1 // SPDX-License-Identifier: GPL-2.0 2 /* ePAPR hypervisor byte channel device driver 3 * 4 * Copyright 2009-2011 Freescale Semiconductor, Inc. 5 * 6 * Author: Timur Tabi <timur@freescale.com> 7 * 8 * This driver support three distinct interfaces, all of which are related to 9 * ePAPR hypervisor byte channels. 10 * 11 * 1) An early-console (udbg) driver. This provides early console output 12 * through a byte channel. The byte channel handle must be specified in a 13 * Kconfig option. 14 * 15 * 2) A normal console driver. Output is sent to the byte channel designated 16 * for stdout in the device tree. The console driver is for handling kernel 17 * printk calls. 18 * 19 * 3) A tty driver, which is used to handle user-space input and output. The 20 * byte channel used for the console is designated as the default tty. 21 */ 22 23 #include <linux/init.h> 24 #include <linux/slab.h> 25 #include <linux/err.h> 26 #include <linux/interrupt.h> 27 #include <linux/fs.h> 28 #include <linux/poll.h> 29 #include <asm/epapr_hcalls.h> 30 #include <linux/of.h> 31 #include <linux/of_irq.h> 32 #include <linux/platform_device.h> 33 #include <linux/cdev.h> 34 #include <linux/console.h> 35 #include <linux/tty.h> 36 #include <linux/tty_flip.h> 37 #include <linux/circ_buf.h> 38 #include <asm/udbg.h> 39 40 /* The size of the transmit circular buffer. This must be a power of two. */ 41 #define BUF_SIZE 2048 42 43 /* Per-byte channel private data */ 44 struct ehv_bc_data { 45 struct device *dev; 46 struct tty_port port; 47 uint32_t handle; 48 unsigned int rx_irq; 49 unsigned int tx_irq; 50 51 spinlock_t lock; /* lock for transmit buffer */ 52 unsigned char buf[BUF_SIZE]; /* transmit circular buffer */ 53 unsigned int head; /* circular buffer head */ 54 unsigned int tail; /* circular buffer tail */ 55 56 int tx_irq_enabled; /* true == TX interrupt is enabled */ 57 }; 58 59 /* Array of byte channel objects */ 60 static struct ehv_bc_data *bcs; 61 62 /* Byte channel handle for stdout (and stdin), taken from device tree */ 63 static unsigned int stdout_bc; 64 65 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */ 66 static unsigned int stdout_irq; 67 68 /**************************** SUPPORT FUNCTIONS ****************************/ 69 70 /* 71 * Enable the transmit interrupt 72 * 73 * Unlike a serial device, byte channels have no mechanism for disabling their 74 * own receive or transmit interrupts. To emulate that feature, we toggle 75 * the IRQ in the kernel. 76 * 77 * We cannot just blindly call enable_irq() or disable_irq(), because these 78 * calls are reference counted. This means that we cannot call enable_irq() 79 * if interrupts are already enabled. This can happen in two situations: 80 * 81 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write() 82 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue() 83 * 84 * To work around this, we keep a flag to tell us if the IRQ is enabled or not. 85 */ 86 static void enable_tx_interrupt(struct ehv_bc_data *bc) 87 { 88 if (!bc->tx_irq_enabled) { 89 enable_irq(bc->tx_irq); 90 bc->tx_irq_enabled = 1; 91 } 92 } 93 94 static void disable_tx_interrupt(struct ehv_bc_data *bc) 95 { 96 if (bc->tx_irq_enabled) { 97 disable_irq_nosync(bc->tx_irq); 98 bc->tx_irq_enabled = 0; 99 } 100 } 101 102 /* 103 * find the byte channel handle to use for the console 104 * 105 * The byte channel to be used for the console is specified via a "stdout" 106 * property in the /chosen node. 107 */ 108 static int find_console_handle(void) 109 { 110 struct device_node *np = of_stdout; 111 const uint32_t *iprop; 112 113 /* We don't care what the aliased node is actually called. We only 114 * care if it's compatible with "epapr,hv-byte-channel", because that 115 * indicates that it's a byte channel node. 116 */ 117 if (!np || !of_device_is_compatible(np, "epapr,hv-byte-channel")) 118 return 0; 119 120 stdout_irq = irq_of_parse_and_map(np, 0); 121 if (!stdout_irq) { 122 pr_err("ehv-bc: no 'interrupts' property in %pOF node\n", np); 123 return 0; 124 } 125 126 /* 127 * The 'hv-handle' property contains the handle for this byte channel. 