1 /* ePAPR hypervisor byte channel device driver 2 * 3 * Copyright 2009-2011 Freescale Semiconductor, Inc. 4 * 5 * Author: Timur Tabi <timur@freescale.com> 6 * 7 * This file is licensed under the terms of the GNU General Public License 8 * version 2. This program is licensed "as is" without any warranty of any 9 * kind, whether express or implied. 10 * 11 * This driver support three distinct interfaces, all of which are related to 12 * ePAPR hypervisor byte channels. 13 * 14 * 1) An early-console (udbg) driver. This provides early console output 15 * through a byte channel. The byte channel handle must be specified in a 16 * Kconfig option. 17 * 18 * 2) A normal console driver. Output is sent to the byte channel designated 19 * for stdout in the device tree. The console driver is for handling kernel 20 * printk calls. 21 * 22 * 3) A tty driver, which is used to handle user-space input and output. The 23 * byte channel used for the console is designated as the default tty. 24 */ 25 26 #include <linux/module.h> 27 #include <linux/init.h> 28 #include <linux/slab.h> 29 #include <linux/err.h> 30 #include <linux/interrupt.h> 31 #include <linux/fs.h> 32 #include <linux/poll.h> 33 #include <asm/epapr_hcalls.h> 34 #include <linux/of.h> 35 #include <linux/of_irq.h> 36 #include <linux/platform_device.h> 37 #include <linux/cdev.h> 38 #include <linux/console.h> 39 #include <linux/tty.h> 40 #include <linux/tty_flip.h> 41 #include <linux/circ_buf.h> 42 #include <asm/udbg.h> 43 44 /* The size of the transmit circular buffer. This must be a power of two. */ 45 #define BUF_SIZE 2048 46 47 /* Per-byte channel private data */ 48 struct ehv_bc_data { 49 struct device *dev; 50 struct tty_port port; 51 uint32_t handle; 52 unsigned int rx_irq; 53 unsigned int tx_irq; 54 55 spinlock_t lock; /* lock for transmit buffer */ 56 unsigned char buf[BUF_SIZE]; /* transmit circular buffer */ 57 unsigned int head; /* circular buffer head */ 58 unsigned int tail; /* circular buffer tail */ 59 60 int tx_irq_enabled; /* true == TX interrupt is enabled */ 61 }; 62 63 /* Array of byte channel objects */ 64 static struct ehv_bc_data *bcs; 65 66 /* Byte channel handle for stdout (and stdin), taken from device tree */ 67 static unsigned int stdout_bc; 68 69 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */ 70 static unsigned int stdout_irq; 71 72 /**************************** SUPPORT FUNCTIONS ****************************/ 73 74 /* 75 * Enable the transmit interrupt 76 * 77 * Unlike a serial device, byte channels have no mechanism for disabling their 78 * own receive or transmit interrupts. To emulate that feature, we toggle 79 * the IRQ in the kernel. 80 * 81 * We cannot just blindly call enable_irq() or disable_irq(), because these 82 * calls are reference counted. This means that we cannot call enable_irq() 83 * if interrupts are already enabled. This can happen in two situations: 84 * 85 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write() 86 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue() 87 * 88 * To work around this, we keep a flag to tell us if the IRQ is enabled or not. 89 */ 90 static void enable_tx_interrupt(struct ehv_bc_data *bc) 91 { 92 if (!bc->tx_irq_enabled) { 93 enable_irq(bc->tx_irq); 94 bc->tx_irq_enabled = 1; 95 } 96 } 97 98 static void disable_tx_interrupt(struct ehv_bc_data *bc) 99 { 100 if (bc->tx_irq_enabled) { 101 disable_irq_nosync(bc->tx_irq); 102 bc->tx_irq_enabled = 0; 103 } 104 } 105 106 /* 107 * find the byte channel handle to use for the console 108 * 109 * The byte channel to be used for the console is specified via a "stdout" 110 * property in the /chosen node. 111 * 112 * For compatible with legacy device trees, we also look for a "stdout" alias. 