xref: /openbmc/linux/drivers/thunderbolt/usb4.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * USB4 specific functionality
4  *
5  * Copyright (C) 2019, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *	    Rajmohan Mani <rajmohan.mani@intel.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12 
13 #include "tb.h"
14 
15 #define USB4_DATA_DWORDS		16
16 #define USB4_DATA_RETRIES		3
17 
18 enum usb4_switch_op {
19 	USB4_SWITCH_OP_QUERY_DP_RESOURCE = 0x10,
20 	USB4_SWITCH_OP_ALLOC_DP_RESOURCE = 0x11,
21 	USB4_SWITCH_OP_DEALLOC_DP_RESOURCE = 0x12,
22 	USB4_SWITCH_OP_NVM_WRITE = 0x20,
23 	USB4_SWITCH_OP_NVM_AUTH = 0x21,
24 	USB4_SWITCH_OP_NVM_READ = 0x22,
25 	USB4_SWITCH_OP_NVM_SET_OFFSET = 0x23,
26 	USB4_SWITCH_OP_DROM_READ = 0x24,
27 	USB4_SWITCH_OP_NVM_SECTOR_SIZE = 0x25,
28 };
29 
30 #define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2)
31 #define USB4_NVM_READ_OFFSET_SHIFT	2
32 #define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24)
33 #define USB4_NVM_READ_LENGTH_SHIFT	24
34 
35 #define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK
36 #define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT
37 
38 #define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2)
39 #define USB4_DROM_ADDRESS_SHIFT		2
40 #define USB4_DROM_SIZE_MASK		GENMASK(19, 15)
41 #define USB4_DROM_SIZE_SHIFT		15
42 
43 #define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0)
44 
45 typedef int (*read_block_fn)(struct tb_switch *, unsigned int, void *, size_t);
46 typedef int (*write_block_fn)(struct tb_switch *, const void *, size_t);
47 
48 static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
49 				    u32 value, int timeout_msec)
50 {
51 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
52 
53 	do {
54 		u32 val;
55 		int ret;
56 
57 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
58 		if (ret)
59 			return ret;
60 
61 		if ((val & bit) == value)
62 			return 0;
63 
64 		usleep_range(50, 100);
65 	} while (ktime_before(ktime_get(), timeout));
66 
67 	return -ETIMEDOUT;
68 }
69 
70 static int usb4_switch_op_read_data(struct tb_switch *sw, void *data,
71 				    size_t dwords)
72 {
73 	if (dwords > USB4_DATA_DWORDS)
74 		return -EINVAL;
75 
76 	return tb_sw_read(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
77 }
78 
79 static int usb4_switch_op_write_data(struct tb_switch *sw, const void *data,
80 				     size_t dwords)
81 {
82 	if (dwords > USB4_DATA_DWORDS)
83 		return -EINVAL;
84 
85 	return tb_sw_write(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
86 }
87 
88 static int usb4_switch_op_read_metadata(struct tb_switch *sw, u32 *metadata)
89 {
90 	return tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
91 }
92 
93 static int usb4_switch_op_write_metadata(struct tb_switch *sw, u32 metadata)
94 {
95 	return tb_sw_write(sw, &metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
96 }
97 
98 static int usb4_switch_do_read_data(struct tb_switch *sw, u16 address,
99 	void *buf, size_t size, read_block_fn read_block)
100 {
101 	unsigned int retries = USB4_DATA_RETRIES;
102 	unsigned int offset;
103 
104 	offset = address & 3;
105 	address = address & ~3;
106 
107 	do {
108 		size_t nbytes = min_t(size_t, size, USB4_DATA_DWORDS * 4);
109 		unsigned int dwaddress, dwords;
110 		u8 data[USB4_DATA_DWORDS * 4];
111 		int ret;
112 
113 		dwaddress = address / 4;
114 		dwords = ALIGN(nbytes, 4) / 4;
115 
116 		ret = read_block(sw, dwaddress, data, dwords);
117 		if (ret) {
118 			if (ret == -ETIMEDOUT) {
119 				if (retries--)
120 					continue;
121 				ret = -EIO;
122 			}
123 			return ret;
124 		}
125 
126 		memcpy(buf, data + offset, nbytes);
127 
128 		size -= nbytes;
129 		address += nbytes;
130 		buf += nbytes;
131 	} while (size > 0);
132 
133 	return 0;
134 }
135 
136 static int usb4_switch_do_write_data(struct tb_switch *sw, u16 address,
137 	const void *buf, size_t size, write_block_fn write_next_block)
138 {
139 	unsigned int retries = USB4_DATA_RETRIES;
140 	unsigned int offset;
141 
142 	offset = address & 3;
143 	address = address & ~3;
144 
145 	do {
146 		u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4);
147 		u8 data[USB4_DATA_DWORDS * 4];
148 		int ret;
149 
150 		memcpy(data + offset, buf, nbytes);
151 
152 		ret = write_next_block(sw, data, nbytes / 4);