128 */ 129 iprop = of_get_property(np, "hv-handle", NULL); 130 if (!iprop) { 131 pr_err("ehv-bc: no 'hv-handle' property in %pOFn node\n", 132 np); 133 return 0; 134 } 135 stdout_bc = be32_to_cpu(*iprop); 136 return 1; 137 } 138 139 static unsigned int local_ev_byte_channel_send(unsigned int handle, 140 unsigned int *count, 141 const char *p) 142 { 143 char buffer[EV_BYTE_CHANNEL_MAX_BYTES]; 144 unsigned int c = *count; 145 146 if (c < sizeof(buffer)) { 147 memcpy(buffer, p, c); 148 memset(&buffer[c], 0, sizeof(buffer) - c); 149 p = buffer; 150 } 151 return ev_byte_channel_send(handle, count, p); 152 } 153 154 /*************************** EARLY CONSOLE DRIVER ***************************/ 155 156 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC 157 158 /* 159 * send a byte to a byte channel, wait if necessary 160 * 161 * This function sends a byte to a byte channel, and it waits and 162 * retries if the byte channel is full. It returns if the character 163 * has been sent, or if some error has occurred. 164 * 165 */ 166 static void byte_channel_spin_send(const char data) 167 { 168 int ret, count; 169 170 do { 171 count = 1; 172 ret = local_ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, 173 &count, &data); 174 } while (ret == EV_EAGAIN); 175 } 176 177 /* 178 * The udbg subsystem calls this function to display a single character. 179 * We convert CR to a CR/LF. 180 */ 181 static void ehv_bc_udbg_putc(char c) 182 { 183 if (c == '\n') 184 byte_channel_spin_send('\r'); 185 186 byte_channel_spin_send(c); 187 } 188 189 /* 190 * early console initialization 191 * 192 * PowerPC kernels support an early printk console, also known as udbg. 193 * This function must be called via the ppc_md.init_early function pointer. 194 * At this point, the device tree has been unflattened, so we can obtain the 195 * byte channel handle for stdout. 196 * 197 * We only support displaying of characters (putc). We do not support 198 * keyboard input. 199 */ 200 void __init udbg_init_ehv_bc(void) 201 { 202 unsigned int rx_count, tx_count; 203 unsigned int ret; 204 205 /* Verify the byte channel handle */ 206 ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, 207 &rx_count, &tx_count); 208 if (ret) 209 return; 210 211 udbg_putc = ehv_bc_udbg_putc; 212 register_early_udbg_console(); 213 214 udbg_printf("ehv-bc: early console using byte channel handle %u\n", 215 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); 216 } 217 218 #endif 219 220 /****************************** CONSOLE DRIVER ******************************/ 221 222 static struct tty_driver *ehv_bc_driver; 223 224 /* 225 * Byte channel console sending worker function. 226 * 227 * For consoles, if the output buffer is full, we should just spin until it 228 * clears. 229 */ 230 static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s, 231 unsigned int count) 232 { 233 unsigned int len; 234 int ret = 0; 235 236 while (count) { 237 len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES); 238 do { 239 ret = local_ev_byte_channel_send(handle, &len, s); 240 } while (ret == EV_EAGAIN); 241 count -= len; 242 s += len; 243 } 244 245 return ret; 246 } 247 248 /* 249 * write a string to the console 250 * 251 * This function gets called to write a string from the kernel, typically from 252 * a printk(). This function spins until all data is written. 253 * 254 * We copy the data to a temporary buffer because we need to insert a \r in 255 * front of every \n. It's more efficient to copy the data to the buffer than 256 * it is to make multiple hcalls for each character or each newline. 