem which should then reply with a UA, at which point we 1471 * will move into closed state. Closing is done asynchronously with retry 1472 * off timers. We may also receive a DM reply from the other end which 1473 * indicates the channel was already closed. 1474 */ 1475 1476 static void gsm_dlci_begin_close(struct gsm_dlci *dlci) 1477 { 1478 struct gsm_mux *gsm = dlci->gsm; 1479 if (dlci->state == DLCI_CLOSED || dlci->state == DLCI_CLOSING) 1480 return; 1481 dlci->retries = gsm->n2; 1482 dlci->state = DLCI_CLOSING; 1483 gsm_command(dlci->gsm, dlci->addr, DISC|PF); 1484 mod_timer(&dlci->t1, jiffies + gsm->t1 * HZ / 100); 1485 } 1486 1487 /** 1488 * gsm_dlci_data - data arrived 1489 * @dlci: channel 1490 * @data: block of bytes received 1491 * @len: length of received block 1492 * 1493 * A UI or UIH frame has arrived which contains data for a channel 1494 * other than the control channel. If the relevant virtual tty is 1495 * open we shovel the bits down it, if not we drop them. 1496 */ 1497 1498 static void gsm_dlci_data(struct gsm_dlci *dlci, u8 *data, int len) 1499 { 1500 /* krefs .. */ 1501 struct tty_port *port = &dlci->port; 1502 struct tty_struct *tty = tty_port_tty_get(port); 1503 unsigned int modem = 0; 1504 1505 if (debug & 16) 1506 pr_debug("%d bytes for tty %p\n", len, tty); 1507 if (tty) { 1508 switch (dlci->adaption) { 1509 /* Unsupported types */ 1510 /* Packetised interruptible data */ 1511 case 4: 1512 break; 1513 /* Packetised uininterruptible voice/data */ 1514 case 3: 1515 break; 1516 /* Asynchronous serial with line state in each frame */ 1517 case 2: 1518 while (gsm_read_ea(&modem, *data++) == 0) { 1519 len--; 1520 if (len == 0) 1521 return; 1522 } 1523 gsm_process_modem(tty, dlci, modem); 1524 /* Line state will go via DLCI 0 controls only */ 1525 case 1: 1526 default: 1527 tty_insert_flip_string(tty, data, len); 1528 tty_flip_buffer_push(tty); 1529 } 1530 tty_kref_put(tty); 1531 } 1532 } 1533 1534 /** 1535 * gsm_dlci_control - data arrived on control channel 1536 * @dlci: channel 1537 * @data: block of bytes received 1538 * @len: length of received block 1539 * 1540 * A UI or UIH frame has arrived which contains data for DLCI 0 the 1541 * control channel. This should contain a command EA followed by 1542 * control data bytes. The command EA contains a command/response bit 1543 * and we divide up the work accordingly. 1544 */ 1545 1546 static void gsm_dlci_command(struct gsm_dlci *dlci, u8 *data, int len) 1547 { 1548 /* See what command is involved */ 1549 unsigned int command = 0; 1550 while (len-- > 0) { 1551 if (gsm_read_ea(&command, *data++) == 1) { 1552 int clen = *data++; 1553 len--; 1554 /* FIXME: this is properly an EA */ 1555 clen >>= 1; 1556 /* Malformed command ? */ 1557 if (clen > len) 1558 return; 1559 if (command & 1) 1560 gsm_control_message(dlci->gsm, command, 1561 data, clen); 1562 else 1563 gsm_control_response(dlci->gsm, command, 1564 data, clen); 1565 return; 1566 } 1567 } 1568 } 1569 1570 /* 1571 * Allocate/Free DLCI channels 1572 */ 1573 1574 /** 1575 * gsm_dlci_alloc - allocate a DLCI 1576 * @gsm: GSM mux 1577 * @addr: address of the DLCI 1578 * 1579 * Allocate and install a new DLCI object into the GSM mux. 1580 * 1581 * FIXME: review locking races 1582 */ 1583 1584 static struct gsm_dlci *gsm_dlci_alloc(struct gsm_mux *gsm, int addr) 1585 { 1586 struct gsm_dlci *dlci = kzalloc(sizeof(struct gsm_dlci), GFP_ATOMIC); 1587 if (dlci == NULL) 1588 return NULL; 1589 spin_lock_init(&dlci->lock); 1590 dlci->fifo = &dlci->_fifo; 1591 if (kfifo_alloc(&dlci->_fifo, 4096, GFP_KERNEL) < 0) { 1592 kfree(dlci); 1593 return NULL; 1594 } 1595 1596 skb_queue_head_init(&dlci->skb_list); 1597 init_timer(&dlci->t1); 1598 dlci->t1.function = gsm_dlci_t1; 1599 dlci->t1.data = (unsigned long)dlci; 1600 tty_port_init(&dlci->port); 1601 dlci->port.ops = &gsm_port_ops; 1602 dlci->gsm = gsm; 1603 dlci->addr = addr; 1604 dlci->adaption = gsm->adaption; 1605 dlci->state = DLCI_CLOSED; 1606 if (addr) 1607 dlci->data = gsm_dlci_data; 1608 else 1609 dlci->data = gsm_dlci_command; 1610 gsm->dlci[addr] = dlci; 1611 return dlci; 1612 } 1613 1614 /** 1615 * gsm_dlci_free - release DLCI 1616 * @dlci: DLCI to destroy 1617 * 1618 * Free up a DLCI. Currently to keep the lifetime rules sane we only 1619 * clean up DLCI objects when the MUX closes rather than as the port 1620 * is closed down on both the tty and mux levels. 1621 * 1622 * Can sleep. 