xref: /openbmc/linux/drivers/tty/ehv_bytechan.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /* ePAPR hypervisor byte channel device driver
2  *
3  * Copyright 2009-2011 Freescale Semiconductor, Inc.
4  *
5  * Author: Timur Tabi <timur@freescale.com>
6  *
7  * This file is licensed under the terms of the GNU General Public License
8  * version 2.  This program is licensed "as is" without any warranty of any
9  * kind, whether express or implied.
10  *
11  * This driver support three distinct interfaces, all of which are related to
12  * ePAPR hypervisor byte channels.
13  *
14  * 1) An early-console (udbg) driver.  This provides early console output
15  * through a byte channel.  The byte channel handle must be specified in a
16  * Kconfig option.
17  *
18  * 2) A normal console driver.  Output is sent to the byte channel designated
19  * for stdout in the device tree.  The console driver is for handling kernel
20  * printk calls.
21  *
22  * 3) A tty driver, which is used to handle user-space input and output.  The
23  * byte channel used for the console is designated as the default tty.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
29 #include <linux/interrupt.h>
30 #include <linux/fs.h>
31 #include <linux/poll.h>
32 #include <asm/epapr_hcalls.h>
33 #include <linux/of.h>
34 #include <linux/of_irq.h>
35 #include <linux/platform_device.h>
36 #include <linux/cdev.h>
37 #include <linux/console.h>
38 #include <linux/tty.h>
39 #include <linux/tty_flip.h>
40 #include <linux/circ_buf.h>
41 #include <asm/udbg.h>
42 
43 /* The size of the transmit circular buffer.  This must be a power of two. */
44 #define BUF_SIZE	2048
45 
46 /* Per-byte channel private data */
47 struct ehv_bc_data {
48 	struct device *dev;
49 	struct tty_port port;
50 	uint32_t handle;
51 	unsigned int rx_irq;
52 	unsigned int tx_irq;
53 
54 	spinlock_t lock;	/* lock for transmit buffer */
55 	unsigned char buf[BUF_SIZE];	/* transmit circular buffer */
56 	unsigned int head;	/* circular buffer head */
57 	unsigned int tail;	/* circular buffer tail */
58 
59 	int tx_irq_enabled;	/* true == TX interrupt is enabled */
60 };
61 
62 /* Array of byte channel objects */
63 static struct ehv_bc_data *bcs;
64 
65 /* Byte channel handle for stdout (and stdin), taken from device tree */
66 static unsigned int stdout_bc;
67 
68 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
69 static unsigned int stdout_irq;
70 
71 /**************************** SUPPORT FUNCTIONS ****************************/
72 
73 /*
74  * Enable the transmit interrupt
75  *
76  * Unlike a serial device, byte channels have no mechanism for disabling their
77  * own receive or transmit interrupts.  To emulate that feature, we toggle
78  * the IRQ in the kernel.
79  *
80  * We cannot just blindly call enable_irq() or disable_irq(), because these
81  * calls are reference counted.  This means that we cannot call enable_irq()
82  * if interrupts are already enabled.  This can happen in two situations:
83  *
84  * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
85  * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
86  *
87  * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
88  */
89 static void enable_tx_interrupt(struct ehv_bc_data *bc)
90 {
91 	if (!bc->tx_irq_enabled) {
92 		enable_irq(bc->tx_irq);
93 		bc->tx_irq_enabled = 1;
94 	}
95 }
96 
97 static void disable_tx_interrupt(struct ehv_bc_data *bc)
98 {
99 	if (bc->tx_irq_enabled) {
100 		disable_irq_nosync(bc->tx_irq);
101 		bc->tx_irq_enabled = 0;
102 	}
103 }
104 
105 /*
106  * find the byte channel handle to use for the console
107  *
108  * The byte channel to be used for the console is specified via a "stdout"
109  * property in the /chosen node.
110  */
111 static int find_console_handle(void)
112 {
113 	struct device_node *np = of_stdout;
114 	const uint32_t *iprop;
115 
116 	/* We don't care what the aliased node is actually called.  We only
117 	 * care if it's compatible with "epapr,hv-byte-channel", because that
118 	 * indicates that it's a byte channel node.
