xref: /openbmc/linux/drivers/tty/ehv_bytechan.c (revision 781095f903f398148cd0b646d3984234a715f29e)
1 /* ePAPR hypervisor byte channel device driver
2  *
3  * Copyright 2009-2011 Freescale Semiconductor, Inc.
4  *
5  * Author: Timur Tabi <timur@freescale.com>
6  *
7  * This file is licensed under the terms of the GNU General Public License
8  * version 2.  This program is licensed "as is" without any warranty of any
9  * kind, whether express or implied.
10  *
11  * This driver support three distinct interfaces, all of which are related to
12  * ePAPR hypervisor byte channels.
13  *
14  * 1) An early-console (udbg) driver.  This provides early console output
15  * through a byte channel.  The byte channel handle must be specified in a
16  * Kconfig option.
17  *
18  * 2) A normal console driver.  Output is sent to the byte channel designated
19  * for stdout in the device tree.  The console driver is for handling kernel
20  * printk calls.
21  *
22  * 3) A tty driver, which is used to handle user-space input and output.  The
23  * byte channel used for the console is designated as the default tty.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/slab.h>
29 #include <linux/err.h>
30 #include <linux/interrupt.h>
31 #include <linux/fs.h>
32 #include <linux/poll.h>
33 #include <asm/epapr_hcalls.h>
34 #include <linux/of.h>
35 #include <linux/of_irq.h>
36 #include <linux/platform_device.h>
37 #include <linux/cdev.h>
38 #include <linux/console.h>
39 #include <linux/tty.h>
40 #include <linux/tty_flip.h>
41 #include <linux/circ_buf.h>
42 #include <asm/udbg.h>
43 
44 /* The size of the transmit circular buffer.  This must be a power of two. */
45 #define BUF_SIZE	2048
46 
47 /* Per-byte channel private data */
48 struct ehv_bc_data {
49 	struct device *dev;
50 	struct tty_port port;
51 	uint32_t handle;
52 	unsigned int rx_irq;
53 	unsigned int tx_irq;
54 
55 	spinlock_t lock;	/* lock for transmit buffer */
56 	unsigned char buf[BUF_SIZE];	/* transmit circular buffer */
57 	unsigned int head;	/* circular buffer head */
58 	unsigned int tail;	/* circular buffer tail */
59 
60 	int tx_irq_enabled;	/* true == TX interrupt is enabled */
61 };
62 
63 /* Array of byte channel objects */
64 static struct ehv_bc_data *bcs;
65 
66 /* Byte channel handle for stdout (and stdin), taken from device tree */
67 static unsigned int stdout_bc;
68 
69 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
70 static unsigned int stdout_irq;
71 
72 /**************************** SUPPORT FUNCTIONS ****************************/
73 
74 /*
75  * Enable the transmit interrupt
76  *
77  * Unlike a serial device, byte channels have no mechanism for disabling their
78  * own receive or transmit interrupts.  To emulate that feature, we toggle
79  * the IRQ in the kernel.
80  *
81  * We cannot just blindly call enable_irq() or disable_irq(), because these
82  * calls are reference counted.  This means that we cannot call enable_irq()
83  * if interrupts are already enabled.  This can happen in two situations:
84  *
85  * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
86  * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
87  *
88  * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
89  */
90 static void enable_tx_interrupt(struct ehv_bc_data *bc)
91 {
92 	if (!bc->tx_irq_enabled) {
93 		enable_irq(bc->tx_irq);
94 		bc->tx_irq_enabled = 1;
95 	}
96 }
97 
98 static void disable_tx_interrupt(struct ehv_bc_data *bc)
99 {
100 	if (bc->tx_irq_enabled) {
101 		disable_irq_nosync(bc->tx_irq);
102 		bc->tx_irq_enabled = 0;
103 	}
104 }
105 
106 /*
107  * find the byte channel handle to use for the console
108  *
109  * The byte channel to be used for the console is specified via a "stdout"
110  * property in the /chosen node.
