1 /* ePAPR hypervisor byte channel device driver 2 * 3 * Copyright 2009-2011 Freescale Semiconductor, Inc. 4 * 5 * Author: Timur Tabi <timur@freescale.com> 6 * 7 * This file is licensed under the terms of the GNU General Public License 8 * version 2. This program is licensed "as is" without any warranty of any 9 * kind, whether express or implied. 10 * 11 * This driver support three distinct interfaces, all of which are related to 12 * ePAPR hypervisor byte channels. 13 * 14 * 1) An early-console (udbg) driver. This provides early console output 15 * through a byte channel. The byte channel handle must be specified in a 16 * Kconfig option. 17 * 18 * 2) A normal console driver. Output is sent to the byte channel designated 19 * for stdout in the device tree. The console driver is for handling kernel 20 * printk calls. 21 * 22 * 3) A tty driver, which is used to handle user-space input and output. The 23 * byte channel used for the console is designated as the default tty. 24 */ 25 26 #include <linux/module.h> 27 #include <linux/init.h> 28 #include <linux/slab.h> 29 #include <linux/err.h> 30 #include <linux/interrupt.h> 31 #include <linux/fs.h> 32 #include <linux/poll.h> 33 #include <asm/epapr_hcalls.h> 34 #include <linux/of.h> 35 #include <linux/platform_device.h> 36 #include <linux/cdev.h> 37 #include <linux/console.h> 38 #include <linux/tty.h> 39 #include <linux/tty_flip.h> 40 #include <linux/circ_buf.h> 41 #include <asm/udbg.h> 42 43 /* The size of the transmit circular buffer. This must be a power of two. */ 44 #define BUF_SIZE 2048 45 46 /* Per-byte channel private data */ 47 struct ehv_bc_data { 48 struct device *dev; 49 struct tty_port port; 50 uint32_t handle; 51 unsigned int rx_irq; 52 unsigned int tx_irq; 53 54 spinlock_t lock; /* lock for transmit buffer */ 55 unsigned char buf[BUF_SIZE]; /* transmit circular buffer */ 56 unsigned int head; /* circular buffer head */ 57 unsigned int tail; /* circular buffer tail */ 58 59 int tx_irq_enabled; /* true == TX interrupt is enabled */ 60 }; 61 62 /* Array of byte channel objects */ 63 static struct ehv_bc_data *bcs; 64 65 /* Byte channel handle for stdout (and stdin), taken from device tree */ 66 static unsigned int stdout_bc; 67 68 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */ 69 static unsigned int stdout_irq; 70 71 /**************************** SUPPORT FUNCTIONS ****************************/ 72 73 /* 74 * Enable the transmit interrupt 75 * 76 * Unlike a serial device, byte channels have no mechanism for disabling their 77 * own receive or transmit interrupts. To emulate that feature, we toggle 78 * the IRQ in the kernel. 79 * 80 * We cannot just blindly call enable_irq() or disable_irq(), because these 81 * calls are reference counted. This means that we cannot call enable_irq() 82 * if interrupts are already enabled. This can happen in two situations: 83 * 84 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write() 85 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue() 86 * 87 * To work around this, we keep a flag to tell us if the IRQ is enabled or not. 88 */ 89 static void enable_tx_interrupt(struct ehv_bc_data *bc) 90 { 91 if (!bc->tx_irq_enabled) { 92 enable_irq(bc->tx_irq); 93 bc->tx_irq_enabled = 1; 94 } 95 } 96 97 static void disable_tx_interrupt(struct ehv_bc_data *bc) 98 { 99 if (bc->tx_irq_enabled) { 100 disable_irq_nosync(bc->tx_irq); 101 bc->tx_irq_enabled = 0; 102 } 103 } 104 105 /* 106 * find the byte channel handle to use for the console 107 * 108 * The byte channel to be used for the console is specified via a "stdout" 109 * property in the /chosen node. 110 * 111 * For compatible with legacy device trees, we also look for a "stdout" alias. 112 */ 113 static int find_console_handle(void) 114 { 115 struct device_node *np, *np2; 116 const char *sprop = NULL; 117 const uint32_t *iprop; 118 119 np = of_find_node_by_path("/chosen"); 120 if (np) 121 sprop = of_get_property(np, "stdout-path", NULL); 122 123 if (!np || !sprop) { 124 of_node_put(np); 125 np = of_find_node_by_name(NULL, "aliases"); 126 if (np) 127 sprop = of_get_property(np, "stdout", NULL); 128 } 129 130 if (!sprop) { 131 of_node_put(np); 132 return 0; 133 } 134 135 /* We don't care what the aliased node is actually called. We only 136 * care if it's compatible with "epapr,hv-byte-channel", because that 137 * indicates that it's a byte channel node. We use a temporary 138 * variable, 'np2', because we can't release 'np' until we're done with 139 * 'sprop'. 