113 */ 114 static int find_console_handle(void) 115 { 116 struct device_node *np, *np2; 117 const char *sprop = NULL; 118 const uint32_t *iprop; 119 120 np = of_find_node_by_path("/chosen"); 121 if (np) 122 sprop = of_get_property(np, "stdout-path", NULL); 123 124 if (!np || !sprop) { 125 of_node_put(np); 126 np = of_find_node_by_name(NULL, "aliases"); 127 if (np) 128 sprop = of_get_property(np, "stdout", NULL); 129 } 130 131 if (!sprop) { 132 of_node_put(np); 133 return 0; 134 } 135 136 /* We don't care what the aliased node is actually called. We only 137 * care if it's compatible with "epapr,hv-byte-channel", because that 138 * indicates that it's a byte channel node. We use a temporary 139 * variable, 'np2', because we can't release 'np' until we're done with 140 * 'sprop'. 141 */ 142 np2 = of_find_node_by_path(sprop); 143 of_node_put(np); 144 np = np2; 145 if (!np) { 146 pr_warning("ehv-bc: stdout node '%s' does not exist\n", sprop); 147 return 0; 148 } 149 150 /* Is it a byte channel? */ 151 if (!of_device_is_compatible(np, "epapr,hv-byte-channel")) { 152 of_node_put(np); 153 return 0; 154 } 155 156 stdout_irq = irq_of_parse_and_map(np, 0); 157 if (stdout_irq == NO_IRQ) { 158 pr_err("ehv-bc: no 'interrupts' property in %s node\n", sprop); 159 of_node_put(np); 160 return 0; 161 } 162 163 /* 164 * The 'hv-handle' property contains the handle for this byte channel. 165 */ 166 iprop = of_get_property(np, "hv-handle", NULL); 167 if (!iprop) { 168 pr_err("ehv-bc: no 'hv-handle' property in %s node\n", 169 np->name); 170 of_node_put(np); 171 return 0; 172 } 173 stdout_bc = be32_to_cpu(*iprop); 174 175 of_node_put(np); 176 return 1; 177 } 178 179 /*************************** EARLY CONSOLE DRIVER ***************************/ 180 181 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC 182 183 /* 184 * send a byte to a byte channel, wait if necessary 185 * 186 * This function sends a byte to a byte channel, and it waits and 187 * retries if the byte channel is full. It returns if the character 188 * has been sent, or if some error has occurred. 189 * 190 */ 191 static void byte_channel_spin_send(const char data) 192 { 193 int ret, count; 194 195 do { 196 count = 1; 197 ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, 198 &count, &data); 199 } while (ret == EV_EAGAIN); 200 } 201 202 /* 203 * The udbg subsystem calls this function to display a single character. 204 * We convert CR to a CR/LF. 205 */ 206 static void ehv_bc_udbg_putc(char c) 207 { 208 if (c == '\n') 209 byte_channel_spin_send('\r'); 210 211 byte_channel_spin_send(c); 212 } 213 214 /* 215 * early console initialization 216 * 217 * PowerPC kernels support an early printk console, also known as udbg. 218 * This function must be called via the ppc_md.init_early function pointer. 219 * At this point, the device tree has been unflattened, so we can obtain the 220 * byte channel handle for stdout. 221 * 222 * We only support displaying of characters (putc). We do not support 223 * keyboard input. 224 */ 225 void __init udbg_init_ehv_bc(void) 226 { 227 unsigned int rx_count, tx_count; 228 unsigned int ret; 229 230 /* Verify the byte channel handle */ 231 ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, 232 &rx_count, &tx_count); 233 if (ret) 234 return; 235 236 udbg_putc = ehv_bc_udbg_putc; 237 register_early_udbg_console(); 238 239 udbg_printf("ehv-bc: early console using byte channel handle %u\n", 240 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); 241 } 242 243 #endif 244 245 /****************************** CONSOLE DRIVER ******************************/ 246 247 static struct tty_driver *ehv_bc_driver; 248 249 /* 250 * Byte channel console sending worker function. 