1 /* ePAPR hypervisor byte channel device driver 2 * 3 * Copyright 2009-2011 Freescale Semiconductor, Inc. 4 * 5 * Author: Timur Tabi <timur@freescale.com> 6 * 7 * This file is licensed under the terms of the GNU General Public License 8 * version 2. This program is licensed "as is" without any warranty of any 9 * kind, whether express or implied. 10 * 11 * This driver support three distinct interfaces, all of which are related to 12 * ePAPR hypervisor byte channels. 13 * 14 * 1) An early-console (udbg) driver. This provides early console output 15 * through a byte channel. The byte channel handle must be specified in a 16 * Kconfig option. 17 * 18 * 2) A normal console driver. Output is sent to the byte channel designated 19 * for stdout in the device tree. The console driver is for handling kernel 20 * printk calls. 21 * 22 * 3) A tty driver, which is used to handle user-space input and output. The 23 * byte channel used for the console is designated as the default tty. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/slab.h> 28 #include <linux/err.h> 29 #include <linux/interrupt.h> 30 #include <linux/fs.h> 31 #include <linux/poll.h> 32 #include <asm/epapr_hcalls.h> 33 #include <linux/of.h> 34 #include <linux/of_irq.h> 35 #include <linux/platform_device.h> 36 #include <linux/cdev.h> 37 #include <linux/console.h> 38 #include <linux/tty.h> 39 #include <linux/tty_flip.h> 40 #include <linux/circ_buf.h> 41 #include <asm/udbg.h> 42 43 /* The size of the transmit circular buffer. This must be a power of two. */ 44 #define BUF_SIZE 2048 45 46 /* Per-byte channel private data */ 47 struct ehv_bc_data { 48 struct device *dev; 49 struct tty_port port; 50 uint32_t handle; 51 unsigned int rx_irq; 52 unsigned int tx_irq; 53 54 spinlock_t lock; /* lock for transmit buffer */ 55 unsigned char buf[BUF_SIZE]; /* transmit circular buffer */ 56 unsigned int head; /* circular buffer head */ 57 unsigned int tail; /* circular buffer tail */ 58 59 int tx_irq_enabled; /* true == TX interrupt is enabled */ 60 }; 61 62 /* Array of byte channel objects */ 63 static struct ehv_bc_data *bcs; 64 65 /* Byte channel handle for stdout (and stdin), taken from device tree */ 66 static unsigned int stdout_bc; 67 68 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */ 69 static unsigned int stdout_irq; 70 71 /**************************** SUPPORT FUNCTIONS ****************************/ 72 73 /* 74 * Enable the transmit interrupt 75 * 76 * Unlike a serial device, byte channels have no mechanism for disabling their 77 * own receive or transmit interrupts. To emulate that feature, we toggle 78 * the IRQ in the kernel. 79 * 80 * We cannot just blindly call enable_irq() or disable_irq(), because these 81 * calls are reference counted. This means that we cannot call enable_irq() 82 * if interrupts are already enabled. This can happen in two situations: 83 * 84 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write() 85 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue() 86 * 87 * To work around this, we keep a flag to tell us if the IRQ is enabled or not. 88 */ 89 static void enable_tx_interrupt(struct ehv_bc_data *bc) 90 { 91 if (!bc->tx_irq_enabled) { 92 enable_irq(bc->tx_irq); 93 bc->tx_irq_enabled = 1; 94 } 95 } 96 97 static void disable_tx_interrupt(struct ehv_bc_data *bc) 98 { 99 if (bc->tx_irq_enabled) { 100 disable_irq_nosync(bc->tx_irq); 101 bc->tx_irq_enabled = 0; 102 } 103 } 104 105 /* 106 * find the byte channel handle to use for the console 107 * 108 * The byte channel to be used for the console is specified via a "stdout" 109 * property in the /chosen node. 110 */ 111 static int find_console_handle(void) 112 { 113 struct device_node *np = of_stdout; 114 const uint32_t *iprop; 115 116 /* We don't care what the aliased node is actually called. We only 117 * care if it's compatible with "epapr,hv-byte-channel", because that 118 * indicates that it's a byte channel node. 119 */ 120 if (!np || !of_device_is_compatible(np, "epapr,hv-byte-channel")) 121 return 0; 122 123 stdout_irq = irq_of_parse_and_map(np, 0); 124 if (stdout_irq == NO_IRQ) { 125 pr_err("ehv-bc: no 'interrupts' property in %s node\n", np->full_name); 126 return 0; 127 } 128 129 /* 130 * The 'hv-handle' property contains the handle for this byte channel. 