xref: /openbmc/linux/drivers/tty/ehv_bytechan.c (revision f677b30b487ca3763c3de3f1b4d8c976c2961cd1)
1 /* ePAPR hypervisor byte channel device driver
2  *
3  * Copyright 2009-2011 Freescale Semiconductor, Inc.
4  *
5  * Author: Timur Tabi <timur@freescale.com>
6  *
7  * This file is licensed under the terms of the GNU General Public License
8  * version 2.  This program is licensed "as is" without any warranty of any
9  * kind, whether express or implied.
10  *
11  * This driver support three distinct interfaces, all of which are related to
12  * ePAPR hypervisor byte channels.
13  *
14  * 1) An early-console (udbg) driver.  This provides early console output
15  * through a byte channel.  The byte channel handle must be specified in a
16  * Kconfig option.
17  *
18  * 2) A normal console driver.  Output is sent to the byte channel designated
19  * for stdout in the device tree.  The console driver is for handling kernel
20  * printk calls.
21  *
22  * 3) A tty driver, which is used to handle user-space input and output.  The
23  * byte channel used for the console is designated as the default tty.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/slab.h>
29 #include <linux/err.h>
30 #include <linux/interrupt.h>
31 #include <linux/fs.h>
32 #include <linux/poll.h>
33 #include <asm/epapr_hcalls.h>
34 #include <linux/of.h>
35 #include <linux/of_irq.h>
36 #include <linux/platform_device.h>
37 #include <linux/cdev.h>
38 #include <linux/console.h>
39 #include <linux/tty.h>
40 #include <linux/tty_flip.h>
41 #include <linux/circ_buf.h>
42 #include <asm/udbg.h>
43 
44 /* The size of the transmit circular buffer.  This must be a power of two. */
45 #define BUF_SIZE	2048
46 
47 /* Per-byte channel private data */
48 struct ehv_bc_data {
49 	struct device *dev;
50 	struct tty_port port;
51 	uint32_t handle;
52 	unsigned int rx_irq;
53 	unsigned int tx_irq;
54 
55 	spinlock_t lock;	/* lock for transmit buffer */
56 	unsigned char buf[BUF_SIZE];	/* transmit circular buffer */
57 	unsigned int head;	/* circular buffer head */
58 	unsigned int tail;	/* circular buffer tail */
59 
60 	int tx_irq_enabled;	/* true == TX interrupt is enabled */
61 };
62 
63 /* Array of byte channel objects */
64 static struct ehv_bc_data *bcs;
65 
66 /* Byte channel handle for stdout (and stdin), taken from device tree */
67 static unsigned int stdout_bc;
68 
69 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
70 static unsigned int stdout_irq;
71 
72 /**************************** SUPPORT FUNCTIONS ****************************/
73 
74 /*
75  * Enable the transmit interrupt
76  *
77  * Unlike a serial device, byte channels have no mechanism for disabling their
78  * own receive or transmit interrupts.  To emulate that feature, we toggle
79  * the IRQ in the kernel.
80  *
81  * We cannot just blindly call enable_irq() or disable_irq(), because these
82  * calls are reference counted.  This means that we cannot call enable_irq()
83  * if interrupts are already enabled.  This can happen in two situations:
84  *
85  * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
86  * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
87  *
88  * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
89  */
90 static void enable_tx_interrupt(struct ehv_bc_data *bc)
91 {
92 	if (!bc->tx_irq_enabled) {
93 		enable_irq(bc->tx_irq);
94 		bc->tx_irq_enabled = 1;
95 	}
96 }
97 
98 static void disable_tx_interrupt(struct ehv_bc_data *bc)
99 {
100 	if (bc->tx_irq_enabled) {
101 		disable_irq_nosync(bc->tx_irq);
102 		bc->tx_irq_enabled = 0;
103 	}
104 }
105 
106 /*
107  * find the byte channel handle to use for the console
108  *
109  * The byte channel to be used for the console is specified via a "stdout"
110  * property in the /chosen node.
111  *
112  * For compatible with legacy device trees, we also look for a "stdout" alias.