251 * 252 * For consoles, if the output buffer is full, we should just spin until it 253 * clears. 254 */ 255 static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s, 256 unsigned int count) 257 { 258 unsigned int len; 259 int ret = 0; 260 261 while (count) { 262 len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES); 263 do { 264 ret = ev_byte_channel_send(handle, &len, s); 265 } while (ret == EV_EAGAIN); 266 count -= len; 267 s += len; 268 } 269 270 return ret; 271 } 272 273 /* 274 * write a string to the console 275 * 276 * This function gets called to write a string from the kernel, typically from 277 * a printk(). This function spins until all data is written. 278 * 279 * We copy the data to a temporary buffer because we need to insert a \r in 280 * front of every \n. It's more efficient to copy the data to the buffer than 281 * it is to make multiple hcalls for each character or each newline. 282 */ 283 static void ehv_bc_console_write(struct console *co, const char *s, 284 unsigned int count) 285 { 286 char s2[EV_BYTE_CHANNEL_MAX_BYTES]; 287 unsigned int i, j = 0; 288 char c; 289 290 for (i = 0; i < count; i++) { 291 c = *s++; 292 293 if (c == '\n') 294 s2[j++] = '\r'; 295 296 s2[j++] = c; 297 if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) { 298 if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j)) 299 return; 300 j = 0; 301 } 302 } 303 304 if (j) 305 ehv_bc_console_byte_channel_send(stdout_bc, s2, j); 306 } 307 308 /* 309 * When /dev/console is opened, the kernel iterates the console list looking 310 * for one with ->device and then calls that method. On success, it expects 311 * the passed-in int* to contain the minor number to use. 312 */ 313 static struct tty_driver *ehv_bc_console_device(struct console *co, int *index) 314 { 315 *index = co->index; 316 317 return ehv_bc_driver; 318 } 319 320 static struct console ehv_bc_console = { 321 .name = "ttyEHV", 322 .write = ehv_bc_console_write, 323 .device = ehv_bc_console_device, 324 .flags = CON_PRINTBUFFER | CON_ENABLED, 325 }; 326 327 /* 328 * Console initialization 329 * 330 * This is the first function that is called after the device tree is 331 * available, so here is where we determine the byte channel handle and IRQ for 332 * stdout/stdin, even though that information is used by the tty and character 333 * drivers. 334 */ 335 static int __init ehv_bc_console_init(void) 336 { 337 if (!find_console_handle()) { 338 pr_debug("ehv-bc: stdout is not a byte channel\n"); 339 return -ENODEV; 340 } 341 342 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC 343 /* Print a friendly warning if the user chose the wrong byte channel 344 * handle for udbg. 345 */ 346 if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE) 347 pr_warning("ehv-bc: udbg handle %u is not the stdout handle\n", 348 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); 349 #endif 350 351 /* add_preferred_console() must be called before register_console(), 352 otherwise it won't work. However, we don't want to enumerate all the 353 byte channels here, either, since we only care about one. */ 354 355 add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL); 356 register_console(&ehv_bc_console); 357 358 pr_info("ehv-bc: registered console driver for byte channel %u\n", 359 stdout_bc); 360 361 return 0; 362 } 363 console_initcall(ehv_bc_console_init); 364 365 /******************************** TTY DRIVER ********************************/ 366 367 /* 368 * byte channel receive interupt handler 369 * 370 * This ISR is called whenever data is available on a byte channel. 