119 	 */
120 	if (!np || !of_device_is_compatible(np, "epapr,hv-byte-channel"))
121 		return 0;
122 
123 	stdout_irq = irq_of_parse_and_map(np, 0);
124 	if (stdout_irq == NO_IRQ) {
125 		pr_err("ehv-bc: no 'interrupts' property in %s node\n", np->full_name);
126 		return 0;
127 	}
128 
129 	/*
130 	 * The 'hv-handle' property contains the handle for this byte channel.
131 	 */
132 	iprop = of_get_property(np, "hv-handle", NULL);
133 	if (!iprop) {
134 		pr_err("ehv-bc: no 'hv-handle' property in %s node\n",
135 		       np->name);
136 		return 0;
137 	}
138 	stdout_bc = be32_to_cpu(*iprop);
139 	return 1;
140 }
141 
142 /*************************** EARLY CONSOLE DRIVER ***************************/
143 
144 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
145 
146 /*
147  * send a byte to a byte channel, wait if necessary
148  *
149  * This function sends a byte to a byte channel, and it waits and
150  * retries if the byte channel is full.  It returns if the character
151  * has been sent, or if some error has occurred.
152  *
153  */
154 static void byte_channel_spin_send(const char data)
155 {
156 	int ret, count;
157 
158 	do {
159 		count = 1;
160 		ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
161 					   &count, &data);
162 	} while (ret == EV_EAGAIN);
163 }
164 
165 /*
166  * The udbg subsystem calls this function to display a single character.
167  * We convert CR to a CR/LF.
168  */
169 static void ehv_bc_udbg_putc(char c)
170 {
171 	if (c == '\n')
172 		byte_channel_spin_send('\r');
173 
174 	byte_channel_spin_send(c);
175 }
176 
177 /*
178  * early console initialization
179  *
180  * PowerPC kernels support an early printk console, also known as udbg.
181  * This function must be called via the ppc_md.init_early function pointer.
182  * At this point, the device tree has been unflattened, so we can obtain the
183  * byte channel handle for stdout.
184  *
185  * We only support displaying of characters (putc).  We do not support
186  * keyboard input.
187  */
188 void __init udbg_init_ehv_bc(void)
189 {
190 	unsigned int rx_count, tx_count;
191 	unsigned int ret;
192 
193 	/* Verify the byte channel handle */
194 	ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
195 				   &rx_count, &tx_count);
196 	if (ret)
197 		return;
198 
199 	udbg_putc = ehv_bc_udbg_putc;
200 	register_early_udbg_console();
201 
202 	udbg_printf("ehv-bc: early console using byte channel handle %u\n",
203 		    CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
204 }
205 
206 #endif
207 
208 /****************************** CONSOLE DRIVER ******************************/
209 
210 static struct tty_driver *ehv_bc_driver;
211 
212 /*
213  * Byte channel console sending worker function.
214  *
215  * For consoles, if the output buffer is full, we should just spin until it
216  * clears.
217  */
218 static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s,
219 			     unsigned int count)
220 {
221 	unsigned int len;
222 	int ret = 0;
223 
224 	while (count) {
225 		len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES);
226 		do {
227 			ret = ev_byte_channel_send(handle, &len, s);
228 		} while (ret == EV_EAGAIN);
229 		count -= len;
230 		s += len;
231 	}
232 
233 	return ret;
234 }
235 
236 /*
237  * write a string to the console
238  *
239  * This function gets called to write a string from the kernel, typically from
240  * a printk().  This function spins until all data is written.
241  *
242  * We copy the data to a temporary buffer because we need to insert a \r in
243  * front of every \n.  It's more efficient to copy the data to the buffer than
244  * it is to make multiple hcalls for each character or each newline.
245  */
246 static void ehv_bc_console_write(struct console *co, const char *s,
247 				 unsigned int count)
248 {
249 	char s2[EV_BYTE_CHANNEL_MAX_BYTES];
250 	unsigned int i, j = 0;
251 	char c;
252 
253 	for (i = 0; i < count; i++) {
254 		c = *s++;
255 
256 		if (c == '\n')
257 			s2[j++] = '\r';
258 
259 		s2[j++] = c;
260 		if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) {
261 			if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j))
262 				return;
263 			j = 0;
264 		}
265 	}
266 
267 	if (j)
268 		ehv_bc_console_byte_channel_send(stdout_bc, s2, j);
269 }
270 
271 /*
272  * When /dev/console is opened, the kernel iterates the console list looking
273  * for one with ->device and then calls that method. On success, it expects
274  * the passed-in int* to contain the minor number to use.
