xref: /openbmc/linux/drivers/tty/ehv_bytechan.c (revision b5266ea6)
1 /* ePAPR hypervisor byte channel device driver
2  *
3  * Copyright 2009-2011 Freescale Semiconductor, Inc.
4  *
5  * Author: Timur Tabi <timur@freescale.com>
6  *
7  * This file is licensed under the terms of the GNU General Public License
8  * version 2.  This program is licensed "as is" without any warranty of any
9  * kind, whether express or implied.
10  *
11  * This driver support three distinct interfaces, all of which are related to
12  * ePAPR hypervisor byte channels.
13  *
14  * 1) An early-console (udbg) driver.  This provides early console output
15  * through a byte channel.  The byte channel handle must be specified in a
16  * Kconfig option.
17  *
18  * 2) A normal console driver.  Output is sent to the byte channel designated
19  * for stdout in the device tree.  The console driver is for handling kernel
20  * printk calls.
21  *
22  * 3) A tty driver, which is used to handle user-space input and output.  The
23  * byte channel used for the console is designated as the default tty.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/slab.h>
29 #include <linux/err.h>
30 #include <linux/interrupt.h>
31 #include <linux/fs.h>
32 #include <linux/poll.h>
33 #include <asm/epapr_hcalls.h>
34 #include <linux/of.h>
35 #include <linux/platform_device.h>
36 #include <linux/cdev.h>
37 #include <linux/console.h>
38 #include <linux/tty.h>
39 #include <linux/tty_flip.h>
40 #include <linux/circ_buf.h>
41 #include <asm/udbg.h>
42 
43 /* The size of the transmit circular buffer.  This must be a power of two. */
44 #define BUF_SIZE	2048
45 
46 /* Per-byte channel private data */
47 struct ehv_bc_data {
48 	struct device *dev;
49 	struct tty_port port;
50 	uint32_t handle;
51 	unsigned int rx_irq;
52 	unsigned int tx_irq;
53 
54 	spinlock_t lock;	/* lock for transmit buffer */
55 	unsigned char buf[BUF_SIZE];	/* transmit circular buffer */
56 	unsigned int head;	/* circular buffer head */
57 	unsigned int tail;	/* circular buffer tail */
58 
59 	int tx_irq_enabled;	/* true == TX interrupt is enabled */
60 };
61 
62 /* Array of byte channel objects */
63 static struct ehv_bc_data *bcs;
64 
65 /* Byte channel handle for stdout (and stdin), taken from device tree */
66 static unsigned int stdout_bc;
67 
68 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
69 static unsigned int stdout_irq;
70 
71 /**************************** SUPPORT FUNCTIONS ****************************/
72 
73 /*
74  * Enable the transmit interrupt
75  *
76  * Unlike a serial device, byte channels have no mechanism for disabling their
77  * own receive or transmit interrupts.  To emulate that feature, we toggle
78  * the IRQ in the kernel.
79  *
80  * We cannot just blindly call enable_irq() or disable_irq(), because these
81  * calls are reference counted.  This means that we cannot call enable_irq()
82  * if interrupts are already enabled.  This can happen in two situations:
83  *
84  * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
85  * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
86  *
87  * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
88  */
89 static void enable_tx_interrupt(struct ehv_bc_data *bc)
90 {
91 	if (!bc->tx_irq_enabled) {
92 		enable_irq(bc->tx_irq);
93 		bc->tx_irq_enabled = 1;
94 	}
95 }
96 
97 static void disable_tx_interrupt(struct ehv_bc_data *bc)
98 {
99 	if (bc->tx_irq_enabled) {
100 		disable_irq_nosync(bc->tx_irq);
101 		bc->tx_irq_enabled = 0;
102 	}
103 }
104 
105 /*
106  * find the byte channel handle to use for the console
107  *
108  * The byte channel to be used for the console is specified via a "stdout"
109  * property in the /chosen node.
110  *
111  * For compatible with legacy device trees, we also look for a "stdout" alias.