371 */ 372 static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data) 373 { 374 struct ehv_bc_data *bc = data; 375 unsigned int rx_count, tx_count, len; 376 int count; 377 char buffer[EV_BYTE_CHANNEL_MAX_BYTES]; 378 int ret; 379 380 /* Find out how much data needs to be read, and then ask the TTY layer 381 * if it can handle that much. We want to ensure that every byte we 382 * read from the byte channel will be accepted by the TTY layer. 383 */ 384 ev_byte_channel_poll(bc->handle, &rx_count, &tx_count); 385 count = tty_buffer_request_room(&bc->port, rx_count); 386 387 /* 'count' is the maximum amount of data the TTY layer can accept at 388 * this time. However, during testing, I was never able to get 'count' 389 * to be less than 'rx_count'. I'm not sure whether I'm calling it 390 * correctly. 391 */ 392 393 while (count > 0) { 394 len = min_t(unsigned int, count, sizeof(buffer)); 395 396 /* Read some data from the byte channel. This function will 397 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes. 398 */ 399 ev_byte_channel_receive(bc->handle, &len, buffer); 400 401 /* 'len' is now the amount of data that's been received. 'len' 402 * can't be zero, and most likely it's equal to one. 403 */ 404 405 /* Pass the received data to the tty layer. */ 406 ret = tty_insert_flip_string(&bc->port, buffer, len); 407 408 /* 'ret' is the number of bytes that the TTY layer accepted. 409 * If it's not equal to 'len', then it means the buffer is 410 * full, which should never happen. If it does happen, we can 411 * exit gracefully, but we drop the last 'len - ret' characters 412 * that we read from the byte channel. 413 */ 414 if (ret != len) 415 break; 416 417 count -= len; 418 } 419 420 /* Tell the tty layer that we're done. */ 421 tty_flip_buffer_push(&bc->port); 422 423 return IRQ_HANDLED; 424 } 425 426 /* 427 * dequeue the transmit buffer to the hypervisor 428 * 429 * This function, which can be called in interrupt context, dequeues as much 430 * data as possible from the transmit buffer to the byte channel. 431 */ 432 static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc) 433 { 434 unsigned int count; 435 unsigned int len, ret; 436 unsigned long flags; 437 438 do { 439 spin_lock_irqsave(&bc->lock, flags); 440 len = min_t(unsigned int, 441 CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE), 442 EV_BYTE_CHANNEL_MAX_BYTES); 443 444 ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail); 445 446 /* 'len' is valid only if the return code is 0 or EV_EAGAIN */ 447 if (!ret || (ret == EV_EAGAIN)) 448 bc->tail = (bc->tail + len) & (BUF_SIZE - 1); 449 450 count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE); 451 spin_unlock_irqrestore(&bc->lock, flags); 452 } while (count && !ret); 453 454 spin_lock_irqsave(&bc->lock, flags); 455 if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE)) 456 /* 457 * If we haven't emptied the buffer, then enable the TX IRQ. 458 * We'll get an interrupt when there's more room in the 459 * hypervisor's output buffer. 460 */ 461 enable_tx_interrupt(bc); 462 else 463 disable_tx_interrupt(bc); 464 spin_unlock_irqrestore(&bc->lock, flags); 465 } 466 467 /* 468 * byte channel transmit interupt handler 469 * 470 * This ISR is called whenever space becomes available for transmitting 471 * characters on a byte channel. 472 */ 473 static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data) 474 { 475 struct ehv_bc_data *bc = data; 476 477 ehv_bc_tx_dequeue(bc); 478 tty_port_tty_wakeup(&bc->port); 479 480 return IRQ_HANDLED; 481 } 482 483 /* 484 * This function is called when the tty layer has data for us send. We store 485 * the data first in a circular buffer, and then dequeue as much of that data 486 * as possible. 