1 /* ePAPR hypervisor byte channel device driver 2 * 3 * Copyright 2009-2011 Freescale Semiconductor, Inc. 4 * 5 * Author: Timur Tabi <timur@freescale.com> 6 * 7 * This file is licensed under the terms of the GNU General Public License 8 * version 2. This program is licensed "as is" without any warranty of any 9 * kind, whether express or implied. 10 * 11 * This driver support three distinct interfaces, all of which are related to 12 * ePAPR hypervisor byte channels. 13 * 14 * 1) An early-console (udbg) driver. This provides early console output 15 * through a byte channel. The byte channel handle must be specified in a 16 * Kconfig option. 17 * 18 * 2) A normal console driver. Output is sent to the byte channel designated 19 * for stdout in the device tree. The console driver is for handling kernel 20 * printk calls. 21 * 22 * 3) A tty driver, which is used to handle user-space input and output. The 23 * byte channel used for the console is designated as the default tty. 24 */ 25 26 #include <linux/module.h> 27 #include <linux/init.h> 28 #include <linux/slab.h> 29 #include <linux/err.h> 30 #include <linux/interrupt.h> 31 #include <linux/fs.h> 32 #include <linux/poll.h> 33 #include <asm/epapr_hcalls.h> 34 #include <linux/of.h> 35 #include <linux/platform_device.h> 36 #include <linux/cdev.h> 37 #include <linux/console.h> 38 #include <linux/tty.h> 39 #include <linux/tty_flip.h> 40 #include <linux/circ_buf.h> 41 #include <asm/udbg.h> 42 43 /* The size of the transmit circular buffer. This must be a power of two. */ 44 #define BUF_SIZE 2048 45 46 /* Per-byte channel private data */ 47 struct ehv_bc_data { 48 struct device *dev; 49 struct tty_port port; 50 uint32_t handle; 51 unsigned int rx_irq; 52 unsigned int tx_irq; 53 54 spinlock_t lock; /* lock for transmit buffer */ 55 unsigned char buf[BUF_SIZE]; /* transmit circular buffer */ 56 unsigned int head; /* circular buffer head */ 57 unsigned int tail; /* circular buffer tail */ 58 59 int tx_irq_enabled; /* true == TX interrupt is enabled */ 60 }; 61 62 /* Array of byte channel objects */ 63 static struct ehv_bc_data *bcs; 64 65 /* Byte channel handle for stdout (and stdin), taken from device tree */ 66 static unsigned int stdout_bc; 67 68 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */ 69 static unsigned int stdout_irq; 70 71 /**************************** SUPPORT FUNCTIONS ****************************/ 72 73 /* 74 * Enable the transmit interrupt 75 * 76 * Unlike a serial device, byte channels have no mechanism for disabling their 77 * own receive or transmit interrupts. To emulate that feature, we toggle 78 * the IRQ in the kernel. 79 * 80 * We cannot just blindly call enable_irq() or disable_irq(), because these 81 * calls are reference counted. This means that we cannot call enable_irq() 82 * if interrupts are already enabled. This can happen in two situations: 83 * 84 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write() 85 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue() 86 * 87 * To work around this, we keep a flag to tell us if the IRQ is enabled or not. 88 */ 89 static void enable_tx_interrupt(struct ehv_bc_data *bc) 90 { 91 if (!bc->tx_irq_enabled) { 92 enable_irq(bc->tx_irq); 93 bc->tx_irq_enabled = 1; 94 } 95 } 96 97 static void disable_tx_interrupt(struct ehv_bc_data *bc) 98 { 99 if (bc->tx_irq_enabled) { 100 disable_irq_nosync(bc->tx_irq); 101 bc->tx_irq_enabled = 0; 102 } 103 } 104 105 /* 106 * find the byte channel handle to use for the console 107 * 108 * The byte channel to be used for the console is specified via a "stdout" 109 * property in the /chosen node. 110 * 111 * For compatible with legacy device trees, we also look for a "stdout" alias. 