1623 */ 1624 static void gsm_dlci_free(struct gsm_dlci *dlci) 1625 { 1626 struct tty_struct *tty = tty_port_tty_get(&dlci->port); 1627 if (tty) { 1628 tty_vhangup(tty); 1629 tty_kref_put(tty); 1630 } 1631 del_timer_sync(&dlci->t1); 1632 dlci->gsm->dlci[dlci->addr] = NULL; 1633 kfifo_free(dlci->fifo); 1634 kfree(dlci); 1635 } 1636 1637 /* 1638 * LAPBish link layer logic 1639 */ 1640 1641 /** 1642 * gsm_queue - a GSM frame is ready to process 1643 * @gsm: pointer to our gsm mux 1644 * 1645 * At this point in time a frame has arrived and been demangled from 1646 * the line encoding. All the differences between the encodings have 1647 * been handled below us and the frame is unpacked into the structures. 1648 * The fcs holds the header FCS but any data FCS must be added here. 1649 */ 1650 1651 static void gsm_queue(struct gsm_mux *gsm) 1652 { 1653 struct gsm_dlci *dlci; 1654 u8 cr; 1655 int address; 1656 /* We have to sneak a look at the packet body to do the FCS. 1657 A somewhat layering violation in the spec */ 1658 1659 if ((gsm->control & ~PF) == UI) 1660 gsm->fcs = gsm_fcs_add_block(gsm->fcs, gsm->buf, gsm->len); 1661 /* generate final CRC with received FCS */ 1662 gsm->fcs = gsm_fcs_add(gsm->fcs, gsm->received_fcs); 1663 if (gsm->fcs != GOOD_FCS) { 1664 gsm->bad_fcs++; 1665 if (debug & 4) 1666 pr_debug("BAD FCS %02x\n", gsm->fcs); 1667 return; 1668 } 1669 address = gsm->address >> 1; 1670 if (address >= NUM_DLCI) 1671 goto invalid; 1672 1673 cr = gsm->address & 1; /* C/R bit */ 1674 1675 gsm_print_packet("<--", address, cr, gsm->control, gsm->buf, gsm->len); 1676 1677 cr ^= 1 - gsm->initiator; /* Flip so 1 always means command */ 1678 dlci = gsm->dlci[address]; 1679 1680 switch (gsm->control) { 1681 case SABM|PF: 1682 if (cr == 0) 1683 goto invalid; 1684 if (dlci == NULL) 1685 dlci = gsm_dlci_alloc(gsm, address); 1686 if (dlci == NULL) 1687 return; 1688 if (dlci->dead) 1689 gsm_response(gsm, address, DM); 1690 else { 1691 gsm_response(gsm, address, UA); 1692 gsm_dlci_open(dlci); 1693 } 1694 break; 1695 case DISC|PF: 1696 if (cr == 0) 1697 goto invalid; 1698 if (dlci == NULL || dlci->state == DLCI_CLOSED) { 1699 gsm_response(gsm, address, DM); 1700 return; 1701 } 1702 /* Real close complete */ 1703 gsm_response(gsm, address, UA); 1704 gsm_dlci_close(dlci); 1705 break; 1706 case UA: 1707 case UA|PF: 1708 if (cr == 0 || dlci == NULL) 1709 break; 1710 switch (dlci->state) { 1711 case DLCI_CLOSING: 1712 gsm_dlci_close(dlci); 1713 break; 1714 case DLCI_OPENING: 1715 gsm_dlci_open(dlci); 1716 break; 1717 } 1718 break; 1719 case DM: /* DM can be valid unsolicited */ 1720 case DM|PF: 1721 if (cr) 1722 goto invalid; 1723 if (dlci == NULL) 1724 return; 1725 gsm_dlci_close(dlci); 1726 break; 1727 case UI: 1728 case UI|PF: 1729 case UIH: 1730 case UIH|PF: 1731 #if 0 1732 if (cr) 1733 goto invalid; 1734 #endif 1735 if (dlci == NULL || dlci->state != DLCI_OPEN) { 1736 gsm_command(gsm, address, DM|PF); 1737 return; 1738 } 1739 dlci->data(dlci, gsm->buf, gsm->len); 1740 break; 1741 default: 1742 goto invalid; 1743 } 1744 return; 1745 invalid: 1746 gsm->malformed++; 1747 return; 1748 } 1749 1750 1751 /** 1752 * gsm0_receive - perform processing for non-transparency 1753 * @gsm: gsm data for this ldisc instance 1754 * @c: character 1755 * 1756 * Receive bytes in gsm mode 0 1757 */ 1758 1759 static void gsm0_receive(struct gsm_mux *gsm, unsigned char c) 1760 { 1761 unsigned int len; 1762 1763 switch (gsm->state) { 1764 case GSM_SEARCH: /* SOF marker */ 1765 if (c == GSM0_SOF) { 1766 gsm->state = GSM_ADDRESS; 1767 gsm->address = 0; 1768 gsm->len = 0; 1769 gsm->fcs = INIT_FCS; 1770 } 1771 break; 1772 case GSM_ADDRESS: /* Address EA */ 1773 gsm->fcs = gsm_fcs_add(gsm->fcs, c); 1774 if (gsm_read_ea(&gsm->address, c)) 1775 gsm->state = GSM_CONTROL; 1776 break; 1777 case GSM_CONTROL: /* Control Byte */ 1778 gsm->fcs = gsm_fcs_add(gsm->fcs, c); 1779 gsm->control = c; 1780 gsm->state = GSM_LEN0; 1781 break; 1782 case GSM_LEN0: /* Length EA */ 1783 gsm->fcs = gsm_fcs_add(gsm->fcs, c); 1784 if (gsm_read_ea(&gsm->len, c)) { 1785 if (gsm->len > gsm->mru) { 1786 gsm->bad_size++; 1787 gsm->state = GSM_SEARCH; 1788 break; 1789 } 1790 gsm->count = 0; 1791 if (!gsm->len) 1792 gsm->state = GSM_FCS; 1793 else 1794 gsm->state = GSM_DATA; 1795 break; 1796 } 1797 gsm->state = GSM_LEN1; 1798 break; 1799 case GSM_LEN1: 1800 gsm->fcs = gsm_fcs_add(gsm->fcs, c); 1801 len = c; 1802 gsm->len |= len << 7; 1803 if (gsm->len > gsm->mru) { 1804 gsm->bad_size++; 1805 gsm->state = GSM_SEARCH; 1806 break; 1807 } 1808 gsm->count = 0; 1809 if (!gsm->len) 1810 gsm->state = GSM_FCS; 1811 else 1812 gsm->state = GSM_DATA; 1813 break; 1814 case GSM_DATA: /* Data */ 1815 gsm->buf[gsm->count++] = c; 1816 if (gsm->count == gsm->len) 1817 gsm->state = GSM_FCS; 1818 break; 1819 