487 * 488 * We don't need to worry about whether there is enough room in the buffer for 489 * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty 490 * layer how much data it can safely send to us. We guarantee that 491 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us 492 * too much data. 493 */ 494 static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s, 495 int count) 496 { 497 struct ehv_bc_data *bc = ttys->driver_data; 498 unsigned long flags; 499 unsigned int len; 500 unsigned int written = 0; 501 502 while (1) { 503 spin_lock_irqsave(&bc->lock, flags); 504 len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE); 505 if (count < len) 506 len = count; 507 if (len) { 508 memcpy(bc->buf + bc->head, s, len); 509 bc->head = (bc->head + len) & (BUF_SIZE - 1); 510 } 511 spin_unlock_irqrestore(&bc->lock, flags); 512 if (!len) 513 break; 514 515 s += len; 516 count -= len; 517 written += len; 518 } 519 520 ehv_bc_tx_dequeue(bc); 521 522 return written; 523 } 524 525 /* 526 * This function can be called multiple times for a given tty_struct, which is 527 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead. 528 * 529 * The tty layer will still call this function even if the device was not 530 * registered (i.e. tty_register_device() was not called). This happens 531 * because tty_register_device() is optional and some legacy drivers don't 532 * use it. So we need to check for that. 533 */ 534 static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp) 535 { 536 struct ehv_bc_data *bc = &bcs[ttys->index]; 537 538 if (!bc->dev) 539 return -ENODEV; 540 541 return tty_port_open(&bc->port, ttys, filp); 542 } 543 544 /* 545 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will 546 * still call this function to close the tty device. So we can't assume that 547 * the tty port has been initialized. 548 */ 549 static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp) 550 { 551 struct ehv_bc_data *bc = &bcs[ttys->index]; 552 553 if (bc->dev) 554 tty_port_close(&bc->port, ttys, filp); 555 } 556 557 /* 558 * Return the amount of space in the output buffer 559 * 560 * This is actually a contract between the driver and the tty layer outlining 561 * how much write room the driver can guarantee will be sent OR BUFFERED. This 562 * driver MUST honor the return value. 563 */ 564 static int ehv_bc_tty_write_room(struct tty_struct *ttys) 565 { 566 struct ehv_bc_data *bc = ttys->driver_data; 567 unsigned long flags; 568 int count; 569 570 spin_lock_irqsave(&bc->lock, flags); 571 count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE); 572 spin_unlock_irqrestore(&bc->lock, flags); 573 574 return count; 575 } 576 577 /* 578 * Stop sending data to the tty layer 579 * 580 * This function is called when the tty layer's input buffers are getting full, 581 * so the driver should stop sending it data. The easiest way to do this is to 582 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being 583 * called. 584 * 585 * The hypervisor will continue to queue up any incoming data. If there is any 586 * data in the queue when the RX interrupt is enabled, we'll immediately get an 587 * RX interrupt. 588 */ 589 static void ehv_bc_tty_throttle(struct tty_struct *ttys) 590 { 591 struct ehv_bc_data *bc = ttys->driver_data; 592 593 disable_irq(bc->rx_irq); 594 } 595 596 /* 597 * Resume sending data to the tty layer 598 * 599 * This function is called after previously calling ehv_bc_tty_throttle(). The 600 * tty layer's input buffers now have more room, so the driver can resume 601 * sending it data. 602 */ 603 static void ehv_bc_tty_unthrottle(struct tty_struct *ttys) 604 { 605 struct ehv_bc_data *bc = ttys->driver_data; 606 607 /* If there is any data in the queue when the RX interrupt is enabled, 608 * we'll immediately get an RX interrupt. 