1 /* ePAPR hypervisor byte channel device driver 2 * 3 * Copyright 2009-2011 Freescale Semiconductor, Inc. 4 * 5 * Author: Timur Tabi <timur@freescale.com> 6 * 7 * This file is licensed under the terms of the GNU General Public License 8 * version 2. This program is licensed "as is" without any warranty of any 9 * kind, whether express or implied. 10 * 11 * This driver support three distinct interfaces, all of which are related to 12 * ePAPR hypervisor byte channels. 13 * 14 * 1) An early-console (udbg) driver. This provides early console output 15 * through a byte channel. The byte channel handle must be specified in a 16 * Kconfig option. 17 * 18 * 2) A normal console driver. Output is sent to the byte channel designated 19 * for stdout in the device tree. The console driver is for handling kernel 20 * printk calls. 21 * 22 * 3) A tty driver, which is used to handle user-space input and output. The 23 * byte channel used for the console is designated as the default tty. 24 */ 25 26 #include <linux/module.h> 27 #include <linux/init.h> 28 #include <linux/slab.h> 29 #include <linux/err.h> 30 #include <linux/interrupt.h> 31 #include <linux/fs.h> 32 #include <linux/poll.h> 33 #include <asm/epapr_hcalls.h> 34 #include <linux/of.h> 35 #include <linux/of_irq.h> 36 #include <linux/platform_device.h> 37 #include <linux/cdev.h> 38 #include <linux/console.h> 39 #include <linux/tty.h> 40 #include <linux/tty_flip.h> 41 #include <linux/circ_buf.h> 42 #include <asm/udbg.h> 43 44 /* The size of the transmit circular buffer. This must be a power of two. */ 45 #define BUF_SIZE 2048 46 47 /* Per-byte channel private data */ 48 struct ehv_bc_data { 49 struct device *dev; 50 struct tty_port port; 51 uint32_t handle; 52 unsigned int rx_irq; 53 unsigned int tx_irq; 54 55 spinlock_t lock; /* lock for transmit buffer */ 56 unsigned char buf[BUF_SIZE]; /* transmit circular buffer */ 57 unsigned int head; /* circular buffer head */ 58 unsigned int tail; /* circular buffer tail */ 59 60 int tx_irq_enabled; /* true == TX interrupt is enabled */ 61 }; 62 63 /* Array of byte channel objects */ 64 static struct ehv_bc_data *bcs; 65 66 /* Byte channel handle for stdout (and stdin), taken from device tree */ 67 static unsigned int stdout_bc; 68 69 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */ 70 static unsigned int stdout_irq; 71 72 /**************************** SUPPORT FUNCTIONS ****************************/ 73 74 /* 75 * Enable the transmit interrupt 76 * 77 * Unlike a serial device, byte channels have no mechanism for disabling their 78 * own receive or transmit interrupts. To emulate that feature, we toggle 79 * the IRQ in the kernel. 80 * 81 * We cannot just blindly call enable_irq() or disable_irq(), because these 82 * calls are reference counted. This means that we cannot call enable_irq() 83 * if interrupts are already enabled. This can happen in two situations: 84 * 85 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write() 86 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue() 87 * 88 * To work around this, we keep a flag to tell us if the IRQ is enabled or not. 89 */ 90 static void enable_tx_interrupt(struct ehv_bc_data *bc) 91 { 92 if (!bc->tx_irq_enabled) { 93 enable_irq(bc->tx_irq); 94 bc->tx_irq_enabled = 1; 95 } 96 } 97 98 static void disable_tx_interrupt(struct ehv_bc_data *bc) 99 { 100 if (bc->tx_irq_enabled) { 101 disable_irq_nosync(bc->tx_irq); 102 bc->tx_irq_enabled = 0; 103 } 104 } 105 106 /* 107 * find the byte channel handle to use for the console 108 * 109 * The byte channel to be used for the console is specified via a "stdout" 110 * property in the /chosen node. 111 */ 112 static int find_console_handle(void) 113 { 114 struct device_node *np = of_stdout; 115 const char *sprop = NULL; 116 const uint32_t *iprop; 117 118 /* We don't care what the aliased node is actually called. We only 119 * care if it's compatible with "epapr,hv-byte-channel", because that 120 * indicates that it's a byte channel node. 121 */ 122 if (!np || !of_device_is_compatible(np, "epapr,hv-byte-channel")) 123 return 0; 124 125 stdout_irq = irq_of_parse_and_map(np, 0); 126 if (stdout_irq == NO_IRQ) { 127 pr_err("ehv-bc: no 'interrupts' property in %s node\n", np->full_name); 128 return 0; 129 } 130 131 /* 132 * The 'hv-handle' property contains the handle for this byte channel. 