112 */ 113 static int find_console_handle(void) 114 { 115 struct device_node *np, *np2; 116 const char *sprop = NULL; 117 const uint32_t *iprop; 118 119 np = of_find_node_by_path("/chosen"); 120 if (np) 121 sprop = of_get_property(np, "stdout-path", NULL); 122 123 if (!np || !sprop) { 124 of_node_put(np); 125 np = of_find_node_by_name(NULL, "aliases"); 126 if (np) 127 sprop = of_get_property(np, "stdout", NULL); 128 } 129 130 if (!sprop) { 131 of_node_put(np); 132 return 0; 133 } 134 135 /* We don't care what the aliased node is actually called. We only 136 * care if it's compatible with "epapr,hv-byte-channel", because that 137 * indicates that it's a byte channel node. We use a temporary 138 * variable, 'np2', because we can't release 'np' until we're done with 139 * 'sprop'. 140 */ 141 np2 = of_find_node_by_path(sprop); 142 of_node_put(np); 143 np = np2; 144 if (!np) { 145 pr_warning("ehv-bc: stdout node '%s' does not exist\n", sprop); 146 return 0; 147 } 148 149 /* Is it a byte channel? */ 150 if (!of_device_is_compatible(np, "epapr,hv-byte-channel")) { 151 of_node_put(np); 152 return 0; 153 } 154 155 stdout_irq = irq_of_parse_and_map(np, 0); 156 if (stdout_irq == NO_IRQ) { 157 pr_err("ehv-bc: no 'interrupts' property in %s node\n", sprop); 158 of_node_put(np); 159 return 0; 160 } 161 162 /* 163 * The 'hv-handle' property contains the handle for this byte channel. 164 */ 165 iprop = of_get_property(np, "hv-handle", NULL); 166 if (!iprop) { 167 pr_err("ehv-bc: no 'hv-handle' property in %s node\n", 168 np->name); 169 of_node_put(np); 170 return 0; 171 } 172 stdout_bc = be32_to_cpu(*iprop); 173 174 of_node_put(np); 175 return 1; 176 } 177 178 /*************************** EARLY CONSOLE DRIVER ***************************/ 179 180 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC 181 182 /* 183 * send a byte to a byte channel, wait if necessary 184 * 185 * This function sends a byte to a byte channel, and it waits and 186 * retries if the byte channel is full. It returns if the character 187 * has been sent, or if some error has occurred. 188 * 189 */ 190 static void byte_channel_spin_send(const char data) 191 { 192 int ret, count; 193 194 do { 195 count = 1; 196 ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, 197 &count, &data); 198 } while (ret == EV_EAGAIN); 199 } 200 201 /* 202 * The udbg subsystem calls this function to display a single character. 203 * We convert CR to a CR/LF. 204 */ 205 static void ehv_bc_udbg_putc(char c) 206 { 207 if (c == '\n') 208 byte_channel_spin_send('\r'); 209 210 byte_channel_spin_send(c); 211 } 212 213 /* 214 * early console initialization 215 * 216 * PowerPC kernels support an early printk console, also known as udbg. 217 * This function must be called via the ppc_md.init_early function pointer. 218 * At this point, the device tree has been unflattened, so we can obtain the 219 * byte channel handle for stdout. 220 * 221 * We only support displaying of characters (putc). We do not support 222 * keyboard input. 223 */ 224 void __init udbg_init_ehv_bc(void) 225 { 226 unsigned int rx_count, tx_count; 227 unsigned int ret; 228 229 /* Verify the byte channel handle */ 230 ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, 231 &rx_count, &tx_count); 232 if (ret) 233 return; 234 235 udbg_putc = ehv_bc_udbg_putc; 236 register_early_udbg_console(); 237 238 udbg_printf("ehv-bc: early console using byte channel handle %u\n", 239 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); 240 } 241 242 #endif 243 244 /****************************** CONSOLE DRIVER ******************************/ 245 246 static struct tty_driver *ehv_bc_driver; 247 248 /* 249 * Byte channel console sending worker function. 