xref: /openbmc/linux/drivers/thunderbolt/usb4.c (revision 7a836736b6537b0e2633381d743d9c1559ce243c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * USB4 specific functionality
4  *
5  * Copyright (C) 2019, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *	    Rajmohan Mani <rajmohan.mani@intel.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12 #include <linux/units.h>
13 
14 #include "sb_regs.h"
15 #include "tb.h"
16 
17 #define USB4_DATA_RETRIES		3
18 #define USB4_DATA_DWORDS		16
19 
20 enum usb4_sb_target {
21 	USB4_SB_TARGET_ROUTER,
22 	USB4_SB_TARGET_PARTNER,
23 	USB4_SB_TARGET_RETIMER,
24 };
25 
26 #define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2)
27 #define USB4_NVM_READ_OFFSET_SHIFT	2
28 #define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24)
29 #define USB4_NVM_READ_LENGTH_SHIFT	24
30 
31 #define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK
32 #define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT
33 
34 #define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2)
35 #define USB4_DROM_ADDRESS_SHIFT		2
36 #define USB4_DROM_SIZE_MASK		GENMASK(19, 15)
37 #define USB4_DROM_SIZE_SHIFT		15
38 
39 #define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0)
40 
41 #define USB4_BA_LENGTH_MASK		GENMASK(7, 0)
42 #define USB4_BA_INDEX_MASK		GENMASK(15, 0)
43 
44 enum usb4_ba_index {
45 	USB4_BA_MAX_USB3 = 0x1,
46 	USB4_BA_MIN_DP_AUX = 0x2,
47 	USB4_BA_MIN_DP_MAIN = 0x3,
48 	USB4_BA_MAX_PCIE = 0x4,
49 	USB4_BA_MAX_HI = 0x5,
50 };
51 
52 #define USB4_BA_VALUE_MASK		GENMASK(31, 16)
53 #define USB4_BA_VALUE_SHIFT		16
54 
55 static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
56 				 u32 *metadata, u8 *status,
57 				 const void *tx_data, size_t tx_dwords,
58 				 void *rx_data, size_t rx_dwords)
59 {
60 	u32 val;
61 	int ret;
62 
63 	if (metadata) {
64 		ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
65 		if (ret)
66 			return ret;
67 	}
68 	if (tx_dwords) {
69 		ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
70 				  tx_dwords);
71 		if (ret)
72 			return ret;
73 	}
74 
75 	val = opcode | ROUTER_CS_26_OV;
76 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
77 	if (ret)
78 		return ret;
79 
80 	ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
81 	if (ret)
82 		return ret;
83 
84 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
85 	if (ret)
86 		return ret;
87 
88 	if (val & ROUTER_CS_26_ONS)
89 		return -EOPNOTSUPP;
90 
91 	if (status)
92 		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
93 			ROUTER_CS_26_STATUS_SHIFT;
94 
95 	if (metadata) {
96 		ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
97 		if (ret)
98 			return ret;
99 	}
100 	if (rx_dwords) {
101 		ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
102 				 rx_dwords);
103 		if (ret)
104 			return ret;
105 	}
106 
107 	return 0;
108 }
109 
110 static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
111 			    u8 *status, const void *tx_data, size_t tx_dwords,
112 			    void *rx_data, size_t rx_dwords)
113 {
114 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
115 
116 	if (tx_dwords > USB4_DATA_DWORDS || rx_dwords > USB4_DATA_DWORDS)
117 		return -EINVAL;
118 
119 	/*
120 	 * If the connection manager implementation provides USB4 router
121 	 * operation proxy callback, call it here instead of running the
122 	 * operation natively.
123 	 */
124 	if (cm_ops->usb4_switch_op) {
125 		int ret;
126 
127 		ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
128 					     tx_data, tx_dwords, rx_data,
129 					     rx_dwords);
130 		if (ret != -EOPNOTSUPP)
131 			return ret;
132 
133 		/*
134 		 * If the proxy was not supported then run the native
135 		 * router operation instead.
136 		 */
137 	}
138 
139 	return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
140 				     tx_dwords, rx_data, rx_dwords);
141 }
142 
143 static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
144 				 u32 *metadata, u8 *status)
145 {
146 	return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
147 }
148 
149 static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
150 				      u32 *metadata, u8 *status,
151 				      const void *tx_data, size_t tx_dwords,
152 				      void *rx_data, size_t rx_dwords)
153 {
154 	return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
155 				tx_dwords, rx_data, rx_dwords);
156 }
157 
158 static void usb4_switch_check_wakes(struct tb_switch *sw)
159 {
160 	bool wakeup_usb4 = false;
161 	struct usb4_port *usb4;
162 	struct tb_port *port;
163 	bool wakeup = false;
164 	u32 val;
165 
166 	if (!device_may_wakeup(&sw->dev))
167 		return;
168 
169 	if (tb_route(sw)) {
170 		if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
171 			return;
172 
173 		tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
174 			  (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
175 			  (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
176 
177 		wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
178 	}
179 
180 	/*
181 	 * Check for any downstream ports for USB4 wake,
182 	 * connection wake and disconnection wake.