609 */ 610 enable_irq(bc->rx_irq); 611 } 612 613 static void ehv_bc_tty_hangup(struct tty_struct *ttys) 614 { 615 struct ehv_bc_data *bc = ttys->driver_data; 616 617 ehv_bc_tx_dequeue(bc); 618 tty_port_hangup(&bc->port); 619 } 620 621 /* 622 * TTY driver operations 623 * 624 * If we could ask the hypervisor how much data is still in the TX buffer, or 625 * at least how big the TX buffers are, then we could implement the 626 * .wait_until_sent and .chars_in_buffer functions. 627 */ 628 static const struct tty_operations ehv_bc_ops = { 629 .open = ehv_bc_tty_open, 630 .close = ehv_bc_tty_close, 631 .write = ehv_bc_tty_write, 632 .write_room = ehv_bc_tty_write_room, 633 .throttle = ehv_bc_tty_throttle, 634 .unthrottle = ehv_bc_tty_unthrottle, 635 .hangup = ehv_bc_tty_hangup, 636 }; 637 638 /* 639 * initialize the TTY port 640 * 641 * This function will only be called once, no matter how many times 642 * ehv_bc_tty_open() is called. That's why we register the ISR here, and also 643 * why we initialize tty_struct-related variables here. 644 */ 645 static int ehv_bc_tty_port_activate(struct tty_port *port, 646 struct tty_struct *ttys) 647 { 648 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); 649 int ret; 650 651 ttys->driver_data = bc; 652 653 ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc); 654 if (ret < 0) { 655 dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n", 656 bc->rx_irq, ret); 657 return ret; 658 } 659 660 /* request_irq also enables the IRQ */ 661 bc->tx_irq_enabled = 1; 662 663 ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc); 664 if (ret < 0) { 665 dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n", 666 bc->tx_irq, ret); 667 free_irq(bc->rx_irq, bc); 668 return ret; 669 } 670 671 /* The TX IRQ is enabled only when we can't write all the data to the 672 * byte channel at once, so by default it's disabled. 673 */ 674 disable_tx_interrupt(bc); 675 676 return 0; 677 } 678 679 static void ehv_bc_tty_port_shutdown(struct tty_port *port) 680 { 681 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); 682 683 free_irq(bc->tx_irq, bc); 684 free_irq(bc->rx_irq, bc); 685 } 686 687 static const struct tty_port_operations ehv_bc_tty_port_ops = { 688 .activate = ehv_bc_tty_port_activate, 689 .shutdown = ehv_bc_tty_port_shutdown, 690 }; 691 692 static int ehv_bc_tty_probe(struct platform_device *pdev) 693 { 694 struct device_node *np = pdev->dev.of_node; 695 struct ehv_bc_data *bc; 696 const uint32_t *iprop; 697 unsigned int handle; 698 int ret; 699 static unsigned int index = 1; 700 unsigned int i; 701 702 iprop = of_get_property(np, "hv-handle", NULL); 703 if (!iprop) { 704 dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n", 705 np->name); 706 return -ENODEV; 707 } 708 709 /* We already told the console layer that the index for the console 710 * device is zero, so we need to make sure that we use that index when 711 * we probe the console byte channel node. 712 */ 713 handle = be32_to_cpu(*iprop); 714 i = (handle == stdout_bc) ? 