113  */
114 static int find_console_handle(void)
115 {
116 	struct device_node *np, *np2;
117 	const char *sprop = NULL;
118 	const uint32_t *iprop;
119 
120 	np = of_find_node_by_path("/chosen");
121 	if (np)
122 		sprop = of_get_property(np, "stdout-path", NULL);
123 
124 	if (!np || !sprop) {
125 		of_node_put(np);
126 		np = of_find_node_by_name(NULL, "aliases");
127 		if (np)
128 			sprop = of_get_property(np, "stdout", NULL);
129 	}
130 
131 	if (!sprop) {
132 		of_node_put(np);
133 		return 0;
134 	}
135 
136 	/* We don't care what the aliased node is actually called.  We only
137 	 * care if it's compatible with "epapr,hv-byte-channel", because that
138 	 * indicates that it's a byte channel node.  We use a temporary
139 	 * variable, 'np2', because we can't release 'np' until we're done with
140 	 * 'sprop'.
141 	 */
142 	np2 = of_find_node_by_path(sprop);
143 	of_node_put(np);
144 	np = np2;
145 	if (!np) {
146 		pr_warning("ehv-bc: stdout node '%s' does not exist\n", sprop);
147 		return 0;
148 	}
149 
150 	/* Is it a byte channel? */
151 	if (!of_device_is_compatible(np, "epapr,hv-byte-channel")) {
152 		of_node_put(np);
153 		return 0;
154 	}
155 
156 	stdout_irq = irq_of_parse_and_map(np, 0);
157 	if (stdout_irq == NO_IRQ) {
158 		pr_err("ehv-bc: no 'interrupts' property in %s node\n", sprop);
159 		of_node_put(np);
160 		return 0;
161 	}
162 
163 	/*
164 	 * The 'hv-handle' property contains the handle for this byte channel.
165 	 */
166 	iprop = of_get_property(np, "hv-handle", NULL);
167 	if (!iprop) {
168 		pr_err("ehv-bc: no 'hv-handle' property in %s node\n",
169 		       np->name);
170 		of_node_put(np);
171 		return 0;
172 	}
173 	stdout_bc = be32_to_cpu(*iprop);
174 
175 	of_node_put(np);
176 	return 1;
177 }
178 
179 /*************************** EARLY CONSOLE DRIVER ***************************/
180 
181 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
182 
183 /*
184  * send a byte to a byte channel, wait if necessary
185  *
186  * This function sends a byte to a byte channel, and it waits and
187  * retries if the byte channel is full.  It returns if the character
188  * has been sent, or if some error has occurred.
189  *
190  */
191 static void byte_channel_spin_send(const char data)
192 {
193 	int ret, count;
194 
195 	do {
196 		count = 1;
197 		ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
198 					   &count, &data);
199 	} while (ret == EV_EAGAIN);
200 }
201 
202 /*
203  * The udbg subsystem calls this function to display a single character.
204  * We convert CR to a CR/LF.
205  */
206 static void ehv_bc_udbg_putc(char c)
207 {
208 	if (c == '\n')
209 		byte_channel_spin_send('\r');
210 
211 	byte_channel_spin_send(c);
212 }
213 
214 /*
215  * early console initialization
216  *
217  * PowerPC kernels support an early printk console, also known as udbg.
218  * This function must be called via the ppc_md.init_early function pointer.
219  * At this point, the device tree has been unflattened, so we can obtain the
220  * byte channel handle for stdout.
221  *
222  * We only support displaying of characters (putc).  We do not support
223  * keyboard input.
224  */
225 void __init udbg_init_ehv_bc(void)
226 {
227 	unsigned int rx_count, tx_count;
228 	unsigned int ret;
229 
230 	/* Verify the byte channel handle */
231 	ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
232 				   &rx_count, &tx_count);
233 	if (ret)
234 		return;
235 
236 	udbg_putc = ehv_bc_udbg_putc;
237 	register_early_udbg_console();
238 
239 	udbg_printf("ehv-bc: early console using byte channel handle %u\n",
240 		    CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
241 }
242 
243 #endif
244 
245 /****************************** CONSOLE DRIVER ******************************/
246 
247 static struct tty_driver *ehv_bc_driver;
248 
249 /*
250  * Byte channel console sending worker function.