250 * 251 * For consoles, if the output buffer is full, we should just spin until it 252 * clears. 253 */ 254 static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s, 255 unsigned int count) 256 { 257 unsigned int len; 258 int ret = 0; 259 260 while (count) { 261 len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES); 262 do { 263 ret = ev_byte_channel_send(handle, &len, s); 264 } while (ret == EV_EAGAIN); 265 count -= len; 266 s += len; 267 } 268 269 return ret; 270 } 271 272 /* 273 * write a string to the console 274 * 275 * This function gets called to write a string from the kernel, typically from 276 * a printk(). This function spins until all data is written. 277 * 278 * We copy the data to a temporary buffer because we need to insert a \r in 279 * front of every \n. It's more efficient to copy the data to the buffer than 280 * it is to make multiple hcalls for each character or each newline. 281 */ 282 static void ehv_bc_console_write(struct console *co, const char *s, 283 unsigned int count) 284 { 285 char s2[EV_BYTE_CHANNEL_MAX_BYTES]; 286 unsigned int i, j = 0; 287 char c; 288 289 for (i = 0; i < count; i++) { 290 c = *s++; 291 292 if (c == '\n') 293 s2[j++] = '\r'; 294 295 s2[j++] = c; 296 if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) { 297 if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j)) 298 return; 299 j = 0; 300 } 301 } 302 303 if (j) 304 ehv_bc_console_byte_channel_send(stdout_bc, s2, j); 305 } 306 307 /* 308 * When /dev/console is opened, the kernel iterates the console list looking 309 * for one with ->device and then calls that method. On success, it expects 310 * the passed-in int* to contain the minor number to use. 311 */ 312 static struct tty_driver *ehv_bc_console_device(struct console *co, int *index) 313 { 314 *index = co->index; 315 316 return ehv_bc_driver; 317 } 318 319 static struct console ehv_bc_console = { 320 .name = "ttyEHV", 321 .write = ehv_bc_console_write, 322 .device = ehv_bc_console_device, 323 .flags = CON_PRINTBUFFER | CON_ENABLED, 324 }; 325 326 /* 327 * Console initialization 328 * 329 * This is the first function that is called after the device tree is 330 * available, so here is where we determine the byte channel handle and IRQ for 331 * stdout/stdin, even though that information is used by the tty and character 332 * drivers. 333 */ 334 static int __init ehv_bc_console_init(void) 335 { 336 if (!find_console_handle()) { 337 pr_debug("ehv-bc: stdout is not a byte channel\n"); 338 return -ENODEV; 339 } 340 341 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC 342 /* Print a friendly warning if the user chose the wrong byte channel 343 * handle for udbg. 344 */ 345 if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE) 346 pr_warning("ehv-bc: udbg handle %u is not the stdout handle\n", 347 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); 348 #endif 349 350 /* add_preferred_console() must be called before register_console(), 351 otherwise it won't work. However, we don't want to enumerate all the 352 byte channels here, either, since we only care about one. */ 353 354 add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL); 355 register_console(&ehv_bc_console); 356 357 pr_info("ehv-bc: registered console driver for byte channel %u\n", 358 stdout_bc); 359 360 return 0; 361 } 362 console_initcall(ehv_bc_console_init); 363 364 /******************************** TTY DRIVER ********************************/ 365 366 /* 367 * byte channel receive interupt handler 368 * 369 * This ISR is called whenever data is available on a byte channel. 