case GSM_FCS: /* FCS follows the packet */ 1820 gsm->received_fcs = c; 1821 if (c == GSM0_SOF) { 1822 gsm->state = GSM_SEARCH; 1823 break; 1824 } 1825 gsm_queue(gsm); 1826 gsm->state = GSM_SSOF; 1827 break; 1828 case GSM_SSOF: 1829 if (c == GSM0_SOF) { 1830 gsm->state = GSM_SEARCH; 1831 break; 1832 } 1833 break; 1834 } 1835 } 1836 1837 /** 1838 * gsm1_receive - perform processing for non-transparency 1839 * @gsm: gsm data for this ldisc instance 1840 * @c: character 1841 * 1842 * Receive bytes in mode 1 (Advanced option) 1843 */ 1844 1845 static void gsm1_receive(struct gsm_mux *gsm, unsigned char c) 1846 { 1847 if (c == GSM1_SOF) { 1848 /* EOF is only valid in frame if we have got to the data state 1849 and received at least one byte (the FCS) */ 1850 if (gsm->state == GSM_DATA && gsm->count) { 1851 /* Extract the FCS */ 1852 gsm->count--; 1853 gsm->fcs = gsm_fcs_add(gsm->fcs, gsm->buf[gsm->count]); 1854 gsm->len = gsm->count; 1855 gsm_queue(gsm); 1856 gsm->state = GSM_START; 1857 return; 1858 } 1859 /* Any partial frame was a runt so go back to start */ 1860 if (gsm->state != GSM_START) { 1861 gsm->malformed++; 1862 gsm->state = GSM_START; 1863 } 1864 /* A SOF in GSM_START means we are still reading idling or 1865 framing bytes */ 1866 return; 1867 } 1868 1869 if (c == GSM1_ESCAPE) { 1870 gsm->escape = 1; 1871 return; 1872 } 1873 1874 /* Only an unescaped SOF gets us out of GSM search */ 1875 if (gsm->state == GSM_SEARCH) 1876 return; 1877 1878 if (gsm->escape) { 1879 c ^= GSM1_ESCAPE_BITS; 1880 gsm->escape = 0; 1881 } 1882 switch (gsm->state) { 1883 case GSM_START: /* First byte after SOF */ 1884 gsm->address = 0; 1885 gsm->state = GSM_ADDRESS; 1886 gsm->fcs = INIT_FCS; 1887 /* Drop through */ 1888 case GSM_ADDRESS: /* Address continuation */ 1889 gsm->fcs = gsm_fcs_add(gsm->fcs, c); 1890 if (gsm_read_ea(&gsm->address, c)) 1891 gsm->state = GSM_CONTROL; 1892 break; 1893 case GSM_CONTROL: /* Control Byte */ 1894 gsm->fcs = gsm_fcs_add(gsm->fcs, c); 1895 gsm->control = c; 1896 gsm->count = 0; 1897 gsm->state = GSM_DATA; 1898 break; 1899 case GSM_DATA: /* Data */ 1900 if (gsm->count > gsm->mru) { /* Allow one for the FCS */ 1901 gsm->state = GSM_OVERRUN; 1902 gsm->bad_size++; 1903 } else 1904 gsm->buf[gsm->count++] = c; 1905 break; 1906 case GSM_OVERRUN: /* Over-long - eg a dropped SOF */ 1907 break; 1908 } 1909 } 1910 1911 /** 1912 * gsm_error - handle tty error 1913 * @gsm: ldisc data 1914 * @data: byte received (may be invalid) 1915 * @flag: error received 1916 * 1917 * Handle an error in the receipt of data for a frame. Currently we just 1918 * go back to hunting for a SOF. 1919 * 1920 * FIXME: better diagnostics ? 1921 */ 1922 1923 static void gsm_error(struct gsm_mux *gsm, 1924 unsigned char data, unsigned char flag) 1925 { 1926 gsm->state = GSM_SEARCH; 1927 gsm->io_error++; 1928 } 1929 1930 /** 1931 * gsm_cleanup_mux - generic GSM protocol cleanup 1932 * @gsm: our mux 1933 * 1934 * Clean up the bits of the mux which are the same for all framing 1935 * protocols. Remove the mux from the mux table, stop all the timers 1936 * and then shut down each device hanging up the channels as we go. 1937 */ 1938 1939 void gsm_cleanup_mux(struct gsm_mux *gsm) 1940 { 1941 int i; 1942 struct gsm_dlci *dlci = gsm->dlci[0]; 1943 struct gsm_msg *txq; 1944 1945 gsm->dead = 1; 1946 1947 spin_lock(&gsm_mux_lock); 1948 for (i = 0; i < MAX_MUX; i++) { 1949 if (gsm_mux[i] == gsm) { 1950 gsm_mux[i] = NULL; 1951 break; 1952 } 1953 } 1954 spin_unlock(&gsm_mux_lock); 1955 WARN_ON(i == MAX_MUX); 1956 1957 del_timer_sync(&gsm->t2_timer); 1958 /* Now we are sure T2 has stopped */ 1959 if (dlci) { 1960 dlci->dead = 1; 1961 gsm_dlci_begin_close(dlci); 1962 wait_event_interruptible(gsm->event, 1963 dlci->state == DLCI_CLOSED); 1964 } 1965 /* Free up any link layer users */ 1966 for (i = 0; i < NUM_DLCI; i++) 1967 if (gsm->dlci[i]) 1968 gsm_dlci_free(gsm->dlci[i]); 1969 /* Now wipe the queues */ 1970 for (txq = gsm->tx_head; txq != NULL; txq = gsm->tx_head) { 1971 gsm->tx_head = txq->next; 1972 kfree(txq); 1973 } 1974 gsm->tx_tail = NULL; 1975 } 1976 EXPORT_SYMBOL_GPL(gsm_cleanup_mux); 1977 1978 /** 1979 * gsm_activate_mux - generic GSM setup 1980 * @gsm: our mux 1981 * 1982 * Set up the bits of the mux which are the same for all framing 1983 * protocols. Add the mux to the mux table so it can be opened and 1984 * finally kick off connecting to DLCI 0 on the modem. 