111  */
112 static int find_console_handle(void)
113 {
114 	struct device_node *np = of_stdout;
115 	const uint32_t *iprop;
116 
117 	/* We don't care what the aliased node is actually called.  We only
118 	 * care if it's compatible with "epapr,hv-byte-channel", because that
119 	 * indicates that it's a byte channel node.
120 	 */
121 	if (!np || !of_device_is_compatible(np, "epapr,hv-byte-channel"))
122 		return 0;
123 
124 	stdout_irq = irq_of_parse_and_map(np, 0);
125 	if (stdout_irq == NO_IRQ) {
126 		pr_err("ehv-bc: no 'interrupts' property in %s node\n", np->full_name);
127 		return 0;
128 	}
129 
130 	/*
131 	 * The 'hv-handle' property contains the handle for this byte channel.
132 	 */
133 	iprop = of_get_property(np, "hv-handle", NULL);
134 	if (!iprop) {
135 		pr_err("ehv-bc: no 'hv-handle' property in %s node\n",
136 		       np->name);
137 		return 0;
138 	}
139 	stdout_bc = be32_to_cpu(*iprop);
140 	return 1;
141 }
142 
143 /*************************** EARLY CONSOLE DRIVER ***************************/
144 
145 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
146 
147 /*
148  * send a byte to a byte channel, wait if necessary
149  *
150  * This function sends a byte to a byte channel, and it waits and
151  * retries if the byte channel is full.  It returns if the character
152  * has been sent, or if some error has occurred.
153  *
154  */
155 static void byte_channel_spin_send(const char data)
156 {
157 	int ret, count;
158 
159 	do {
160 		count = 1;
161 		ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
162 					   &count, &data);
163 	} while (ret == EV_EAGAIN);
164 }
165 
166 /*
167  * The udbg subsystem calls this function to display a single character.
168  * We convert CR to a CR/LF.
169  */
170 static void ehv_bc_udbg_putc(char c)
171 {
172 	if (c == '\n')
173 		byte_channel_spin_send('\r');
174 
175 	byte_channel_spin_send(c);
176 }
177 
178 /*
179  * early console initialization
180  *
181  * PowerPC kernels support an early printk console, also known as udbg.
182  * This function must be called via the ppc_md.init_early function pointer.
183  * At this point, the device tree has been unflattened, so we can obtain the
184  * byte channel handle for stdout.
185  *
186  * We only support displaying of characters (putc).  We do not support
187  * keyboard input.
188  */
189 void __init udbg_init_ehv_bc(void)
190 {
191 	unsigned int rx_count, tx_count;
192 	unsigned int ret;
193 
194 	/* Verify the byte channel handle */
195 	ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
196 				   &rx_count, &tx_count);
197 	if (ret)
198 		return;
199 
200 	udbg_putc = ehv_bc_udbg_putc;
201 	register_early_udbg_console();
202 
203 	udbg_printf("ehv-bc: early console using byte channel handle %u\n",
204 		    CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
205 }
206 
207 #endif
208 
209 /****************************** CONSOLE DRIVER ******************************/
210 
211 static struct tty_driver *ehv_bc_driver;
212 
213 /*
214  * Byte channel console sending worker function.
215  *
216  * For consoles, if the output buffer is full, we should just spin until it
217  * clears.
218  */
219 static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s,
220 			     unsigned int count)
221 {
222 	unsigned int len;
223 	int ret = 0;
224 
225 	while (count) {
226 		len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES);
227 		do {
228 			ret = ev_byte_channel_send(handle, &len, s);
229 		} while (ret == EV_EAGAIN);
230 		count -= len;
231 		s += len;
232 	}
233 
234 	return ret;
235 }
236 
237 /*
238  * write a string to the console
239  *
240  * This function gets called to write a string from the kernel, typically from
241  * a printk().  This function spins until all data is written.