153 		if (ret) {
154 			if (ret == -ETIMEDOUT) {
155 				if (retries--)
156 					continue;
157 				ret = -EIO;
158 			}
159 			return ret;
160 		}
161 
162 		size -= nbytes;
163 		address += nbytes;
164 		buf += nbytes;
165 	} while (size > 0);
166 
167 	return 0;
168 }
169 
170 static int usb4_switch_op(struct tb_switch *sw, u16 opcode, u8 *status)
171 {
172 	u32 val;
173 	int ret;
174 
175 	val = opcode | ROUTER_CS_26_OV;
176 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
177 	if (ret)
178 		return ret;
179 
180 	ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
181 	if (ret)
182 		return ret;
183 
184 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
185 	if (val & ROUTER_CS_26_ONS)
186 		return -EOPNOTSUPP;
187 
188 	*status = (val & ROUTER_CS_26_STATUS_MASK) >> ROUTER_CS_26_STATUS_SHIFT;
189 	return 0;
190 }
191 
192 /**
193  * usb4_switch_setup() - Additional setup for USB4 device
194  * @sw: USB4 router to setup
195  *
196  * USB4 routers need additional settings in order to enable all the
197  * tunneling. This function enables USB and PCIe tunneling if it can be
198  * enabled (e.g the parent switch also supports them). If USB tunneling
199  * is not available for some reason (like that there is Thunderbolt 3
200  * switch upstream) then the internal xHCI controller is enabled
201  * instead.
202  */
203 int usb4_switch_setup(struct tb_switch *sw)
204 {
205 	struct tb_switch *parent;
206 	bool tbt3, xhci;
207 	u32 val = 0;
208 	int ret;
209 
210 	if (!tb_route(sw))
211 		return 0;
212 
213 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
214 	if (ret)
215 		return ret;
216 
217 	xhci = val & ROUTER_CS_6_HCI;
218 	tbt3 = !(val & ROUTER_CS_6_TNS);
219 
220 	tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
221 		  tbt3 ? "yes" : "no", xhci ? "yes" : "no");
222 
223 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
224 	if (ret)
225 		return ret;
226 
227 	parent = tb_switch_parent(sw);
228 
229 	if (tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
230 		val |= ROUTER_CS_5_UTO;
231 		xhci = false;
232 	}
233 
234 	/* Only enable PCIe tunneling if the parent router supports it */
235 	if (tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
236 		val |= ROUTER_CS_5_PTO;
237 		/*
238 		 * xHCI can be enabled if PCIe tunneling is supported
239 		 * and the parent does not have any USB3 dowstream
240 		 * adapters (so we cannot do USB 3.x tunneling).
241 		 */
242 		if (xhci)
243 			val |= ROUTER_CS_5_HCO;
244 	}
245 
246 	/* TBT3 supported by the CM */
247 	val |= ROUTER_CS_5_C3S;
248 	/* Tunneling configuration is ready now */
249 	val |= ROUTER_CS_5_CV;
250 
251 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
252 	if (ret)
253 		return ret;
254 
255 	return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
256 					ROUTER_CS_6_CR, 50);
257 }
258 
259 /**
260  * usb4_switch_read_uid() - Read UID from USB4 router
261  * @sw: USB4 router
262  * @uid: UID is stored here
263  *
264  * Reads 64-bit UID from USB4 router config space.
265  */
266 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
267 {
268 	return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
269 }
270 
271 static int usb4_switch_drom_read_block(struct tb_switch *sw,
272 				       unsigned int dwaddress, void *buf,
273 				       size_t dwords)
274 {
275 	u8 status = 0;
276 	u32 metadata;
277 	int ret;
278 
279 	metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
280 	metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
281 		USB4_DROM_ADDRESS_MASK;
282 
283 	ret = usb4_switch_op_write_metadata(sw, metadata);
284 	if (ret)
285 		return ret;
286 
287 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DROM_READ, &status);
288 	if (ret)
289 		return ret;
290 
291 	if (status)
292 		return -EIO;
293 
294 	return usb4_switch_op_read_data(sw, buf, dwords);
295 }
296 
297 /**
298  * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
299  * @sw: USB4 router
300  * @address: Byte address inside DROM to start reading
301  * @buf: Buffer where the DROM content is stored
302  * @size: Number of bytes to read from DROM
303  *
304  * Uses USB4 router operations to read router DROM. For devices this
305  * should always work but for hosts it may return %-EOPNOTSUPP in which
306  * case the host router does not have DROM.