133 */ 134 iprop = of_get_property(np, "hv-handle", NULL); 135 if (!iprop) { 136 pr_err("ehv-bc: no 'hv-handle' property in %s node\n", 137 np->name); 138 return 0; 139 } 140 stdout_bc = be32_to_cpu(*iprop); 141 return 1; 142 } 143 144 /*************************** EARLY CONSOLE DRIVER ***************************/ 145 146 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC 147 148 /* 149 * send a byte to a byte channel, wait if necessary 150 * 151 * This function sends a byte to a byte channel, and it waits and 152 * retries if the byte channel is full. It returns if the character 153 * has been sent, or if some error has occurred. 154 * 155 */ 156 static void byte_channel_spin_send(const char data) 157 { 158 int ret, count; 159 160 do { 161 count = 1; 162 ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, 163 &count, &data); 164 } while (ret == EV_EAGAIN); 165 } 166 167 /* 168 * The udbg subsystem calls this function to display a single character. 169 * We convert CR to a CR/LF. 170 */ 171 static void ehv_bc_udbg_putc(char c) 172 { 173 if (c == '\n') 174 byte_channel_spin_send('\r'); 175 176 byte_channel_spin_send(c); 177 } 178 179 /* 180 * early console initialization 181 * 182 * PowerPC kernels support an early printk console, also known as udbg. 183 * This function must be called via the ppc_md.init_early function pointer. 184 * At this point, the device tree has been unflattened, so we can obtain the 185 * byte channel handle for stdout. 186 * 187 * We only support displaying of characters (putc). We do not support 188 * keyboard input. 189 */ 190 void __init udbg_init_ehv_bc(void) 191 { 192 unsigned int rx_count, tx_count; 193 unsigned int ret; 194 195 /* Verify the byte channel handle */ 196 ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, 197 &rx_count, &tx_count); 198 if (ret) 199 return; 200 201 udbg_putc = ehv_bc_udbg_putc; 202 register_early_udbg_console(); 203 204 udbg_printf("ehv-bc: early console using byte channel handle %u\n", 205 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); 206 } 207 208 #endif 209 210 /****************************** CONSOLE DRIVER ******************************/ 211 212 static struct tty_driver *ehv_bc_driver; 213 214 /* 215 * Byte channel console sending worker function. 216 * 217 * For consoles, if the output buffer is full, we should just spin until it 218 * clears. 219 */ 220 static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s, 221 unsigned int count) 222 { 223 unsigned int len; 224 int ret = 0; 225 226 while (count) { 227 len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES); 228 do { 229 ret = ev_byte_channel_send(handle, &len, s); 230 } while (ret == EV_EAGAIN); 231 count -= len; 232 s += len; 233 } 234 235 return ret; 236 } 237 238 /* 239 * write a string to the console 240 * 241 * This function gets called to write a string from the kernel, typically from 242 * a printk(). This function spins until all data is written. 243 * 244 * We copy the data to a temporary buffer because we need to insert a \r in 245 * front of every \n. It's more efficient to copy the data to the buffer than 246 * it is to make multiple hcalls for each character or each newline. 247 */ 248 static void ehv_bc_console_write(struct console *co, const char *s, 249 unsigned int count) 250 { 251 char s2[EV_BYTE_CHANNEL_MAX_BYTES]; 252 unsigned int i, j = 0; 253 char c; 254 255 for (i = 0; i < count; i++) { 256 c = *s++; 257 258 if (c == '\n') 259 s2[j++] = '\r'; 260 261 s2[j++] = c; 262 if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) { 263 if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j)) 264 return; 265 j = 0; 266 } 267 } 268 269 if (j) 270 ehv_bc_console_byte_channel_send(stdout_bc, s2, j); 271 } 272 273 /* 274 * When /dev/console is opened, the kernel iterates the console list looking 275 * for one with ->device and then calls that method. On success, it expects 276 * the passed-in int* to contain the minor number to use. 