131 */ 132 iprop = of_get_property(np, "hv-handle", NULL); 133 if (!iprop) { 134 pr_err("ehv-bc: no 'hv-handle' property in %s node\n", 135 np->name); 136 return 0; 137 } 138 stdout_bc = be32_to_cpu(*iprop); 139 return 1; 140 } 141 142 /*************************** EARLY CONSOLE DRIVER ***************************/ 143 144 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC 145 146 /* 147 * send a byte to a byte channel, wait if necessary 148 * 149 * This function sends a byte to a byte channel, and it waits and 150 * retries if the byte channel is full. It returns if the character 151 * has been sent, or if some error has occurred. 152 * 153 */ 154 static void byte_channel_spin_send(const char data) 155 { 156 int ret, count; 157 158 do { 159 count = 1; 160 ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, 161 &count, &data); 162 } while (ret == EV_EAGAIN); 163 } 164 165 /* 166 * The udbg subsystem calls this function to display a single character. 167 * We convert CR to a CR/LF. 168 */ 169 static void ehv_bc_udbg_putc(char c) 170 { 171 if (c == '\n') 172 byte_channel_spin_send('\r'); 173 174 byte_channel_spin_send(c); 175 } 176 177 /* 178 * early console initialization 179 * 180 * PowerPC kernels support an early printk console, also known as udbg. 181 * This function must be called via the ppc_md.init_early function pointer. 182 * At this point, the device tree has been unflattened, so we can obtain the 183 * byte channel handle for stdout. 184 * 185 * We only support displaying of characters (putc). We do not support 186 * keyboard input. 187 */ 188 void __init udbg_init_ehv_bc(void) 189 { 190 unsigned int rx_count, tx_count; 191 unsigned int ret; 192 193 /* Verify the byte channel handle */ 194 ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, 195 &rx_count, &tx_count); 196 if (ret) 197 return; 198 199 udbg_putc = ehv_bc_udbg_putc; 200 register_early_udbg_console(); 201 202 udbg_printf("ehv-bc: early console using byte channel handle %u\n", 203 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); 204 } 205 206 #endif 207 208 /****************************** CONSOLE DRIVER ******************************/ 209 210 static struct tty_driver *ehv_bc_driver; 211 212 /* 213 * Byte channel console sending worker function. 214 * 215 * For consoles, if the output buffer is full, we should just spin until it 216 * clears. 217 */ 218 static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s, 219 unsigned int count) 220 { 221 unsigned int len; 222 int ret = 0; 223 224 while (count) { 225 len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES); 226 do { 227 ret = ev_byte_channel_send(handle, &len, s); 228 } while (ret == EV_EAGAIN); 229 count -= len; 230 s += len; 231 } 232 233 return ret; 234 } 235 236 /* 237 * write a string to the console 238 * 239 * This function gets called to write a string from the kernel, typically from 240 * a printk(). This function spins until all data is written. 241 * 242 * We copy the data to a temporary buffer because we need to insert a \r in 243 * front of every \n. It's more efficient to copy the data to the buffer than 244 * it is to make multiple hcalls for each character or each newline. 