275  */
276 static struct tty_driver *ehv_bc_console_device(struct console *co, int *index)
277 {
278 	*index = co->index;
279 
280 	return ehv_bc_driver;
281 }
282 
283 static struct console ehv_bc_console = {
284 	.name		= "ttyEHV",
285 	.write		= ehv_bc_console_write,
286 	.device		= ehv_bc_console_device,
287 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
288 };
289 
290 /*
291  * Console initialization
292  *
293  * This is the first function that is called after the device tree is
294  * available, so here is where we determine the byte channel handle and IRQ for
295  * stdout/stdin, even though that information is used by the tty and character
296  * drivers.
297  */
298 static int __init ehv_bc_console_init(void)
299 {
300 	if (!find_console_handle()) {
301 		pr_debug("ehv-bc: stdout is not a byte channel\n");
302 		return -ENODEV;
303 	}
304 
305 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
306 	/* Print a friendly warning if the user chose the wrong byte channel
307 	 * handle for udbg.
308 	 */
309 	if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE)
310 		pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n",
311 			CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
312 #endif
313 
314 	/* add_preferred_console() must be called before register_console(),
315 	   otherwise it won't work.  However, we don't want to enumerate all the
316 	   byte channels here, either, since we only care about one. */
317 
318 	add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL);
319 	register_console(&ehv_bc_console);
320 
321 	pr_info("ehv-bc: registered console driver for byte channel %u\n",
322 		stdout_bc);
323 
324 	return 0;
325 }
326 console_initcall(ehv_bc_console_init);
327 
328 /******************************** TTY DRIVER ********************************/
329 
330 /*
331  * byte channel receive interupt handler
332  *
333  * This ISR is called whenever data is available on a byte channel.
334  */
335 static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data)
336 {
337 	struct ehv_bc_data *bc = data;
338 	unsigned int rx_count, tx_count, len;
339 	int count;
340 	char buffer[EV_BYTE_CHANNEL_MAX_BYTES];
341 	int ret;
342 
343 	/* Find out how much data needs to be read, and then ask the TTY layer
344 	 * if it can handle that much.  We want to ensure that every byte we
345 	 * read from the byte channel will be accepted by the TTY layer.
346 	 */
347 	ev_byte_channel_poll(bc->handle, &rx_count, &tx_count);
348 	count = tty_buffer_request_room(&bc->port, rx_count);
349 
350 	/* 'count' is the maximum amount of data the TTY layer can accept at
351 	 * this time.  However, during testing, I was never able to get 'count'
352 	 * to be less than 'rx_count'.  I'm not sure whether I'm calling it
353 	 * correctly.
354 	 */
355 
356 	while (count > 0) {
357 		len = min_t(unsigned int, count, sizeof(buffer));
358 
359 		/* Read some data from the byte channel.  This function will
360 		 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
361 		 */
362 		ev_byte_channel_receive(bc->handle, &len, buffer);
363 
364 		/* 'len' is now the amount of data that's been received. 'len'
365 		 * can't be zero, and most likely it's equal to one.
366 		 */
367 
368 		/* Pass the received data to the tty layer. */
369 		ret = tty_insert_flip_string(&bc->port, buffer, len);
370 
371 		/* 'ret' is the number of bytes that the TTY layer accepted.
372 		 * If it's not equal to 'len', then it means the buffer is
373 		 * full, which should never happen.  If it does happen, we can
374 		 * exit gracefully, but we drop the last 'len - ret' characters
375 		 * that we read from the byte channel.
376 		 */
377 		if (ret != len)
378 			break;
379 
380 		count -= len;
381 	}
382 
383 	/* Tell the tty layer that we're done. */
384 	tty_flip_buffer_push(&bc->port);
385 
386 	return IRQ_HANDLED;
387 }
388 
389 /*
390  * dequeue the transmit buffer to the hypervisor
391  *
392  * This function, which can be called in interrupt context, dequeues as much
393  * data as possible from the transmit buffer to the byte channel.