277 */ 278 static struct tty_driver *ehv_bc_console_device(struct console *co, int *index) 279 { 280 *index = co->index; 281 282 return ehv_bc_driver; 283 } 284 285 static struct console ehv_bc_console = { 286 .name = "ttyEHV", 287 .write = ehv_bc_console_write, 288 .device = ehv_bc_console_device, 289 .flags = CON_PRINTBUFFER | CON_ENABLED, 290 }; 291 292 /* 293 * Console initialization 294 * 295 * This is the first function that is called after the device tree is 296 * available, so here is where we determine the byte channel handle and IRQ for 297 * stdout/stdin, even though that information is used by the tty and character 298 * drivers. 299 */ 300 static int __init ehv_bc_console_init(void) 301 { 302 if (!find_console_handle()) { 303 pr_debug("ehv-bc: stdout is not a byte channel\n"); 304 return -ENODEV; 305 } 306 307 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC 308 /* Print a friendly warning if the user chose the wrong byte channel 309 * handle for udbg. 310 */ 311 if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE) 312 pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n", 313 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); 314 #endif 315 316 /* add_preferred_console() must be called before register_console(), 317 otherwise it won't work. However, we don't want to enumerate all the 318 byte channels here, either, since we only care about one. */ 319 320 add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL); 321 register_console(&ehv_bc_console); 322 323 pr_info("ehv-bc: registered console driver for byte channel %u\n", 324 stdout_bc); 325 326 return 0; 327 } 328 console_initcall(ehv_bc_console_init); 329 330 /******************************** TTY DRIVER ********************************/ 331 332 /* 333 * byte channel receive interupt handler 334 * 335 * This ISR is called whenever data is available on a byte channel. 336 */ 337 static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data) 338 { 339 struct ehv_bc_data *bc = data; 340 unsigned int rx_count, tx_count, len; 341 int count; 342 char buffer[EV_BYTE_CHANNEL_MAX_BYTES]; 343 int ret; 344 345 /* Find out how much data needs to be read, and then ask the TTY layer 346 * if it can handle that much. We want to ensure that every byte we 347 * read from the byte channel will be accepted by the TTY layer. 348 */ 349 ev_byte_channel_poll(bc->handle, &rx_count, &tx_count); 350 count = tty_buffer_request_room(&bc->port, rx_count); 351 352 /* 'count' is the maximum amount of data the TTY layer can accept at 353 * this time. However, during testing, I was never able to get 'count' 354 * to be less than 'rx_count'. I'm not sure whether I'm calling it 355 * correctly. 356 */ 357 358 while (count > 0) { 359 len = min_t(unsigned int, count, sizeof(buffer)); 360 361 /* Read some data from the byte channel. This function will 362 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes. 363 */ 364 ev_byte_channel_receive(bc->handle, &len, buffer); 365 366 /* 'len' is now the amount of data that's been received. 'len' 367 * can't be zero, and most likely it's equal to one. 368 */ 369 370 /* Pass the received data to the tty layer. */ 371 ret = tty_insert_flip_string(&bc->port, buffer, len); 372 373 /* 'ret' is the number of bytes that the TTY layer accepted. 374 * If it's not equal to 'len', then it means the buffer is 375 * full, which should never happen. If it does happen, we can 376 * exit gracefully, but we drop the last 'len - ret' characters 377 * that we read from the byte channel. 378 */ 379 if (ret != len) 380 break; 381 382 count -= len; 383 } 384 385 /* Tell the tty layer that we're done. */ 386 tty_flip_buffer_push(&bc->port); 387 388 return IRQ_HANDLED; 389 } 390 391 /* 392 * dequeue the transmit buffer to the hypervisor 393 * 394 * This function, which can be called in interrupt context, dequeues as much 395 * data as possible from the transmit buffer to the byte channel. 