251  *
252  * For consoles, if the output buffer is full, we should just spin until it
253  * clears.
254  */
255 static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s,
256 			     unsigned int count)
257 {
258 	unsigned int len;
259 	int ret = 0;
260 
261 	while (count) {
262 		len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES);
263 		do {
264 			ret = ev_byte_channel_send(handle, &len, s);
265 		} while (ret == EV_EAGAIN);
266 		count -= len;
267 		s += len;
268 	}
269 
270 	return ret;
271 }
272 
273 /*
274  * write a string to the console
275  *
276  * This function gets called to write a string from the kernel, typically from
277  * a printk().  This function spins until all data is written.
278  *
279  * We copy the data to a temporary buffer because we need to insert a \r in
280  * front of every \n.  It's more efficient to copy the data to the buffer than
281  * it is to make multiple hcalls for each character or each newline.
282  */
283 static void ehv_bc_console_write(struct console *co, const char *s,
284 				 unsigned int count)
285 {
286 	char s2[EV_BYTE_CHANNEL_MAX_BYTES];
287 	unsigned int i, j = 0;
288 	char c;
289 
290 	for (i = 0; i < count; i++) {
291 		c = *s++;
292 
293 		if (c == '\n')
294 			s2[j++] = '\r';
295 
296 		s2[j++] = c;
297 		if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) {
298 			if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j))
299 				return;
300 			j = 0;
301 		}
302 	}
303 
304 	if (j)
305 		ehv_bc_console_byte_channel_send(stdout_bc, s2, j);
306 }
307 
308 /*
309  * When /dev/console is opened, the kernel iterates the console list looking
310  * for one with ->device and then calls that method. On success, it expects
311  * the passed-in int* to contain the minor number to use.
312  */
313 static struct tty_driver *ehv_bc_console_device(struct console *co, int *index)
314 {
315 	*index = co->index;
316 
317 	return ehv_bc_driver;
318 }
319 
320 static struct console ehv_bc_console = {
321 	.name		= "ttyEHV",
322 	.write		= ehv_bc_console_write,
323 	.device		= ehv_bc_console_device,
324 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
325 };
326 
327 /*
328  * Console initialization
329  *
330  * This is the first function that is called after the device tree is
331  * available, so here is where we determine the byte channel handle and IRQ for
332  * stdout/stdin, even though that information is used by the tty and character
333  * drivers.
334  */
335 static int __init ehv_bc_console_init(void)
336 {
337 	if (!find_console_handle()) {
338 		pr_debug("ehv-bc: stdout is not a byte channel\n");
339 		return -ENODEV;
340 	}
341 
342 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
343 	/* Print a friendly warning if the user chose the wrong byte channel
344 	 * handle for udbg.
345 	 */
346 	if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE)
347 		pr_warning("ehv-bc: udbg handle %u is not the stdout handle\n",
348 			   CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
349 #endif
350 
351 	/* add_preferred_console() must be called before register_console(),
352 	   otherwise it won't work.  However, we don't want to enumerate all the
353 	   byte channels here, either, since we only care about one. */
354 
355 	add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL);
356 	register_console(&ehv_bc_console);
357 
358 	pr_info("ehv-bc: registered console driver for byte channel %u\n",
359 		stdout_bc);
360 
361 	return 0;
362 }
363 console_initcall(ehv_bc_console_init);
364 
365 /******************************** TTY DRIVER ********************************/
366 
367 /*
368  * byte channel receive interupt handler
369  *
370  * This ISR is called whenever data is available on a byte channel.
371  */
372 static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data)
373 {
374 	struct ehv_bc_data *bc = data;
375 	unsigned int rx_count, tx_count, len;
376 	int count;
377 	char buffer[EV_BYTE_CHANNEL_MAX_BYTES];
378 	int ret;
379 
380 	/* Find out how much data needs to be read, and then ask the TTY layer
381 	 * if it can handle that much.  We want to ensure that every byte we
382 	 * read from the byte channel will be accepted by the TTY layer.