307  */
308 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
309 			  size_t size)
310 {
311 	return usb4_switch_do_read_data(sw, address, buf, size,
312 					usb4_switch_drom_read_block);
313 }
314 
315 static int usb4_set_port_configured(struct tb_port *port, bool configured)
316 {
317 	int ret;
318 	u32 val;
319 
320 	ret = tb_port_read(port, &val, TB_CFG_PORT,
321 			   port->cap_usb4 + PORT_CS_19, 1);
322 	if (ret)
323 		return ret;
324 
325 	if (configured)
326 		val |= PORT_CS_19_PC;
327 	else
328 		val &= ~PORT_CS_19_PC;
329 
330 	return tb_port_write(port, &val, TB_CFG_PORT,
331 			     port->cap_usb4 + PORT_CS_19, 1);
332 }
333 
334 /**
335  * usb4_switch_configure_link() - Set upstream USB4 link configured
336  * @sw: USB4 router
337  *
338  * Sets the upstream USB4 link to be configured for power management
339  * purposes.
340  */
341 int usb4_switch_configure_link(struct tb_switch *sw)
342 {
343 	struct tb_port *up;
344 
345 	if (!tb_route(sw))
346 		return 0;
347 
348 	up = tb_upstream_port(sw);
349 	return usb4_set_port_configured(up, true);
350 }
351 
352 /**
353  * usb4_switch_unconfigure_link() - Un-set upstream USB4 link configuration
354  * @sw: USB4 router
355  *
356  * Reverse of usb4_switch_configure_link().
357  */
358 void usb4_switch_unconfigure_link(struct tb_switch *sw)
359 {
360 	struct tb_port *up;
361 
362 	if (sw->is_unplugged || !tb_route(sw))
363 		return;
364 
365 	up = tb_upstream_port(sw);
366 	usb4_set_port_configured(up, false);
367 }
368 
369 /**
370  * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
371  * @sw: USB4 router
372  *
373  * Checks whether conditions are met so that lane bonding can be
374  * established with the upstream router. Call only for device routers.
375  */
376 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
377 {
378 	struct tb_port *up;
379 	int ret;
380 	u32 val;
381 
382 	up = tb_upstream_port(sw);
383 	ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
384 	if (ret)
385 		return false;
386 
387 	return !!(val & PORT_CS_18_BE);
388 }
389 
390 /**
391  * usb4_switch_set_sleep() - Prepare the router to enter sleep
392  * @sw: USB4 router
393  *
394  * Enables wakes and sets sleep bit for the router. Returns when the
395  * router sleep ready bit has been asserted.
396  */
397 int usb4_switch_set_sleep(struct tb_switch *sw)
398 {
399 	int ret;
400 	u32 val;
401 
402 	/* Set sleep bit and wait for sleep ready to be asserted */
403 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
404 	if (ret)
405 		return ret;
406 
407 	val |= ROUTER_CS_5_SLP;
408 
409 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
410 	if (ret)
411 		return ret;
412 
413 	return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
414 					ROUTER_CS_6_SLPR, 500);
415 }
416 
417 /**
418  * usb4_switch_nvm_sector_size() - Return router NVM sector size
419  * @sw: USB4 router
420  *
421  * If the router supports NVM operations this function returns the NVM
422  * sector size in bytes. If NVM operations are not supported returns
423  * %-EOPNOTSUPP.