245 */ 246 static void ehv_bc_console_write(struct console *co, const char *s, 247 unsigned int count) 248 { 249 char s2[EV_BYTE_CHANNEL_MAX_BYTES]; 250 unsigned int i, j = 0; 251 char c; 252 253 for (i = 0; i < count; i++) { 254 c = *s++; 255 256 if (c == '\n') 257 s2[j++] = '\r'; 258 259 s2[j++] = c; 260 if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) { 261 if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j)) 262 return; 263 j = 0; 264 } 265 } 266 267 if (j) 268 ehv_bc_console_byte_channel_send(stdout_bc, s2, j); 269 } 270 271 /* 272 * When /dev/console is opened, the kernel iterates the console list looking 273 * for one with ->device and then calls that method. On success, it expects 274 * the passed-in int* to contain the minor number to use. 275 */ 276 static struct tty_driver *ehv_bc_console_device(struct console *co, int *index) 277 { 278 *index = co->index; 279 280 return ehv_bc_driver; 281 } 282 283 static struct console ehv_bc_console = { 284 .name = "ttyEHV", 285 .write = ehv_bc_console_write, 286 .device = ehv_bc_console_device, 287 .flags = CON_PRINTBUFFER | CON_ENABLED, 288 }; 289 290 /* 291 * Console initialization 292 * 293 * This is the first function that is called after the device tree is 294 * available, so here is where we determine the byte channel handle and IRQ for 295 * stdout/stdin, even though that information is used by the tty and character 296 * drivers. 297 */ 298 static int __init ehv_bc_console_init(void) 299 { 300 if (!find_console_handle()) { 301 pr_debug("ehv-bc: stdout is not a byte channel\n"); 302 return -ENODEV; 303 } 304 305 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC 306 /* Print a friendly warning if the user chose the wrong byte channel 307 * handle for udbg. 308 */ 309 if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE) 310 pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n", 311 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); 312 #endif 313 314 /* add_preferred_console() must be called before register_console(), 315 otherwise it won't work. However, we don't want to enumerate all the 316 byte channels here, either, since we only care about one. */ 317 318 add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL); 319 register_console(&ehv_bc_console); 320 321 pr_info("ehv-bc: registered console driver for byte channel %u\n", 322 stdout_bc); 323 324 return 0; 325 } 326 console_initcall(ehv_bc_console_init); 327 328 /******************************** TTY DRIVER ********************************/ 329 330 /* 331 * byte channel receive interupt handler 332 * 333 * This ISR is called whenever data is available on a byte channel. 334 */ 335 static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data) 336 { 337 struct ehv_bc_data *bc = data; 338 unsigned int rx_count, tx_count, len; 339 int count; 340 char buffer[EV_BYTE_CHANNEL_MAX_BYTES]; 341 int ret; 342 343 /* Find out how much data needs to be read, and then ask the TTY layer 344 * if it can handle that much. We want to ensure that every byte we 345 * read from the byte channel will be accepted by the TTY layer. 346 */ 347 ev_byte_channel_poll(bc->handle, &rx_count, &tx_count); 348 count = tty_buffer_request_room(&bc->port, rx_count); 349 350 /* 'count' is the maximum amount of data the TTY layer can accept at 351 * this time. However, during testing, I was never able to get 'count' 352 * to be less than 'rx_count'. I'm not sure whether I'm calling it 353 * correctly. 354 */ 355 356 while (count > 0) { 357 len = min_t(unsigned int, count, sizeof(buffer)); 358 359 /* Read some data from the byte channel. This function will 360 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes. 361 */ 362 ev_byte_channel_receive(bc->handle, &len, buffer); 363 364 /* 'len' is now the amount of data that's been received. 'len' 365 * can't be zero, and most likely it's equal to one. 366 */ 367 368 /* Pass the received data to the tty layer. */ 369 ret = tty_insert_flip_string(&bc->port, buffer, len); 370 371 /* 'ret' is the number of bytes that the TTY layer accepted. 372 * If it's not equal to 'len', then it means the buffer is 373 * full, which should never happen. If it does happen, we can 374 * exit gracefully, but we drop the last 'len - ret' characters 375 * that we read from the byte channel. 376 */ 377 if (ret != len) 378 break; 379 380 count -= len; 381 } 382 383 /* Tell the tty layer that we're done. */ 384 tty_flip_buffer_push(&bc->port); 385 386 return IRQ_HANDLED; 387 } 388 389 /* 390 * dequeue the transmit buffer to the hypervisor 391 * 392 * This function, which can be called in interrupt context, dequeues as much 393 * data as possible from the transmit buffer to the byte channel. 