1 // SPDX-License-Identifier: GPL-2.0 2 /* ePAPR hypervisor byte channel device driver 3 * 4 * Copyright 2009-2011 Freescale Semiconductor, Inc. 5 * 6 * Author: Timur Tabi <timur@freescale.com> 7 * 8 * This driver support three distinct interfaces, all of which are related to 9 * ePAPR hypervisor byte channels. 10 * 11 * 1) An early-console (udbg) driver. This provides early console output 12 * through a byte channel. The byte channel handle must be specified in a 13 * Kconfig option. 14 * 15 * 2) A normal console driver. Output is sent to the byte channel designated 16 * for stdout in the device tree. The console driver is for handling kernel 17 * printk calls. 18 * 19 * 3) A tty driver, which is used to handle user-space input and output. The 20 * byte channel used for the console is designated as the default tty. 21 */ 22 23 #include <linux/init.h> 24 #include <linux/slab.h> 25 #include <linux/err.h> 26 #include <linux/interrupt.h> 27 #include <linux/fs.h> 28 #include <linux/poll.h> 29 #include <asm/epapr_hcalls.h> 30 #include <linux/of.h> 31 #include <linux/of_irq.h> 32 #include <linux/platform_device.h> 33 #include <linux/cdev.h> 34 #include <linux/console.h> 35 #include <linux/tty.h> 36 #include <linux/tty_flip.h> 37 #include <linux/circ_buf.h> 38 #include <asm/udbg.h> 39 40 /* The size of the transmit circular buffer. This must be a power of two. */ 41 #define BUF_SIZE 2048 42 43 /* Per-byte channel private data */ 44 struct ehv_bc_data { 45 struct device *dev; 46 struct tty_port port; 47 uint32_t handle; 48 unsigned int rx_irq; 49 unsigned int tx_irq; 50 51 spinlock_t lock; /* lock for transmit buffer */ 52 unsigned char buf[BUF_SIZE]; /* transmit circular buffer */ 53 unsigned int head; /* circular buffer head */ 54 unsigned int tail; /* circular buffer tail */ 55 56 int tx_irq_enabled; /* true == TX interrupt is enabled */ 57 }; 58 59 /* Array of byte channel objects */ 60 static struct ehv_bc_data *bcs; 61 62 /* Byte channel handle for stdout (and stdin), taken from device tree */ 63 static unsigned int stdout_bc; 64 65 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */ 66 static unsigned int stdout_irq; 67 68 /**************************** SUPPORT FUNCTIONS ****************************/ 69 70 /* 71 * Enable the transmit interrupt 72 * 73 * Unlike a serial device, byte channels have no mechanism for disabling their 74 * own receive or transmit interrupts. To emulate that feature, we toggle 75 * the IRQ in the kernel. 76 * 77 * We cannot just blindly call enable_irq() or disable_irq(), because these 78 * calls are reference counted. This means that we cannot call enable_irq() 79 * if interrupts are already enabled. This can happen in two situations: 80 * 81 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write() 82 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue() 83 * 84 * To work around this, we keep a flag to tell us if the IRQ is enabled or not. 85 */ 86 static void enable_tx_interrupt(struct ehv_bc_data *bc) 87 { 88 if (!bc->tx_irq_enabled) { 89 enable_irq(bc->tx_irq); 90 bc->tx_irq_enabled = 1; 91 } 92 } 93 94 static void disable_tx_interrupt(struct ehv_bc_data *bc) 95 { 96 if (bc->tx_irq_enabled) { 97 disable_irq_nosync(bc->tx_irq); 98 bc->tx_irq_enabled = 0; 99 } 100 } 101 102 /* 103 * find the byte channel handle to use for the console 104 * 105 * The byte channel to be used for the console is specified via a "stdout" 106 * property in the /chosen node. 107 */ 108 static int find_console_handle(void) 109 { 110 struct device_node *np = of_stdout; 111 const uint32_t *iprop; 112 113 /* We don't care what the aliased node is actually called. We only 114 * care if it's compatible with "epapr,hv-byte-channel", because that 115 * indicates that it's a byte channel node. 116 */ 117 if (!np || !of_device_is_compatible(np, "epapr,hv-byte-channel")) 118 return 0; 119 120 stdout_irq = irq_of_parse_and_map(np, 0); 121 if (stdout_irq == NO_IRQ) { 122 pr_err("ehv-bc: no 'interrupts' property in %pOF node\n", np); 123 return 0; 124 } 125 126 /* 127 * The 'hv-handle' property contains the handle for this byte channel. 