183 	 */
184 	tb_switch_for_each_port(sw, port) {
185 		if (!port->cap_usb4)
186 			continue;
187 
188 		if (tb_port_read(port, &val, TB_CFG_PORT,
189 				 port->cap_usb4 + PORT_CS_18, 1))
190 			break;
191 
192 		tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n",
193 			    (val & PORT_CS_18_WOU4S) ? "yes" : "no",
194 			    (val & PORT_CS_18_WOCS) ? "yes" : "no",
195 			    (val & PORT_CS_18_WODS) ? "yes" : "no");
196 
197 		wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS |
198 				     PORT_CS_18_WODS);
199 
200 		usb4 = port->usb4;
201 		if (device_may_wakeup(&usb4->dev) && wakeup_usb4)
202 			pm_wakeup_event(&usb4->dev, 0);
203 
204 		wakeup |= wakeup_usb4;
205 	}
206 
207 	if (wakeup)
208 		pm_wakeup_event(&sw->dev, 0);
209 }
210 
211 static bool link_is_usb4(struct tb_port *port)
212 {
213 	u32 val;
214 
215 	if (!port->cap_usb4)
216 		return false;
217 
218 	if (tb_port_read(port, &val, TB_CFG_PORT,
219 			 port->cap_usb4 + PORT_CS_18, 1))
220 		return false;
221 
222 	return !(val & PORT_CS_18_TCM);
223 }
224 
225 /**
226  * usb4_switch_setup() - Additional setup for USB4 device
227  * @sw: USB4 router to setup
228  *
229  * USB4 routers need additional settings in order to enable all the
230  * tunneling. This function enables USB and PCIe tunneling if it can be
231  * enabled (e.g the parent switch also supports them). If USB tunneling
232  * is not available for some reason (like that there is Thunderbolt 3
233  * switch upstream) then the internal xHCI controller is enabled
234  * instead.
235  *
236  * This does not set the configuration valid bit of the router. To do
237  * that call usb4_switch_configuration_valid().
238  */
239 int usb4_switch_setup(struct tb_switch *sw)
240 {
241 	struct tb_switch *parent = tb_switch_parent(sw);
242 	struct tb_port *down;
243 	bool tbt3, xhci;
244 	u32 val = 0;
245 	int ret;
246 
247 	usb4_switch_check_wakes(sw);
248 
249 	if (!tb_route(sw))
250 		return 0;
251 
252 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
253 	if (ret)
254 		return ret;
255 
256 	down = tb_switch_downstream_port(sw);
257 	sw->link_usb4 = link_is_usb4(down);
258 	tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
259 
260 	xhci = val & ROUTER_CS_6_HCI;
261 	tbt3 = !(val & ROUTER_CS_6_TNS);
262 
263 	tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
264 		  tbt3 ? "yes" : "no", xhci ? "yes" : "no");
265 
266 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
267 	if (ret)
268 		return ret;
269 
270 	if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
271 	    tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
272 		val |= ROUTER_CS_5_UTO;
273 		xhci = false;
274 	}
275 
276 	/*
277 	 * Only enable PCIe tunneling if the parent router supports it
278 	 * and it is not disabled.
279 	 */
280 	if (tb_acpi_may_tunnel_pcie() &&
281 	    tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
282 		val |= ROUTER_CS_5_PTO;
283 		/*
284 		 * xHCI can be enabled if PCIe tunneling is supported
285 		 * and the parent does not have any USB3 dowstream
286 		 * adapters (so we cannot do USB 3.x tunneling).
287 		 */
288 		if (xhci)
289 			val |= ROUTER_CS_5_HCO;
290 	}
291 
292 	/* TBT3 supported by the CM */
293 	val &= ~ROUTER_CS_5_CNS;
294 
295 	return tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
296 }
297 
298 /**
299  * usb4_switch_configuration_valid() - Set tunneling configuration to be valid
300  * @sw: USB4 router
301  *
302  * Sets configuration valid bit for the router. Must be called before
303  * any tunnels can be set through the router and after
304  * usb4_switch_setup() has been called. Can be called to host and device
305  * routers (does nothing for the latter).
306  *
307  * Returns %0 in success and negative errno otherwise.
308  */
309 int usb4_switch_configuration_valid(struct tb_switch *sw)
310 {
311 	u32 val;
312 	int ret;
313 
314 	if (!tb_route(sw))
315 		return 0;
316 
317 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
318 	if (ret)
319 		return ret;
320 
321 	val |= ROUTER_CS_5_CV;
322 
323 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
324 	if (ret)
325 		return ret;
326 
327 	return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
328 				      ROUTER_CS_6_CR, 50);
329 }
330 
331 /**
332  * usb4_switch_read_uid() - Read UID from USB4 router
333  * @sw: USB4 router
334  * @uid: UID is stored here
335  *
336  * Reads 64-bit UID from USB4 router config space.