1985 */ 1986 1987 int gsm_activate_mux(struct gsm_mux *gsm) 1988 { 1989 struct gsm_dlci *dlci; 1990 int i = 0; 1991 1992 init_timer(&gsm->t2_timer); 1993 gsm->t2_timer.function = gsm_control_retransmit; 1994 gsm->t2_timer.data = (unsigned long)gsm; 1995 init_waitqueue_head(&gsm->event); 1996 spin_lock_init(&gsm->control_lock); 1997 spin_lock_init(&gsm->tx_lock); 1998 1999 if (gsm->encoding == 0) 2000 gsm->receive = gsm0_receive; 2001 else 2002 gsm->receive = gsm1_receive; 2003 gsm->error = gsm_error; 2004 2005 spin_lock(&gsm_mux_lock); 2006 for (i = 0; i < MAX_MUX; i++) { 2007 if (gsm_mux[i] == NULL) { 2008 gsm_mux[i] = gsm; 2009 break; 2010 } 2011 } 2012 spin_unlock(&gsm_mux_lock); 2013 if (i == MAX_MUX) 2014 return -EBUSY; 2015 2016 dlci = gsm_dlci_alloc(gsm, 0); 2017 if (dlci == NULL) 2018 return -ENOMEM; 2019 gsm->dead = 0; /* Tty opens are now permissible */ 2020 return 0; 2021 } 2022 EXPORT_SYMBOL_GPL(gsm_activate_mux); 2023 2024 /** 2025 * gsm_free_mux - free up a mux 2026 * @mux: mux to free 2027 * 2028 * Dispose of allocated resources for a dead mux. No refcounting 2029 * at present so the mux must be truely dead. 2030 */ 2031 void gsm_free_mux(struct gsm_mux *gsm) 2032 { 2033 kfree(gsm->txframe); 2034 kfree(gsm->buf); 2035 kfree(gsm); 2036 } 2037 EXPORT_SYMBOL_GPL(gsm_free_mux); 2038 2039 /** 2040 * gsm_alloc_mux - allocate a mux 2041 * 2042 * Creates a new mux ready for activation. 2043 */ 2044 2045 struct gsm_mux *gsm_alloc_mux(void) 2046 { 2047 struct gsm_mux *gsm = kzalloc(sizeof(struct gsm_mux), GFP_KERNEL); 2048 if (gsm == NULL) 2049 return NULL; 2050 gsm->buf = kmalloc(MAX_MRU + 1, GFP_KERNEL); 2051 if (gsm->buf == NULL) { 2052 kfree(gsm); 2053 return NULL; 2054 } 2055 gsm->txframe = kmalloc(2 * MAX_MRU + 2, GFP_KERNEL); 2056 if (gsm->txframe == NULL) { 2057 kfree(gsm->buf); 2058 kfree(gsm); 2059 return NULL; 2060 } 2061 spin_lock_init(&gsm->lock); 2062 2063 gsm->t1 = T1; 2064 gsm->t2 = T2; 2065 gsm->n2 = N2; 2066 gsm->ftype = UIH; 2067 gsm->initiator = 0; 2068 gsm->adaption = 1; 2069 gsm->encoding = 1; 2070 gsm->mru = 64; /* Default to encoding 1 so these should be 64 */ 2071 gsm->mtu = 64; 2072 gsm->dead = 1; /* Avoid early tty opens */ 2073 2074 return gsm; 2075 } 2076 EXPORT_SYMBOL_GPL(gsm_alloc_mux); 2077 2078 /** 2079 * gsmld_output - write to link 2080 * @gsm: our mux 2081 * @data: bytes to output 2082 * @len: size 2083 * 2084 * Write a block of data from the GSM mux to the data channel. This 2085 * will eventually be serialized from above but at the moment isn't. 2086 */ 2087 2088 static int gsmld_output(struct gsm_mux *gsm, u8 *data, int len) 2089 { 2090 if (tty_write_room(gsm->tty) < len) { 2091 set_bit(TTY_DO_WRITE_WAKEUP, &gsm->tty->flags); 2092 return -ENOSPC; 2093 } 2094 if (debug & 4) { 2095 pr_debug("-->%d bytes out\n", len); 2096 hex_packet(data, len); 2097 } 2098 gsm->tty->ops->write(gsm->tty, data, len); 2099 return len; 2100 } 2101 2102 /** 2103 * gsmld_attach_gsm - mode set up 2104 * @tty: our tty structure 2105 * @gsm: our mux 2106 * 2107 * Set up the MUX for basic mode and commence connecting to the 2108 * modem. Currently called from the line discipline set up but 2109 * will need moving to an ioctl path. 2110 */ 2111 2112 static int gsmld_attach_gsm(struct tty_struct *tty, struct gsm_mux *gsm) 2113 { 2114 int ret; 2115 2116 gsm->tty = tty_kref_get(tty); 2117 gsm->output = gsmld_output; 2118 ret = gsm_activate_mux(gsm); 2119 if (ret != 0) 2120 tty_kref_put(gsm->tty); 2121 return ret; 2122 } 2123 2124 2125 /** 2126 * gsmld_detach_gsm - stop doing 0710 mux 2127 * @tty: tty atttached to the mux 2128 * @gsm: mux 2129 * 2130 * Shutdown and then clean up the resources used by the line discipline 2131 */ 2132 2133 static void gsmld_detach_gsm(struct tty_struct *tty, struct gsm_mux *gsm) 2134 { 2135 WARN_ON(tty != gsm->tty); 2136 gsm_cleanup_mux(gsm); 2137 tty_kref_put(gsm->tty); 2138 gsm->tty = NULL; 2139 } 2140 2141 static void gsmld_receive_buf(struct tty_struct *tty, const unsigned char *cp, 2142 char *fp, int count) 2143 { 2144 struct gsm_mux *gsm = tty->disc_data; 2145 const unsigned char *dp; 2146 char *f; 2147 int i; 2148 char buf[64]; 2149 char flags; 2150 2151 if (debug & 4) { 2152 pr_debug("Inbytes %dd\n", count); 2153 hex_packet(cp, count); 2154 } 2155 2156 for (i = count, dp = cp, f = fp; i; i--, dp++) { 2157 flags = *f++; 2158 switch (flags) { 2159 case TTY_NORMAL: 2160 gsm->receive(gsm, *dp); 2161 break; 2162 case TTY_OVERRUN: 2163 case TTY_BREAK: 2164 case TTY_PARITY: 2165 case TTY_FRAME: 2166 gsm->error(gsm, *dp, flags); 2167 break; 2168 default: 2169 WARN_ONCE("%s: unknown flag %d\n", 2170 tty_name(tty, buf), flags); 2171 break; 2172 } 2173 } 2174 /* FASYNC if needed ? */ 2175 /* If clogged call tty_throttle(tty); */ 2176 } 2177 2178 /** 2179 * gsmld_chars_in_buffer - report available bytes 2180 * @tty: tty device 2181 * 2182 * Report the number of characters buffered to be delivered to user 2183 * at this instant in time. 2184 * 2185 * Locking: gsm lock 2186 */ 2187 2188 static ssize_t gsmld_chars_in_buffer(struct tty_struct *tty) 2189 { 2190 return 0; 2191 } 2192 2193 /** 2194 * gsmld_flush_buffer - clean input queue 2195 * @tty: terminal device 2196 * 2197 * Flush the input buffer. Called when the line discipline is 2198 * being closed, when the tty layer wants the buffer flushed (eg 2199 * at hangup). 