112  */
113 static int find_console_handle(void)
114 {
115 	struct device_node *np, *np2;
116 	const char *sprop = NULL;
117 	const uint32_t *iprop;
118 
119 	np = of_find_node_by_path("/chosen");
120 	if (np)
121 		sprop = of_get_property(np, "stdout-path", NULL);
122 
123 	if (!np || !sprop) {
124 		of_node_put(np);
125 		np = of_find_node_by_name(NULL, "aliases");
126 		if (np)
127 			sprop = of_get_property(np, "stdout", NULL);
128 	}
129 
130 	if (!sprop) {
131 		of_node_put(np);
132 		return 0;
133 	}
134 
135 	/* We don't care what the aliased node is actually called.  We only
136 	 * care if it's compatible with "epapr,hv-byte-channel", because that
137 	 * indicates that it's a byte channel node.  We use a temporary
138 	 * variable, 'np2', because we can't release 'np' until we're done with
139 	 * 'sprop'.
140 	 */
141 	np2 = of_find_node_by_path(sprop);
142 	of_node_put(np);
143 	np = np2;
144 	if (!np) {
145 		pr_warning("ehv-bc: stdout node '%s' does not exist\n", sprop);
146 		return 0;
147 	}
148 
149 	/* Is it a byte channel? */
150 	if (!of_device_is_compatible(np, "epapr,hv-byte-channel")) {
151 		of_node_put(np);
152 		return 0;
153 	}
154 
155 	stdout_irq = irq_of_parse_and_map(np, 0);
156 	if (stdout_irq == NO_IRQ) {
157 		pr_err("ehv-bc: no 'interrupts' property in %s node\n", sprop);
158 		of_node_put(np);
159 		return 0;
160 	}
161 
162 	/*
163 	 * The 'hv-handle' property contains the handle for this byte channel.
164 	 */
165 	iprop = of_get_property(np, "hv-handle", NULL);
166 	if (!iprop) {
167 		pr_err("ehv-bc: no 'hv-handle' property in %s node\n",
168 		       np->name);
169 		of_node_put(np);
170 		return 0;
171 	}
172 	stdout_bc = be32_to_cpu(*iprop);
173 
174 	of_node_put(np);
175 	return 1;
176 }
177 
178 /*************************** EARLY CONSOLE DRIVER ***************************/
179 
180 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
181 
182 /*
183  * send a byte to a byte channel, wait if necessary
184  *
185  * This function sends a byte to a byte channel, and it waits and
186  * retries if the byte channel is full.  It returns if the character
187  * has been sent, or if some error has occurred.
188  *
189  */
190 static void byte_channel_spin_send(const char data)
191 {
192 	int ret, count;
193 
194 	do {
195 		count = 1;
196 		ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
197 					   &count, &data);
198 	} while (ret == EV_EAGAIN);
199 }
200 
201 /*
202  * The udbg subsystem calls this function to display a single character.
203  * We convert CR to a CR/LF.
204  */
205 static void ehv_bc_udbg_putc(char c)
206 {
207 	if (c == '\n')
208 		byte_channel_spin_send('\r');
209 
210 	byte_channel_spin_send(c);
211 }
212 
213 /*
214  * early console initialization
215  *
216  * PowerPC kernels support an early printk console, also known as udbg.
217  * This function must be called via the ppc_md.init_early function pointer.
218  * At this point, the device tree has been unflattened, so we can obtain the
219  * byte channel handle for stdout.
220  *
221  * We only support displaying of characters (putc).  We do not support
222  * keyboard input.
223  */
224 void __init udbg_init_ehv_bc(void)
225 {
226 	unsigned int rx_count, tx_count;
227 	unsigned int ret;
228 
229 	/* Verify the byte channel handle */
230 	ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
231 				   &rx_count, &tx_count);
232 	if (ret)
233 		return;
234 
235 	udbg_putc = ehv_bc_udbg_putc;
236 	register_early_udbg_console();
237 
238 	udbg_printf("ehv-bc: early console using byte channel handle %u\n",
239 		    CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
240 }
241 
242 #endif
243 
244 /****************************** CONSOLE DRIVER ******************************/
245 
246 static struct tty_driver *ehv_bc_driver;
247 
248 /*
249  * Byte channel console sending worker function.