140 */ 141 np2 = of_find_node_by_path(sprop); 142 of_node_put(np); 143 np = np2; 144 if (!np) { 145 pr_warning("ehv-bc: stdout node '%s' does not exist\n", sprop); 146 return 0; 147 } 148 149 /* Is it a byte channel? */ 150 if (!of_device_is_compatible(np, "epapr,hv-byte-channel")) { 151 of_node_put(np); 152 return 0; 153 } 154 155 stdout_irq = irq_of_parse_and_map(np, 0); 156 if (stdout_irq == NO_IRQ) { 157 pr_err("ehv-bc: no 'interrupts' property in %s node\n", sprop); 158 of_node_put(np); 159 return 0; 160 } 161 162 /* 163 * The 'hv-handle' property contains the handle for this byte channel. 164 */ 165 iprop = of_get_property(np, "hv-handle", NULL); 166 if (!iprop) { 167 pr_err("ehv-bc: no 'hv-handle' property in %s node\n", 168 np->name); 169 of_node_put(np); 170 return 0; 171 } 172 stdout_bc = be32_to_cpu(*iprop); 173 174 of_node_put(np); 175 return 1; 176 } 177 178 /*************************** EARLY CONSOLE DRIVER ***************************/ 179 180 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC 181 182 /* 183 * send a byte to a byte channel, wait if necessary 184 * 185 * This function sends a byte to a byte channel, and it waits and 186 * retries if the byte channel is full. It returns if the character 187 * has been sent, or if some error has occurred. 188 * 189 */ 190 static void byte_channel_spin_send(const char data) 191 { 192 int ret, count; 193 194 do { 195 count = 1; 196 ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, 197 &count, &data); 198 } while (ret == EV_EAGAIN); 199 } 200 201 /* 202 * The udbg subsystem calls this function to display a single character. 203 * We convert CR to a CR/LF. 204 */ 205 static void ehv_bc_udbg_putc(char c) 206 { 207 if (c == '\n') 208 byte_channel_spin_send('\r'); 209 210 byte_channel_spin_send(c); 211 } 212 213 /* 214 * early console initialization 215 * 216 * PowerPC kernels support an early printk console, also known as udbg. 217 * This function must be called via the ppc_md.init_early function pointer. 218 * At this point, the device tree has been unflattened, so we can obtain the 219 * byte channel handle for stdout. 220 * 221 * We only support displaying of characters (putc). We do not support 222 * keyboard input. 223 */ 224 void __init udbg_init_ehv_bc(void) 225 { 226 unsigned int rx_count, tx_count; 227 unsigned int ret; 228 229 /* Verify the byte channel handle */ 230 ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, 231 &rx_count, &tx_count); 232 if (ret) 233 return; 234 235 udbg_putc = ehv_bc_udbg_putc; 236 register_early_udbg_console(); 237 238 udbg_printf("ehv-bc: early console using byte channel handle %u\n", 239 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); 240 } 241 242 #endif 243 244 /****************************** CONSOLE DRIVER ******************************/ 245 246 static struct tty_driver *ehv_bc_driver; 247 248 /* 249 * Byte channel console sending worker function. 250 * 251 * For consoles, if the output buffer is full, we should just spin until it 252 * clears. 253 */ 254 static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s, 255 unsigned int count) 256 { 257 unsigned int len; 258 int ret = 0; 259 260 while (count) { 261 len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES); 262 do { 263 ret = ev_byte_channel_send(handle, &len, s); 264 } while (ret == EV_EAGAIN); 265 count -= len; 266 s += len; 267 } 268 269 return ret; 270 } 271 272 /* 273 * write a string to the console 274 * 275 * This function gets called to write a string from the kernel, typically from 276 * a printk(). This function spins until all data is written. 277 * 278 * We copy the data to a temporary buffer because we need to insert a \r in 279 * front of every \n. It's more efficient to copy the data to the buffer than 280 * it is to make multiple hcalls for each character or each newline. 