424  */
425 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
426 {
427 	u32 metadata;
428 	u8 status;
429 	int ret;
430 
431 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &status);
432 	if (ret)
433 		return ret;
434 
435 	if (status)
436 		return status == 0x2 ? -EOPNOTSUPP : -EIO;
437 
438 	ret = usb4_switch_op_read_metadata(sw, &metadata);
439 	if (ret)
440 		return ret;
441 
442 	return metadata & USB4_NVM_SECTOR_SIZE_MASK;
443 }
444 
445 static int usb4_switch_nvm_read_block(struct tb_switch *sw,
446 	unsigned int dwaddress, void *buf, size_t dwords)
447 {
448 	u8 status = 0;
449 	u32 metadata;
450 	int ret;
451 
452 	metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
453 		   USB4_NVM_READ_LENGTH_MASK;
454 	metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
455 		   USB4_NVM_READ_OFFSET_MASK;
456 
457 	ret = usb4_switch_op_write_metadata(sw, metadata);
458 	if (ret)
459 		return ret;
460 
461 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_READ, &status);
462 	if (ret)
463 		return ret;
464 
465 	if (status)
466 		return -EIO;
467 
468 	return usb4_switch_op_read_data(sw, buf, dwords);
469 }
470 
471 /**
472  * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
473  * @sw: USB4 router
474  * @address: Starting address in bytes
475  * @buf: Read data is placed here
476  * @size: How many bytes to read
477  *
478  * Reads NVM contents of the router. If NVM is not supported returns
479  * %-EOPNOTSUPP.
480  */
481 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
482 			 size_t size)
483 {
484 	return usb4_switch_do_read_data(sw, address, buf, size,
485 					usb4_switch_nvm_read_block);
486 }
487 
488 static int usb4_switch_nvm_set_offset(struct tb_switch *sw,
489 				      unsigned int address)
490 {
491 	u32 metadata, dwaddress;
492 	u8 status = 0;
493 	int ret;
494 
495 	dwaddress = address / 4;
496 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
497 		   USB4_NVM_SET_OFFSET_MASK;
498 
499 	ret = usb4_switch_op_write_metadata(sw, metadata);
500 	if (ret)
501 		return ret;
502 
503 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &status);
504 	if (ret)
505 		return ret;
506 
507 	return status ? -EIO : 0;
508 }
509 
510 static int usb4_switch_nvm_write_next_block(struct tb_switch *sw,
511 					    const void *buf, size_t dwords)
512 {
513 	u8 status;
514 	int ret;
515 
516 	ret = usb4_switch_op_write_data(sw, buf, dwords);
517 	if (ret)
518 		return ret;
519 
520 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_WRITE, &status);
521 	if (ret)
522 		return ret;
523 
524 	return status ? -EIO : 0;
525 }
526 
527 /**
528  * usb4_switch_nvm_write() - Write to the router NVM
529  * @sw: USB4 router
530  * @address: Start address where to write in bytes
531  * @buf: Pointer to the data to write
532  * @size: Size of @buf in bytes
533  *
534  * Writes @buf to the router NVM using USB4 router operations. If NVM
535  * write is not supported returns %-EOPNOTSUPP.
536  */
537 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
538 			  const void *buf, size_t size)
539 {
540 	int ret;
541 
542 	ret = usb4_switch_nvm_set_offset(sw, address);
543 	if (ret)
544 		return ret;
545 
546 	return usb4_switch_do_write_data(sw, address, buf, size,
547 					 usb4_switch_nvm_write_next_block);
548 }
549 
550 /**
551  * usb4_switch_nvm_authenticate() - Authenticate new NVM
552  * @sw: USB4 router
553  *
554  * After the new NVM has been written via usb4_switch_nvm_write(), this
555  * function triggers NVM authentication process. If the authentication
556  * is successful the router is power cycled and the new NVM starts
557  * running. In case of failure returns negative errno.
558  */
559 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
560 {
561 	u8 status = 0;
562 	int ret;
563 
564 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, &status);
565 	if (ret)
566 		return ret;
567 
568 	switch (status) {
569 	case 0x0:
570 		tb_sw_dbg(sw, "NVM authentication successful\n");
571 		return 0;
572 	case 0x1:
573 		return -EINVAL;
574 	case 0x2:
575 		return -EAGAIN;
576 	case 0x3:
577 		return -EOPNOTSUPP;
578 	default:
579 		return -EIO;
580 	}
581 }
582 
583 /**
584  * usb4_switch_query_dp_resource() - Query availability of DP IN resource
585  * @sw: USB4 router
586  * @in: DP IN adapter
587  *
588  * For DP tunneling this function can be used to query availability of
589  * DP IN resource. Returns true if the resource is available for DP
590  * tunneling, false otherwise.
591  */
592 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
593 {
594 	u8 status;
595 	int ret;
596 
597 	ret = usb4_switch_op_write_metadata(sw, in->port);
598 	if (ret)
599 		return false;
600 
601 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &status);
602 	/*
603 	 * If DP resource allocation is not supported assume it is
604 	 * always available.