128 */ 129 iprop = of_get_property(np, "hv-handle", NULL); 130 if (!iprop) { 131 pr_err("ehv-bc: no 'hv-handle' property in %s node\n", 132 np->name); 133 return 0; 134 } 135 stdout_bc = be32_to_cpu(*iprop); 136 return 1; 137 } 138 139 /*************************** EARLY CONSOLE DRIVER ***************************/ 140 141 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC 142 143 /* 144 * send a byte to a byte channel, wait if necessary 145 * 146 * This function sends a byte to a byte channel, and it waits and 147 * retries if the byte channel is full. It returns if the character 148 * has been sent, or if some error has occurred. 149 * 150 */ 151 static void byte_channel_spin_send(const char data) 152 { 153 int ret, count; 154 155 do { 156 count = 1; 157 ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, 158 &count, &data); 159 } while (ret == EV_EAGAIN); 160 } 161 162 /* 163 * The udbg subsystem calls this function to display a single character. 164 * We convert CR to a CR/LF. 165 */ 166 static void ehv_bc_udbg_putc(char c) 167 { 168 if (c == '\n') 169 byte_channel_spin_send('\r'); 170 171 byte_channel_spin_send(c); 172 } 173 174 /* 175 * early console initialization 176 * 177 * PowerPC kernels support an early printk console, also known as udbg. 178 * This function must be called via the ppc_md.init_early function pointer. 179 * At this point, the device tree has been unflattened, so we can obtain the 180 * byte channel handle for stdout. 181 * 182 * We only support displaying of characters (putc). We do not support 183 * keyboard input. 184 */ 185 void __init udbg_init_ehv_bc(void) 186 { 187 unsigned int rx_count, tx_count; 188 unsigned int ret; 189 190 /* Verify the byte channel handle */ 191 ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, 192 &rx_count, &tx_count); 193 if (ret) 194 return; 195 196 udbg_putc = ehv_bc_udbg_putc; 197 register_early_udbg_console(); 198 199 udbg_printf("ehv-bc: early console using byte channel handle %u\n", 200 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); 201 } 202 203 #endif 204 205 /****************************** CONSOLE DRIVER ******************************/ 206 207 static struct tty_driver *ehv_bc_driver; 208 209 /* 210 * Byte channel console sending worker function. 211 * 212 * For consoles, if the output buffer is full, we should just spin until it 213 * clears. 214 */ 215 static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s, 216 unsigned int count) 217 { 218 unsigned int len; 219 int ret = 0; 220 221 while (count) { 222 len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES); 223 do { 224 ret = ev_byte_channel_send(handle, &len, s); 225 } while (ret == EV_EAGAIN); 226 count -= len; 227 s += len; 228 } 229 230 return ret; 231 } 232 233 /* 234 * write a string to the console 235 * 236 * This function gets called to write a string from the kernel, typically from 237 * a printk(). This function spins until all data is written. 238 * 239 * We copy the data to a temporary buffer because we need to insert a \r in 240 * front of every \n. It's more efficient to copy the data to the buffer than 241 * it is to make multiple hcalls for each character or each newline. 242 */ 243 static void ehv_bc_console_write(struct console *co, const char *s, 244 unsigned int count) 245 { 246 char s2[EV_BYTE_CHANNEL_MAX_BYTES]; 247 unsigned int i, j = 0; 248 char c; 249 250 for (i = 0; i < count; i++) { 251 c = *s++; 252 253 if (c == '\n') 254 s2[j++] = '\r'; 255 256 s2[j++] = c; 257 if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) { 258 if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j)) 259 return; 260 j = 0; 261 } 262 } 263 264 if (j) 265 ehv_bc_console_byte_channel_send(stdout_bc, s2, j); 266 } 267 268 /* 269 * When /dev/console is opened, the kernel iterates the console list looking 270 * for one with ->device and