383 	 */
384 	ev_byte_channel_poll(bc->handle, &rx_count, &tx_count);
385 	count = tty_buffer_request_room(&bc->port, rx_count);
386 
387 	/* 'count' is the maximum amount of data the TTY layer can accept at
388 	 * this time.  However, during testing, I was never able to get 'count'
389 	 * to be less than 'rx_count'.  I'm not sure whether I'm calling it
390 	 * correctly.
391 	 */
392 
393 	while (count > 0) {
394 		len = min_t(unsigned int, count, sizeof(buffer));
395 
396 		/* Read some data from the byte channel.  This function will
397 		 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
398 		 */
399 		ev_byte_channel_receive(bc->handle, &len, buffer);
400 
401 		/* 'len' is now the amount of data that's been received. 'len'
402 		 * can't be zero, and most likely it's equal to one.
403 		 */
404 
405 		/* Pass the received data to the tty layer. */
406 		ret = tty_insert_flip_string(&bc->port, buffer, len);
407 
408 		/* 'ret' is the number of bytes that the TTY layer accepted.
409 		 * If it's not equal to 'len', then it means the buffer is
410 		 * full, which should never happen.  If it does happen, we can
411 		 * exit gracefully, but we drop the last 'len - ret' characters
412 		 * that we read from the byte channel.
413 		 */
414 		if (ret != len)
415 			break;
416 
417 		count -= len;
418 	}
419 
420 	/* Tell the tty layer that we're done. */
421 	tty_flip_buffer_push(&bc->port);
422 
423 	return IRQ_HANDLED;
424 }
425 
426 /*
427  * dequeue the transmit buffer to the hypervisor
428  *
429  * This function, which can be called in interrupt context, dequeues as much
430  * data as possible from the transmit buffer to the byte channel.
431  */
432 static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc)
433 {
434 	unsigned int count;
435 	unsigned int len, ret;
436 	unsigned long flags;
437 
438 	do {
439 		spin_lock_irqsave(&bc->lock, flags);
440 		len = min_t(unsigned int,
441 			    CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE),
442 			    EV_BYTE_CHANNEL_MAX_BYTES);
443 
444 		ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail);
445 
446 		/* 'len' is valid only if the return code is 0 or EV_EAGAIN */
447 		if (!ret || (ret == EV_EAGAIN))
448 			bc->tail = (bc->tail + len) & (BUF_SIZE - 1);
449 
450 		count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE);
451 		spin_unlock_irqrestore(&bc->lock, flags);
452 	} while (count && !ret);
453 
454 	spin_lock_irqsave(&bc->lock, flags);
455 	if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE))
456 		/*
457 		 * If we haven't emptied the buffer, then enable the TX IRQ.
458 		 * We'll get an interrupt when there's more room in the
459 		 * hypervisor's output buffer.
460 		 */
461 		enable_tx_interrupt(bc);
462 	else
463 		disable_tx_interrupt(bc);
464 	spin_unlock_irqrestore(&bc->lock, flags);
465 }
466 
467 /*
468  * byte channel transmit interupt handler
469  *
470  * This ISR is called whenever space becomes available for transmitting
471  * characters on a byte channel.
472  */
473 static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data)
474 {
475 	struct ehv_bc_data *bc = data;
476 
477 	ehv_bc_tx_dequeue(bc);
478 	tty_port_tty_wakeup(&bc->port);
479 
480 	return IRQ_HANDLED;
481 }
482 
483 /*
484  * This function is called when the tty layer has data for us send.  We store
485  * the data first in a circular buffer, and then dequeue as much of that data
486  * as possible.
487  *
488  * We don't need to worry about whether there is enough room in the buffer for
489  * all the data.  The purpose of ehv_bc_tty_write_room() is to tell the tty
490  * layer how much data it can safely send to us.  We guarantee that
491  * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
492  * too much data.