2200 */ 2201 2202 static void gsmld_flush_buffer(struct tty_struct *tty) 2203 { 2204 } 2205 2206 /** 2207 * gsmld_close - close the ldisc for this tty 2208 * @tty: device 2209 * 2210 * Called from the terminal layer when this line discipline is 2211 * being shut down, either because of a close or becsuse of a 2212 * discipline change. The function will not be called while other 2213 * ldisc methods are in progress. 2214 */ 2215 2216 static void gsmld_close(struct tty_struct *tty) 2217 { 2218 struct gsm_mux *gsm = tty->disc_data; 2219 2220 gsmld_detach_gsm(tty, gsm); 2221 2222 gsmld_flush_buffer(tty); 2223 /* Do other clean up here */ 2224 gsm_free_mux(gsm); 2225 } 2226 2227 /** 2228 * gsmld_open - open an ldisc 2229 * @tty: terminal to open 2230 * 2231 * Called when this line discipline is being attached to the 2232 * terminal device. Can sleep. Called serialized so that no 2233 * other events will occur in parallel. No further open will occur 2234 * until a close. 2235 */ 2236 2237 static int gsmld_open(struct tty_struct *tty) 2238 { 2239 struct gsm_mux *gsm; 2240 2241 if (tty->ops->write == NULL) 2242 return -EINVAL; 2243 2244 /* Attach our ldisc data */ 2245 gsm = gsm_alloc_mux(); 2246 if (gsm == NULL) 2247 return -ENOMEM; 2248 2249 tty->disc_data = gsm; 2250 tty->receive_room = 65536; 2251 2252 /* Attach the initial passive connection */ 2253 gsm->encoding = 1; 2254 return gsmld_attach_gsm(tty, gsm); 2255 } 2256 2257 /** 2258 * gsmld_write_wakeup - asynchronous I/O notifier 2259 * @tty: tty device 2260 * 2261 * Required for the ptys, serial driver etc. since processes 2262 * that attach themselves to the master and rely on ASYNC 2263 * IO must be woken up 2264 */ 2265 2266 static void gsmld_write_wakeup(struct tty_struct *tty) 2267 { 2268 struct gsm_mux *gsm = tty->disc_data; 2269 unsigned long flags; 2270 2271 /* Queue poll */ 2272 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 2273 gsm_data_kick(gsm); 2274 if (gsm->tx_bytes < TX_THRESH_LO) { 2275 spin_lock_irqsave(&gsm->tx_lock, flags); 2276 gsm_dlci_data_sweep(gsm); 2277 spin_unlock_irqrestore(&gsm->tx_lock, flags); 2278 } 2279 } 2280 2281 /** 2282 * gsmld_read - read function for tty 2283 * @tty: tty device 2284 * @file: file object 2285 * @buf: userspace buffer pointer 2286 * @nr: size of I/O 2287 * 2288 * Perform reads for the line discipline. We are guaranteed that the 2289 * line discipline will not be closed under us but we may get multiple 2290 * parallel readers and must handle this ourselves. We may also get 2291 * a hangup. Always called in user context, may sleep. 2292 * 2293 * This code must be sure never to sleep through a hangup. 2294 */ 2295 2296 static ssize_t gsmld_read(struct tty_struct *tty, struct file *file, 2297 unsigned char __user *buf, size_t nr) 2298 { 2299 return -EOPNOTSUPP; 2300 } 2301 2302 /** 2303 * gsmld_write - write function for tty 2304 * @tty: tty device 2305 * @file: file object 2306 * @buf: userspace buffer pointer 2307 * @nr: size of I/O 2308 * 2309 * Called when the owner of the device wants to send a frame 2310 * itself (or some other control data). The data is transferred 2311 * as-is and must be properly framed and checksummed as appropriate 2312 * by userspace. Frames are either sent whole or not at all as this 2313 * avoids pain user side. 2314 */ 2315 2316 static ssize_t gsmld_write(struct tty_struct *tty, struct file *file, 2317 const unsigned char *buf, size_t nr) 2318 { 2319 int space = tty_write_room(tty); 2320 if (space >= nr) 2321 return tty->ops->write(tty, buf, nr); 2322 set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 2323 return -ENOBUFS; 2324 } 2325 2326 /** 2327 * gsmld_poll - poll method for N_GSM0710 2328 * @tty: terminal device 2329 * @file: file accessing it 2330 * @wait: poll table 2331 * 2332 * Called when the line discipline is asked to poll() for data or 2333 * for special events. This code is not serialized with respect to 2334 * other events save open/close. 2335 * 2336 * This code must be sure never to sleep through a hangup. 