394  */
395 static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc)
396 {
397 	unsigned int count;
398 	unsigned int len, ret;
399 	unsigned long flags;
400 
401 	do {
402 		spin_lock_irqsave(&bc->lock, flags);
403 		len = min_t(unsigned int,
404 			    CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE),
405 			    EV_BYTE_CHANNEL_MAX_BYTES);
406 
407 		ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail);
408 
409 		/* 'len' is valid only if the return code is 0 or EV_EAGAIN */
410 		if (!ret || (ret == EV_EAGAIN))
411 			bc->tail = (bc->tail + len) & (BUF_SIZE - 1);
412 
413 		count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE);
414 		spin_unlock_irqrestore(&bc->lock, flags);
415 	} while (count && !ret);
416 
417 	spin_lock_irqsave(&bc->lock, flags);
418 	if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE))
419 		/*
420 		 * If we haven't emptied the buffer, then enable the TX IRQ.
421 		 * We'll get an interrupt when there's more room in the
422 		 * hypervisor's output buffer.
423 		 */
424 		enable_tx_interrupt(bc);
425 	else
426 		disable_tx_interrupt(bc);
427 	spin_unlock_irqrestore(&bc->lock, flags);
428 }
429 
430 /*
431  * byte channel transmit interupt handler
432  *
433  * This ISR is called whenever space becomes available for transmitting
434  * characters on a byte channel.
435  */
436 static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data)
437 {
438 	struct ehv_bc_data *bc = data;
439 
440 	ehv_bc_tx_dequeue(bc);
441 	tty_port_tty_wakeup(&bc->port);
442 
443 	return IRQ_HANDLED;
444 }
445 
446 /*
447  * This function is called when the tty layer has data for us send.  We store
448  * the data first in a circular buffer, and then dequeue as much of that data
449  * as possible.
450  *
451  * We don't need to worry about whether there is enough room in the buffer for
452  * all the data.  The purpose of ehv_bc_tty_write_room() is to tell the tty
453  * layer how much data it can safely send to us.  We guarantee that
454  * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
455  * too much data.
456  */
457 static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s,
458 			    int count)
459 {
460 	struct ehv_bc_data *bc = ttys->driver_data;
461 	unsigned long flags;
462 	unsigned int len;
463 	unsigned int written = 0;
464 
465 	while (1) {
466 		spin_lock_irqsave(&bc->lock, flags);
467 		len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE);
468 		if (count < len)
469 			len = count;
470 		if (len) {
471 			memcpy(bc->buf + bc->head, s, len);
472 			bc->head = (bc->head + len) & (BUF_SIZE - 1);
473 		}
474 		spin_unlock_irqrestore(&bc->lock, flags);
475 		if (!len)
476 			break;
477 
478 		s += len;
479 		count -= len;
480 		written += len;
481 	}
482 
483 	ehv_bc_tx_dequeue(bc);
484 
485 	return written;
486 }
487 
488 /*
489  * This function can be called multiple times for a given tty_struct, which is
490  * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
491  *
492  * The tty layer will still call this function even if the device was not
493  * registered (i.e. tty_register_device() was not called).  This happens
494  * because tty_register_device() is optional and some legacy drivers don't
495  * use it.  So we need to check for that.
496  */
497 static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp)
498 {
499 	struct ehv_bc_data *bc = &bcs[ttys->index];
500 
501 	if (!bc->dev)
502 		return -ENODEV;
503 
504 	return tty_port_open(&bc->port, ttys, filp);
505 }
506 
507 /*
508  * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
509  * still call this function to close the tty device.  So we can't assume that
510  * the tty port has been initialized.
511  */
512 static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp)
513 {
514 	struct ehv_bc_data *bc = &bcs[ttys->index];
515 
516 	if (bc->dev)
517 		tty_port_close(&bc->port, ttys, filp);
518 }
519 
520 /*
521  * Return the amount of space in the output buffer
522  *
523  * This is actually a contract between the driver and the tty layer outlining
524  * how much write room the driver can guarantee will be sent OR BUFFERED.  This
525  * driver MUST honor the return value.
526  */
527 static int ehv_bc_tty_write_room(struct tty_struct *ttys)
528 {
529 	struct ehv_bc_data *bc = ttys->driver_data;
530 	unsigned long flags;
531 	int count;
532 
533 	spin_lock_irqsave(&bc->lock, flags);
534 	count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE);
535 	spin_unlock_irqrestore(&bc->lock, flags);
536 
537 	return count;
538 }
539 
540 /*
541  * Stop sending data to the tty layer
542  *
543  * This function is called when the tty layer's input buffers are getting full,
544  * so the driver should stop sending it data.  The easiest way to do this is to
545  * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
546  * called.