337  */
338 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
339 {
340 	return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
341 }
342 
343 static int usb4_switch_drom_read_block(void *data,
344 				       unsigned int dwaddress, void *buf,
345 				       size_t dwords)
346 {
347 	struct tb_switch *sw = data;
348 	u8 status = 0;
349 	u32 metadata;
350 	int ret;
351 
352 	metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
353 	metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
354 		USB4_DROM_ADDRESS_MASK;
355 
356 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
357 				  &status, NULL, 0, buf, dwords);
358 	if (ret)
359 		return ret;
360 
361 	return status ? -EIO : 0;
362 }
363 
364 /**
365  * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
366  * @sw: USB4 router
367  * @address: Byte address inside DROM to start reading
368  * @buf: Buffer where the DROM content is stored
369  * @size: Number of bytes to read from DROM
370  *
371  * Uses USB4 router operations to read router DROM. For devices this
372  * should always work but for hosts it may return %-EOPNOTSUPP in which
373  * case the host router does not have DROM.
374  */
375 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
376 			  size_t size)
377 {
378 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
379 				usb4_switch_drom_read_block, sw);
380 }
381 
382 /**
383  * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
384  * @sw: USB4 router
385  *
386  * Checks whether conditions are met so that lane bonding can be
387  * established with the upstream router. Call only for device routers.
388  */
389 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
390 {
391 	struct tb_port *up;
392 	int ret;
393 	u32 val;
394 
395 	up = tb_upstream_port(sw);
396 	ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
397 	if (ret)
398 		return false;
399 
400 	return !!(val & PORT_CS_18_BE);
401 }
402 
403 /**
404  * usb4_switch_set_wake() - Enabled/disable wake
405  * @sw: USB4 router
406  * @flags: Wakeup flags (%0 to disable)
407  *
408  * Enables/disables router to wake up from sleep.
409  */
410 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
411 {
412 	struct usb4_port *usb4;
413 	struct tb_port *port;
414 	u64 route = tb_route(sw);
415 	u32 val;
416 	int ret;
417 
418 	/*
419 	 * Enable wakes coming from all USB4 downstream ports (from
420 	 * child routers). For device routers do this also for the
421 	 * upstream USB4 port.
422 	 */
423 	tb_switch_for_each_port(sw, port) {
424 		if (!tb_port_is_null(port))
425 			continue;
426 		if (!route && tb_is_upstream_port(port))
427 			continue;
428 		if (!port->cap_usb4)
429 			continue;
430 
431 		ret = tb_port_read(port, &val, TB_CFG_PORT,
432 				   port->cap_usb4 + PORT_CS_19, 1);
433 		if (ret)
434 			return ret;
435 
436 		val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
437 
438 		if (tb_is_upstream_port(port)) {
439 			val |= PORT_CS_19_WOU4;
440 		} else {
441 			bool configured = val & PORT_CS_19_PC;
442 			usb4 = port->usb4;
443 
444 			if (((flags & TB_WAKE_ON_CONNECT) |
445 			      device_may_wakeup(&usb4->dev)) && !configured)
446 				val |= PORT_CS_19_WOC;
447 			if (((flags & TB_WAKE_ON_DISCONNECT) |
448 			      device_may_wakeup(&usb4->dev)) && configured)
449 				val |= PORT_CS_19_WOD;
450 			if ((flags & TB_WAKE_ON_USB4) && configured)
451 				val |= PORT_CS_19_WOU4;
452 		}
453 
454 		ret = tb_port_write(port, &val, TB_CFG_PORT,
455 				    port->cap_usb4 + PORT_CS_19, 1);
456 		if (ret)
457 			return ret;
458 	}
459 
460 	/*
461 	 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
462 	 * needed for device routers.
463 	 */
464 	if (route) {
465 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
466 		if (ret)
467 			return ret;
468 
469 		val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
470 		if (flags & TB_WAKE_ON_USB3)
471 			val |= ROUTER_CS_5_WOU;
472 		if (flags & TB_WAKE_ON_PCIE)
473 			val |= ROUTER_CS_5_WOP;
474 		if (flags & TB_WAKE_ON_DP)
475 			val |= ROUTER_CS_5_WOD;
476 
477 		ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
478 		if (ret)
479 			return ret;
480 	}
481 
482 	return 0;
483 }
484 
485 /**
486  * usb4_switch_set_sleep() - Prepare the router to enter sleep
487  * @sw: USB4 router
488  *
489  * Sets sleep bit for the router. Returns when the router sleep ready
490  * bit has been asserted.