257 */ 258 static void ehv_bc_console_write(struct console *co, const char *s, 259 unsigned int count) 260 { 261 char s2[EV_BYTE_CHANNEL_MAX_BYTES]; 262 unsigned int i, j = 0; 263 char c; 264 265 for (i = 0; i < count; i++) { 266 c = *s++; 267 268 if (c == '\n') 269 s2[j++] = '\r'; 270 271 s2[j++] = c; 272 if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) { 273 if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j)) 274 return; 275 j = 0; 276 } 277 } 278 279 if (j) 280 ehv_bc_console_byte_channel_send(stdout_bc, s2, j); 281 } 282 283 /* 284 * When /dev/console is opened, the kernel iterates the console list looking 285 * for one with ->device and then calls that method. On success, it expects 286 * the passed-in int* to contain the minor number to use. 287 */ 288 static struct tty_driver *ehv_bc_console_device(struct console *co, int *index) 289 { 290 *index = co->index; 291 292 return ehv_bc_driver; 293 } 294 295 static struct console ehv_bc_console = { 296 .name = "ttyEHV", 297 .write = ehv_bc_console_write, 298 .device = ehv_bc_console_device, 299 .flags = CON_PRINTBUFFER | CON_ENABLED, 300 }; 301 302 /* 303 * Console initialization 304 * 305 * This is the first function that is called after the device tree is 306 * available, so here is where we determine the byte channel handle and IRQ for 307 * stdout/stdin, even though that information is used by the tty and character 308 * drivers. 309 */ 310 static int __init ehv_bc_console_init(void) 311 { 312 if (!find_console_handle()) { 313 pr_debug("ehv-bc: stdout is not a byte channel\n"); 314 return -ENODEV; 315 } 316 317 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC 318 /* Print a friendly warning if the user chose the wrong byte channel 319 * handle for udbg. 320 */ 321 if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE) 322 pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n", 323 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); 324 #endif 325 326 /* add_preferred_console() must be called before register_console(), 327 otherwise it won't work. However, we don't want to enumerate all the 328 byte channels here, either, since we only care about one. */ 329 330 add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL); 331 register_console(&ehv_bc_console); 332 333 pr_info("ehv-bc: registered console driver for byte channel %u\n", 334 stdout_bc); 335 336 return 0; 337 } 338 console_initcall(ehv_bc_console_init); 339 340 /******************************** TTY DRIVER ********************************/ 341 342 /* 343 * byte channel receive interrupt handler 344 * 345 * This ISR is called whenever data is available on a byte channel. 346 */ 347 static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data) 348 { 349 struct ehv_bc_data *bc = data; 350 unsigned int rx_count, tx_count, len; 351 int count; 352 char buffer[EV_BYTE_CHANNEL_MAX_BYTES]; 353 int ret; 354 355 /* Find out how much data needs to be read, and then ask the TTY layer 356 * if it can handle that much. We want to ensure that every byte we 357 * read from the byte channel will be accepted by the TTY layer. 358 */ 359 ev_byte_channel_poll(bc->handle, &rx_count, &tx_count); 360 count = tty_buffer_request_room(&bc->port, rx_count); 361 362 /* 'count' is the maximum amount of data the TTY layer can accept at 363 * this time. However, during testing, I was never able to get 'count' 364 * to be less than 'rx_count'. I'm not sure whether I'm calling it 365 * correctly. 366 */ 367 368 while (count > 0) { 369 len = min_t(unsigned int, count, sizeof(buffer)); 370 371 /* Read some data from the byte channel. This function will 372 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes. 373 */ 374 ev_byte_channel_receive(bc->handle, &len, buffer); 375 376 /* 'len' is now the amount of data that's been received. 'len' 377 * can't be zero, and most likely it's equal to one. 378 */ 379 380 /* Pass the received data to the tty layer. */ 381 ret = tty_insert_flip_string(&bc->port, buffer, len); 382 383 /* 'ret' is the number of bytes that the TTY layer accepted. 384 * If it's not equal to 'len', then it means the buffer is 385 * full, which should never happen. If it does happen, we can 386 * exit gracefully, but we drop the last 'len - ret' characters 387 * that we read from the byte channel. 