394 */ 395 static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc) 396 { 397 unsigned int count; 398 unsigned int len, ret; 399 unsigned long flags; 400 401 do { 402 spin_lock_irqsave(&bc->lock, flags); 403 len = min_t(unsigned int, 404 CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE), 405 EV_BYTE_CHANNEL_MAX_BYTES); 406 407 ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail); 408 409 /* 'len' is valid only if the return code is 0 or EV_EAGAIN */ 410 if (!ret || (ret == EV_EAGAIN)) 411 bc->tail = (bc->tail + len) & (BUF_SIZE - 1); 412 413 count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE); 414 spin_unlock_irqrestore(&bc->lock, flags); 415 } while (count && !ret); 416 417 spin_lock_irqsave(&bc->lock, flags); 418 if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE)) 419 /* 420 * If we haven't emptied the buffer, then enable the TX IRQ. 421 * We'll get an interrupt when there's more room in the 422 * hypervisor's output buffer. 423 */ 424 enable_tx_interrupt(bc); 425 else 426 disable_tx_interrupt(bc); 427 spin_unlock_irqrestore(&bc->lock, flags); 428 } 429 430 /* 431 * byte channel transmit interupt handler 432 * 433 * This ISR is called whenever space becomes available for transmitting 434 * characters on a byte channel. 435 */ 436 static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data) 437 { 438 struct ehv_bc_data *bc = data; 439 440 ehv_bc_tx_dequeue(bc); 441 tty_port_tty_wakeup(&bc->port); 442 443 return IRQ_HANDLED; 444 } 445 446 /* 447 * This function is called when the tty layer has data for us send. We store 448 * the data first in a circular buffer, and then dequeue as much of that data 449 * as possible. 450 * 451 * We don't need to worry about whether there is enough room in the buffer for 452 * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty 453 * layer how much data it can safely send to us. We guarantee that 454 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us 455 * too much data. 456 */ 457 static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s, 458 int count) 459 { 460 struct ehv_bc_data *bc = ttys->driver_data; 461 unsigned long flags; 462 unsigned int len; 463 unsigned int written = 0; 464 465 while (1) { 466 spin_lock_irqsave(&bc->lock, flags); 467 len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE); 468 if (count < len) 469 len = count; 470 if (len) { 471 memcpy(bc->buf + bc->head, s, len); 472 bc->head = (bc->head + len) & (BUF_SIZE - 1); 473 } 474 spin_unlock_irqrestore(&bc->lock, flags); 475 if (!len) 476 break; 477 478 s += len; 479 count -= len; 480 written += len; 481 } 482 483 ehv_bc_tx_dequeue(bc); 484 485 return written; 486 } 487 488 /* 489 * This function can be called multiple times for a given tty_struct, which is 490 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead. 491 * 492 * The tty layer will still call this function even if the device was not 493 * registered (i.e. tty_register_device() was not called). This happens 494 * because tty_register_device() is optional and some legacy drivers don't 495 * use it. So we need to check for that. 496 */ 497 static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp) 498 { 499 struct ehv_bc_data *bc = &bcs[ttys->index]; 500 501 if (!bc->dev) 502 return -ENODEV; 503 504 return tty_port_open(&bc->port, ttys, filp); 505 } 506 507 /* 508 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will 509 * still call this function to close the tty device. So we can't assume that 510 * the tty port has been initialized. 511 */ 512 static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp) 513 { 514 struct ehv_bc_data *bc = &bcs[ttys->index]; 515 516 if (bc->dev) 517 tty_port_close(&bc->port, ttys, filp); 518 } 519 520 /* 521 * Return the amount of space in the output buffer 522 * 523 * This is actually a contract between the driver and the tty layer outlining 524 * how much write room the driver can guarantee will be sent OR BUFFERED. This 525 * driver MUST honor the return value. 