491  */
492 int usb4_switch_set_sleep(struct tb_switch *sw)
493 {
494 	int ret;
495 	u32 val;
496 
497 	/* Set sleep bit and wait for sleep ready to be asserted */
498 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
499 	if (ret)
500 		return ret;
501 
502 	val |= ROUTER_CS_5_SLP;
503 
504 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
505 	if (ret)
506 		return ret;
507 
508 	return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
509 				      ROUTER_CS_6_SLPR, 500);
510 }
511 
512 /**
513  * usb4_switch_nvm_sector_size() - Return router NVM sector size
514  * @sw: USB4 router
515  *
516  * If the router supports NVM operations this function returns the NVM
517  * sector size in bytes. If NVM operations are not supported returns
518  * %-EOPNOTSUPP.
519  */
520 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
521 {
522 	u32 metadata;
523 	u8 status;
524 	int ret;
525 
526 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
527 			     &status);
528 	if (ret)
529 		return ret;
530 
531 	if (status)
532 		return status == 0x2 ? -EOPNOTSUPP : -EIO;
533 
534 	return metadata & USB4_NVM_SECTOR_SIZE_MASK;
535 }
536 
537 static int usb4_switch_nvm_read_block(void *data,
538 	unsigned int dwaddress, void *buf, size_t dwords)
539 {
540 	struct tb_switch *sw = data;
541 	u8 status = 0;
542 	u32 metadata;
543 	int ret;
544 
545 	metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
546 		   USB4_NVM_READ_LENGTH_MASK;
547 	metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
548 		   USB4_NVM_READ_OFFSET_MASK;
549 
550 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
551 				  &status, NULL, 0, buf, dwords);
552 	if (ret)
553 		return ret;
554 
555 	return status ? -EIO : 0;
556 }
557 
558 /**
559  * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
560  * @sw: USB4 router
561  * @address: Starting address in bytes
562  * @buf: Read data is placed here
563  * @size: How many bytes to read
564  *
565  * Reads NVM contents of the router. If NVM is not supported returns
566  * %-EOPNOTSUPP.
567  */
568 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
569 			 size_t size)
570 {
571 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
572 				usb4_switch_nvm_read_block, sw);
573 }
574 
575 /**
576  * usb4_switch_nvm_set_offset() - Set NVM write offset
577  * @sw: USB4 router
578  * @address: Start offset
579  *
580  * Explicitly sets NVM write offset. Normally when writing to NVM this
581  * is done automatically by usb4_switch_nvm_write().
582  *
583  * Returns %0 in success and negative errno if there was a failure.
584  */
585 int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
586 {
587 	u32 metadata, dwaddress;
588 	u8 status = 0;
589 	int ret;
590 
591 	dwaddress = address / 4;
592 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
593 		   USB4_NVM_SET_OFFSET_MASK;
594 
595 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
596 			     &status);
597 	if (ret)
598 		return ret;
599 
600 	return status ? -EIO : 0;
601 }
602 
603 static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
604 					    const void *buf, size_t dwords)
605 {
606 	struct tb_switch *sw = data;
607 	u8 status;
608 	int ret;
609 
610 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
611 				  buf, dwords, NULL, 0);
612 	if (ret)
613 		return ret;
614 
615 	return status ? -EIO : 0;
616 }
617 
618 /**
619  * usb4_switch_nvm_write() - Write to the router NVM
620  * @sw: USB4 router
621  * @address: Start address where to write in bytes
622  * @buf: Pointer to the data to write
623  * @size: Size of @buf in bytes
624  *
625  * Writes @buf to the router NVM using USB4 router operations. If NVM
626  * write is not supported returns %-EOPNOTSUPP.
627  */
628 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
629 			  const void *buf, size_t size)
630 {
631 	int ret;
632 
633 	ret = usb4_switch_nvm_set_offset(sw, address);
634 	if (ret)
635 		return ret;
636 
637 	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
638 				 usb4_switch_nvm_write_next_block, sw);
639 }
640 
641 /**
642  * usb4_switch_nvm_authenticate() - Authenticate new NVM
643  * @sw: USB4 router
644  *
645  * After the new NVM has been written via usb4_switch_nvm_write(), this
646  * function triggers NVM authentication process. The router gets power
647  * cycled and if the authentication is successful the new NVM starts
648  * running. In case of failure returns negative errno.
649  *
650  * The caller should call usb4_switch_nvm_authenticate_status() to read
651  * the status of the authentication after power cycle. It should be the
652  * first router operation to avoid the status being lost.
653  */
654 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
655 {
656 	int ret;
657 
658 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
659 	switch (ret) {
660 	/*
661 	 * The router is power cycled once NVM_AUTH is started so it is
662 	 * expected to get any of the following errors back.