2337 * Called without the kernel lock held - fine 2338 */ 2339 2340 static unsigned int gsmld_poll(struct tty_struct *tty, struct file *file, 2341 poll_table *wait) 2342 { 2343 unsigned int mask = 0; 2344 struct gsm_mux *gsm = tty->disc_data; 2345 2346 poll_wait(file, &tty->read_wait, wait); 2347 poll_wait(file, &tty->write_wait, wait); 2348 if (tty_hung_up_p(file)) 2349 mask |= POLLHUP; 2350 if (!tty_is_writelocked(tty) && tty_write_room(tty) > 0) 2351 mask |= POLLOUT | POLLWRNORM; 2352 if (gsm->dead) 2353 mask |= POLLHUP; 2354 return mask; 2355 } 2356 2357 static int gsmld_config(struct tty_struct *tty, struct gsm_mux *gsm, 2358 struct gsm_config *c) 2359 { 2360 int need_close = 0; 2361 int need_restart = 0; 2362 2363 /* Stuff we don't support yet - UI or I frame transport, windowing */ 2364 if ((c->adaption != 1 && c->adaption != 2) || c->k) 2365 return -EOPNOTSUPP; 2366 /* Check the MRU/MTU range looks sane */ 2367 if (c->mru > MAX_MRU || c->mtu > MAX_MTU || c->mru < 8 || c->mtu < 8) 2368 return -EINVAL; 2369 if (c->n2 < 3) 2370 return -EINVAL; 2371 if (c->encapsulation > 1) /* Basic, advanced, no I */ 2372 return -EINVAL; 2373 if (c->initiator > 1) 2374 return -EINVAL; 2375 if (c->i == 0 || c->i > 2) /* UIH and UI only */ 2376 return -EINVAL; 2377 /* 2378 * See what is needed for reconfiguration 2379 */ 2380 2381 /* Timing fields */ 2382 if (c->t1 != 0 && c->t1 != gsm->t1) 2383 need_restart = 1; 2384 if (c->t2 != 0 && c->t2 != gsm->t2) 2385 need_restart = 1; 2386 if (c->encapsulation != gsm->encoding) 2387 need_restart = 1; 2388 if (c->adaption != gsm->adaption) 2389 need_restart = 1; 2390 /* Requires care */ 2391 if (c->initiator != gsm->initiator) 2392 need_close = 1; 2393 if (c->mru != gsm->mru) 2394 need_restart = 1; 2395 if (c->mtu != gsm->mtu) 2396 need_restart = 1; 2397 2398 /* 2399 * Close down what is needed, restart and initiate the new 2400 * configuration 2401 */ 2402 2403 if (need_close || need_restart) { 2404 gsm_dlci_begin_close(gsm->dlci[0]); 2405 /* This will timeout if the link is down due to N2 expiring */ 2406 wait_event_interruptible(gsm->event, 2407 gsm->dlci[0]->state == DLCI_CLOSED); 2408 if (signal_pending(current)) 2409 return -EINTR; 2410 } 2411 if (need_restart) 2412 gsm_cleanup_mux(gsm); 2413 2414 gsm->initiator = c->initiator; 2415 gsm->mru = c->mru; 2416 gsm->mtu = c->mtu; 2417 gsm->encoding = c->encapsulation; 2418 gsm->adaption = c->adaption; 2419 gsm->n2 = c->n2; 2420 2421 if (c->i == 1) 2422 gsm->ftype = UIH; 2423 else if (c->i == 2) 2424 gsm->ftype = UI; 2425 2426 if (c->t1) 2427 gsm->t1 = c->t1; 2428 if (c->t2) 2429 gsm->t2 = c->t2; 2430 2431 /* FIXME: We need to separate activation/deactivation from adding 2432 and removing from the mux array */ 2433 if (need_restart) 2434 gsm_activate_mux(gsm); 2435 if (gsm->initiator && need_close) 2436 gsm_dlci_begin_open(gsm->dlci[0]); 2437 return 0; 2438 } 2439 2440 static int gsmld_ioctl(struct tty_struct *tty, struct file *file, 2441 unsigned int cmd, unsigned long arg) 2442 { 2443 struct gsm_config c; 2444 struct gsm_mux *gsm = tty->disc_data; 2445 2446 switch (cmd) { 2447 case GSMIOC_GETCONF: 2448 memset(&c, 0, sizeof(c)); 2449 c.adaption = gsm->adaption; 2450 c.encapsulation = gsm->encoding; 2451 c.initiator = gsm->initiator; 2452 c.t1 = gsm->t1; 2453 c.t2 = gsm->t2; 2454 c.t3 = 0; /* Not supported */ 2455 c.n2 = gsm->n2; 2456 if (gsm->ftype == UIH) 2457 c.i = 1; 2458 else 2459 c.i = 2; 2460 pr_debug("Ftype %d i %d\n", gsm->ftype, c.i); 2461 c.mru = gsm->mru; 2462 c.mtu = gsm->mtu; 2463 c.k = 0; 2464 if (copy_to_user((void *)arg, &c, sizeof(c))) 2465 return -EFAULT; 2466 return 0; 2467 case GSMIOC_SETCONF: 2468 if (copy_from_user(&c, (void *)arg, sizeof(c))) 2469 return -EFAULT; 2470 return gsmld_config(tty, gsm, &c); 2471 default: 2472 return n_tty_ioctl_helper(tty, file, cmd, arg); 2473 } 2474 } 2475 2476 2477 /* Line discipline for real tty */ 2478 struct tty_ldisc_ops tty_ldisc_packet = { 2479 .owner = THIS_MODULE, 2480 .magic = TTY_LDISC_MAGIC, 2481 .name = "n_gsm", 2482 .open = gsmld_open, 2483 .close = gsmld_close, 2484 .flush_buffer = gsmld_flush_buffer, 2485 .chars_in_buffer = gsmld_chars_in_buffer, 2486 .read = gsmld_read, 2487 .write = gsmld_write, 2488 .ioctl = gsmld_ioctl, 2489 .poll = gsmld_poll, 2490 .receive_buf = gsmld_receive_buf, 2491 .write_wakeup = gsmld_write_wakeup 2492 }; 2493 2494 /* 2495 * Virtual tty side 2496 */ 2497 2498 #define TX_SIZE 512 2499 2500 static int gsmtty_modem_update(struct gsm_dlci *dlci, u8 brk) 2501 { 2502 u8 modembits[5]; 2503 struct gsm_control *ctrl; 2504 int len = 2; 2505 2506 if (brk) 2507 len++; 2508 2509 modembits[0] = len << 1 | EA; /* Data