281 */ 282 static void ehv_bc_console_write(struct console *co, const char *s, 283 unsigned int count) 284 { 285 char s2[EV_BYTE_CHANNEL_MAX_BYTES]; 286 unsigned int i, j = 0; 287 char c; 288 289 for (i = 0; i < count; i++) { 290 c = *s++; 291 292 if (c == '\n') 293 s2[j++] = '\r'; 294 295 s2[j++] = c; 296 if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) { 297 if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j)) 298 return; 299 j = 0; 300 } 301 } 302 303 if (j) 304 ehv_bc_console_byte_channel_send(stdout_bc, s2, j); 305 } 306 307 /* 308 * When /dev/console is opened, the kernel iterates the console list looking 309 * for one with ->device and then calls that method. On success, it expects 310 * the passed-in int* to contain the minor number to use. 311 */ 312 static struct tty_driver *ehv_bc_console_device(struct console *co, int *index) 313 { 314 *index = co->index; 315 316 return ehv_bc_driver; 317 } 318 319 static struct console ehv_bc_console = { 320 .name = "ttyEHV", 321 .write = ehv_bc_console_write, 322 .device = ehv_bc_console_device, 323 .flags = CON_PRINTBUFFER | CON_ENABLED, 324 }; 325 326 /* 327 * Console initialization 328 * 329 * This is the first function that is called after the device tree is 330 * available, so here is where we determine the byte channel handle and IRQ for 331 * stdout/stdin, even though that information is used by the tty and character 332 * drivers. 333 */ 334 static int __init ehv_bc_console_init(void) 335 { 336 if (!find_console_handle()) { 337 pr_debug("ehv-bc: stdout is not a byte channel\n"); 338 return -ENODEV; 339 } 340 341 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC 342 /* Print a friendly warning if the user chose the wrong byte channel 343 * handle for udbg. 344 */ 345 if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE) 346 pr_warning("ehv-bc: udbg handle %u is not the stdout handle\n", 347 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); 348 #endif 349 350 /* add_preferred_console() must be called before register_console(), 351 otherwise it won't work. However, we don't want to enumerate all the 352 byte channels here, either, since we only care about one. */ 353 354 add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL); 355 register_console(&ehv_bc_console); 356 357 pr_info("ehv-bc: registered console driver for byte channel %u\n", 358 stdout_bc); 359 360 return 0; 361 } 362 console_initcall(ehv_bc_console_init); 363 364 /******************************** TTY DRIVER ********************************/ 365 366 /* 367 * byte channel receive interupt handler 368 * 369 * This ISR is called whenever data is available on a byte channel. 370 */ 371 static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data) 372 { 373 struct ehv_bc_data *bc = data; 374 unsigned int rx_count, tx_count, len; 375 int count; 376 char buffer[EV_BYTE_CHANNEL_MAX_BYTES]; 377 int ret; 378 379 /* Find out how much data needs to be read, and then ask the TTY layer 380 * if it can handle that much. We want to ensure that every byte we 381 * read from the byte channel will be accepted by the TTY layer. 382 */ 383 ev_byte_channel_poll(bc->handle, &rx_count, &tx_count); 384 count = tty_buffer_request_room(&bc->port, rx_count); 385 386 /* 'count' is the maximum amount of data the TTY layer can accept at 387 * this time. However, during testing, I was never able to get 'count' 388 * to be less than 'rx_count'. I'm not sure whether I'm calling it 389 * correctly. 390 */ 391 392 while (count > 0) { 393 len = min_t(unsigned int, count, sizeof(buffer)); 394 395 /* Read some data from the byte channel. This function will 396 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes. 397 */ 398 ev_byte_channel_receive(bc->handle, &len, buffer); 399 400 /* 'len' is now the amount of data that's been received. 'len' 401 * can't be zero, and most likely it's equal to one. 402 */ 403 404 /* Pass the received data to the tty layer. */ 405 ret = tty_insert_flip_string(&bc->port, buffer, len); 406 407 /* 'ret' is the number of bytes that the TTY layer accepted. 408 * If it's not equal to 'len', then it means the buffer is 409 * full, which should never happen. If it does happen, we can 410 * exit gracefully, but we drop the last 'len - ret' characters 411 * that we read from the byte channel. 412 */ 413 if (ret != len) 414 break; 415 416 count -= len; 417 } 418 419 /* Tell the tty layer that we're done. */ 420 tty_flip_buffer_push(&bc->port); 421 422 return IRQ_HANDLED; 423 } 424 425 /* 426 * dequeue the transmit buffer to the hypervisor 427 * 428 * This function, which can be called in interrupt context, dequeues as much 429 * data as possible from the transmit buffer to the byte channel. 