663 	 */
664 	case -EACCES:
665 	case -ENOTCONN:
666 	case -ETIMEDOUT:
667 		return 0;
668 
669 	default:
670 		return ret;
671 	}
672 }
673 
674 /**
675  * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
676  * @sw: USB4 router
677  * @status: Status code of the operation
678  *
679  * The function checks if there is status available from the last NVM
680  * authenticate router operation. If there is status then %0 is returned
681  * and the status code is placed in @status. Returns negative errno in case
682  * of failure.
683  *
684  * Must be called before any other router operation.
685  */
686 int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
687 {
688 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
689 	u16 opcode;
690 	u32 val;
691 	int ret;
692 
693 	if (cm_ops->usb4_switch_nvm_authenticate_status) {
694 		ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
695 		if (ret != -EOPNOTSUPP)
696 			return ret;
697 	}
698 
699 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
700 	if (ret)
701 		return ret;
702 
703 	/* Check that the opcode is correct */
704 	opcode = val & ROUTER_CS_26_OPCODE_MASK;
705 	if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
706 		if (val & ROUTER_CS_26_OV)
707 			return -EBUSY;
708 		if (val & ROUTER_CS_26_ONS)
709 			return -EOPNOTSUPP;
710 
711 		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
712 			ROUTER_CS_26_STATUS_SHIFT;
713 	} else {
714 		*status = 0;
715 	}
716 
717 	return 0;
718 }
719 
720 /**
721  * usb4_switch_credits_init() - Read buffer allocation parameters
722  * @sw: USB4 router
723  *
724  * Reads @sw buffer allocation parameters and initializes @sw buffer
725  * allocation fields accordingly. Specifically @sw->credits_allocation
726  * is set to %true if these parameters can be used in tunneling.
727  *
728  * Returns %0 on success and negative errno otherwise.
729  */
730 int usb4_switch_credits_init(struct tb_switch *sw)
731 {
732 	int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
733 	int ret, length, i, nports;
734 	const struct tb_port *port;
735 	u32 data[USB4_DATA_DWORDS];
736 	u32 metadata = 0;
737 	u8 status = 0;
738 
739 	memset(data, 0, sizeof(data));
740 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
741 				  &status, NULL, 0, data, ARRAY_SIZE(data));
742 	if (ret)
743 		return ret;
744 	if (status)
745 		return -EIO;
746 
747 	length = metadata & USB4_BA_LENGTH_MASK;
748 	if (WARN_ON(length > ARRAY_SIZE(data)))
749 		return -EMSGSIZE;
750 
751 	max_usb3 = -1;
752 	min_dp_aux = -1;
753 	min_dp_main = -1;
754 	max_pcie = -1;
755 	max_dma = -1;
756 
757 	tb_sw_dbg(sw, "credit allocation parameters:\n");
758 
759 	for (i = 0; i < length; i++) {
760 		u16 index, value;
761 
762 		index = data[i] & USB4_BA_INDEX_MASK;
763 		value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
764 
765 		switch (index) {
766 		case USB4_BA_MAX_USB3:
767 			tb_sw_dbg(sw, " USB3: %u\n", value);
768 			max_usb3 = value;
769 			break;
770 		case USB4_BA_MIN_DP_AUX:
771 			tb_sw_dbg(sw, " DP AUX: %u\n", value);
772 			min_dp_aux = value;
773 			break;
774 		case USB4_BA_MIN_DP_MAIN:
775 			tb_sw_dbg(sw, " DP main: %u\n", value);
776 			min_dp_main = value;
777 			break;
778 		case USB4_BA_MAX_PCIE:
779 			tb_sw_dbg(sw, " PCIe: %u\n", value);
780 			max_pcie = value;
781 			break;
782 		case USB4_BA_MAX_HI:
783 			tb_sw_dbg(sw, " DMA: %u\n", value);
784 			max_dma = value;
785 			break;
786 		default:
787 			tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
788 				  index);
789 			break;
790 		}
791 	}
792 
793 	/*
794 	 * Validate the buffer allocation preferences. If we find
795 	 * issues, log a warning and fall back using the hard-coded
796 	 * values.
797 	 */
798 
799 	/* Host router must report baMaxHI */
800 	if (!tb_route(sw) && max_dma < 0) {
801 		tb_sw_warn(sw, "host router is missing baMaxHI\n");
802 		goto err_invalid;
803 	}
804 
805 	nports = 0;
806 	tb_switch_for_each_port(sw, port) {
807 		if (tb_port_is_null(port))
808 			nports++;
809 	}
810 
811 	/* Must have DP buffer allocation (multiple USB4 ports) */
812 	if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
813 		tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
814 		goto err_invalid;
815 	}
816 
817 	tb_switch_for_each_port(sw, port) {
818 		if (tb_port_is_dpout(port) && min_dp_main < 0) {
819 			tb_sw_warn(sw, "missing baMinDPmain");
820 			goto err_invalid;
821 		}
822 		if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
823 		    min_dp_aux < 0) {
824 			tb_sw_warn(sw, "missing baMinDPaux");
825 			goto err_invalid;
826 		}
827 		if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
828 		    max_usb3 < 0) {
829 			tb_sw_warn(sw, "missing baMaxUSB3");
830 			goto err_invalid;
831 		}
832 		if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
833 		    max_pcie < 0) {
834 			tb_sw_warn(sw, "missing baMaxPCIe");
835 			goto err_invalid;
836 		}
837 	}
838 
839 	/*
840 	 * Buffer allocation passed the validation so we can use it in
841 	 * path creation.