493  */
494 static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s,
495 			    int count)
496 {
497 	struct ehv_bc_data *bc = ttys->driver_data;
498 	unsigned long flags;
499 	unsigned int len;
500 	unsigned int written = 0;
501 
502 	while (1) {
503 		spin_lock_irqsave(&bc->lock, flags);
504 		len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE);
505 		if (count < len)
506 			len = count;
507 		if (len) {
508 			memcpy(bc->buf + bc->head, s, len);
509 			bc->head = (bc->head + len) & (BUF_SIZE - 1);
510 		}
511 		spin_unlock_irqrestore(&bc->lock, flags);
512 		if (!len)
513 			break;
514 
515 		s += len;
516 		count -= len;
517 		written += len;
518 	}
519 
520 	ehv_bc_tx_dequeue(bc);
521 
522 	return written;
523 }
524 
525 /*
526  * This function can be called multiple times for a given tty_struct, which is
527  * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
528  *
529  * The tty layer will still call this function even if the device was not
530  * registered (i.e. tty_register_device() was not called).  This happens
531  * because tty_register_device() is optional and some legacy drivers don't
532  * use it.  So we need to check for that.
533  */
534 static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp)
535 {
536 	struct ehv_bc_data *bc = &bcs[ttys->index];
537 
538 	if (!bc->dev)
539 		return -ENODEV;
540 
541 	return tty_port_open(&bc->port, ttys, filp);
542 }
543 
544 /*
545  * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
546  * still call this function to close the tty device.  So we can't assume that
547  * the tty port has been initialized.
548  */
549 static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp)
550 {
551 	struct ehv_bc_data *bc = &bcs[ttys->index];
552 
553 	if (bc->dev)
554 		tty_port_close(&bc->port, ttys, filp);
555 }
556 
557 /*
558  * Return the amount of space in the output buffer
559  *
560  * This is actually a contract between the driver and the tty layer outlining
561  * how much write room the driver can guarantee will be sent OR BUFFERED.  This
562  * driver MUST honor the return value.
563  */
564 static int ehv_bc_tty_write_room(struct tty_struct *ttys)
565 {
566 	struct ehv_bc_data *bc = ttys->driver_data;
567 	unsigned long flags;
568 	int count;
569 
570 	spin_lock_irqsave(&bc->lock, flags);
571 	count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE);
572 	spin_unlock_irqrestore(&bc->lock, flags);
573 
574 	return count;
575 }
576 
577 /*
578  * Stop sending data to the tty layer
579  *
580  * This function is called when the tty layer's input buffers are getting full,
581  * so the driver should stop sending it data.  The easiest way to do this is to
582  * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
583  * called.
584  *
585  * The hypervisor will continue to queue up any incoming data.  If there is any
586  * data in the queue when the RX interrupt is enabled, we'll immediately get an
587  * RX interrupt.
588  */
589 static void ehv_bc_tty_throttle(struct tty_struct *ttys)
590 {
591 	struct ehv_bc_data *bc = ttys->driver_data;
592 
593 	disable_irq(bc->rx_irq);
594 }
595 
596 /*
597  * Resume sending data to the tty layer
598  *
599  * This function is called after previously calling ehv_bc_tty_throttle().  The
600  * tty layer's input buffers now have more room, so the driver can resume
601  * sending it data.
602  */
603 static void ehv_bc_tty_unthrottle(struct tty_struct *ttys)
604 {
605 	struct ehv_bc_data *bc = ttys->driver_data;
606 
607 	/* If there is any data in the queue when the RX interrupt is enabled,
608 	 * we'll immediately get an RX interrupt.
609 	 */
610 	enable_irq(bc->rx_irq);
611 }
612 
613 static void ehv_bc_tty_hangup(struct tty_struct *ttys)
614 {
615 	struct ehv_bc_data *bc = ttys->driver_data;
616 
617 	ehv_bc_tx_dequeue(bc);
618 	tty_port_hangup(&bc->port);
619 }
620 
621 /*
622  * TTY driver operations
623  *
624  * If we could ask the hypervisor how much data is still in the TX buffer, or
625  * at least how big the TX buffers are, then we could implement the
626  * .wait_until_sent and .chars_in_buffer functions.