then calls that method. On success, it expects 271 * the passed-in int* to contain the minor number to use. 272 */ 273 static struct tty_driver *ehv_bc_console_device(struct console *co, int *index) 274 { 275 *index = co->index; 276 277 return ehv_bc_driver; 278 } 279 280 static struct console ehv_bc_console = { 281 .name = "ttyEHV", 282 .write = ehv_bc_console_write, 283 .device = ehv_bc_console_device, 284 .flags = CON_PRINTBUFFER | CON_ENABLED, 285 }; 286 287 /* 288 * Console initialization 289 * 290 * This is the first function that is called after the device tree is 291 * available, so here is where we determine the byte channel handle and IRQ for 292 * stdout/stdin, even though that information is used by the tty and character 293 * drivers. 294 */ 295 static int __init ehv_bc_console_init(void) 296 { 297 if (!find_console_handle()) { 298 pr_debug("ehv-bc: stdout is not a byte channel\n"); 299 return -ENODEV; 300 } 301 302 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC 303 /* Print a friendly warning if the user chose the wrong byte channel 304 * handle for udbg. 305 */ 306 if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE) 307 pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n", 308 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); 309 #endif 310 311 /* add_preferred_console() must be called before register_console(), 312 otherwise it won't work. However, we don't want to enumerate all the 313 byte channels here, either, since we only care about one. */ 314 315 add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL); 316 register_console(&ehv_bc_console); 317 318 pr_info("ehv-bc: registered console driver for byte channel %u\n", 319 stdout_bc); 320 321 return 0; 322 } 323 console_initcall(ehv_bc_console_init); 324 325 /******************************** TTY DRIVER ********************************/ 326 327 /* 328 * byte channel receive interrupt handler 329 * 330 * This ISR is called whenever data is available on a byte channel. 331 */ 332 static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data) 333 { 334 struct ehv_bc_data *bc = data; 335 unsigned int rx_count, tx_count, len; 336 int count; 337 char buffer[EV_BYTE_CHANNEL_MAX_BYTES]; 338 int ret; 339 340 /* Find out how much data needs to be read, and then ask the TTY layer 341 * if it can handle that much. We want to ensure that every byte we 342 * read from the byte channel will be accepted by the TTY layer. 343 */ 344 ev_byte_channel_poll(bc->handle, &rx_count, &tx_count); 345 count = tty_buffer_request_room(&bc->port, rx_count); 346 347 /* 'count' is the maximum amount of data the TTY layer can accept at 348 * this time. However, during testing, I was never able to get 'count' 349 * to be less than 'rx_count'. I'm not sure whether I'm calling it 350 * correctly. 351 */ 352 353 while (count > 0) { 354 len = min_t(unsigned int, count, sizeof(buffer)); 355 356 /* Read some data from the byte channel. This function will 357 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes. 358 */ 359 ev_byte_channel_receive(bc->handle, &len, buffer); 360 361 /* 'len' is now the amount of data that's been received. 'len' 362 * can't be zero, and most likely it's equal to one. 363 */ 364 365 /* Pass the received data to the tty layer. */ 366 ret = tty_insert_flip_string(&bc->port, buffer, len); 367 368 /* 'ret' is the number of bytes that the TTY layer accepted. 369 * If it's not equal to 'len', then it means the buffer is 370 * full, which should never happen. If it does happen, we can 371 * exit gracefully, but we drop the last 'len - ret' characters 372 * that we read from the byte channel. 373 */ 374 if (ret != len) 375 break; 376 377 count -= len; 378 } 379 380 /* Tell the tty layer that we're done. */ 381 tty_flip_buffer_push(&bc->port); 382 383 return IRQ_HANDLED; 384 } 385 386 /* 387 * dequeue the transmit buffer to the hypervisor 388 * 389 * This function, which can be called in interrupt context, dequeues as much 390 * data as possible from the transmit buffer to the byte channel. 