388 */ 389 if (ret != len) 390 break; 391 392 count -= len; 393 } 394 395 /* Tell the tty layer that we're done. */ 396 tty_flip_buffer_push(&bc->port); 397 398 return IRQ_HANDLED; 399 } 400 401 /* 402 * dequeue the transmit buffer to the hypervisor 403 * 404 * This function, which can be called in interrupt context, dequeues as much 405 * data as possible from the transmit buffer to the byte channel. 406 */ 407 static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc) 408 { 409 unsigned int count; 410 unsigned int len, ret; 411 unsigned long flags; 412 413 do { 414 spin_lock_irqsave(&bc->lock, flags); 415 len = min_t(unsigned int, 416 CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE), 417 EV_BYTE_CHANNEL_MAX_BYTES); 418 419 ret = local_ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail); 420 421 /* 'len' is valid only if the return code is 0 or EV_EAGAIN */ 422 if (!ret || (ret == EV_EAGAIN)) 423 bc->tail = (bc->tail + len) & (BUF_SIZE - 1); 424 425 count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE); 426 spin_unlock_irqrestore(&bc->lock, flags); 427 } while (count && !ret); 428 429 spin_lock_irqsave(&bc->lock, flags); 430 if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE)) 431 /* 432 * If we haven't emptied the buffer, then enable the TX IRQ. 433 * We'll get an interrupt when there's more room in the 434 * hypervisor's output buffer. 435 */ 436 enable_tx_interrupt(bc); 437 else 438 disable_tx_interrupt(bc); 439 spin_unlock_irqrestore(&bc->lock, flags); 440 } 441 442 /* 443 * byte channel transmit interrupt handler 444 * 445 * This ISR is called whenever space becomes available for transmitting 446 * characters on a byte channel. 447 */ 448 static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data) 449 { 450 struct ehv_bc_data *bc = data; 451 452 ehv_bc_tx_dequeue(bc); 453 tty_port_tty_wakeup(&bc->port); 454 455 return IRQ_HANDLED; 456 } 457 458 /* 459 * This function is called when the tty layer has data for us send. We store 460 * the data first in a circular buffer, and then dequeue as much of that data 461 * as possible. 462 * 463 * We don't need to worry about whether there is enough room in the buffer for 464 * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty 465 * layer how much data it can safely send to us. We guarantee that 466 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us 467 * too much data. 468 */ 469 static ssize_t ehv_bc_tty_write(struct tty_struct *ttys, const u8 *s, 470 size_t count) 471 { 472 struct ehv_bc_data *bc = ttys->driver_data; 473 unsigned long flags; 474 unsigned int len; 475 unsigned int written = 0; 476 477 while (1) { 478 spin_lock_irqsave(&bc->lock, flags); 479 len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE); 480 if (count < len) 481 len = count; 482 if (len) { 483 memcpy(bc->buf + bc->head, s, len); 484 bc->head = (bc->head + len) & (BUF_SIZE - 1); 485 } 486 spin_unlock_irqrestore(&bc->lock, flags); 487 if (!len) 488 break; 489 490 s += len; 491 count -= len; 492 written += len; 493 } 494 495 ehv_bc_tx_dequeue(bc); 496 497 return written; 498 } 499 500 /* 501 * This function can be called multiple times for a given tty_struct, which is 502 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead. 503 * 504 * The tty layer will still call this function even if the device was not 505 * registered (i.e. tty_register_device() was not called). This happens 506 * because tty_register_device() is optional and some legacy drivers don't 507 * use it. So we need to check for that. 508 */ 509 static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp) 510 { 511 struct ehv_bc_data *bc = &bcs[ttys->index]; 512 513 if (!bc->dev) 514 return -ENODEV; 515 516 return tty_port_open(&bc->port, ttys, filp); 517 } 518 519 /* 520 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will 521 * still call this function to close the tty device. So we can't assume that 522 * the tty port has been initialized. 523 */ 524 static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp) 525 { 526 struct ehv_bc_data *bc = &bcs[ttys->index]; 527 528 if (bc->dev) 529 tty_port_close(&bc->port, ttys, filp); 530 } 531 532 /* 533 * Return the amount of space in the output buffer 534 * 535 * This is actually a contract between the driver and the tty layer outlining 536 * how much write room the driver can guarantee will be sent OR BUFFERED. This 537 * driver MUST honor the return value. 