250  *
251  * For consoles, if the output buffer is full, we should just spin until it
252  * clears.
253  */
254 static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s,
255 			     unsigned int count)
256 {
257 	unsigned int len;
258 	int ret = 0;
259 
260 	while (count) {
261 		len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES);
262 		do {
263 			ret = ev_byte_channel_send(handle, &len, s);
264 		} while (ret == EV_EAGAIN);
265 		count -= len;
266 		s += len;
267 	}
268 
269 	return ret;
270 }
271 
272 /*
273  * write a string to the console
274  *
275  * This function gets called to write a string from the kernel, typically from
276  * a printk().  This function spins until all data is written.
277  *
278  * We copy the data to a temporary buffer because we need to insert a \r in
279  * front of every \n.  It's more efficient to copy the data to the buffer than
280  * it is to make multiple hcalls for each character or each newline.
281  */
282 static void ehv_bc_console_write(struct console *co, const char *s,
283 				 unsigned int count)
284 {
285 	char s2[EV_BYTE_CHANNEL_MAX_BYTES];
286 	unsigned int i, j = 0;
287 	char c;
288 
289 	for (i = 0; i < count; i++) {
290 		c = *s++;
291 
292 		if (c == '\n')
293 			s2[j++] = '\r';
294 
295 		s2[j++] = c;
296 		if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) {
297 			if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j))
298 				return;
299 			j = 0;
300 		}
301 	}
302 
303 	if (j)
304 		ehv_bc_console_byte_channel_send(stdout_bc, s2, j);
305 }
306 
307 /*
308  * When /dev/console is opened, the kernel iterates the console list looking
309  * for one with ->device and then calls that method. On success, it expects
310  * the passed-in int* to contain the minor number to use.
311  */
312 static struct tty_driver *ehv_bc_console_device(struct console *co, int *index)
313 {
314 	*index = co->index;
315 
316 	return ehv_bc_driver;
317 }
318 
319 static struct console ehv_bc_console = {
320 	.name		= "ttyEHV",
321 	.write		= ehv_bc_console_write,
322 	.device		= ehv_bc_console_device,
323 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
324 };
325 
326 /*
327  * Console initialization
328  *
329  * This is the first function that is called after the device tree is
330  * available, so here is where we determine the byte channel handle and IRQ for
331  * stdout/stdin, even though that information is used by the tty and character
332  * drivers.
333  */
334 static int __init ehv_bc_console_init(void)
335 {
336 	if (!find_console_handle()) {
337 		pr_debug("ehv-bc: stdout is not a byte channel\n");
338 		return -ENODEV;
339 	}
340 
341 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
342 	/* Print a friendly warning if the user chose the wrong byte channel
343 	 * handle for udbg.
344 	 */
345 	if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE)
346 		pr_warning("ehv-bc: udbg handle %u is not the stdout handle\n",
347 			   CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
348 #endif
349 
350 	/* add_preferred_console() must be called before register_console(),
351 	   otherwise it won't work.  However, we don't want to enumerate all the
352 	   byte channels here, either, since we only care about one. */
353 
354 	add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL);
355 	register_console(&ehv_bc_console);
356 
357 	pr_info("ehv-bc: registered console driver for byte channel %u\n",
358 		stdout_bc);
359 
360 	return 0;
361 }
362 console_initcall(ehv_bc_console_init);
363 
364 /******************************** TTY DRIVER ********************************/
365 
366 /*
367  * byte channel receive interupt handler
368  *
369  * This ISR is called whenever data is available on a byte channel.
370  */
371 static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data)
372 {
373 	struct ehv_bc_data *bc = data;
374 	struct tty_struct *ttys = tty_port_tty_get(&bc->port);
375 	unsigned int rx_count, tx_count, len;
376 	int count;
377 	char buffer[EV_BYTE_CHANNEL_MAX_BYTES];
378 	int ret;
379 
380 	/* ttys could be NULL during a hangup */
381 	if (!ttys)
382 		return IRQ_HANDLED;
383 
384 	/* Find out how much data needs to be read, and then ask the TTY layer
385 	 * if it can handle that much.  We want to ensure that every byte we
386 	 * read from the byte channel will be accepted by the TTY layer.