242  *
243  * We copy the data to a temporary buffer because we need to insert a \r in
244  * front of every \n.  It's more efficient to copy the data to the buffer than
245  * it is to make multiple hcalls for each character or each newline.
246  */
247 static void ehv_bc_console_write(struct console *co, const char *s,
248 				 unsigned int count)
249 {
250 	char s2[EV_BYTE_CHANNEL_MAX_BYTES];
251 	unsigned int i, j = 0;
252 	char c;
253 
254 	for (i = 0; i < count; i++) {
255 		c = *s++;
256 
257 		if (c == '\n')
258 			s2[j++] = '\r';
259 
260 		s2[j++] = c;
261 		if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) {
262 			if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j))
263 				return;
264 			j = 0;
265 		}
266 	}
267 
268 	if (j)
269 		ehv_bc_console_byte_channel_send(stdout_bc, s2, j);
270 }
271 
272 /*
273  * When /dev/console is opened, the kernel iterates the console list looking
274  * for one with ->device and then calls that method. On success, it expects
275  * the passed-in int* to contain the minor number to use.
276  */
277 static struct tty_driver *ehv_bc_console_device(struct console *co, int *index)
278 {
279 	*index = co->index;
280 
281 	return ehv_bc_driver;
282 }
283 
284 static struct console ehv_bc_console = {
285 	.name		= "ttyEHV",
286 	.write		= ehv_bc_console_write,
287 	.device		= ehv_bc_console_device,
288 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
289 };
290 
291 /*
292  * Console initialization
293  *
294  * This is the first function that is called after the device tree is
295  * available, so here is where we determine the byte channel handle and IRQ for
296  * stdout/stdin, even though that information is used by the tty and character
297  * drivers.
298  */
299 static int __init ehv_bc_console_init(void)
300 {
301 	if (!find_console_handle()) {
302 		pr_debug("ehv-bc: stdout is not a byte channel\n");
303 		return -ENODEV;
304 	}
305 
306 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
307 	/* Print a friendly warning if the user chose the wrong byte channel
308 	 * handle for udbg.
309 	 */
310 	if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE)
311 		pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n",
312 			CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
313 #endif
314 
315 	/* add_preferred_console() must be called before register_console(),
316 	   otherwise it won't work.  However, we don't want to enumerate all the
317 	   byte channels here, either, since we only care about one. */
318 
319 	add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL);
320 	register_console(&ehv_bc_console);
321 
322 	pr_info("ehv-bc: registered console driver for byte channel %u\n",
323 		stdout_bc);
324 
325 	return 0;
326 }
327 console_initcall(ehv_bc_console_init);
328 
329 /******************************** TTY DRIVER ********************************/
330 
331 /*
332  * byte channel receive interupt handler
333  *
334  * This ISR is called whenever data is available on a byte channel.
335  */
336 static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data)
337 {
338 	struct ehv_bc_data *bc = data;
339 	unsigned int rx_count, tx_count, len;
340 	int count;
341 	char buffer[EV_BYTE_CHANNEL_MAX_BYTES];
342 	int ret;
343 
344 	/* Find out how much data needs to be read, and then ask the TTY layer
345 	 * if it can handle that much.  We want to ensure that every byte we
346 	 * read from the byte channel will be accepted by the TTY layer.
347 	 */
348 	ev_byte_channel_poll(bc->handle, &rx_count, &tx_count);
349 	count = tty_buffer_request_room(&bc->port, rx_count);
350 
351 	/* 'count' is the maximum amount of data the TTY layer can accept at
352 	 * this time.  However, during testing, I was never able to get 'count'
353 	 * to be less than 'rx_count'.  I'm not sure whether I'm calling it
354 	 * correctly.