538 */ 539 static unsigned int ehv_bc_tty_write_room(struct tty_struct *ttys) 540 { 541 struct ehv_bc_data *bc = ttys->driver_data; 542 unsigned long flags; 543 unsigned int count; 544 545 spin_lock_irqsave(&bc->lock, flags); 546 count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE); 547 spin_unlock_irqrestore(&bc->lock, flags); 548 549 return count; 550 } 551 552 /* 553 * Stop sending data to the tty layer 554 * 555 * This function is called when the tty layer's input buffers are getting full, 556 * so the driver should stop sending it data. The easiest way to do this is to 557 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being 558 * called. 559 * 560 * The hypervisor will continue to queue up any incoming data. If there is any 561 * data in the queue when the RX interrupt is enabled, we'll immediately get an 562 * RX interrupt. 563 */ 564 static void ehv_bc_tty_throttle(struct tty_struct *ttys) 565 { 566 struct ehv_bc_data *bc = ttys->driver_data; 567 568 disable_irq(bc->rx_irq); 569 } 570 571 /* 572 * Resume sending data to the tty layer 573 * 574 * This function is called after previously calling ehv_bc_tty_throttle(). The 575 * tty layer's input buffers now have more room, so the driver can resume 576 * sending it data. 577 */ 578 static void ehv_bc_tty_unthrottle(struct tty_struct *ttys) 579 { 580 struct ehv_bc_data *bc = ttys->driver_data; 581 582 /* If there is any data in the queue when the RX interrupt is enabled, 583 * we'll immediately get an RX interrupt. 584 */ 585 enable_irq(bc->rx_irq); 586 } 587 588 static void ehv_bc_tty_hangup(struct tty_struct *ttys) 589 { 590 struct ehv_bc_data *bc = ttys->driver_data; 591 592 ehv_bc_tx_dequeue(bc); 593 tty_port_hangup(&bc->port); 594 } 595 596 /* 597 * TTY driver operations 598 * 599 * If we could ask the hypervisor how much data is still in the TX buffer, or 600 * at least how big the TX buffers are, then we could implement the 601 * .wait_until_sent and .chars_in_buffer functions. 602 */ 603 static const struct tty_operations ehv_bc_ops = { 604 .open = ehv_bc_tty_open, 605 .close = ehv_bc_tty_close, 606 .write = ehv_bc_tty_write, 607 .write_room = ehv_bc_tty_write_room, 608 .throttle = ehv_bc_tty_throttle, 609 .unthrottle = ehv_bc_tty_unthrottle, 610 .hangup = ehv_bc_tty_hangup, 611 }; 612 613 /* 614 * initialize the TTY port 615 * 616 * This function will only be called once, no matter how many times 617 * ehv_bc_tty_open() is called. That's why we register the ISR here, and also 618 * why we initialize tty_struct-related variables here. 619 */ 620 static int ehv_bc_tty_port_activate(struct tty_port *port, 621 struct tty_struct *ttys) 622 { 623 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); 624 int ret; 625 626 ttys->driver_data = bc; 627 628 ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc); 629 if (ret < 0) { 630 dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n", 631 bc->rx_irq, ret); 632 return ret; 633 } 634 635 /* request_irq also enables the IRQ */ 636 bc->tx_irq_enabled = 1; 637 638 ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc); 639 if (ret < 0) { 640 dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n", 641 bc->tx_irq, ret); 642 free_irq(bc->rx_irq, bc); 643 return ret; 644 } 645 646 /* The TX IRQ is enabled only when we can't write all the data to the 647 * byte channel at once, so by default it's disabled. 