526 */ 527 static int ehv_bc_tty_write_room(struct tty_struct *ttys) 528 { 529 struct ehv_bc_data *bc = ttys->driver_data; 530 unsigned long flags; 531 int count; 532 533 spin_lock_irqsave(&bc->lock, flags); 534 count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE); 535 spin_unlock_irqrestore(&bc->lock, flags); 536 537 return count; 538 } 539 540 /* 541 * Stop sending data to the tty layer 542 * 543 * This function is called when the tty layer's input buffers are getting full, 544 * so the driver should stop sending it data. The easiest way to do this is to 545 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being 546 * called. 547 * 548 * The hypervisor will continue to queue up any incoming data. If there is any 549 * data in the queue when the RX interrupt is enabled, we'll immediately get an 550 * RX interrupt. 551 */ 552 static void ehv_bc_tty_throttle(struct tty_struct *ttys) 553 { 554 struct ehv_bc_data *bc = ttys->driver_data; 555 556 disable_irq(bc->rx_irq); 557 } 558 559 /* 560 * Resume sending data to the tty layer 561 * 562 * This function is called after previously calling ehv_bc_tty_throttle(). The 563 * tty layer's input buffers now have more room, so the driver can resume 564 * sending it data. 565 */ 566 static void ehv_bc_tty_unthrottle(struct tty_struct *ttys) 567 { 568 struct ehv_bc_data *bc = ttys->driver_data; 569 570 /* If there is any data in the queue when the RX interrupt is enabled, 571 * we'll immediately get an RX interrupt. 572 */ 573 enable_irq(bc->rx_irq); 574 } 575 576 static void ehv_bc_tty_hangup(struct tty_struct *ttys) 577 { 578 struct ehv_bc_data *bc = ttys->driver_data; 579 580 ehv_bc_tx_dequeue(bc); 581 tty_port_hangup(&bc->port); 582 } 583 584 /* 585 * TTY driver operations 586 * 587 * If we could ask the hypervisor how much data is still in the TX buffer, or 588 * at least how big the TX buffers are, then we could implement the 589 * .wait_until_sent and .chars_in_buffer functions. 590 */ 591 static const struct tty_operations ehv_bc_ops = { 592 .open = ehv_bc_tty_open, 593 .close = ehv_bc_tty_close, 594 .write = ehv_bc_tty_write, 595 .write_room = ehv_bc_tty_write_room, 596 .throttle = ehv_bc_tty_throttle, 597 .unthrottle = ehv_bc_tty_unthrottle, 598 .hangup = ehv_bc_tty_hangup, 599 }; 600 601 /* 602 * initialize the TTY port 603 * 604 * This function will only be called once, no matter how many times 605 * ehv_bc_tty_open() is called. That's why we register the ISR here, and also 606 * why we initialize tty_struct-related variables here. 607 */ 608 static int ehv_bc_tty_port_activate(struct tty_port *port, 609 struct tty_struct *ttys) 610 { 611 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); 612 int ret; 613 614 ttys->driver_data = bc; 615 616 ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc); 617 if (ret < 0) { 618 dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n", 619 bc->rx_irq, ret); 620 return ret; 621 } 622 623 /* request_irq also enables the IRQ */ 624 bc->tx_irq_enabled = 1; 625 626 ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc); 627 if (ret < 0) { 628 dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n", 629 bc->tx_irq, ret); 630 free_irq(bc->rx_irq, bc); 631 return ret; 632 } 633 634 /* The TX IRQ is enabled only when we can't write all the data to the 635 * byte channel at once, so by default it's disabled. 