355 	 */
356 
357 	while (count > 0) {
358 		len = min_t(unsigned int, count, sizeof(buffer));
359 
360 		/* Read some data from the byte channel.  This function will
361 		 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
362 		 */
363 		ev_byte_channel_receive(bc->handle, &len, buffer);
364 
365 		/* 'len' is now the amount of data that's been received. 'len'
366 		 * can't be zero, and most likely it's equal to one.
367 		 */
368 
369 		/* Pass the received data to the tty layer. */
370 		ret = tty_insert_flip_string(&bc->port, buffer, len);
371 
372 		/* 'ret' is the number of bytes that the TTY layer accepted.
373 		 * If it's not equal to 'len', then it means the buffer is
374 		 * full, which should never happen.  If it does happen, we can
375 		 * exit gracefully, but we drop the last 'len - ret' characters
376 		 * that we read from the byte channel.
377 		 */
378 		if (ret != len)
379 			break;
380 
381 		count -= len;
382 	}
383 
384 	/* Tell the tty layer that we're done. */
385 	tty_flip_buffer_push(&bc->port);
386 
387 	return IRQ_HANDLED;
388 }
389 
390 /*
391  * dequeue the transmit buffer to the hypervisor
392  *
393  * This function, which can be called in interrupt context, dequeues as much
394  * data as possible from the transmit buffer to the byte channel.
395  */
396 static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc)
397 {
398 	unsigned int count;
399 	unsigned int len, ret;
400 	unsigned long flags;
401 
402 	do {
403 		spin_lock_irqsave(&bc->lock, flags);
404 		len = min_t(unsigned int,
405 			    CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE),
406 			    EV_BYTE_CHANNEL_MAX_BYTES);
407 
408 		ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail);
409 
410 		/* 'len' is valid only if the return code is 0 or EV_EAGAIN */
411 		if (!ret || (ret == EV_EAGAIN))
412 			bc->tail = (bc->tail + len) & (BUF_SIZE - 1);
413 
414 		count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE);
415 		spin_unlock_irqrestore(&bc->lock, flags);
416 	} while (count && !ret);
417 
418 	spin_lock_irqsave(&bc->lock, flags);
419 	if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE))
420 		/*
421 		 * If we haven't emptied the buffer, then enable the TX IRQ.
422 		 * We'll get an interrupt when there's more room in the
423 		 * hypervisor's output buffer.
424 		 */
425 		enable_tx_interrupt(bc);
426 	else
427 		disable_tx_interrupt(bc);
428 	spin_unlock_irqrestore(&bc->lock, flags);
429 }
430 
431 /*
432  * byte channel transmit interupt handler
433  *
434  * This ISR is called whenever space becomes available for transmitting
435  * characters on a byte channel.
436  */
437 static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data)
438 {
439 	struct ehv_bc_data *bc = data;
440 
441 	ehv_bc_tx_dequeue(bc);
442 	tty_port_tty_wakeup(&bc->port);
443 
444 	return IRQ_HANDLED;
445 }
446 
447 /*
448  * This function is called when the tty layer has data for us send.  We store
449  * the data first in a circular buffer, and then dequeue as much of that data
450  * as possible.
451  *
452  * We don't need to worry about whether there is enough room in the buffer for
453  * all the data.  The purpose of ehv_bc_tty_write_room() is to tell the tty
454  * layer how much data it can safely send to us.  We guarantee that
455  * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
456  * too much data.
457  */
458 static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s,
459 			    int count)
460 {
461 	struct ehv_bc_data *bc = ttys->driver_data;
462 	unsigned long flags;
463 	unsigned int len;
464 	unsigned int written = 0;
465 
466 	while (1) {
467 		spin_lock_irqsave(&bc->lock, flags);
468 		len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE);
469 		if (count < len)
470 			len = count;
471 		if (len) {
472 			memcpy(bc->buf + bc->head, s, len);
473 			bc->head = (bc->head + len) & (BUF_SIZE - 1);
474 		}
475 		spin_unlock_irqrestore(&bc->lock, flags);
476 		if (!len)
477 			break;
478 
479 		s += len;
480 		count -= len;
481 		written += len;
482 	}
483 
484 	ehv_bc_tx_dequeue(bc);
485 
486 	return written;
487 }
488 
489 /*
490  * This function can be called multiple times for a given tty_struct, which is
491  * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
492  *
493  * The tty layer will still call this function even if the device was not
494  * registered (i.e. tty_register_device() was not called).  This happens
495  * because tty_register_device() is optional and some legacy drivers don't
496  * use it.  So we need to check for that.