430 */ 431 static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc) 432 { 433 unsigned int count; 434 unsigned int len, ret; 435 unsigned long flags; 436 437 do { 438 spin_lock_irqsave(&bc->lock, flags); 439 len = min_t(unsigned int, 440 CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE), 441 EV_BYTE_CHANNEL_MAX_BYTES); 442 443 ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail); 444 445 /* 'len' is valid only if the return code is 0 or EV_EAGAIN */ 446 if (!ret || (ret == EV_EAGAIN)) 447 bc->tail = (bc->tail + len) & (BUF_SIZE - 1); 448 449 count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE); 450 spin_unlock_irqrestore(&bc->lock, flags); 451 } while (count && !ret); 452 453 spin_lock_irqsave(&bc->lock, flags); 454 if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE)) 455 /* 456 * If we haven't emptied the buffer, then enable the TX IRQ. 457 * We'll get an interrupt when there's more room in the 458 * hypervisor's output buffer. 459 */ 460 enable_tx_interrupt(bc); 461 else 462 disable_tx_interrupt(bc); 463 spin_unlock_irqrestore(&bc->lock, flags); 464 } 465 466 /* 467 * byte channel transmit interupt handler 468 * 469 * This ISR is called whenever space becomes available for transmitting 470 * characters on a byte channel. 471 */ 472 static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data) 473 { 474 struct ehv_bc_data *bc = data; 475 476 ehv_bc_tx_dequeue(bc); 477 tty_port_tty_wakeup(&bc->port); 478 479 return IRQ_HANDLED; 480 } 481 482 /* 483 * This function is called when the tty layer has data for us send. We store 484 * the data first in a circular buffer, and then dequeue as much of that data 485 * as possible. 486 * 487 * We don't need to worry about whether there is enough room in the buffer for 488 * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty 489 * layer how much data it can safely send to us. We guarantee that 490 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us 491 * too much data. 492 */ 493 static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s, 494 int count) 495 { 496 struct ehv_bc_data *bc = ttys->driver_data; 497 unsigned long flags; 498 unsigned int len; 499 unsigned int written = 0; 500 501 while (1) { 502 spin_lock_irqsave(&bc->lock, flags); 503 len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE); 504 if (count < len) 505 len = count; 506 if (len) { 507 memcpy(bc->buf + bc->head, s, len); 508 bc->head = (bc->head + len) & (BUF_SIZE - 1); 509 } 510 spin_unlock_irqrestore(&bc->lock, flags); 511 if (!len) 512 break; 513 514 s += len; 515 count -= len; 516 written += len; 517 } 518 519 ehv_bc_tx_dequeue(bc); 520 521 return written; 522 } 523 524 /* 525 * This function can be called multiple times for a given tty_struct, which is 526 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead. 527 * 528 * The tty layer will still call this function even if the device was not 529 * registered (i.e. tty_register_device() was not called). This happens 530 * because tty_register_device() is optional and some legacy drivers don't 531 * use it. So we need to check for that. 532 */ 533 static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp) 534 { 535 struct ehv_bc_data *bc = &bcs[ttys->index]; 536 537 if (!bc->dev) 538 return -ENODEV; 539 540 return tty_port_open(&bc->port, ttys, filp); 541 } 542 543 /* 544 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will 545 * still call this function to close the tty device. So we can't assume that 546 * the tty port has been initialized. 547 */ 548 static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp) 549 { 550 struct ehv_bc_data *bc = &bcs[ttys->index]; 551 552 if (bc->dev) 553 tty_port_close(&bc->port, ttys, filp); 554 } 555 556 /* 557 * Return the amount of space in the output buffer 558 * 559 * This is actually a contract between the driver and the tty layer outlining 560 * how much write room the driver can guarantee will be sent OR BUFFERED. This 561 * driver MUST honor the return value. 