636 */ 637 disable_tx_interrupt(bc); 638 639 return 0; 640 } 641 642 static void ehv_bc_tty_port_shutdown(struct tty_port *port) 643 { 644 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); 645 646 free_irq(bc->tx_irq, bc); 647 free_irq(bc->rx_irq, bc); 648 } 649 650 static const struct tty_port_operations ehv_bc_tty_port_ops = { 651 .activate = ehv_bc_tty_port_activate, 652 .shutdown = ehv_bc_tty_port_shutdown, 653 }; 654 655 static int ehv_bc_tty_probe(struct platform_device *pdev) 656 { 657 struct device_node *np = pdev->dev.of_node; 658 struct ehv_bc_data *bc; 659 const uint32_t *iprop; 660 unsigned int handle; 661 int ret; 662 static unsigned int index = 1; 663 unsigned int i; 664 665 iprop = of_get_property(np, "hv-handle", NULL); 666 if (!iprop) { 667 dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n", 668 np->name); 669 return -ENODEV; 670 } 671 672 /* We already told the console layer that the index for the console 673 * device is zero, so we need to make sure that we use that index when 674 * we probe the console byte channel node. 675 */ 676 handle = be32_to_cpu(*iprop); 677 i = (handle == stdout_bc) ? 0 : index++; 678 bc = &bcs[i]; 679 680 bc->handle = handle; 681 bc->head = 0; 682 bc->tail = 0; 683 spin_lock_init(&bc->lock); 684 685 bc->rx_irq = irq_of_parse_and_map(np, 0); 686 bc->tx_irq = irq_of_parse_and_map(np, 1); 687 if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) { 688 dev_err(&pdev->dev, "no 'interrupts' property in %s node\n", 689 np->name); 690 ret = -ENODEV; 691 goto error; 692 } 693 694 tty_port_init(&bc->port); 695 bc->port.ops = &ehv_bc_tty_port_ops; 696 697 bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i, 698 &pdev->dev); 699 if (IS_ERR(bc->dev)) { 700 ret = PTR_ERR(bc->dev); 701 dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret); 702 goto error; 703 } 704 705 dev_set_drvdata(&pdev->dev, bc); 706 707 dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n", 708 ehv_bc_driver->name, i, bc->handle); 709 710 return 0; 711 712 error: 713 tty_port_destroy(&bc->port); 714 irq_dispose_mapping(bc->tx_irq); 715 irq_dispose_mapping(bc->rx_irq); 716 717 memset(bc, 0, sizeof(struct ehv_bc_data)); 718 return ret; 719 } 720 721 static const struct of_device_id ehv_bc_tty_of_ids[] = { 722 { .compatible = "epapr,hv-byte-channel" }, 723 {} 724 }; 725 726 static struct platform_driver ehv_bc_tty_driver = { 727 .driver = { 728 .name = "ehv-bc", 729 .of_match_table = ehv_bc_tty_of_ids, 730 .suppress_bind_attrs = true, 731 }, 732 .probe = ehv_bc_tty_probe, 733 }; 734 735 /** 736 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization 737 * 738 * This function is called when this driver is loaded. 739 */ 740 static int __init ehv_bc_init(void) 741 { 742 struct device_node *np; 743 unsigned int count = 0; /* Number of elements in bcs[] */ 744 int ret; 745 746 pr_info("ePAPR hypervisor byte channel driver\n"); 747 748 /* Count the number of byte channels */ 749 for_each_compatible_node(np, NULL, "epapr,hv-byte-channel") 750 count++; 751 752 if (!count) 753 return -ENODEV; 754 755 /* The array index of an element in bcs[] is the same as the tty index 756 * for that element. If you know the address of an element in the 757 * array, then you can use pointer math (e.g. "bc - bcs") to get its 758 * tty index. 759 */ 760 bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL); 761 if (!bcs) 762 return -ENOMEM; 763 764 ehv_bc_driver = alloc_tty_driver(count); 765 if (!ehv_bc_driver) { 766 ret = -ENOMEM; 767 goto error; 768 } 769 770 ehv_bc_driver->driver_name = "ehv-bc"; 771 ehv_bc_driver->name = ehv_bc_console.name; 772 ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE; 773 ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE; 774 ehv_bc_driver->init_termios = tty_std_termios; 775 ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; 776 tty_set_operations(ehv_bc_driver, &ehv_bc_ops); 777 778 ret = tty_register_driver(ehv_bc_driver); 779 if (ret) { 780 pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret); 781 goto error; 782 } 783 784 ret = platform_driver_register(&ehv_bc_tty_driver); 785 if (ret) { 786 pr_err("ehv-bc: could not register platform driver (ret=%i)\n", 787 ret); 788 goto error; 789 } 790 791 return 0; 792 793 error: 794 if (ehv_bc_driver) { 795 tty_unregister_driver(ehv_bc_driver); 796 put_tty_driver(ehv_bc_driver); 797 } 798 799 kfree(bcs); 800 801 return ret; 802 } 803 device_initcall(ehv_bc_init); 804