0 : index++; 715 bc = &bcs[i]; 716 717 bc->handle = handle; 718 bc->head = 0; 719 bc->tail = 0; 720 spin_lock_init(&bc->lock); 721 722 bc->rx_irq = irq_of_parse_and_map(np, 0); 723 bc->tx_irq = irq_of_parse_and_map(np, 1); 724 if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) { 725 dev_err(&pdev->dev, "no 'interrupts' property in %s node\n", 726 np->name); 727 ret = -ENODEV; 728 goto error; 729 } 730 731 tty_port_init(&bc->port); 732 bc->port.ops = &ehv_bc_tty_port_ops; 733 734 bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i, 735 &pdev->dev); 736 if (IS_ERR(bc->dev)) { 737 ret = PTR_ERR(bc->dev); 738 dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret); 739 goto error; 740 } 741 742 dev_set_drvdata(&pdev->dev, bc); 743 744 dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n", 745 ehv_bc_driver->name, i, bc->handle); 746 747 return 0; 748 749 error: 750 tty_port_destroy(&bc->port); 751 irq_dispose_mapping(bc->tx_irq); 752 irq_dispose_mapping(bc->rx_irq); 753 754 memset(bc, 0, sizeof(struct ehv_bc_data)); 755 return ret; 756 } 757 758 static int ehv_bc_tty_remove(struct platform_device *pdev) 759 { 760 struct ehv_bc_data *bc = dev_get_drvdata(&pdev->dev); 761 762 tty_unregister_device(ehv_bc_driver, bc - bcs); 763 764 tty_port_destroy(&bc->port); 765 irq_dispose_mapping(bc->tx_irq); 766 irq_dispose_mapping(bc->rx_irq); 767 768 return 0; 769 } 770 771 static const struct of_device_id ehv_bc_tty_of_ids[] = { 772 { .compatible = "epapr,hv-byte-channel" }, 773 {} 774 }; 775 776 static struct platform_driver ehv_bc_tty_driver = { 777 .driver = { 778 .owner = THIS_MODULE, 779 .name = "ehv-bc", 780 .of_match_table = ehv_bc_tty_of_ids, 781 }, 782 .probe = ehv_bc_tty_probe, 783 .remove = ehv_bc_tty_remove, 784 }; 785 786 /** 787 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization 788 * 789 * This function is called when this module is loaded. 790 */ 791 static int __init ehv_bc_init(void) 792 { 793 struct device_node *np; 794 unsigned int count = 0; /* Number of elements in bcs[] */ 795 int ret; 796 797 pr_info("ePAPR hypervisor byte channel driver\n"); 798 799 /* Count the number of byte channels */ 800 for_each_compatible_node(np, NULL, "epapr,hv-byte-channel") 801 count++; 802 803 if (!count) 804 return -ENODEV; 805 806 /* The array index of an element in bcs[] is the same as the tty index 807 * for that element. If you know the address of an element in the 808 * array, then you can use pointer math (e.g. "bc - bcs") to get its 809 * tty index. 810 */ 811 bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL); 812 if (!bcs) 813 return -ENOMEM; 814 815 ehv_bc_driver = alloc_tty_driver(count); 816 if (!ehv_bc_driver) { 817 ret = -ENOMEM; 818 goto error; 819 } 820 821 ehv_bc_driver->driver_name = "ehv-bc"; 822 ehv_bc_driver->name = ehv_bc_console.name; 823 ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE; 824 ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE; 825 ehv_bc_driver->init_termios = tty_std_termios; 826 ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; 827 tty_set_operations(ehv_bc_driver, &ehv_bc_ops); 828 829 ret = tty_register_driver(ehv_bc_driver); 830 if (ret) { 831 pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret); 832 goto error; 833 } 834 835 ret = platform_driver_register(&ehv_bc_tty_driver); 836 if (ret) { 837 pr_err("ehv-bc: could not register platform driver (ret=%i)\n", 838 ret); 839 goto error; 840 } 841 842 return 0; 843 844 error: 845 if (ehv_bc_driver) { 846 tty_unregister_driver(ehv_bc_driver); 847 put_tty_driver(ehv_bc_driver); 848 } 849 850 kfree(bcs); 851 852 return ret; 853 } 854 855 856 /** 857 * ehv_bc_exit - ePAPR hypervisor byte channel driver termination 858 * 859 * This function is called when this driver is unloaded. 860 */ 861 static void __exit ehv_bc_exit(void) 862 { 863 platform_driver_unregister(&ehv_bc_tty_driver); 864 tty_unregister_driver(ehv_bc_driver); 865 put_tty_driver(ehv_bc_driver); 866 kfree(bcs); 867 } 868 869 module_init(ehv_bc_init); 870 module_exit(ehv_bc_exit); 871 872 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 873 MODULE_DESCRIPTION("ePAPR hypervisor byte channel driver"); 874 MODULE_LICENSE("GPL v2"); 875