370 */ 371 static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data) 372 { 373 struct ehv_bc_data *bc = data; 374 struct tty_struct *ttys = tty_port_tty_get(&bc->port); 375 unsigned int rx_count, tx_count, len; 376 int count; 377 char buffer[EV_BYTE_CHANNEL_MAX_BYTES]; 378 int ret; 379 380 /* ttys could be NULL during a hangup */ 381 if (!ttys) 382 return IRQ_HANDLED; 383 384 /* Find out how much data needs to be read, and then ask the TTY layer 385 * if it can handle that much. We want to ensure that every byte we 386 * read from the byte channel will be accepted by the TTY layer. 387 */ 388 ev_byte_channel_poll(bc->handle, &rx_count, &tx_count); 389 count = tty_buffer_request_room(ttys, rx_count); 390 391 /* 'count' is the maximum amount of data the TTY layer can accept at 392 * this time. However, during testing, I was never able to get 'count' 393 * to be less than 'rx_count'. I'm not sure whether I'm calling it 394 * correctly. 395 */ 396 397 while (count > 0) { 398 len = min_t(unsigned int, count, sizeof(buffer)); 399 400 /* Read some data from the byte channel. This function will 401 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes. 402 */ 403 ev_byte_channel_receive(bc->handle, &len, buffer); 404 405 /* 'len' is now the amount of data that's been received. 'len' 406 * can't be zero, and most likely it's equal to one. 407 */ 408 409 /* Pass the received data to the tty layer. */ 410 ret = tty_insert_flip_string(ttys, buffer, len); 411 412 /* 'ret' is the number of bytes that the TTY layer accepted. 413 * If it's not equal to 'len', then it means the buffer is 414 * full, which should never happen. If it does happen, we can 415 * exit gracefully, but we drop the last 'len - ret' characters 416 * that we read from the byte channel. 417 */ 418 if (ret != len) 419 break; 420 421 count -= len; 422 } 423 424 /* Tell the tty layer that we're done. */ 425 tty_flip_buffer_push(ttys); 426 427 tty_kref_put(ttys); 428 429 return IRQ_HANDLED; 430 } 431 432 /* 433 * dequeue the transmit buffer to the hypervisor 434 * 435 * This function, which can be called in interrupt context, dequeues as much 436 * data as possible from the transmit buffer to the byte channel. 437 */ 438 static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc) 439 { 440 unsigned int count; 441 unsigned int len, ret; 442 unsigned long flags; 443 444 do { 445 spin_lock_irqsave(&bc->lock, flags); 446 len = min_t(unsigned int, 447 CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE), 448 EV_BYTE_CHANNEL_MAX_BYTES); 449 450 ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail); 451 452 /* 'len' is valid only if the return code is 0 or EV_EAGAIN */ 453 if (!ret || (ret == EV_EAGAIN)) 454 bc->tail = (bc->tail + len) & (BUF_SIZE - 1); 455 456 count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE); 457 spin_unlock_irqrestore(&bc->lock, flags); 458 } while (count && !ret); 459 460 spin_lock_irqsave(&bc->lock, flags); 461 if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE)) 462 /* 463 * If we haven't emptied the buffer, then enable the TX IRQ. 464 * We'll get an interrupt when there's more room in the 465 * hypervisor's output buffer. 466 */ 467 enable_tx_interrupt(bc); 468 else 469 disable_tx_interrupt(bc); 470 spin_unlock_irqrestore(&bc->lock, flags); 471 } 472 473 /* 474 * byte channel transmit interupt handler 475 * 476 * This ISR is called whenever space becomes available for transmitting 477 * characters on a byte channel. 478 */ 479 static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data) 480 { 481 struct ehv_bc_data *bc = data; 482 struct tty_struct *ttys = tty_port_tty_get(&bc->port); 483 484 ehv_bc_tx_dequeue(bc); 485 if (ttys) { 486 tty_wakeup(ttys); 487 tty_kref_put(ttys); 488 } 489 490 return IRQ_HANDLED; 491 } 492 493 /* 494 * This function is called when the tty layer has data for us send. We store 495 * the data first in a circular buffer, and then dequeue as much of that data 496 * as possible. 