648 */ 649 disable_tx_interrupt(bc); 650 651 return 0; 652 } 653 654 static void ehv_bc_tty_port_shutdown(struct tty_port *port) 655 { 656 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); 657 658 free_irq(bc->tx_irq, bc); 659 free_irq(bc->rx_irq, bc); 660 } 661 662 static const struct tty_port_operations ehv_bc_tty_port_ops = { 663 .activate = ehv_bc_tty_port_activate, 664 .shutdown = ehv_bc_tty_port_shutdown, 665 }; 666 667 static int ehv_bc_tty_probe(struct platform_device *pdev) 668 { 669 struct device_node *np = pdev->dev.of_node; 670 struct ehv_bc_data *bc; 671 const uint32_t *iprop; 672 unsigned int handle; 673 int ret; 674 static unsigned int index = 1; 675 unsigned int i; 676 677 iprop = of_get_property(np, "hv-handle", NULL); 678 if (!iprop) { 679 dev_err(&pdev->dev, "no 'hv-handle' property in %pOFn node\n", 680 np); 681 return -ENODEV; 682 } 683 684 /* We already told the console layer that the index for the console 685 * device is zero, so we need to make sure that we use that index when 686 * we probe the console byte channel node. 687 */ 688 handle = be32_to_cpu(*iprop); 689 i = (handle == stdout_bc) ? 0 : index++; 690 bc = &bcs[i]; 691 692 bc->handle = handle; 693 bc->head = 0; 694 bc->tail = 0; 695 spin_lock_init(&bc->lock); 696 697 bc->rx_irq = irq_of_parse_and_map(np, 0); 698 bc->tx_irq = irq_of_parse_and_map(np, 1); 699 if (!bc->rx_irq || !bc->tx_irq) { 700 dev_err(&pdev->dev, "no 'interrupts' property in %pOFn node\n", 701 np); 702 ret = -ENODEV; 703 goto error; 704 } 705 706 tty_port_init(&bc->port); 707 bc->port.ops = &ehv_bc_tty_port_ops; 708 709 bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i, 710 &pdev->dev); 711 if (IS_ERR(bc->dev)) { 712 ret = PTR_ERR(bc->dev); 713 dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret); 714 goto error; 715 } 716 717 dev_set_drvdata(&pdev->dev, bc); 718 719 dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n", 720 ehv_bc_driver->name, i, bc->handle); 721 722 return 0; 723 724 error: 725 tty_port_destroy(&bc->port); 726 irq_dispose_mapping(bc->tx_irq); 727 irq_dispose_mapping(bc->rx_irq); 728 729 memset(bc, 0, sizeof(struct ehv_bc_data)); 730 return ret; 731 } 732 733 static const struct of_device_id ehv_bc_tty_of_ids[] = { 734 { .compatible = "epapr,hv-byte-channel" }, 735 {} 736 }; 737 738 static struct platform_driver ehv_bc_tty_driver = { 739 .driver = { 740 .name = "ehv-bc", 741 .of_match_table = ehv_bc_tty_of_ids, 742 .suppress_bind_attrs = true, 743 }, 744 .probe = ehv_bc_tty_probe, 745 }; 746 747 /** 748 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization 749 * 750 * This function is called when this driver is loaded. 751 */ 752 static int __init ehv_bc_init(void) 753 { 754 struct tty_driver *driver; 755 struct device_node *np; 756 unsigned int count = 0; /* Number of elements in bcs[] */ 757 int ret; 758 759 pr_info("ePAPR hypervisor byte channel driver\n"); 760 761 /* Count the number of byte channels */ 762 for_each_compatible_node(np, NULL, "epapr,hv-byte-channel") 763 count++; 764 765 if (!count) 766 return -ENODEV; 767 768 /* The array index of an element in bcs[] is the same as the tty index 769 * for that element. If you know the address of an element in the 770 * array, then you can use pointer math (e.g. "bc - bcs") to get its 771 * tty index. 772 */ 773 bcs = kcalloc(count, sizeof(struct ehv_bc_data), GFP_KERNEL); 774 if (!bcs) 775 return -ENOMEM; 776 777 driver = tty_alloc_driver(count, TTY_DRIVER_REAL_RAW | 778 TTY_DRIVER_DYNAMIC_DEV); 779 if (IS_ERR(driver)) { 780 ret = PTR_ERR(driver); 781 goto err_free_bcs; 782 } 783 784 driver->driver_name = "ehv-bc"; 785 driver->name = ehv_bc_console.name; 786 driver->type = TTY_DRIVER_TYPE_CONSOLE; 787 driver->subtype = SYSTEM_TYPE_CONSOLE; 788 driver->init_termios = tty_std_termios; 789 tty_set_operations(driver, &ehv_bc_ops); 790 791 ret = tty_register_driver(driver); 792 if (ret) { 793 pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret); 794 goto err_tty_driver_kref_put; 795 } 796 797 ehv_bc_driver = driver; 798 799 ret = platform_driver_register(&ehv_bc_tty_driver); 800 if (ret) { 801 pr_err("ehv-bc: could not register platform driver (ret=%i)\n", 802 ret); 803 goto err_deregister_tty_driver; 804 } 805 806 return 0; 807 808 err_deregister_tty_driver: 809 ehv_bc_driver = NULL; 810 tty_unregister_driver(driver); 811 err_tty_driver_kref_put: 812 tty_driver_kref_put(driver); 813 err_free_bcs: 814 kfree(bcs); 815 816 return ret; 817 } 818 device_initcall(ehv_bc_init); 819