391 */ 392 static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc) 393 { 394 unsigned int count; 395 unsigned int len, ret; 396 unsigned long flags; 397 398 do { 399 spin_lock_irqsave(&bc->lock, flags); 400 len = min_t(unsigned int, 401 CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE), 402 EV_BYTE_CHANNEL_MAX_BYTES); 403 404 ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail); 405 406 /* 'len' is valid only if the return code is 0 or EV_EAGAIN */ 407 if (!ret || (ret == EV_EAGAIN)) 408 bc->tail = (bc->tail + len) & (BUF_SIZE - 1); 409 410 count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE); 411 spin_unlock_irqrestore(&bc->lock, flags); 412 } while (count && !ret); 413 414 spin_lock_irqsave(&bc->lock, flags); 415 if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE)) 416 /* 417 * If we haven't emptied the buffer, then enable the TX IRQ. 418 * We'll get an interrupt when there's more room in the 419 * hypervisor's output buffer. 420 */ 421 enable_tx_interrupt(bc); 422 else 423 disable_tx_interrupt(bc); 424 spin_unlock_irqrestore(&bc->lock, flags); 425 } 426 427 /* 428 * byte channel transmit interrupt handler 429 * 430 * This ISR is called whenever space becomes available for transmitting 431 * characters on a byte channel. 432 */ 433 static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data) 434 { 435 struct ehv_bc_data *bc = data; 436 437 ehv_bc_tx_dequeue(bc); 438 tty_port_tty_wakeup(&bc->port); 439 440 return IRQ_HANDLED; 441 } 442 443 /* 444 * This function is called when the tty layer has data for us send. We store 445 * the data first in a circular buffer, and then dequeue as much of that data 446 * as possible. 447 * 448 * We don't need to worry about whether there is enough room in the buffer for 449 * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty 450 * layer how much data it can safely send to us. We guarantee that 451 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us 452 * too much data. 453 */ 454 static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s, 455 int count) 456 { 457 struct ehv_bc_data *bc = ttys->driver_data; 458 unsigned long flags; 459 unsigned int len; 460 unsigned int written = 0; 461 462 while (1) { 463 spin_lock_irqsave(&bc->lock, flags); 464 len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE); 465 if (count < len) 466 len = count; 467 if (len) { 468 memcpy(bc->buf + bc->head, s, len); 469 bc->head = (bc->head + len) & (BUF_SIZE - 1); 470 } 471 spin_unlock_irqrestore(&bc->lock, flags); 472 if (!len) 473 break; 474 475 s += len; 476 count -= len; 477 written += len; 478 } 479 480 ehv_bc_tx_dequeue(bc); 481 482 return written; 483 } 484 485 /* 486 * This function can be called multiple times for a given tty_struct, which is 487 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead. 488 * 489 * The tty layer will still call this function even if the device was not 490 * registered (i.e. tty_register_device() was not called). This happens 491 * because tty_register_device() is optional and some legacy drivers don't 492 * use it. So we need to check for that. 493 */ 494 static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp) 495 { 496 struct ehv_bc_data *bc = &bcs[ttys->index]; 497 498 if (!bc->dev) 499 return -ENODEV; 500 501 return tty_port_open(&bc->port, ttys, filp); 502 } 503 504 /* 505 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will 506 * still call this function to close the tty device. So we can't assume that 507 * the tty port has been initialized. 508 */ 509 static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp) 510 { 511 struct ehv_bc_data *bc = &bcs[ttys->index]; 512 513 if (bc->dev) 514 tty_port_close(&bc->port, ttys, filp); 515 } 516 517 /* 518 * Return the amount of space in the output buffer 519 * 520 * This is actually a contract between the driver and the tty layer outlining 521 * how much write room the driver can guarantee will be sent OR BUFFERED. This 522 * driver MUST honor the return value. 