497 * 498 * We don't need to worry about whether there is enough room in the buffer for 499 * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty 500 * layer how much data it can safely send to us. We guarantee that 501 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us 502 * too much data. 503 */ 504 static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s, 505 int count) 506 { 507 struct ehv_bc_data *bc = ttys->driver_data; 508 unsigned long flags; 509 unsigned int len; 510 unsigned int written = 0; 511 512 while (1) { 513 spin_lock_irqsave(&bc->lock, flags); 514 len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE); 515 if (count < len) 516 len = count; 517 if (len) { 518 memcpy(bc->buf + bc->head, s, len); 519 bc->head = (bc->head + len) & (BUF_SIZE - 1); 520 } 521 spin_unlock_irqrestore(&bc->lock, flags); 522 if (!len) 523 break; 524 525 s += len; 526 count -= len; 527 written += len; 528 } 529 530 ehv_bc_tx_dequeue(bc); 531 532 return written; 533 } 534 535 /* 536 * This function can be called multiple times for a given tty_struct, which is 537 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead. 538 * 539 * The tty layer will still call this function even if the device was not 540 * registered (i.e. tty_register_device() was not called). This happens 541 * because tty_register_device() is optional and some legacy drivers don't 542 * use it. So we need to check for that. 543 */ 544 static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp) 545 { 546 struct ehv_bc_data *bc = &bcs[ttys->index]; 547 548 if (!bc->dev) 549 return -ENODEV; 550 551 return tty_port_open(&bc->port, ttys, filp); 552 } 553 554 /* 555 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will 556 * still call this function to close the tty device. So we can't assume that 557 * the tty port has been initialized. 558 */ 559 static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp) 560 { 561 struct ehv_bc_data *bc = &bcs[ttys->index]; 562 563 if (bc->dev) 564 tty_port_close(&bc->port, ttys, filp); 565 } 566 567 /* 568 * Return the amount of space in the output buffer 569 * 570 * This is actually a contract between the driver and the tty layer outlining 571 * how much write room the driver can guarantee will be sent OR BUFFERED. This 572 * driver MUST honor the return value. 573 */ 574 static int ehv_bc_tty_write_room(struct tty_struct *ttys) 575 { 576 struct ehv_bc_data *bc = ttys->driver_data; 577 unsigned long flags; 578 int count; 579 580 spin_lock_irqsave(&bc->lock, flags); 581 count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE); 582 spin_unlock_irqrestore(&bc->lock, flags); 583 584 return count; 585 } 586 587 /* 588 * Stop sending data to the tty layer 589 * 590 * This function is called when the tty layer's input buffers are getting full, 591 * so the driver should stop sending it data. The easiest way to do this is to 592 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being 593 * called. 594 * 595 * The hypervisor will continue to queue up any incoming data. If there is any 596 * data in the queue when the RX interrupt is enabled, we'll immediately get an 597 * RX interrupt. 598 */ 599 static void ehv_bc_tty_throttle(struct tty_struct *ttys) 600 { 601 struct ehv_bc_data *bc = ttys->driver_data; 602 603 disable_irq(bc->rx_irq); 604 } 605 606 /* 607 * Resume sending data to the tty layer 608 * 609 * This function is called after previously calling ehv_bc_tty_throttle(). The 610 * tty layer's input buffers now have more room, so the driver can resume 611 * sending it data. 612 */ 613 static void ehv_bc_tty_unthrottle(struct tty_struct *ttys) 614 { 615 struct ehv_bc_data *bc = ttys->driver_data; 616 617 /* If there is any data in the queue when the RX interrupt is enabled, 618 * we'll immediately get an RX interrupt. 