842 	 */
843 	sw->credit_allocation = true;
844 	if (max_usb3 > 0)
845 		sw->max_usb3_credits = max_usb3;
846 	if (min_dp_aux > 0)
847 		sw->min_dp_aux_credits = min_dp_aux;
848 	if (min_dp_main > 0)
849 		sw->min_dp_main_credits = min_dp_main;
850 	if (max_pcie > 0)
851 		sw->max_pcie_credits = max_pcie;
852 	if (max_dma > 0)
853 		sw->max_dma_credits = max_dma;
854 
855 	return 0;
856 
857 err_invalid:
858 	return -EINVAL;
859 }
860 
861 /**
862  * usb4_switch_query_dp_resource() - Query availability of DP IN resource
863  * @sw: USB4 router
864  * @in: DP IN adapter
865  *
866  * For DP tunneling this function can be used to query availability of
867  * DP IN resource. Returns true if the resource is available for DP
868  * tunneling, false otherwise.
869  */
870 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
871 {
872 	u32 metadata = in->port;
873 	u8 status;
874 	int ret;
875 
876 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
877 			     &status);
878 	/*
879 	 * If DP resource allocation is not supported assume it is
880 	 * always available.
881 	 */
882 	if (ret == -EOPNOTSUPP)
883 		return true;
884 	if (ret)
885 		return false;
886 
887 	return !status;
888 }
889 
890 /**
891  * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
892  * @sw: USB4 router
893  * @in: DP IN adapter
894  *
895  * Allocates DP IN resource for DP tunneling using USB4 router
896  * operations. If the resource was allocated returns %0. Otherwise
897  * returns negative errno, in particular %-EBUSY if the resource is
898  * already allocated.
899  */
900 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
901 {
902 	u32 metadata = in->port;
903 	u8 status;
904 	int ret;
905 
906 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
907 			     &status);
908 	if (ret == -EOPNOTSUPP)
909 		return 0;
910 	if (ret)
911 		return ret;
912 
913 	return status ? -EBUSY : 0;
914 }
915 
916 /**
917  * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
918  * @sw: USB4 router
919  * @in: DP IN adapter
920  *
921  * Releases the previously allocated DP IN resource.
922  */
923 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
924 {
925 	u32 metadata = in->port;
926 	u8 status;
927 	int ret;
928 
929 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
930 			     &status);
931 	if (ret == -EOPNOTSUPP)
932 		return 0;
933 	if (ret)
934 		return ret;
935 
936 	return status ? -EIO : 0;
937 }
938 
939 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
940 {
941 	struct tb_port *p;
942 	int usb4_idx = 0;
943 
944 	/* Assume port is primary */
945 	tb_switch_for_each_port(sw, p) {
946 		if (!tb_port_is_null(p))
947 			continue;
948 		if (tb_is_upstream_port(p))
949 			continue;
950 		if (!p->link_nr) {
951 			if (p == port)
952 				break;
953 			usb4_idx++;
954 		}
955 	}
956 
957 	return usb4_idx;
958 }
959 
960 /**
961  * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
962  * @sw: USB4 router
963  * @port: USB4 port
964  *
965  * USB4 routers have direct mapping between USB4 ports and PCIe
966  * downstream adapters where the PCIe topology is extended. This
967  * function returns the corresponding downstream PCIe adapter or %NULL
968  * if no such mapping was possible.
969  */
970 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
971 					  const struct tb_port *port)
972 {
973 	int usb4_idx = usb4_port_idx(sw, port);
974 	struct tb_port *p;
975 	int pcie_idx = 0;
976 
977 	/* Find PCIe down port matching usb4_port */
978 	tb_switch_for_each_port(sw, p) {
979 		if (!tb_port_is_pcie_down(p))
980 			continue;
981 
982 		if (pcie_idx == usb4_idx)
983 			return p;
984 
985 		pcie_idx++;
986 	}
987 
988 	return NULL;
989 }
990 
991 /**
992  * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
993  * @sw: USB4 router
994  * @port: USB4 port
995  *
996  * USB4 routers have direct mapping between USB4 ports and USB 3.x
997  * downstream adapters where the USB 3.x topology is extended. This
998  * function returns the corresponding downstream USB 3.x adapter or
999  * %NULL if no such mapping was possible.