387 	 */
388 	ev_byte_channel_poll(bc->handle, &rx_count, &tx_count);
389 	count = tty_buffer_request_room(ttys, rx_count);
390 
391 	/* 'count' is the maximum amount of data the TTY layer can accept at
392 	 * this time.  However, during testing, I was never able to get 'count'
393 	 * to be less than 'rx_count'.  I'm not sure whether I'm calling it
394 	 * correctly.
395 	 */
396 
397 	while (count > 0) {
398 		len = min_t(unsigned int, count, sizeof(buffer));
399 
400 		/* Read some data from the byte channel.  This function will
401 		 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
402 		 */
403 		ev_byte_channel_receive(bc->handle, &len, buffer);
404 
405 		/* 'len' is now the amount of data that's been received. 'len'
406 		 * can't be zero, and most likely it's equal to one.
407 		 */
408 
409 		/* Pass the received data to the tty layer. */
410 		ret = tty_insert_flip_string(ttys, buffer, len);
411 
412 		/* 'ret' is the number of bytes that the TTY layer accepted.
413 		 * If it's not equal to 'len', then it means the buffer is
414 		 * full, which should never happen.  If it does happen, we can
415 		 * exit gracefully, but we drop the last 'len - ret' characters
416 		 * that we read from the byte channel.
417 		 */
418 		if (ret != len)
419 			break;
420 
421 		count -= len;
422 	}
423 
424 	/* Tell the tty layer that we're done. */
425 	tty_flip_buffer_push(ttys);
426 
427 	tty_kref_put(ttys);
428 
429 	return IRQ_HANDLED;
430 }
431 
432 /*
433  * dequeue the transmit buffer to the hypervisor
434  *
435  * This function, which can be called in interrupt context, dequeues as much
436  * data as possible from the transmit buffer to the byte channel.
437  */
438 static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc)
439 {
440 	unsigned int count;
441 	unsigned int len, ret;
442 	unsigned long flags;
443 
444 	do {
445 		spin_lock_irqsave(&bc->lock, flags);
446 		len = min_t(unsigned int,
447 			    CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE),
448 			    EV_BYTE_CHANNEL_MAX_BYTES);
449 
450 		ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail);
451 
452 		/* 'len' is valid only if the return code is 0 or EV_EAGAIN */
453 		if (!ret || (ret == EV_EAGAIN))
454 			bc->tail = (bc->tail + len) & (BUF_SIZE - 1);
455 
456 		count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE);
457 		spin_unlock_irqrestore(&bc->lock, flags);
458 	} while (count && !ret);
459 
460 	spin_lock_irqsave(&bc->lock, flags);
461 	if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE))
462 		/*
463 		 * If we haven't emptied the buffer, then enable the TX IRQ.
464 		 * We'll get an interrupt when there's more room in the
465 		 * hypervisor's output buffer.
466 		 */
467 		enable_tx_interrupt(bc);
468 	else
469 		disable_tx_interrupt(bc);
470 	spin_unlock_irqrestore(&bc->lock, flags);
471 }
472 
473 /*
474  * byte channel transmit interupt handler
475  *
476  * This ISR is called whenever space becomes available for transmitting
477  * characters on a byte channel.
478  */
479 static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data)
480 {
481 	struct ehv_bc_data *bc = data;
482 	struct tty_struct *ttys = tty_port_tty_get(&bc->port);
483 
484 	ehv_bc_tx_dequeue(bc);
485 	if (ttys) {
486 		tty_wakeup(ttys);
487 		tty_kref_put(ttys);
488 	}
489 
490 	return IRQ_HANDLED;
491 }
492 
493 /*
494  * This function is called when the tty layer has data for us send.  We store
495  * the data first in a circular buffer, and then dequeue as much of that data
496  * as possible.
497  *
498  * We don't need to worry about whether there is enough room in the buffer for
499  * all the data.  The purpose of ehv_bc_tty_write_room() is to tell the tty
500  * layer how much data it can safely send to us.  We guarantee that
501  * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
502  * too much data.