619 */ 620 enable_irq(bc->rx_irq); 621 } 622 623 static void ehv_bc_tty_hangup(struct tty_struct *ttys) 624 { 625 struct ehv_bc_data *bc = ttys->driver_data; 626 627 ehv_bc_tx_dequeue(bc); 628 tty_port_hangup(&bc->port); 629 } 630 631 /* 632 * TTY driver operations 633 * 634 * If we could ask the hypervisor how much data is still in the TX buffer, or 635 * at least how big the TX buffers are, then we could implement the 636 * .wait_until_sent and .chars_in_buffer functions. 637 */ 638 static const struct tty_operations ehv_bc_ops = { 639 .open = ehv_bc_tty_open, 640 .close = ehv_bc_tty_close, 641 .write = ehv_bc_tty_write, 642 .write_room = ehv_bc_tty_write_room, 643 .throttle = ehv_bc_tty_throttle, 644 .unthrottle = ehv_bc_tty_unthrottle, 645 .hangup = ehv_bc_tty_hangup, 646 }; 647 648 /* 649 * initialize the TTY port 650 * 651 * This function will only be called once, no matter how many times 652 * ehv_bc_tty_open() is called. That's why we register the ISR here, and also 653 * why we initialize tty_struct-related variables here. 654 */ 655 static int ehv_bc_tty_port_activate(struct tty_port *port, 656 struct tty_struct *ttys) 657 { 658 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); 659 int ret; 660 661 ttys->driver_data = bc; 662 663 ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc); 664 if (ret < 0) { 665 dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n", 666 bc->rx_irq, ret); 667 return ret; 668 } 669 670 /* request_irq also enables the IRQ */ 671 bc->tx_irq_enabled = 1; 672 673 ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc); 674 if (ret < 0) { 675 dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n", 676 bc->tx_irq, ret); 677 free_irq(bc->rx_irq, bc); 678 return ret; 679 } 680 681 /* The TX IRQ is enabled only when we can't write all the data to the 682 * byte channel at once, so by default it's disabled. 683 */ 684 disable_tx_interrupt(bc); 685 686 return 0; 687 } 688 689 static void ehv_bc_tty_port_shutdown(struct tty_port *port) 690 { 691 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); 692 693 free_irq(bc->tx_irq, bc); 694 free_irq(bc->rx_irq, bc); 695 } 696 697 static const struct tty_port_operations ehv_bc_tty_port_ops = { 698 .activate = ehv_bc_tty_port_activate, 699 .shutdown = ehv_bc_tty_port_shutdown, 700 }; 701 702 static int __devinit ehv_bc_tty_probe(struct platform_device *pdev) 703 { 704 struct device_node *np = pdev->dev.of_node; 705 struct ehv_bc_data *bc; 706 const uint32_t *iprop; 707 unsigned int handle; 708 int ret; 709 static unsigned int index = 1; 710 unsigned int i; 711 712 iprop = of_get_property(np, "hv-handle", NULL); 713 if (!iprop) { 714 dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n", 715 np->name); 716 return -ENODEV; 717 } 718 719 /* We already told the console layer that the index for the console 720 * device is zero, so we need to make sure that we use that index when 721 * we probe the console byte channel node. 722 */ 723 handle = be32_to_cpu(*iprop); 724 i = (handle == stdout_bc) ? 