1000  */
1001 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
1002 					  const struct tb_port *port)
1003 {
1004 	int usb4_idx = usb4_port_idx(sw, port);
1005 	struct tb_port *p;
1006 	int usb_idx = 0;
1007 
1008 	/* Find USB3 down port matching usb4_port */
1009 	tb_switch_for_each_port(sw, p) {
1010 		if (!tb_port_is_usb3_down(p))
1011 			continue;
1012 
1013 		if (usb_idx == usb4_idx)
1014 			return p;
1015 
1016 		usb_idx++;
1017 	}
1018 
1019 	return NULL;
1020 }
1021 
1022 /**
1023  * usb4_switch_add_ports() - Add USB4 ports for this router
1024  * @sw: USB4 router
1025  *
1026  * For USB4 router finds all USB4 ports and registers devices for each.
1027  * Can be called to any router.
1028  *
1029  * Return %0 in case of success and negative errno in case of failure.
1030  */
1031 int usb4_switch_add_ports(struct tb_switch *sw)
1032 {
1033 	struct tb_port *port;
1034 
1035 	if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
1036 		return 0;
1037 
1038 	tb_switch_for_each_port(sw, port) {
1039 		struct usb4_port *usb4;
1040 
1041 		if (!tb_port_is_null(port))
1042 			continue;
1043 		if (!port->cap_usb4)
1044 			continue;
1045 
1046 		usb4 = usb4_port_device_add(port);
1047 		if (IS_ERR(usb4)) {
1048 			usb4_switch_remove_ports(sw);
1049 			return PTR_ERR(usb4);
1050 		}
1051 
1052 		port->usb4 = usb4;
1053 	}
1054 
1055 	return 0;
1056 }
1057 
1058 /**
1059  * usb4_switch_remove_ports() - Removes USB4 ports from this router
1060  * @sw: USB4 router
1061  *
1062  * Unregisters previously registered USB4 ports.
1063  */
1064 void usb4_switch_remove_ports(struct tb_switch *sw)
1065 {
1066 	struct tb_port *port;
1067 
1068 	tb_switch_for_each_port(sw, port) {
1069 		if (port->usb4) {
1070 			usb4_port_device_remove(port->usb4);
1071 			port->usb4 = NULL;
1072 		}
1073 	}
1074 }
1075 
1076 /**
1077  * usb4_port_unlock() - Unlock USB4 downstream port
1078  * @port: USB4 port to unlock
1079  *
1080  * Unlocks USB4 downstream port so that the connection manager can
1081  * access the router below this port.
1082  */
1083 int usb4_port_unlock(struct tb_port *port)
1084 {
1085 	int ret;
1086 	u32 val;
1087 
1088 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1089 	if (ret)
1090 		return ret;
1091 
1092 	val &= ~ADP_CS_4_LCK;
1093 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1094 }
1095 
1096 /**
1097  * usb4_port_hotplug_enable() - Enables hotplug for a port
1098  * @port: USB4 port to operate on
1099  *
1100  * Enables hot plug events on a given port. This is only intended
1101  * to be used on lane, DP-IN, and DP-OUT adapters.
1102  */
1103 int usb4_port_hotplug_enable(struct tb_port *port)
1104 {
1105 	int ret;
1106 	u32 val;
1107 
1108 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1109 	if (ret)
1110 		return ret;
1111 
1112 	val &= ~ADP_CS_5_DHP;
1113 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1114 }
1115 
1116 static int usb4_port_set_configured(struct tb_port *port, bool configured)
1117 {
1118 	int ret;
1119 	u32 val;
1120 
1121 	if (!port->cap_usb4)
1122 		return -EINVAL;
1123 
1124 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1125 			   port->cap_usb4 + PORT_CS_19, 1);
1126 	if (ret)
1127 		return ret;
1128 
1129 	if (configured)
1130 		val |= PORT_CS_19_PC;
1131 	else
1132 		val &= ~PORT_CS_19_PC;
1133 
1134 	return tb_port_write(port, &val, TB_CFG_PORT,
1135 			     port->cap_usb4 + PORT_CS_19, 1);
1136 }
1137 
1138 /**
1139  * usb4_port_configure() - Set USB4 port configured
1140  * @port: USB4 router
1141  *
1142  * Sets the USB4 link to be configured for power management purposes.
1143  */
1144 int usb4_port_configure(struct tb_port *port)
1145 {
1146 	return usb4_port_set_configured(port, true);
1147 }
1148 
1149 /**
1150  * usb4_port_unconfigure() - Set USB4 port unconfigured
1151  * @port: USB4 router
1152  *
1153  * Sets the USB4 link to be unconfigured for power management purposes.