503  */
504 static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s,
505 			    int count)
506 {
507 	struct ehv_bc_data *bc = ttys->driver_data;
508 	unsigned long flags;
509 	unsigned int len;
510 	unsigned int written = 0;
511 
512 	while (1) {
513 		spin_lock_irqsave(&bc->lock, flags);
514 		len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE);
515 		if (count < len)
516 			len = count;
517 		if (len) {
518 			memcpy(bc->buf + bc->head, s, len);
519 			bc->head = (bc->head + len) & (BUF_SIZE - 1);
520 		}
521 		spin_unlock_irqrestore(&bc->lock, flags);
522 		if (!len)
523 			break;
524 
525 		s += len;
526 		count -= len;
527 		written += len;
528 	}
529 
530 	ehv_bc_tx_dequeue(bc);
531 
532 	return written;
533 }
534 
535 /*
536  * This function can be called multiple times for a given tty_struct, which is
537  * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
538  *
539  * The tty layer will still call this function even if the device was not
540  * registered (i.e. tty_register_device() was not called).  This happens
541  * because tty_register_device() is optional and some legacy drivers don't
542  * use it.  So we need to check for that.
543  */
544 static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp)
545 {
546 	struct ehv_bc_data *bc = &bcs[ttys->index];
547 
548 	if (!bc->dev)
549 		return -ENODEV;
550 
551 	return tty_port_open(&bc->port, ttys, filp);
552 }
553 
554 /*
555  * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
556  * still call this function to close the tty device.  So we can't assume that
557  * the tty port has been initialized.
558  */
559 static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp)
560 {
561 	struct ehv_bc_data *bc = &bcs[ttys->index];
562 
563 	if (bc->dev)
564 		tty_port_close(&bc->port, ttys, filp);
565 }
566 
567 /*
568  * Return the amount of space in the output buffer
569  *
570  * This is actually a contract between the driver and the tty layer outlining
571  * how much write room the driver can guarantee will be sent OR BUFFERED.  This
572  * driver MUST honor the return value.
573  */
574 static int ehv_bc_tty_write_room(struct tty_struct *ttys)
575 {
576 	struct ehv_bc_data *bc = ttys->driver_data;
577 	unsigned long flags;
578 	int count;
579 
580 	spin_lock_irqsave(&bc->lock, flags);
581 	count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE);
582 	spin_unlock_irqrestore(&bc->lock, flags);
583 
584 	return count;
585 }
586 
587 /*
588  * Stop sending data to the tty layer
589  *
590  * This function is called when the tty layer's input buffers are getting full,
591  * so the driver should stop sending it data.  The easiest way to do this is to
592  * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
593  * called.
594  *
595  * The hypervisor will continue to queue up any incoming data.  If there is any
596  * data in the queue when the RX interrupt is enabled, we'll immediately get an
597  * RX interrupt.
598  */
599 static void ehv_bc_tty_throttle(struct tty_struct *ttys)
600 {
601 	struct ehv_bc_data *bc = ttys->driver_data;
602 
603 	disable_irq(bc->rx_irq);
604 }
605 
606 /*
607  * Resume sending data to the tty layer
608  *
609  * This function is called after previously calling ehv_bc_tty_throttle().  The
610  * tty layer's input buffers now have more room, so the driver can resume
611  * sending it data.
612  */
613 static void ehv_bc_tty_unthrottle(struct tty_struct *ttys)
614 {
615 	struct ehv_bc_data *bc = ttys->driver_data;
616 
617 	/* If there is any data in the queue when the RX interrupt is enabled,
618 	 * we'll immediately get an RX interrupt.
619 	 */
620 	enable_irq(bc->rx_irq);
621 }
622 
623 static void ehv_bc_tty_hangup(struct tty_struct *ttys)
624 {
625 	struct ehv_bc_data *bc = ttys->driver_data;
626 
627 	ehv_bc_tx_dequeue(bc);
628 	tty_port_hangup(&bc->port);
629 }
630 
631 /*
632  * TTY driver operations
633  *
634  * If we could ask the hypervisor how much data is still in the TX buffer, or
635  * at least how big the TX buffers are, then we could implement the
636  * .wait_until_sent and .chars_in_buffer functions.