627  */
628 static const struct tty_operations ehv_bc_ops = {
629 	.open		= ehv_bc_tty_open,
630 	.close		= ehv_bc_tty_close,
631 	.write		= ehv_bc_tty_write,
632 	.write_room	= ehv_bc_tty_write_room,
633 	.throttle	= ehv_bc_tty_throttle,
634 	.unthrottle	= ehv_bc_tty_unthrottle,
635 	.hangup		= ehv_bc_tty_hangup,
636 };
637 
638 /*
639  * initialize the TTY port
640  *
641  * This function will only be called once, no matter how many times
642  * ehv_bc_tty_open() is called.  That's why we register the ISR here, and also
643  * why we initialize tty_struct-related variables here.
644  */
645 static int ehv_bc_tty_port_activate(struct tty_port *port,
646 				    struct tty_struct *ttys)
647 {
648 	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
649 	int ret;
650 
651 	ttys->driver_data = bc;
652 
653 	ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc);
654 	if (ret < 0) {
655 		dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n",
656 		       bc->rx_irq, ret);
657 		return ret;
658 	}
659 
660 	/* request_irq also enables the IRQ */
661 	bc->tx_irq_enabled = 1;
662 
663 	ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc);
664 	if (ret < 0) {
665 		dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n",
666 		       bc->tx_irq, ret);
667 		free_irq(bc->rx_irq, bc);
668 		return ret;
669 	}
670 
671 	/* The TX IRQ is enabled only when we can't write all the data to the
672 	 * byte channel at once, so by default it's disabled.
673 	 */
674 	disable_tx_interrupt(bc);
675 
676 	return 0;
677 }
678 
679 static void ehv_bc_tty_port_shutdown(struct tty_port *port)
680 {
681 	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
682 
683 	free_irq(bc->tx_irq, bc);
684 	free_irq(bc->rx_irq, bc);
685 }
686 
687 static const struct tty_port_operations ehv_bc_tty_port_ops = {
688 	.activate = ehv_bc_tty_port_activate,
689 	.shutdown = ehv_bc_tty_port_shutdown,
690 };
691 
692 static int ehv_bc_tty_probe(struct platform_device *pdev)
693 {
694 	struct device_node *np = pdev->dev.of_node;
695 	struct ehv_bc_data *bc;
696 	const uint32_t *iprop;
697 	unsigned int handle;
698 	int ret;
699 	static unsigned int index = 1;
700 	unsigned int i;
701 
702 	iprop = of_get_property(np, "hv-handle", NULL);
703 	if (!iprop) {
704 		dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n",
705 			np->name);
706 		return -ENODEV;
707 	}
708 
709 	/* We already told the console layer that the index for the console
710 	 * device is zero, so we need to make sure that we use that index when
711 	 * we probe the console byte channel node.