0 : index++; 725 bc = &bcs[i]; 726 727 bc->handle = handle; 728 bc->head = 0; 729 bc->tail = 0; 730 spin_lock_init(&bc->lock); 731 732 bc->rx_irq = irq_of_parse_and_map(np, 0); 733 bc->tx_irq = irq_of_parse_and_map(np, 1); 734 if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) { 735 dev_err(&pdev->dev, "no 'interrupts' property in %s node\n", 736 np->name); 737 ret = -ENODEV; 738 goto error; 739 } 740 741 bc->dev = tty_register_device(ehv_bc_driver, i, &pdev->dev); 742 if (IS_ERR(bc->dev)) { 743 ret = PTR_ERR(bc->dev); 744 dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret); 745 goto error; 746 } 747 748 tty_port_init(&bc->port); 749 bc->port.ops = &ehv_bc_tty_port_ops; 750 751 dev_set_drvdata(&pdev->dev, bc); 752 753 dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n", 754 ehv_bc_driver->name, i, bc->handle); 755 756 return 0; 757 758 error: 759 irq_dispose_mapping(bc->tx_irq); 760 irq_dispose_mapping(bc->rx_irq); 761 762 memset(bc, 0, sizeof(struct ehv_bc_data)); 763 return ret; 764 } 765 766 static int ehv_bc_tty_remove(struct platform_device *pdev) 767 { 768 struct ehv_bc_data *bc = dev_get_drvdata(&pdev->dev); 769 770 tty_unregister_device(ehv_bc_driver, bc - bcs); 771 772 irq_dispose_mapping(bc->tx_irq); 773 irq_dispose_mapping(bc->rx_irq); 774 775 return 0; 776 } 777 778 static const struct of_device_id ehv_bc_tty_of_ids[] = { 779 { .compatible = "epapr,hv-byte-channel" }, 780 {} 781 }; 782 783 static struct platform_driver ehv_bc_tty_driver = { 784 .driver = { 785 .owner = THIS_MODULE, 786 .name = "ehv-bc", 787 .of_match_table = ehv_bc_tty_of_ids, 788 }, 789 .probe = ehv_bc_tty_probe, 790 .remove = ehv_bc_tty_remove, 791 }; 792 793 /** 794 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization 795 * 796 * This function is called when this module is loaded. 797 */ 798 static int __init ehv_bc_init(void) 799 { 800 struct device_node *np; 801 unsigned int count = 0; /* Number of elements in bcs[] */ 802 int ret; 803 804 pr_info("ePAPR hypervisor byte channel driver\n"); 805 806 /* Count the number of byte channels */ 807 for_each_compatible_node(np, NULL, "epapr,hv-byte-channel") 808 count++; 809 810 if (!count) 811 return -ENODEV; 812 813 /* The array index of an element in bcs[] is the same as the tty index 814 * for that element. If you know the address of an element in the 815 * array, then you can use pointer math (e.g. "bc - bcs") to get its 816 * tty index. 817 */ 818 bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL); 819 if (!bcs) 820 return -ENOMEM; 821 822 ehv_bc_driver = alloc_tty_driver(count); 823 if (!ehv_bc_driver) { 824 ret = -ENOMEM; 825 goto error; 826 } 827 828 ehv_bc_driver->owner = THIS_MODULE; 829 ehv_bc_driver->driver_name = "ehv-bc"; 830 ehv_bc_driver->name = ehv_bc_console.name; 831 ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE; 832 ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE; 833 ehv_bc_driver->init_termios = tty_std_termios; 834 ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; 835 tty_set_operations(ehv_bc_driver, &ehv_bc_ops); 836 837 ret = tty_register_driver(ehv_bc_driver); 838 if (ret) { 839 pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret); 840 goto error; 841 } 842 843 ret = platform_driver_register(&ehv_bc_tty_driver); 844 if (ret) { 845 pr_err("ehv-bc: could not register platform driver (ret=%i)\n", 846 ret); 847 goto error; 848 } 849 850 return 0; 851 852 error: 853 if (ehv_bc_driver) { 854 tty_unregister_driver(ehv_bc_driver); 855 put_tty_driver(ehv_bc_driver); 856 } 857 858 kfree(bcs); 859 860 return ret; 861 } 862 863 864 /** 865 * ehv_bc_exit - ePAPR hypervisor byte channel driver termination 866 * 867 * This function is called when this driver is unloaded. 868 */ 869 static void __exit ehv_bc_exit(void) 870 { 871 tty_unregister_driver(ehv_bc_driver); 872 put_tty_driver(ehv_bc_driver); 873 kfree(bcs); 874 } 875 876 module_init(ehv_bc_init); 877 module_exit(ehv_bc_exit); 878 879 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 880 MODULE_DESCRIPTION("ePAPR hypervisor byte channel driver"); 881 MODULE_LICENSE("GPL v2"); 882