497  */
498 static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp)
499 {
500 	struct ehv_bc_data *bc = &bcs[ttys->index];
501 
502 	if (!bc->dev)
503 		return -ENODEV;
504 
505 	return tty_port_open(&bc->port, ttys, filp);
506 }
507 
508 /*
509  * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
510  * still call this function to close the tty device.  So we can't assume that
511  * the tty port has been initialized.
512  */
513 static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp)
514 {
515 	struct ehv_bc_data *bc = &bcs[ttys->index];
516 
517 	if (bc->dev)
518 		tty_port_close(&bc->port, ttys, filp);
519 }
520 
521 /*
522  * Return the amount of space in the output buffer
523  *
524  * This is actually a contract between the driver and the tty layer outlining
525  * how much write room the driver can guarantee will be sent OR BUFFERED.  This
526  * driver MUST honor the return value.
527  */
528 static int ehv_bc_tty_write_room(struct tty_struct *ttys)
529 {
530 	struct ehv_bc_data *bc = ttys->driver_data;
531 	unsigned long flags;
532 	int count;
533 
534 	spin_lock_irqsave(&bc->lock, flags);
535 	count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE);
536 	spin_unlock_irqrestore(&bc->lock, flags);
537 
538 	return count;
539 }
540 
541 /*
542  * Stop sending data to the tty layer
543  *
544  * This function is called when the tty layer's input buffers are getting full,
545  * so the driver should stop sending it data.  The easiest way to do this is to
546  * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
547  * called.
548  *
549  * The hypervisor will continue to queue up any incoming data.  If there is any
550  * data in the queue when the RX interrupt is enabled, we'll immediately get an
551  * RX interrupt.
552  */
553 static void ehv_bc_tty_throttle(struct tty_struct *ttys)
554 {
555 	struct ehv_bc_data *bc = ttys->driver_data;
556 
557 	disable_irq(bc->rx_irq);
558 }
559 
560 /*
561  * Resume sending data to the tty layer
562  *
563  * This function is called after previously calling ehv_bc_tty_throttle().  The
564  * tty layer's input buffers now have more room, so the driver can resume
565  * sending it data.
566  */
567 static void ehv_bc_tty_unthrottle(struct tty_struct *ttys)
568 {
569 	struct ehv_bc_data *bc = ttys->driver_data;
570 
571 	/* If there is any data in the queue when the RX interrupt is enabled,
572 	 * we'll immediately get an RX interrupt.
573 	 */
574 	enable_irq(bc->rx_irq);
575 }
576 
577 static void ehv_bc_tty_hangup(struct tty_struct *ttys)
578 {
579 	struct ehv_bc_data *bc = ttys->driver_data;
580 
581 	ehv_bc_tx_dequeue(bc);
582 	tty_port_hangup(&bc->port);
583 }
584 
585 /*
586  * TTY driver operations
587  *
588  * If we could ask the hypervisor how much data is still in the TX buffer, or
589  * at least how big the TX buffers are, then we could implement the
590  * .wait_until_sent and .chars_in_buffer functions.