547  *
548  * The hypervisor will continue to queue up any incoming data.  If there is any
549  * data in the queue when the RX interrupt is enabled, we'll immediately get an
550  * RX interrupt.
551  */
552 static void ehv_bc_tty_throttle(struct tty_struct *ttys)
553 {
554 	struct ehv_bc_data *bc = ttys->driver_data;
555 
556 	disable_irq(bc->rx_irq);
557 }
558 
559 /*
560  * Resume sending data to the tty layer
561  *
562  * This function is called after previously calling ehv_bc_tty_throttle().  The
563  * tty layer's input buffers now have more room, so the driver can resume
564  * sending it data.
565  */
566 static void ehv_bc_tty_unthrottle(struct tty_struct *ttys)
567 {
568 	struct ehv_bc_data *bc = ttys->driver_data;
569 
570 	/* If there is any data in the queue when the RX interrupt is enabled,
571 	 * we'll immediately get an RX interrupt.
572 	 */
573 	enable_irq(bc->rx_irq);
574 }
575 
576 static void ehv_bc_tty_hangup(struct tty_struct *ttys)
577 {
578 	struct ehv_bc_data *bc = ttys->driver_data;
579 
580 	ehv_bc_tx_dequeue(bc);
581 	tty_port_hangup(&bc->port);
582 }
583 
584 /*
585  * TTY driver operations
586  *
587  * If we could ask the hypervisor how much data is still in the TX buffer, or
588  * at least how big the TX buffers are, then we could implement the
589  * .wait_until_sent and .chars_in_buffer functions.
590  */
591 static const struct tty_operations ehv_bc_ops = {
592 	.open		= ehv_bc_tty_open,
593 	.close		= ehv_bc_tty_close,
594 	.write		= ehv_bc_tty_write,
595 	.write_room	= ehv_bc_tty_write_room,
596 	.throttle	= ehv_bc_tty_throttle,
597 	.unthrottle	= ehv_bc_tty_unthrottle,
598 	.hangup		= ehv_bc_tty_hangup,
599 };
600 
601 /*
602  * initialize the TTY port
603  *
604  * This function will only be called once, no matter how many times
605  * ehv_bc_tty_open() is called.  That's why we register the ISR here, and also
606  * why we initialize tty_struct-related variables here.
607  */
608 static int ehv_bc_tty_port_activate(struct tty_port *port,
609 				    struct tty_struct *ttys)
610 {
611 	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
612 	int ret;
613 
614 	ttys->driver_data = bc;
615 
616 	ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc);
617 	if (ret < 0) {
618 		dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n",
619 		       bc->rx_irq, ret);
620 		return ret;
621 	}
622 
623 	/* request_irq also enables the IRQ */
624 	bc->tx_irq_enabled = 1;
625 
626 	ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc);
627 	if (ret < 0) {
628 		dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n",
629 		       bc->tx_irq, ret);
630 		free_irq(bc->rx_irq, bc);
631 		return ret;
632 	}
633 
634 	/* The TX IRQ is enabled only when we can't write all the data to the
635 	 * byte channel at once, so by default it's disabled.
636 	 */
637 	disable_tx_interrupt(bc);
638 
639 	return 0;
640 }
641 
642 static void ehv_bc_tty_port_shutdown(struct tty_port *port)
643 {
644 	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
645 
646 	free_irq(bc->tx_irq, bc);
647 	free_irq(bc->rx_irq, bc);
648 }
649 
650 static const struct tty_port_operations ehv_bc_tty_port_ops = {
651 	.activate = ehv_bc_tty_port_activate,
652 	.shutdown = ehv_bc_tty_port_shutdown,
653 };
654 
655 static int ehv_bc_tty_probe(struct platform_device *pdev)
656 {
657 	struct device_node *np = pdev->dev.of_node;
658 	struct ehv_bc_data *bc;
659 	const uint32_t *iprop;
660 	unsigned int handle;
661 	int ret;
662 	static unsigned int index = 1;
663 	unsigned int i;
664 
665 	iprop = of_get_property(np, "hv-handle", NULL);
666 	if (!iprop) {
667 		dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n",
668 			np->name);
669 		return -ENODEV;
670 	}
671 
672 	/* We already told the console layer that the index for the console
673 	 * device is zero, so we need to make sure that we use that index when
674 	 * we probe the console byte channel node.