396 */ 397 static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc) 398 { 399 unsigned int count; 400 unsigned int len, ret; 401 unsigned long flags; 402 403 do { 404 spin_lock_irqsave(&bc->lock, flags); 405 len = min_t(unsigned int, 406 CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE), 407 EV_BYTE_CHANNEL_MAX_BYTES); 408 409 ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail); 410 411 /* 'len' is valid only if the return code is 0 or EV_EAGAIN */ 412 if (!ret || (ret == EV_EAGAIN)) 413 bc->tail = (bc->tail + len) & (BUF_SIZE - 1); 414 415 count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE); 416 spin_unlock_irqrestore(&bc->lock, flags); 417 } while (count && !ret); 418 419 spin_lock_irqsave(&bc->lock, flags); 420 if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE)) 421 /* 422 * If we haven't emptied the buffer, then enable the TX IRQ. 423 * We'll get an interrupt when there's more room in the 424 * hypervisor's output buffer. 425 */ 426 enable_tx_interrupt(bc); 427 else 428 disable_tx_interrupt(bc); 429 spin_unlock_irqrestore(&bc->lock, flags); 430 } 431 432 /* 433 * byte channel transmit interupt handler 434 * 435 * This ISR is called whenever space becomes available for transmitting 436 * characters on a byte channel. 437 */ 438 static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data) 439 { 440 struct ehv_bc_data *bc = data; 441 442 ehv_bc_tx_dequeue(bc); 443 tty_port_tty_wakeup(&bc->port); 444 445 return IRQ_HANDLED; 446 } 447 448 /* 449 * This function is called when the tty layer has data for us send. We store 450 * the data first in a circular buffer, and then dequeue as much of that data 451 * as possible. 452 * 453 * We don't need to worry about whether there is enough room in the buffer for 454 * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty 455 * layer how much data it can safely send to us. We guarantee that 456 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us 457 * too much data. 458 */ 459 static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s, 460 int count) 461 { 462 struct ehv_bc_data *bc = ttys->driver_data; 463 unsigned long flags; 464 unsigned int len; 465 unsigned int written = 0; 466 467 while (1) { 468 spin_lock_irqsave(&bc->lock, flags); 469 len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE); 470 if (count < len) 471 len = count; 472 if (len) { 473 memcpy(bc->buf + bc->head, s, len); 474 bc->head = (bc->head + len) & (BUF_SIZE - 1); 475 } 476 spin_unlock_irqrestore(&bc->lock, flags); 477 if (!len) 478 break; 479 480 s += len; 481 count -= len; 482 written += len; 483 } 484 485 ehv_bc_tx_dequeue(bc); 486 487 return written; 488 } 489 490 /* 491 * This function can be called multiple times for a given tty_struct, which is 492 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead. 493 * 494 * The tty layer will still call this function even if the device was not 495 * registered (i.e. tty_register_device() was not called). This happens 496 * because tty_register_device() is optional and some legacy drivers don't 497 * use it. So we need to check for that. 498 */ 499 static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp) 500 { 501 struct ehv_bc_data *bc = &bcs[ttys->index]; 502 503 if (!bc->dev) 504 return -ENODEV; 505 506 return tty_port_open(&bc->port, ttys, filp); 507 } 508 509 /* 510 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will 511 * still call this function to close the tty device. So we can't assume that 512 * the tty port has been initialized. 513 */ 514 static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp) 515 { 516 struct ehv_bc_data *bc = &bcs[ttys->index]; 517 518 if (bc->dev) 519 tty_port_close(&bc->port, ttys, filp); 520 } 521 522 /* 523 * Return the amount of space in the output buffer 524 * 525 * This is actually a contract between the driver and the tty layer outlining 526 * how much write room the driver can guarantee will be sent OR BUFFERED. This 527 * driver MUST honor the return value. 528 */ 529 static int ehv_bc_tty_write_room(struct tty_struct *ttys) 530 { 531 struct ehv_bc_data *bc = ttys->driver_data; 532 unsigned long flags; 533 int count; 534 535 spin_lock_irqsave(&bc->lock, flags); 536 count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE); 537 spin_unlock_irqrestore(&bc->lock, flags); 538 539 return count; 540 } 541 542 /* 543 * Stop sending data to the tty layer 544 * 545 * This function is called when the tty layer's input buffers are getting full, 546 * so the driver should stop sending it data. The easiest way to do this is to 547 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being 548 * called. 