523 */ 524 static int ehv_bc_tty_write_room(struct tty_struct *ttys) 525 { 526 struct ehv_bc_data *bc = ttys->driver_data; 527 unsigned long flags; 528 int count; 529 530 spin_lock_irqsave(&bc->lock, flags); 531 count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE); 532 spin_unlock_irqrestore(&bc->lock, flags); 533 534 return count; 535 } 536 537 /* 538 * Stop sending data to the tty layer 539 * 540 * This function is called when the tty layer's input buffers are getting full, 541 * so the driver should stop sending it data. The easiest way to do this is to 542 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being 543 * called. 544 * 545 * The hypervisor will continue to queue up any incoming data. If there is any 546 * data in the queue when the RX interrupt is enabled, we'll immediately get an 547 * RX interrupt. 548 */ 549 static void ehv_bc_tty_throttle(struct tty_struct *ttys) 550 { 551 struct ehv_bc_data *bc = ttys->driver_data; 552 553 disable_irq(bc->rx_irq); 554 } 555 556 /* 557 * Resume sending data to the tty layer 558 * 559 * This function is called after previously calling ehv_bc_tty_throttle(). The 560 * tty layer's input buffers now have more room, so the driver can resume 561 * sending it data. 562 */ 563 static void ehv_bc_tty_unthrottle(struct tty_struct *ttys) 564 { 565 struct ehv_bc_data *bc = ttys->driver_data; 566 567 /* If there is any data in the queue when the RX interrupt is enabled, 568 * we'll immediately get an RX interrupt. 569 */ 570 enable_irq(bc->rx_irq); 571 } 572 573 static void ehv_bc_tty_hangup(struct tty_struct *ttys) 574 { 575 struct ehv_bc_data *bc = ttys->driver_data; 576 577 ehv_bc_tx_dequeue(bc); 578 tty_port_hangup(&bc->port); 579 } 580 581 /* 582 * TTY driver operations 583 * 584 * If we could ask the hypervisor how much data is still in the TX buffer, or 585 * at least how big the TX buffers are, then we could implement the 586 * .wait_until_sent and .chars_in_buffer functions. 587 */ 588 static const struct tty_operations ehv_bc_ops = { 589 .open = ehv_bc_tty_open, 590 .close = ehv_bc_tty_close, 591 .write = ehv_bc_tty_write, 592 .write_room = ehv_bc_tty_write_room, 593 .throttle = ehv_bc_tty_throttle, 594 .unthrottle = ehv_bc_tty_unthrottle, 595 .hangup = ehv_bc_tty_hangup, 596 }; 597 598 /* 599 * initialize the TTY port 600 * 601 * This function will only be called once, no matter how many times 602 * ehv_bc_tty_open() is called. That's why we register the ISR here, and also 603 * why we initialize tty_struct-related variables here. 604 */ 605 static int ehv_bc_tty_port_activate(struct tty_port *port, 606 struct tty_struct *ttys) 607 { 608 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); 609 int ret; 610 611 ttys->driver_data = bc; 612 613 ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc); 614 if (ret < 0) { 615 dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n", 616 bc->rx_irq, ret); 617 return ret; 618 } 619 620 /* request_irq also enables the IRQ */ 621 bc->tx_irq_enabled = 1; 622 623 ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc); 624 if (ret < 0) { 625 dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n", 626 bc->tx_irq, ret); 627 free_irq(bc->rx_irq, bc); 628 return ret; 629 } 630 631 /* The TX IRQ is enabled only when we can't write all the data to the 632 * byte channel at once, so by default it's disabled. 