675 	 */
676 	handle = be32_to_cpu(*iprop);
677 	i = (handle == stdout_bc) ? 0 : index++;
678 	bc = &bcs[i];
679 
680 	bc->handle = handle;
681 	bc->head = 0;
682 	bc->tail = 0;
683 	spin_lock_init(&bc->lock);
684 
685 	bc->rx_irq = irq_of_parse_and_map(np, 0);
686 	bc->tx_irq = irq_of_parse_and_map(np, 1);
687 	if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) {
688 		dev_err(&pdev->dev, "no 'interrupts' property in %s node\n",
689 			np->name);
690 		ret = -ENODEV;
691 		goto error;
692 	}
693 
694 	tty_port_init(&bc->port);
695 	bc->port.ops = &ehv_bc_tty_port_ops;
696 
697 	bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i,
698 			&pdev->dev);
699 	if (IS_ERR(bc->dev)) {
700 		ret = PTR_ERR(bc->dev);
701 		dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret);
702 		goto error;
703 	}
704 
705 	dev_set_drvdata(&pdev->dev, bc);
706 
707 	dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n",
708 		ehv_bc_driver->name, i, bc->handle);
709 
710 	return 0;
711 
712 error:
713 	tty_port_destroy(&bc->port);
714 	irq_dispose_mapping(bc->tx_irq);
715 	irq_dispose_mapping(bc->rx_irq);
716 
717 	memset(bc, 0, sizeof(struct ehv_bc_data));
718 	return ret;
719 }
720 
721 static const struct of_device_id ehv_bc_tty_of_ids[] = {
722 	{ .compatible = "epapr,hv-byte-channel" },
723 	{}
724 };
725 
726 static struct platform_driver ehv_bc_tty_driver = {
727 	.driver = {
728 		.name = "ehv-bc",
729 		.of_match_table = ehv_bc_tty_of_ids,
730 		.suppress_bind_attrs = true,
731 	},
732 	.probe		= ehv_bc_tty_probe,
733 };
734 
735 /**
736  * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
737  *
738  * This function is called when this driver is loaded.
739  */
740 static int __init ehv_bc_init(void)
741 {
742 	struct device_node *np;
743 	unsigned int count = 0; /* Number of elements in bcs[] */
744 	int ret;
745 
746 	pr_info("ePAPR hypervisor byte channel driver\n");
747 
748 	/* Count the number of byte channels */
749 	for_each_compatible_node(np, NULL, "epapr,hv-byte-channel")
750 		count++;
751 
752 	if (!count)
753 		return -ENODEV;
754 
755 	/* The array index of an element in bcs[] is the same as the tty index
756 	 * for that element.  If you know the address of an element in the
757 	 * array, then you can use pointer math (e.g. "bc - bcs") to get its
758 	 * tty index.
759 	 */
760 	bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL);
761 	if (!bcs)
762 		return -ENOMEM;
763 
764 	ehv_bc_driver = alloc_tty_driver(count);
765 	if (!ehv_bc_driver) {
766 		ret = -ENOMEM;
767 		goto err_free_bcs;
768 	}
769 
770 	ehv_bc_driver->driver_name = "ehv-bc";
771 	ehv_bc_driver->name = ehv_bc_console.name;
772 	ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE;
773 	ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE;
774 	ehv_bc_driver->init_termios = tty_std_termios;
775 	ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
776 	tty_set_operations(ehv_bc_driver, &ehv_bc_ops);
777 
778 	ret = tty_register_driver(ehv_bc_driver);
779 	if (ret) {
780 		pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret);
781 		goto err_put_tty_driver;
782 	}
783 
784 	ret = platform_driver_register(&ehv_bc_tty_driver);
785 	if (ret) {
786 		pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
787 		       ret);
788 		goto err_deregister_tty_driver;
789 	}
790 
791 	return 0;
792 
793 err_deregister_tty_driver:
794 	tty_unregister_driver(ehv_bc_driver);
795 err_put_tty_driver:
796 	put_tty_driver(ehv_bc_driver);
797 err_free_bcs:
798 	kfree(bcs);
799 
800 	return ret;
801 }
802 device_initcall(ehv_bc_init);
803