549 * 550 * The hypervisor will continue to queue up any incoming data. If there is any 551 * data in the queue when the RX interrupt is enabled, we'll immediately get an 552 * RX interrupt. 553 */ 554 static void ehv_bc_tty_throttle(struct tty_struct *ttys) 555 { 556 struct ehv_bc_data *bc = ttys->driver_data; 557 558 disable_irq(bc->rx_irq); 559 } 560 561 /* 562 * Resume sending data to the tty layer 563 * 564 * This function is called after previously calling ehv_bc_tty_throttle(). The 565 * tty layer's input buffers now have more room, so the driver can resume 566 * sending it data. 567 */ 568 static void ehv_bc_tty_unthrottle(struct tty_struct *ttys) 569 { 570 struct ehv_bc_data *bc = ttys->driver_data; 571 572 /* If there is any data in the queue when the RX interrupt is enabled, 573 * we'll immediately get an RX interrupt. 574 */ 575 enable_irq(bc->rx_irq); 576 } 577 578 static void ehv_bc_tty_hangup(struct tty_struct *ttys) 579 { 580 struct ehv_bc_data *bc = ttys->driver_data; 581 582 ehv_bc_tx_dequeue(bc); 583 tty_port_hangup(&bc->port); 584 } 585 586 /* 587 * TTY driver operations 588 * 589 * If we could ask the hypervisor how much data is still in the TX buffer, or 590 * at least how big the TX buffers are, then we could implement the 591 * .wait_until_sent and .chars_in_buffer functions. 592 */ 593 static const struct tty_operations ehv_bc_ops = { 594 .open = ehv_bc_tty_open, 595 .close = ehv_bc_tty_close, 596 .write = ehv_bc_tty_write, 597 .write_room = ehv_bc_tty_write_room, 598 .throttle = ehv_bc_tty_throttle, 599 .unthrottle = ehv_bc_tty_unthrottle, 600 .hangup = ehv_bc_tty_hangup, 601 }; 602 603 /* 604 * initialize the TTY port 605 * 606 * This function will only be called once, no matter how many times 607 * ehv_bc_tty_open() is called. That's why we register the ISR here, and also 608 * why we initialize tty_struct-related variables here. 609 */ 610 static int ehv_bc_tty_port_activate(struct tty_port *port, 611 struct tty_struct *ttys) 612 { 613 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); 614 int ret; 615 616 ttys->driver_data = bc; 617 618 ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc); 619 if (ret < 0) { 620 dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n", 621 bc->rx_irq, ret); 622 return ret; 623 } 624 625 /* request_irq also enables the IRQ */ 626 bc->tx_irq_enabled = 1; 627 628 ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc); 629 if (ret < 0) { 630 dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n", 631 bc->tx_irq, ret); 632 free_irq(bc->rx_irq, bc); 633 return ret; 634 } 635 636 /* The TX IRQ is enabled only when we can't write all the data to the 637 * byte channel at once, so by default it's disabled. 638 */ 639 disable_tx_interrupt(bc); 640 641 return 0; 642 } 643 644 static void ehv_bc_tty_port_shutdown(struct tty_port *port) 645 { 646 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); 647 648 free_irq(bc->tx_irq, bc); 649 free_irq(bc->rx_irq, bc); 650 } 651 652 static const struct tty_port_operations ehv_bc_tty_port_ops = { 653 .activate = ehv_bc_tty_port_activate, 654 .shutdown = ehv_bc_tty_port_shutdown, 655 }; 656 657 static int ehv_bc_tty_probe(struct platform_device *pdev) 658 { 659 struct device_node *np = pdev->dev.of_node; 660 struct ehv_bc_data *bc; 661 const uint32_t *iprop; 662 unsigned int handle; 663 int ret; 664 static unsigned int index = 1; 665 unsigned int i; 666 667 iprop = of_get_property(np, "hv-handle", NULL); 668 if (!iprop) { 669 dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n", 670 np->name); 671 return -ENODEV; 672 } 673 674 /* We already told the console layer that the index for the console 675 * device is zero, so we need to make sure that we use that index when 676 * we probe the console byte channel node. 677 */ 678 handle = be32_to_cpu(*iprop); 679 i = (handle == stdout_bc) ? 