591  */
592 static const struct tty_operations ehv_bc_ops = {
593 	.open		= ehv_bc_tty_open,
594 	.close		= ehv_bc_tty_close,
595 	.write		= ehv_bc_tty_write,
596 	.write_room	= ehv_bc_tty_write_room,
597 	.throttle	= ehv_bc_tty_throttle,
598 	.unthrottle	= ehv_bc_tty_unthrottle,
599 	.hangup		= ehv_bc_tty_hangup,
600 };
601 
602 /*
603  * initialize the TTY port
604  *
605  * This function will only be called once, no matter how many times
606  * ehv_bc_tty_open() is called.  That's why we register the ISR here, and also
607  * why we initialize tty_struct-related variables here.
608  */
609 static int ehv_bc_tty_port_activate(struct tty_port *port,
610 				    struct tty_struct *ttys)
611 {
612 	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
613 	int ret;
614 
615 	ttys->driver_data = bc;
616 
617 	ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc);
618 	if (ret < 0) {
619 		dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n",
620 		       bc->rx_irq, ret);
621 		return ret;
622 	}
623 
624 	/* request_irq also enables the IRQ */
625 	bc->tx_irq_enabled = 1;
626 
627 	ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc);
628 	if (ret < 0) {
629 		dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n",
630 		       bc->tx_irq, ret);
631 		free_irq(bc->rx_irq, bc);
632 		return ret;
633 	}
634 
635 	/* The TX IRQ is enabled only when we can't write all the data to the
636 	 * byte channel at once, so by default it's disabled.
637 	 */
638 	disable_tx_interrupt(bc);
639 
640 	return 0;
641 }
642 
643 static void ehv_bc_tty_port_shutdown(struct tty_port *port)
644 {
645 	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
646 
647 	free_irq(bc->tx_irq, bc);
648 	free_irq(bc->rx_irq, bc);
649 }
650 
651 static const struct tty_port_operations ehv_bc_tty_port_ops = {
652 	.activate = ehv_bc_tty_port_activate,
653 	.shutdown = ehv_bc_tty_port_shutdown,
654 };
655 
656 static int ehv_bc_tty_probe(struct platform_device *pdev)
657 {
658 	struct device_node *np = pdev->dev.of_node;
659 	struct ehv_bc_data *bc;
660 	const uint32_t *iprop;
661 	unsigned int handle;
662 	int ret;
663 	static unsigned int index = 1;
664 	unsigned int i;
665 
666 	iprop = of_get_property(np, "hv-handle", NULL);
667 	if (!iprop) {
668 		dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n",
669 			np->name);
670 		return -ENODEV;
671 	}
672 
673 	/* We already told the console layer that the index for the console
674 	 * device is zero, so we need to make sure that we use that index when
675 	 * we probe the console byte channel node.
676 	 */
677 	handle = be32_to_cpu(*iprop);
678 	i = (handle == stdout_bc) ? 0 : index++;
679 	bc = &bcs[i];
680 
681 	bc->handle = handle;
682 	bc->head = 0;
683 	bc->tail = 0;
684 	spin_lock_init(&bc->lock);
685 
686 	bc->rx_irq = irq_of_parse_and_map(np, 0);
687 	bc->tx_irq = irq_of_parse_and_map(np, 1);
688 	if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) {
689 		dev_err(&pdev->dev, "no 'interrupts' property in %s node\n",
690 			np->name);
691 		ret = -ENODEV;
692 		goto error;
693 	}
694 
695 	tty_port_init(&bc->port);
696 	bc->port.ops = &ehv_bc_tty_port_ops;
697 
698 	bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i,
699 			&pdev->dev);
700 	if (IS_ERR(bc->dev)) {
701 		ret = PTR_ERR(bc->dev);
702 		dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret);
703 		goto error;
704 	}
705 
706 	dev_set_drvdata(&pdev->dev, bc);
707 
708 	dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n",