bytes */ 2510 modembits[1] = dlci->addr << 2 | 3; /* DLCI, EA, 1 */ 2511 modembits[2] = gsm_encode_modem(dlci) << 1 | EA; 2512 if (brk) 2513 modembits[3] = brk << 4 | 2 | EA; /* Valid, EA */ 2514 ctrl = gsm_control_send(dlci->gsm, CMD_MSC, modembits, len + 1); 2515 if (ctrl == NULL) 2516 return -ENOMEM; 2517 return gsm_control_wait(dlci->gsm, ctrl); 2518 } 2519 2520 static int gsm_carrier_raised(struct tty_port *port) 2521 { 2522 struct gsm_dlci *dlci = container_of(port, struct gsm_dlci, port); 2523 /* Not yet open so no carrier info */ 2524 if (dlci->state != DLCI_OPEN) 2525 return 0; 2526 if (debug & 2) 2527 return 1; 2528 return dlci->modem_rx & TIOCM_CD; 2529 } 2530 2531 static void gsm_dtr_rts(struct tty_port *port, int onoff) 2532 { 2533 struct gsm_dlci *dlci = container_of(port, struct gsm_dlci, port); 2534 unsigned int modem_tx = dlci->modem_tx; 2535 if (onoff) 2536 modem_tx |= TIOCM_DTR | TIOCM_RTS; 2537 else 2538 modem_tx &= ~(TIOCM_DTR | TIOCM_RTS); 2539 if (modem_tx != dlci->modem_tx) { 2540 dlci->modem_tx = modem_tx; 2541 gsmtty_modem_update(dlci, 0); 2542 } 2543 } 2544 2545 static const struct tty_port_operations gsm_port_ops = { 2546 .carrier_raised = gsm_carrier_raised, 2547 .dtr_rts = gsm_dtr_rts, 2548 }; 2549 2550 2551 static int gsmtty_open(struct tty_struct *tty, struct file *filp) 2552 { 2553 struct gsm_mux *gsm; 2554 struct gsm_dlci *dlci; 2555 struct tty_port *port; 2556 unsigned int line = tty->index; 2557 unsigned int mux = line >> 6; 2558 2559 line = line & 0x3F; 2560 2561 if (mux >= MAX_MUX) 2562 return -ENXIO; 2563 /* FIXME: we need to lock gsm_mux for lifetimes of ttys eventually */ 2564 if (gsm_mux[mux] == NULL) 2565 return -EUNATCH; 2566 if (line == 0 || line > 61) /* 62/63 reserved */ 2567 return -ECHRNG; 2568 gsm = gsm_mux[mux]; 2569 if (gsm->dead) 2570 return -EL2HLT; 2571 dlci = gsm->dlci[line]; 2572 if (dlci == NULL) 2573 dlci = gsm_dlci_alloc(gsm, line); 2574 if (dlci == NULL) 2575 return -ENOMEM; 2576 port = &dlci->port; 2577 port->count++; 2578 tty->driver_data = dlci; 2579 tty_port_tty_set(port, tty); 2580 2581 dlci->modem_rx = 0; 2582 /* We could in theory open and close before we wait - eg if we get 2583 a DM straight back. This is ok as that will have caused a hangup */ 2584 set_bit(ASYNCB_INITIALIZED, &port->flags); 2585 /* Start sending off SABM messages */ 2586 gsm_dlci_begin_open(dlci); 2587 /* And wait for virtual carrier */ 2588 return tty_port_block_til_ready(port, tty, filp); 2589 } 2590 2591 static void gsmtty_close(struct tty_struct *tty, struct file *filp) 2592 { 2593 struct gsm_dlci *dlci = tty->driver_data; 2594 if (dlci == NULL) 2595 return; 2596 if (tty_port_close_start(&dlci->port, tty, filp) == 0) 2597 return; 2598 gsm_dlci_begin_close(dlci); 2599 tty_port_close_end(&dlci->port, tty); 2600 tty_port_tty_set(&dlci->port, NULL); 2601 } 2602 2603 static void gsmtty_hangup(struct tty_struct *tty) 2604 { 2605 struct gsm_dlci *dlci = tty->driver_data; 2606 tty_port_hangup(&dlci->port); 2607 gsm_dlci_begin_close(dlci); 2608 } 2609 2610 static int gsmtty_write(struct tty_struct *tty, const unsigned char *buf, 2611 int len) 2612 { 2613 struct gsm_dlci *dlci = tty->driver_data; 2614 /* Stuff the bytes into the fifo queue */ 2615 int sent = kfifo_in_locked(dlci->fifo, buf, len, &dlci->lock); 2616 /* Need to kick the channel */ 2617 gsm_dlci_data_kick(dlci); 2618 return sent; 2619 } 2620 2621 static int gsmtty_write_room(struct tty_struct *tty) 2622 { 2623 struct gsm_dlci *dlci = tty->driver_data; 2624 return TX_SIZE - kfifo_len(dlci->fifo); 2625 } 2626 2627 static int gsmtty_chars_in_buffer(struct tty_struct *tty) 2628 { 2629 struct gsm_dlci *dlci = tty->driver_data; 2630 return kfifo_len(dlci->fifo); 2631 } 2632 2633 static void gsmtty_flush_buffer(struct tty_struct *tty) 2634 { 2635 struct gsm_dlci *dlci = tty->driver_data; 2636 /* Caution needed: If we implement reliable transport classes 2637 then the data being transmitted can't simply be junked once 2638 it has first hit the stack. Until then we can just blow it 2639 away */ 2640 kfifo_reset(dlci->fifo); 2641 /* Need to unhook this DLCI from the transmit queue logic */ 2642 } 2643 2644 static void gsmtty_wait_until_sent(struct tty_struct *tty, int timeout) 2645 { 2646 /* The FIFO handles the queue so the kernel will do the right 2647 thing waiting on chars_in_buffer before calling us. No work 2648 to do here */ 2649 } 2650 2651 static int gsmtty_tiocmget(struct tty_struct *tty) 2652 { 2653 struct gsm_dlci *dlci = tty->driver_data; 2654 return dlci->modem_rx; 2655 } 2656 2657 static int gsmtty_tiocmset(struct tty_struct *tty, 