637  */
638 static const struct tty_operations ehv_bc_ops = {
639 	.open		= ehv_bc_tty_open,
640 	.close		= ehv_bc_tty_close,
641 	.write		= ehv_bc_tty_write,
642 	.write_room	= ehv_bc_tty_write_room,
643 	.throttle	= ehv_bc_tty_throttle,
644 	.unthrottle	= ehv_bc_tty_unthrottle,
645 	.hangup		= ehv_bc_tty_hangup,
646 };
647 
648 /*
649  * initialize the TTY port
650  *
651  * This function will only be called once, no matter how many times
652  * ehv_bc_tty_open() is called.  That's why we register the ISR here, and also
653  * why we initialize tty_struct-related variables here.
654  */
655 static int ehv_bc_tty_port_activate(struct tty_port *port,
656 				    struct tty_struct *ttys)
657 {
658 	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
659 	int ret;
660 
661 	ttys->driver_data = bc;
662 
663 	ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc);
664 	if (ret < 0) {
665 		dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n",
666 		       bc->rx_irq, ret);
667 		return ret;
668 	}
669 
670 	/* request_irq also enables the IRQ */
671 	bc->tx_irq_enabled = 1;
672 
673 	ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc);
674 	if (ret < 0) {
675 		dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n",
676 		       bc->tx_irq, ret);
677 		free_irq(bc->rx_irq, bc);
678 		return ret;
679 	}
680 
681 	/* The TX IRQ is enabled only when we can't write all the data to the
682 	 * byte channel at once, so by default it's disabled.
683 	 */
684 	disable_tx_interrupt(bc);
685 
686 	return 0;
687 }
688 
689 static void ehv_bc_tty_port_shutdown(struct tty_port *port)
690 {
691 	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
692 
693 	free_irq(bc->tx_irq, bc);
694 	free_irq(bc->rx_irq, bc);
695 }
696 
697 static const struct tty_port_operations ehv_bc_tty_port_ops = {
698 	.activate = ehv_bc_tty_port_activate,
699 	.shutdown = ehv_bc_tty_port_shutdown,
700 };
701 
702 static int __devinit ehv_bc_tty_probe(struct platform_device *pdev)
703 {
704 	struct device_node *np = pdev->dev.of_node;
705 	struct ehv_bc_data *bc;
706 	const uint32_t *iprop;
707 	unsigned int handle;
708 	int ret;
709 	static unsigned int index = 1;
710 	unsigned int i;
711 
712 	iprop = of_get_property(np, "hv-handle", NULL);
713 	if (!iprop) {
714 		dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n",
715 			np->name);
716 		return -ENODEV;
717 	}
718 
719 	/* We already told the console layer that the index for the console
720 	 * device is zero, so we need to make sure that we use that index when
721 	 * we probe the console byte channel node.