562 */ 563 static int ehv_bc_tty_write_room(struct tty_struct *ttys) 564 { 565 struct ehv_bc_data *bc = ttys->driver_data; 566 unsigned long flags; 567 int count; 568 569 spin_lock_irqsave(&bc->lock, flags); 570 count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE); 571 spin_unlock_irqrestore(&bc->lock, flags); 572 573 return count; 574 } 575 576 /* 577 * Stop sending data to the tty layer 578 * 579 * This function is called when the tty layer's input buffers are getting full, 580 * so the driver should stop sending it data. The easiest way to do this is to 581 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being 582 * called. 583 * 584 * The hypervisor will continue to queue up any incoming data. If there is any 585 * data in the queue when the RX interrupt is enabled, we'll immediately get an 586 * RX interrupt. 587 */ 588 static void ehv_bc_tty_throttle(struct tty_struct *ttys) 589 { 590 struct ehv_bc_data *bc = ttys->driver_data; 591 592 disable_irq(bc->rx_irq); 593 } 594 595 /* 596 * Resume sending data to the tty layer 597 * 598 * This function is called after previously calling ehv_bc_tty_throttle(). The 599 * tty layer's input buffers now have more room, so the driver can resume 600 * sending it data. 601 */ 602 static void ehv_bc_tty_unthrottle(struct tty_struct *ttys) 603 { 604 struct ehv_bc_data *bc = ttys->driver_data; 605 606 /* If there is any data in the queue when the RX interrupt is enabled, 607 * we'll immediately get an RX interrupt. 608 */ 609 enable_irq(bc->rx_irq); 610 } 611 612 static void ehv_bc_tty_hangup(struct tty_struct *ttys) 613 { 614 struct ehv_bc_data *bc = ttys->driver_data; 615 616 ehv_bc_tx_dequeue(bc); 617 tty_port_hangup(&bc->port); 618 } 619 620 /* 621 * TTY driver operations 622 * 623 * If we could ask the hypervisor how much data is still in the TX buffer, or 624 * at least how big the TX buffers are, then we could implement the 625 * .wait_until_sent and .chars_in_buffer functions. 626 */ 627 static const struct tty_operations ehv_bc_ops = { 628 .open = ehv_bc_tty_open, 629 .close = ehv_bc_tty_close, 630 .write = ehv_bc_tty_write, 631 .write_room = ehv_bc_tty_write_room, 632 .throttle = ehv_bc_tty_throttle, 633 .unthrottle = ehv_bc_tty_unthrottle, 634 .hangup = ehv_bc_tty_hangup, 635 }; 636 637 /* 638 * initialize the TTY port 639 * 640 * This function will only be called once, no matter how many times 641 * ehv_bc_tty_open() is called. That's why we register the ISR here, and also 642 * why we initialize tty_struct-related variables here. 643 */ 644 static int ehv_bc_tty_port_activate(struct tty_port *port, 645 struct tty_struct *ttys) 646 { 647 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); 648 int ret; 649 650 ttys->driver_data = bc; 651 652 ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc); 653 if (ret < 0) { 654 dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n", 655 bc->rx_irq, ret); 656 return ret; 657 } 658 659 /* request_irq also enables the IRQ */ 660 bc->tx_irq_enabled = 1; 661 662 ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc); 663 if (ret < 0) { 664 dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n", 665 bc->tx_irq, ret); 666 free_irq(bc->rx_irq, bc); 667 return ret; 668 } 669 670 /* The TX IRQ is enabled only when we can't write all the data to the 671 * byte channel at once, so by default it's disabled. 672 */ 673 disable_tx_interrupt(bc); 674 675 return 0; 676 } 677 678 static void ehv_bc_tty_port_shutdown(struct tty_port *port) 679 { 680 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); 681 682 free_irq(bc->tx_irq, bc); 683 free_irq(bc->rx_irq, bc); 684 } 685 686 static const struct tty_port_operations ehv_bc_tty_port_ops = { 687 .activate = ehv_bc_tty_port_activate, 688 .shutdown = ehv_bc_tty_port_shutdown, 689 }; 690 691 static int ehv_bc_tty_probe(struct platform_device *pdev) 692 { 693 struct device_node *np = pdev->dev.of_node; 694 struct ehv_bc_data *bc; 695 const uint32_t *iprop; 696 unsigned int handle; 697 int ret; 698 static unsigned int index = 1; 699 unsigned int i; 700 701 iprop = of_get_property(np, "hv-handle", NULL); 702 if (!iprop) { 703 dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n", 704 np->name); 705 return -ENODEV; 706 } 707 708 /* We already told the console layer that the index for the console 709 * device is zero, so we need to make sure that we use that index when 710 * we probe the console byte channel node. 711 */ 712 handle = be32_to_cpu(*iprop); 713 i = (handle == stdout_bc) ? 