605 	 */
606 	if (ret == -EOPNOTSUPP)
607 		return true;
608 	else if (ret)
609 		return false;
610 
611 	return !status;
612 }
613 
614 /**
615  * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
616  * @sw: USB4 router
617  * @in: DP IN adapter
618  *
619  * Allocates DP IN resource for DP tunneling using USB4 router
620  * operations. If the resource was allocated returns %0. Otherwise
621  * returns negative errno, in particular %-EBUSY if the resource is
622  * already allocated.
623  */
624 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
625 {
626 	u8 status;
627 	int ret;
628 
629 	ret = usb4_switch_op_write_metadata(sw, in->port);
630 	if (ret)
631 		return ret;
632 
633 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &status);
634 	if (ret == -EOPNOTSUPP)
635 		return 0;
636 	else if (ret)
637 		return ret;
638 
639 	return status ? -EBUSY : 0;
640 }
641 
642 /**
643  * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
644  * @sw: USB4 router
645  * @in: DP IN adapter
646  *
647  * Releases the previously allocated DP IN resource.
648  */
649 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
650 {
651 	u8 status;
652 	int ret;
653 
654 	ret = usb4_switch_op_write_metadata(sw, in->port);
655 	if (ret)
656 		return ret;
657 
658 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &status);
659 	if (ret == -EOPNOTSUPP)
660 		return 0;
661 	else if (ret)
662 		return ret;
663 
664 	return status ? -EIO : 0;
665 }
666 
667 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
668 {
669 	struct tb_port *p;
670 	int usb4_idx = 0;
671 
672 	/* Assume port is primary */
673 	tb_switch_for_each_port(sw, p) {
674 		if (!tb_port_is_null(p))
675 			continue;
676 		if (tb_is_upstream_port(p))
677 			continue;
678 		if (!p->link_nr) {
679 			if (p == port)
680 				break;
681 			usb4_idx++;
682 		}
683 	}
684 
685 	return usb4_idx;
686 }
687 
688 /**
689  * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
690  * @sw: USB4 router
691  * @port: USB4 port
692  *
693  * USB4 routers have direct mapping between USB4 ports and PCIe
694  * downstream adapters where the PCIe topology is extended. This
695  * function returns the corresponding downstream PCIe adapter or %NULL
696  * if no such mapping was possible.
697  */
698 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
699 					  const struct tb_port *port)
700 {
701 	int usb4_idx = usb4_port_idx(sw, port);
702 	struct tb_port *p;
703 	int pcie_idx = 0;
704 
705 	/* Find PCIe down port matching usb4_port */
706 	tb_switch_for_each_port(sw, p) {
707 		if (!tb_port_is_pcie_down(p))
708 			continue;
709 
710 		if (pcie_idx == usb4_idx && !tb_pci_port_is_enabled(p))
711 			return p;
712 
713 		pcie_idx++;
714 	}
715 
716 	return NULL;
717 }
718 
719 /**
720  * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
721  * @sw: USB4 router
722  * @port: USB4 port
723  *
724  * USB4 routers have direct mapping between USB4 ports and USB 3.x
725  * downstream adapters where the USB 3.x topology is extended. This
726  * function returns the corresponding downstream USB 3.x adapter or
727  * %NULL if no such mapping was possible.
728  */
729 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
730 					  const struct tb_port *port)
731 {
732 	int usb4_idx = usb4_port_idx(sw, port);
733 	struct tb_port *p;
734 	int usb_idx = 0;
735 
736 	/* Find USB3 down port matching usb4_port */
737 	tb_switch_for_each_port(sw, p) {
738 		if (!tb_port_is_usb3_down(p))
739 			continue;
740 
741 		if (usb_idx == usb4_idx && !tb_usb3_port_is_enabled(p))
742 			return p;
743 
744 		usb_idx++;
745 	}
746 
747 	return NULL;
748 }
749 
750 /**
751  * usb4_port_unlock() - Unlock USB4 downstream port
752  * @port: USB4 port to unlock
753  *
754  * Unlocks USB4 downstream port so that the connection manager can
755  * access the router below this port.
756  */
757 int usb4_port_unlock(struct tb_port *port)
758 {
759 	int ret;
760 	u32 val;
761 
762 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
763 	if (ret)
764 		return ret;
765 
766 	val &= ~ADP_CS_4_LCK;
767 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
768 }
769