0 : index++; 680 bc = &bcs[i]; 681 682 bc->handle = handle; 683 bc->head = 0; 684 bc->tail = 0; 685 spin_lock_init(&bc->lock); 686 687 bc->rx_irq = irq_of_parse_and_map(np, 0); 688 bc->tx_irq = irq_of_parse_and_map(np, 1); 689 if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) { 690 dev_err(&pdev->dev, "no 'interrupts' property in %s node\n", 691 np->name); 692 ret = -ENODEV; 693 goto error; 694 } 695 696 tty_port_init(&bc->port); 697 bc->port.ops = &ehv_bc_tty_port_ops; 698 699 bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i, 700 &pdev->dev); 701 if (IS_ERR(bc->dev)) { 702 ret = PTR_ERR(bc->dev); 703 dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret); 704 goto error; 705 } 706 707 dev_set_drvdata(&pdev->dev, bc); 708 709 dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n", 710 ehv_bc_driver->name, i, bc->handle); 711 712 return 0; 713 714 error: 715 tty_port_destroy(&bc->port); 716 irq_dispose_mapping(bc->tx_irq); 717 irq_dispose_mapping(bc->rx_irq); 718 719 memset(bc, 0, sizeof(struct ehv_bc_data)); 720 return ret; 721 } 722 723 static int ehv_bc_tty_remove(struct platform_device *pdev) 724 { 725 struct ehv_bc_data *bc = dev_get_drvdata(&pdev->dev); 726 727 tty_unregister_device(ehv_bc_driver, bc - bcs); 728 729 tty_port_destroy(&bc->port); 730 irq_dispose_mapping(bc->tx_irq); 731 irq_dispose_mapping(bc->rx_irq); 732 733 return 0; 734 } 735 736 static const struct of_device_id ehv_bc_tty_of_ids[] = { 737 { .compatible = "epapr,hv-byte-channel" }, 738 {} 739 }; 740 741 static struct platform_driver ehv_bc_tty_driver = { 742 .driver = { 743 .name = "ehv-bc", 744 .of_match_table = ehv_bc_tty_of_ids, 745 }, 746 .probe = ehv_bc_tty_probe, 747 .remove = ehv_bc_tty_remove, 748 }; 749 750 /** 751 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization 752 * 753 * This function is called when this module is loaded. 754 */ 755 static int __init ehv_bc_init(void) 756 { 757 struct device_node *np; 758 unsigned int count = 0; /* Number of elements in bcs[] */ 759 int ret; 760 761 pr_info("ePAPR hypervisor byte channel driver\n"); 762 763 /* Count the number of byte channels */ 764 for_each_compatible_node(np, NULL, "epapr,hv-byte-channel") 765 count++; 766 767 if (!count) 768 return -ENODEV; 769 770 /* The array index of an element in bcs[] is the same as the tty index 771 * for that element. If you know the address of an element in the 772 * array, then you can use pointer math (e.g. "bc - bcs") to get its 773 * tty index. 774 */ 775 bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL); 776 if (!bcs) 777 return -ENOMEM; 778 779 ehv_bc_driver = alloc_tty_driver(count); 780 if (!ehv_bc_driver) { 781 ret = -ENOMEM; 782 goto error; 783 } 784 785 ehv_bc_driver->driver_name = "ehv-bc"; 786 ehv_bc_driver->name = ehv_bc_console.name; 787 ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE; 788 ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE; 789 ehv_bc_driver->init_termios = tty_std_termios; 790 ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; 791 tty_set_operations(ehv_bc_driver, &ehv_bc_ops); 792 793 ret = tty_register_driver(ehv_bc_driver); 794 if (ret) { 795 pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret); 796 goto error; 797 } 798 799 ret = platform_driver_register(&ehv_bc_tty_driver); 800 if (ret) { 801 pr_err("ehv-bc: could not register platform driver (ret=%i)\n", 802 ret); 803 goto error; 804 } 805 806 return 0; 807 808 error: 809 if (ehv_bc_driver) { 810 tty_unregister_driver(ehv_bc_driver); 811 put_tty_driver(ehv_bc_driver); 812 } 813 814 kfree(bcs); 815 816 return ret; 817 } 818 819 820 /** 821 * ehv_bc_exit - ePAPR hypervisor byte channel driver termination 822 * 823 * This function is called when this driver is unloaded. 824 */ 825 static void __exit ehv_bc_exit(void) 826 { 827 platform_driver_unregister(&ehv_bc_tty_driver); 828 tty_unregister_driver(ehv_bc_driver); 829 put_tty_driver(ehv_bc_driver); 830 kfree(bcs); 831 } 832 833 module_init(ehv_bc_init); 834 module_exit(ehv_bc_exit); 835 836 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 837 MODULE_DESCRIPTION("ePAPR hypervisor byte channel driver"); 838 MODULE_LICENSE("GPL v2"); 839