633 */ 634 disable_tx_interrupt(bc); 635 636 return 0; 637 } 638 639 static void ehv_bc_tty_port_shutdown(struct tty_port *port) 640 { 641 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); 642 643 free_irq(bc->tx_irq, bc); 644 free_irq(bc->rx_irq, bc); 645 } 646 647 static const struct tty_port_operations ehv_bc_tty_port_ops = { 648 .activate = ehv_bc_tty_port_activate, 649 .shutdown = ehv_bc_tty_port_shutdown, 650 }; 651 652 static int ehv_bc_tty_probe(struct platform_device *pdev) 653 { 654 struct device_node *np = pdev->dev.of_node; 655 struct ehv_bc_data *bc; 656 const uint32_t *iprop; 657 unsigned int handle; 658 int ret; 659 static unsigned int index = 1; 660 unsigned int i; 661 662 iprop = of_get_property(np, "hv-handle", NULL); 663 if (!iprop) { 664 dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n", 665 np->name); 666 return -ENODEV; 667 } 668 669 /* We already told the console layer that the index for the console 670 * device is zero, so we need to make sure that we use that index when 671 * we probe the console byte channel node. 672 */ 673 handle = be32_to_cpu(*iprop); 674 i = (handle == stdout_bc) ? 0 : index++; 675 bc = &bcs[i]; 676 677 bc->handle = handle; 678 bc->head = 0; 679 bc->tail = 0; 680 spin_lock_init(&bc->lock); 681 682 bc->rx_irq = irq_of_parse_and_map(np, 0); 683 bc->tx_irq = irq_of_parse_and_map(np, 1); 684 if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) { 685 dev_err(&pdev->dev, "no 'interrupts' property in %s node\n", 686 np->name); 687 ret = -ENODEV; 688 goto error; 689 } 690 691 tty_port_init(&bc->port); 692 bc->port.ops = &ehv_bc_tty_port_ops; 693 694 bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i, 695 &pdev->dev); 696 if (IS_ERR(bc->dev)) { 697 ret = PTR_ERR(bc->dev); 698 dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret); 699 goto error; 700 } 701 702 dev_set_drvdata(&pdev->dev, bc); 703 704 dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n", 705 ehv_bc_driver->name, i, bc->handle); 706 707 return 0; 708 709 error: 710 tty_port_destroy(&bc->port); 711 irq_dispose_mapping(bc->tx_irq); 712 irq_dispose_mapping(bc->rx_irq); 713 714 memset(bc, 0, sizeof(struct ehv_bc_data)); 715 return ret; 716 } 717 718 static const struct of_device_id ehv_bc_tty_of_ids[] = { 719 { .compatible = "epapr,hv-byte-channel" }, 720 {} 721 }; 722 723 static struct platform_driver ehv_bc_tty_driver = { 724 .driver = { 725 .name = "ehv-bc", 726 .of_match_table = ehv_bc_tty_of_ids, 727 .suppress_bind_attrs = true, 728 }, 729 .probe = ehv_bc_tty_probe, 730 }; 731 732 /** 733 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization 734 * 735 * This function is called when this driver is loaded. 736 */ 737 static int __init ehv_bc_init(void) 738 { 739 struct device_node *np; 740 unsigned int count = 0; /* Number of elements in bcs[] */ 741 int ret; 742 743 pr_info("ePAPR hypervisor byte channel driver\n"); 744 745 /* Count the number of byte channels */ 746 for_each_compatible_node(np, NULL, "epapr,hv-byte-channel") 747 count++; 748 749 if (!count) 750 return -ENODEV; 751 752 /* The array index of an element in bcs[] is the same as the tty index 753 * for that element. If you know the address of an element in the 754 * array, then you can use pointer math (e.g. "bc - bcs") to get its 755 * tty index. 756 */ 757 bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL); 758 if (!bcs) 759 return -ENOMEM; 760 761 ehv_bc_driver = alloc_tty_driver(count); 762 if (!ehv_bc_driver) { 763 ret = -ENOMEM; 764 goto err_free_bcs; 765 } 766 767 ehv_bc_driver->driver_name = "ehv-bc"; 768 ehv_bc_driver->name = ehv_bc_console.name; 769 ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE; 770 ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE; 771 ehv_bc_driver->init_termios = tty_std_termios; 772 ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; 773 tty_set_operations(ehv_bc_driver, &ehv_bc_ops); 774 775 ret = tty_register_driver(ehv_bc_driver); 776 if (ret) { 777 pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret); 778 goto err_put_tty_driver; 779 } 780 781 ret = platform_driver_register(&ehv_bc_tty_driver); 782 if (ret) { 783 pr_err("ehv-bc: could not register platform driver (ret=%i)\n", 784 ret); 785 goto err_deregister_tty_driver; 786 } 787 788 return 0; 789 790 err_deregister_tty_driver: 791 tty_unregister_driver(ehv_bc_driver); 792 err_put_tty_driver: 793 put_tty_driver(ehv_bc_driver); 794 err_free_bcs: 795 kfree(bcs); 796 797 return ret; 798 } 799 device_initcall(ehv_bc_init); 800