709 		ehv_bc_driver->name, i, bc->handle);
710 
711 	return 0;
712 
713 error:
714 	tty_port_destroy(&bc->port);
715 	irq_dispose_mapping(bc->tx_irq);
716 	irq_dispose_mapping(bc->rx_irq);
717 
718 	memset(bc, 0, sizeof(struct ehv_bc_data));
719 	return ret;
720 }
721 
722 static int ehv_bc_tty_remove(struct platform_device *pdev)
723 {
724 	struct ehv_bc_data *bc = dev_get_drvdata(&pdev->dev);
725 
726 	tty_unregister_device(ehv_bc_driver, bc - bcs);
727 
728 	tty_port_destroy(&bc->port);
729 	irq_dispose_mapping(bc->tx_irq);
730 	irq_dispose_mapping(bc->rx_irq);
731 
732 	return 0;
733 }
734 
735 static const struct of_device_id ehv_bc_tty_of_ids[] = {
736 	{ .compatible = "epapr,hv-byte-channel" },
737 	{}
738 };
739 
740 static struct platform_driver ehv_bc_tty_driver = {
741 	.driver = {
742 		.name = "ehv-bc",
743 		.of_match_table = ehv_bc_tty_of_ids,
744 	},
745 	.probe		= ehv_bc_tty_probe,
746 	.remove		= ehv_bc_tty_remove,
747 };
748 
749 /**
750  * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
751  *
752  * This function is called when this module is loaded.
753  */
754 static int __init ehv_bc_init(void)
755 {
756 	struct device_node *np;
757 	unsigned int count = 0; /* Number of elements in bcs[] */
758 	int ret;
759 
760 	pr_info("ePAPR hypervisor byte channel driver\n");
761 
762 	/* Count the number of byte channels */
763 	for_each_compatible_node(np, NULL, "epapr,hv-byte-channel")
764 		count++;
765 
766 	if (!count)
767 		return -ENODEV;
768 
769 	/* The array index of an element in bcs[] is the same as the tty index
770 	 * for that element.  If you know the address of an element in the
771 	 * array, then you can use pointer math (e.g. "bc - bcs") to get its
772 	 * tty index.
773 	 */
774 	bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL);
775 	if (!bcs)
776 		return -ENOMEM;
777 
778 	ehv_bc_driver = alloc_tty_driver(count);
779 	if (!ehv_bc_driver) {
780 		ret = -ENOMEM;
781 		goto error;
782 	}
783 
784 	ehv_bc_driver->driver_name = "ehv-bc";
785 	ehv_bc_driver->name = ehv_bc_console.name;
786 	ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE;
787 	ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE;
788 	ehv_bc_driver->init_termios = tty_std_termios;
789 	ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
790 	tty_set_operations(ehv_bc_driver, &ehv_bc_ops);
791 
792 	ret = tty_register_driver(ehv_bc_driver);
793 	if (ret) {
794 		pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret);
795 		goto error;
796 	}
797 
798 	ret = platform_driver_register(&ehv_bc_tty_driver);
799 	if (ret) {
800 		pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
801 		       ret);
802 		goto error;
803 	}
804 
805 	return 0;
806 
807 error:
808 	if (ehv_bc_driver) {
809 		tty_unregister_driver(ehv_bc_driver);
810 		put_tty_driver(ehv_bc_driver);
811 	}
812 
813 	kfree(bcs);
814 
815 	return ret;
816 }
817 
818 
819 /**
820  * ehv_bc_exit - ePAPR hypervisor byte channel driver termination
821  *
822  * This function is called when this driver is unloaded.
823  */
824 static void __exit ehv_bc_exit(void)
825 {
826 	platform_driver_unregister(&ehv_bc_tty_driver);
827 	tty_unregister_driver(ehv_bc_driver);
828 	put_tty_driver(ehv_bc_driver);
829 	kfree(bcs);
830 }
831 
832 module_init(ehv_bc_init);
833 module_exit(ehv_bc_exit);
834 
835 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
836 MODULE_DESCRIPTION("ePAPR hypervisor byte channel driver");
837 MODULE_LICENSE("GPL v2");
838