712 	 */
713 	handle = be32_to_cpu(*iprop);
714 	i = (handle == stdout_bc) ? 0 : index++;
715 	bc = &bcs[i];
716 
717 	bc->handle = handle;
718 	bc->head = 0;
719 	bc->tail = 0;
720 	spin_lock_init(&bc->lock);
721 
722 	bc->rx_irq = irq_of_parse_and_map(np, 0);
723 	bc->tx_irq = irq_of_parse_and_map(np, 1);
724 	if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) {
725 		dev_err(&pdev->dev, "no 'interrupts' property in %s node\n",
726 			np->name);
727 		ret = -ENODEV;
728 		goto error;
729 	}
730 
731 	tty_port_init(&bc->port);
732 	bc->port.ops = &ehv_bc_tty_port_ops;
733 
734 	bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i,
735 			&pdev->dev);
736 	if (IS_ERR(bc->dev)) {
737 		ret = PTR_ERR(bc->dev);
738 		dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret);
739 		goto error;
740 	}
741 
742 	dev_set_drvdata(&pdev->dev, bc);
743 
744 	dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n",
745 		ehv_bc_driver->name, i, bc->handle);
746 
747 	return 0;
748 
749 error:
750 	tty_port_destroy(&bc->port);
751 	irq_dispose_mapping(bc->tx_irq);
752 	irq_dispose_mapping(bc->rx_irq);
753 
754 	memset(bc, 0, sizeof(struct ehv_bc_data));
755 	return ret;
756 }
757 
758 static int ehv_bc_tty_remove(struct platform_device *pdev)
759 {
760 	struct ehv_bc_data *bc = dev_get_drvdata(&pdev->dev);
761 
762 	tty_unregister_device(ehv_bc_driver, bc - bcs);
763 
764 	tty_port_destroy(&bc->port);
765 	irq_dispose_mapping(bc->tx_irq);
766 	irq_dispose_mapping(bc->rx_irq);
767 
768 	return 0;
769 }
770 
771 static const struct of_device_id ehv_bc_tty_of_ids[] = {
772 	{ .compatible = "epapr,hv-byte-channel" },
773 	{}
774 };
775 
776 static struct platform_driver ehv_bc_tty_driver = {
777 	.driver = {
778 		.owner = THIS_MODULE,
779 		.name = "ehv-bc",
780 		.of_match_table = ehv_bc_tty_of_ids,
781 	},
782 	.probe		= ehv_bc_tty_probe,
783 	.remove		= ehv_bc_tty_remove,
784 };
785 
786 /**
787  * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
788  *
789  * This function is called when this module is loaded.
790  */
791 static int __init ehv_bc_init(void)
792 {
793 	struct device_node *np;
794 	unsigned int count = 0; /* Number of elements in bcs[] */
795 	int ret;
796 
797 	pr_info("ePAPR hypervisor byte channel driver\n");
798 
799 	/* Count the number of byte channels */
800 	for_each_compatible_node(np, NULL, "epapr,hv-byte-channel")
801 		count++;
802 
803 	if (!count)
804 		return -ENODEV;
805 
806 	/* The array index of an element in bcs[] is the same as the tty index
807 	 * for that element.  If you know the address of an element in the
808 	 * array, then you can use pointer math (e.g. "bc - bcs") to get its
809 	 * tty index.
810 	 */
811 	bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL);
812 	if (!bcs)
813 		return -ENOMEM;
814 
815 	ehv_bc_driver = alloc_tty_driver(count);
816 	if (!ehv_bc_driver) {
817 		ret = -ENOMEM;
818 		goto error;
819 	}
820 
821 	ehv_bc_driver->driver_name = "ehv-bc";
822 	ehv_bc_driver->name = ehv_bc_console.name;
823 	ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE;
824 	ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE;
825 	ehv_bc_driver->init_termios = tty_std_termios;
826 	ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
827 	tty_set_operations(ehv_bc_driver, &ehv_bc_ops);
828 
829 	ret = tty_register_driver(ehv_bc_driver);
830 	if (ret) {
831 		pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret);
832 		goto error;
833 	}
834 
835 	ret = platform_driver_register(&ehv_bc_tty_driver);
836 	if (ret) {
837 		pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
838 		       ret);
839 		goto error;
840 	}
841 
842 	return 0;
843 
844 error:
845 	if (ehv_bc_driver) {
846 		tty_unregister_driver(ehv_bc_driver);
847 		put_tty_driver(ehv_bc_driver);
848 	}
849 
850 	kfree(bcs);
851 
852 	return ret;
853 }
854 
855 
856 /**
857  * ehv_bc_exit - ePAPR hypervisor byte channel driver termination
858  *
859  * This function is called when this driver is unloaded.
860  */
861 static void __exit ehv_bc_exit(void)
862 {
863 	platform_driver_unregister(&ehv_bc_tty_driver);
864 	tty_unregister_driver(ehv_bc_driver);
865 	put_tty_driver(ehv_bc_driver);
866 	kfree(bcs);
867 }
868 
869 module_init(ehv_bc_init);
870 module_exit(ehv_bc_exit);
871 
872 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
873 MODULE_DESCRIPTION("ePAPR hypervisor byte channel driver");
874 MODULE_LICENSE("GPL v2");
875