2658 unsigned int set, unsigned int clear) 2659 { 2660 struct gsm_dlci *dlci = tty->driver_data; 2661 unsigned int modem_tx = dlci->modem_tx; 2662 2663 modem_tx &= clear; 2664 modem_tx |= set; 2665 2666 if (modem_tx != dlci->modem_tx) { 2667 dlci->modem_tx = modem_tx; 2668 return gsmtty_modem_update(dlci, 0); 2669 } 2670 return 0; 2671 } 2672 2673 2674 static int gsmtty_ioctl(struct tty_struct *tty, 2675 unsigned int cmd, unsigned long arg) 2676 { 2677 return -ENOIOCTLCMD; 2678 } 2679 2680 static void gsmtty_set_termios(struct tty_struct *tty, struct ktermios *old) 2681 { 2682 /* For the moment its fixed. In actual fact the speed information 2683 for the virtual channel can be propogated in both directions by 2684 the RPN control message. This however rapidly gets nasty as we 2685 then have to remap modem signals each way according to whether 2686 our virtual cable is null modem etc .. */ 2687 tty_termios_copy_hw(tty->termios, old); 2688 } 2689 2690 static void gsmtty_throttle(struct tty_struct *tty) 2691 { 2692 struct gsm_dlci *dlci = tty->driver_data; 2693 if (tty->termios->c_cflag & CRTSCTS) 2694 dlci->modem_tx &= ~TIOCM_DTR; 2695 dlci->throttled = 1; 2696 /* Send an MSC with DTR cleared */ 2697 gsmtty_modem_update(dlci, 0); 2698 } 2699 2700 static void gsmtty_unthrottle(struct tty_struct *tty) 2701 { 2702 struct gsm_dlci *dlci = tty->driver_data; 2703 if (tty->termios->c_cflag & CRTSCTS) 2704 dlci->modem_tx |= TIOCM_DTR; 2705 dlci->throttled = 0; 2706 /* Send an MSC with DTR set */ 2707 gsmtty_modem_update(dlci, 0); 2708 } 2709 2710 static int gsmtty_break_ctl(struct tty_struct *tty, int state) 2711 { 2712 struct gsm_dlci *dlci = tty->driver_data; 2713 int encode = 0; /* Off */ 2714 2715 if (state == -1) /* "On indefinitely" - we can't encode this 2716 properly */ 2717 encode = 0x0F; 2718 else if (state > 0) { 2719 encode = state / 200; /* mS to encoding */ 2720 if (encode > 0x0F) 2721 encode = 0x0F; /* Best effort */ 2722 } 2723 return gsmtty_modem_update(dlci, encode); 2724 } 2725 2726 static struct tty_driver *gsm_tty_driver; 2727 2728 /* Virtual ttys for the demux */ 2729 static const struct tty_operations gsmtty_ops = { 2730 .open = gsmtty_open, 2731 .close = gsmtty_close, 2732 .write = gsmtty_write, 2733 .write_room = gsmtty_write_room, 2734 .chars_in_buffer = gsmtty_chars_in_buffer, 2735 .flush_buffer = gsmtty_flush_buffer, 2736 .ioctl = gsmtty_ioctl, 2737 .throttle = gsmtty_throttle, 2738 .unthrottle = gsmtty_unthrottle, 2739 .set_termios = gsmtty_set_termios, 2740 .hangup = gsmtty_hangup, 2741 .wait_until_sent = gsmtty_wait_until_sent, 2742 .tiocmget = gsmtty_tiocmget, 2743 .tiocmset = gsmtty_tiocmset, 2744 .break_ctl = gsmtty_break_ctl, 2745 }; 2746 2747 2748 2749 static int __init gsm_init(void) 2750 { 2751 /* Fill in our line protocol discipline, and register it */ 2752 int status = tty_register_ldisc(N_GSM0710, &tty_ldisc_packet); 2753 if (status != 0) { 2754 pr_err("n_gsm: can't register line discipline (err = %d)\n", 2755 status); 2756 return status; 2757 } 2758 2759 gsm_tty_driver = alloc_tty_driver(256); 2760 if (!gsm_tty_driver) { 2761 tty_unregister_ldisc(N_GSM0710); 2762 pr_err("gsm_init: tty allocation failed.\n"); 2763 return -EINVAL; 2764 } 2765 gsm_tty_driver->owner = THIS_MODULE; 2766 gsm_tty_driver->driver_name = "gsmtty"; 2767 gsm_tty_driver->name = "gsmtty"; 2768 gsm_tty_driver->major = 0; /* Dynamic */ 2769 gsm_tty_driver->minor_start = 0; 2770 gsm_tty_driver->type = TTY_DRIVER_TYPE_SERIAL; 2771 gsm_tty_driver->subtype = SERIAL_TYPE_NORMAL; 2772 gsm_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV 2773 | TTY_DRIVER_HARDWARE_BREAK; 2774 gsm_tty_driver->init_termios = tty_std_termios; 2775 /* Fixme */ 2776 gsm_tty_driver->init_termios.c_lflag &= ~ECHO; 2777 tty_set_operations(gsm_tty_driver, &gsmtty_ops); 2778 2779 spin_lock_init(&gsm_mux_lock); 2780 2781 if (tty_register_driver(gsm_tty_driver)) { 2782 put_tty_driver(gsm_tty_driver); 2783 tty_unregister_ldisc(N_GSM0710); 2784 pr_err("gsm_init: tty registration failed.\n"); 2785 return -EBUSY; 2786 } 2787 pr_debug("gsm_init: loaded as %d,%d.\n", 2788 gsm_tty_driver->major, gsm_tty_driver->minor_start); 2789 return 0; 2790 } 2791 2792 static void __exit gsm_exit(void) 2793 { 2794 int status = tty_unregister_ldisc(N_GSM0710); 2795 if (status != 0) 2796 pr_err("n_gsm: can't unregister line discipline (err = %d)\n", 2797 status); 2798 tty_unregister_driver(gsm_tty_driver); 2799 put_tty_driver(gsm_tty_driver); 2800 } 2801 2802 module_init(gsm_init); 2803 module_exit(gsm_exit); 2804 2805 2806 MODULE_LICENSE("GPL"); 2807 MODULE_ALIAS_LDISC(N_GSM0710); 2808