722 	 */
723 	handle = be32_to_cpu(*iprop);
724 	i = (handle == stdout_bc) ? 0 : index++;
725 	bc = &bcs[i];
726 
727 	bc->handle = handle;
728 	bc->head = 0;
729 	bc->tail = 0;
730 	spin_lock_init(&bc->lock);
731 
732 	bc->rx_irq = irq_of_parse_and_map(np, 0);
733 	bc->tx_irq = irq_of_parse_and_map(np, 1);
734 	if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) {
735 		dev_err(&pdev->dev, "no 'interrupts' property in %s node\n",
736 			np->name);
737 		ret = -ENODEV;
738 		goto error;
739 	}
740 
741 	bc->dev = tty_register_device(ehv_bc_driver, i, &pdev->dev);
742 	if (IS_ERR(bc->dev)) {
743 		ret = PTR_ERR(bc->dev);
744 		dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret);
745 		goto error;
746 	}
747 
748 	tty_port_init(&bc->port);
749 	bc->port.ops = &ehv_bc_tty_port_ops;
750 
751 	dev_set_drvdata(&pdev->dev, bc);
752 
753 	dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n",
754 		ehv_bc_driver->name, i, bc->handle);
755 
756 	return 0;
757 
758 error:
759 	irq_dispose_mapping(bc->tx_irq);
760 	irq_dispose_mapping(bc->rx_irq);
761 
762 	memset(bc, 0, sizeof(struct ehv_bc_data));
763 	return ret;
764 }
765 
766 static int ehv_bc_tty_remove(struct platform_device *pdev)
767 {
768 	struct ehv_bc_data *bc = dev_get_drvdata(&pdev->dev);
769 
770 	tty_unregister_device(ehv_bc_driver, bc - bcs);
771 
772 	irq_dispose_mapping(bc->tx_irq);
773 	irq_dispose_mapping(bc->rx_irq);
774 
775 	return 0;
776 }
777 
778 static const struct of_device_id ehv_bc_tty_of_ids[] = {
779 	{ .compatible = "epapr,hv-byte-channel" },
780 	{}
781 };
782 
783 static struct platform_driver ehv_bc_tty_driver = {
784 	.driver = {
785 		.owner = THIS_MODULE,
786 		.name = "ehv-bc",
787 		.of_match_table = ehv_bc_tty_of_ids,
788 	},
789 	.probe		= ehv_bc_tty_probe,
790 	.remove		= ehv_bc_tty_remove,
791 };
792 
793 /**
794  * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
795  *
796  * This function is called when this module is loaded.
797  */
798 static int __init ehv_bc_init(void)
799 {
800 	struct device_node *np;
801 	unsigned int count = 0; /* Number of elements in bcs[] */
802 	int ret;
803 
804 	pr_info("ePAPR hypervisor byte channel driver\n");
805 
806 	/* Count the number of byte channels */
807 	for_each_compatible_node(np, NULL, "epapr,hv-byte-channel")
808 		count++;
809 
810 	if (!count)
811 		return -ENODEV;
812 
813 	/* The array index of an element in bcs[] is the same as the tty index
814 	 * for that element.  If you know the address of an element in the
815 	 * array, then you can use pointer math (e.g. "bc - bcs") to get its
816 	 * tty index.
817 	 */
818 	bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL);
819 	if (!bcs)
820 		return -ENOMEM;
821 
822 	ehv_bc_driver = alloc_tty_driver(count);
823 	if (!ehv_bc_driver) {
824 		ret = -ENOMEM;
825 		goto error;
826 	}
827 
828 	ehv_bc_driver->owner = THIS_MODULE;
829 	ehv_bc_driver->driver_name = "ehv-bc";
830 	ehv_bc_driver->name = ehv_bc_console.name;
831 	ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE;
832 	ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE;
833 	ehv_bc_driver->init_termios = tty_std_termios;
834 	ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
835 	tty_set_operations(ehv_bc_driver, &ehv_bc_ops);
836 
837 	ret = tty_register_driver(ehv_bc_driver);
838 	if (ret) {
839 		pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret);
840 		goto error;
841 	}
842 
843 	ret = platform_driver_register(&ehv_bc_tty_driver);
844 	if (ret) {
845 		pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
846 		       ret);
847 		goto error;
848 	}
849 
850 	return 0;
851 
852 error:
853 	if (ehv_bc_driver) {
854 		tty_unregister_driver(ehv_bc_driver);
855 		put_tty_driver(ehv_bc_driver);
856 	}
857 
858 	kfree(bcs);
859 
860 	return ret;
861 }
862 
863 
864 /**
865  * ehv_bc_exit - ePAPR hypervisor byte channel driver termination
866  *
867  * This function is called when this driver is unloaded.
868  */
869 static void __exit ehv_bc_exit(void)
870 {
871 	tty_unregister_driver(ehv_bc_driver);
872 	put_tty_driver(ehv_bc_driver);
873 	kfree(bcs);
874 }
875 
876 module_init(ehv_bc_init);
877 module_exit(ehv_bc_exit);
878 
879 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
880 MODULE_DESCRIPTION("ePAPR hypervisor byte channel driver");
881 MODULE_LICENSE("GPL v2");
882