0 : index++; 714 bc = &bcs[i]; 715 716 bc->handle = handle; 717 bc->head = 0; 718 bc->tail = 0; 719 spin_lock_init(&bc->lock); 720 721 bc->rx_irq = irq_of_parse_and_map(np, 0); 722 bc->tx_irq = irq_of_parse_and_map(np, 1); 723 if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) { 724 dev_err(&pdev->dev, "no 'interrupts' property in %s node\n", 725 np->name); 726 ret = -ENODEV; 727 goto error; 728 } 729 730 tty_port_init(&bc->port); 731 bc->port.ops = &ehv_bc_tty_port_ops; 732 733 bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i, 734 &pdev->dev); 735 if (IS_ERR(bc->dev)) { 736 ret = PTR_ERR(bc->dev); 737 dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret); 738 goto error; 739 } 740 741 dev_set_drvdata(&pdev->dev, bc); 742 743 dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n", 744 ehv_bc_driver->name, i, bc->handle); 745 746 return 0; 747 748 error: 749 tty_port_destroy(&bc->port); 750 irq_dispose_mapping(bc->tx_irq); 751 irq_dispose_mapping(bc->rx_irq); 752 753 memset(bc, 0, sizeof(struct ehv_bc_data)); 754 return ret; 755 } 756 757 static int ehv_bc_tty_remove(struct platform_device *pdev) 758 { 759 struct ehv_bc_data *bc = dev_get_drvdata(&pdev->dev); 760 761 tty_unregister_device(ehv_bc_driver, bc - bcs); 762 763 tty_port_destroy(&bc->port); 764 irq_dispose_mapping(bc->tx_irq); 765 irq_dispose_mapping(bc->rx_irq); 766 767 return 0; 768 } 769 770 static const struct of_device_id ehv_bc_tty_of_ids[] = { 771 { .compatible = "epapr,hv-byte-channel" }, 772 {} 773 }; 774 775 static struct platform_driver ehv_bc_tty_driver = { 776 .driver = { 777 .owner = THIS_MODULE, 778 .name = "ehv-bc", 779 .of_match_table = ehv_bc_tty_of_ids, 780 }, 781 .probe = ehv_bc_tty_probe, 782 .remove = ehv_bc_tty_remove, 783 }; 784 785 /** 786 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization 787 * 788 * This function is called when this module is loaded. 789 */ 790 static int __init ehv_bc_init(void) 791 { 792 struct device_node *np; 793 unsigned int count = 0; /* Number of elements in bcs[] */ 794 int ret; 795 796 pr_info("ePAPR hypervisor byte channel driver\n"); 797 798 /* Count the number of byte channels */ 799 for_each_compatible_node(np, NULL, "epapr,hv-byte-channel") 800 count++; 801 802 if (!count) 803 return -ENODEV; 804 805 /* The array index of an element in bcs[] is the same as the tty index 806 * for that element. If you know the address of an element in the 807 * array, then you can use pointer math (e.g. "bc - bcs") to get its 808 * tty index. 809 */ 810 bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL); 811 if (!bcs) 812 return -ENOMEM; 813 814 ehv_bc_driver = alloc_tty_driver(count); 815 if (!ehv_bc_driver) { 816 ret = -ENOMEM; 817 goto error; 818 } 819 820 ehv_bc_driver->driver_name = "ehv-bc"; 821 ehv_bc_driver->name = ehv_bc_console.name; 822 ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE; 823 ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE; 824 ehv_bc_driver->init_termios = tty_std_termios; 825 ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; 826 tty_set_operations(ehv_bc_driver, &ehv_bc_ops); 827 828 ret = tty_register_driver(ehv_bc_driver); 829 if (ret) { 830 pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret); 831 goto error; 832 } 833 834 ret = platform_driver_register(&ehv_bc_tty_driver); 835 if (ret) { 836 pr_err("ehv-bc: could not register platform driver (ret=%i)\n", 837 ret); 838 goto error; 839 } 840 841 return 0; 842 843 error: 844 if (ehv_bc_driver) { 845 tty_unregister_driver(ehv_bc_driver); 846 put_tty_driver(ehv_bc_driver); 847 } 848 849 kfree(bcs); 850 851 return ret; 852 } 853 854 855 /** 856 * ehv_bc_exit - ePAPR hypervisor byte channel driver termination 857 * 858 * This function is called when this driver is unloaded. 859 */ 860 static void __exit ehv_bc_exit(void) 861 { 862 tty_unregister_driver(ehv_bc_driver); 863 put_tty_driver(ehv_bc_driver); 864 kfree(bcs); 865 } 866 867 module_init(ehv_bc_init); 868 module_exit(ehv_bc_exit); 869 870 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 871 MODULE_DESCRIPTION("ePAPR hypervisor byte channel driver"); 872 MODULE_LICENSE("GPL v2"); 873