1154  */
1155 void usb4_port_unconfigure(struct tb_port *port)
1156 {
1157 	usb4_port_set_configured(port, false);
1158 }
1159 
1160 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1161 {
1162 	int ret;
1163 	u32 val;
1164 
1165 	if (!port->cap_usb4)
1166 		return -EINVAL;
1167 
1168 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1169 			   port->cap_usb4 + PORT_CS_19, 1);
1170 	if (ret)
1171 		return ret;
1172 
1173 	if (configured)
1174 		val |= PORT_CS_19_PID;
1175 	else
1176 		val &= ~PORT_CS_19_PID;
1177 
1178 	return tb_port_write(port, &val, TB_CFG_PORT,
1179 			     port->cap_usb4 + PORT_CS_19, 1);
1180 }
1181 
1182 /**
1183  * usb4_port_configure_xdomain() - Configure port for XDomain
1184  * @port: USB4 port connected to another host
1185  * @xd: XDomain that is connected to the port
1186  *
1187  * Marks the USB4 port as being connected to another host and updates
1188  * the link type. Returns %0 in success and negative errno in failure.
1189  */
1190 int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
1191 {
1192 	xd->link_usb4 = link_is_usb4(port);
1193 	return usb4_set_xdomain_configured(port, true);
1194 }
1195 
1196 /**
1197  * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1198  * @port: USB4 port that was connected to another host
1199  *
1200  * Clears USB4 port from being marked as XDomain.
1201  */
1202 void usb4_port_unconfigure_xdomain(struct tb_port *port)
1203 {
1204 	usb4_set_xdomain_configured(port, false);
1205 }
1206 
1207 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1208 				  u32 value, int timeout_msec)
1209 {
1210 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1211 
1212 	do {
1213 		u32 val;
1214 		int ret;
1215 
1216 		ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1217 		if (ret)
1218 			return ret;
1219 
1220 		if ((val & bit) == value)
1221 			return 0;
1222 
1223 		usleep_range(50, 100);
1224 	} while (ktime_before(ktime_get(), timeout));
1225 
1226 	return -ETIMEDOUT;
1227 }
1228 
1229 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1230 {
1231 	if (dwords > USB4_DATA_DWORDS)
1232 		return -EINVAL;
1233 
1234 	return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1235 			    dwords);
1236 }
1237 
1238 static int usb4_port_write_data(struct tb_port *port, const void *data,
1239 				size_t dwords)
1240 {
1241 	if (dwords > USB4_DATA_DWORDS)
1242 		return -EINVAL;
1243 
1244 	return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1245 			     dwords);
1246 }
1247 
1248 static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1249 			     u8 index, u8 reg, void *buf, u8 size)
1250 {
1251 	size_t dwords = DIV_ROUND_UP(size, 4);
1252 	int ret;
1253 	u32 val;
1254 
1255 	if (!port->cap_usb4)
1256 		return -EINVAL;
1257 
1258 	val = reg;
1259 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1260 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1261 	if (target == USB4_SB_TARGET_RETIMER)
1262 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1263 	val |= PORT_CS_1_PND;
1264 
1265 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1266 			    port->cap_usb4 + PORT_CS_1, 1);
1267 	if (ret)
1268 		return ret;
1269 
1270 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1271 				     PORT_CS_1_PND, 0, 500);
1272 	if (ret)
1273 		return ret;
1274 
1275 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1276 			    port->cap_usb4 + PORT_CS_1, 1);
1277 	if (ret)
1278 		return ret;
1279 
1280 	if (val & PORT_CS_1_NR)
1281 		return -ENODEV;
1282 	if (val & PORT_CS_1_RC)
1283 		return -EIO;
1284 
1285 	return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1286 }
1287 
1288 static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1289 			      u8 index, u8 reg, const void *buf, u8 size)
1290 {
1291 	size_t dwords = DIV_ROUND_UP(size, 4);
1292 	int ret;
1293 	u32 val;
1294 
1295 	if (!port->cap_usb4)
1296 		return -EINVAL;
1297 
1298 	if (buf) {
1299 		ret = usb4_port_write_data(port, buf, dwords);
1300 		if (ret)
1301 			return ret;
1302 	}
1303 
1304 	val = reg;
1305 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1306 	val |= PORT_CS_1_WNR_WRITE;
1307 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1308 	if (target == USB4_SB_TARGET_RETIMER)
1309 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1310 	val |= PORT_CS_1_PND;
1311 
1312 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1313 			    port->cap_usb4 + PORT_CS_1, 1);
1314 	if (ret)
1315 		return ret;
1316 
1317 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1318 				     PORT_CS_1_PND, 0, 500);
1319 	if (ret)
1320 		return ret;
1321 
1322 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1323 			    port->cap_usb4 + PORT_CS_1, 1);
1324 	if (ret)
1325 		return ret;
1326 
1327 	if (val & PORT_CS_1_NR)
1328 		return -ENODEV;
1329 	if (val & PORT_CS_1_RC)
1330 		return -EIO;
1331 
1332 	return 0;
1333 }
1334 
1335 static int usb4_port_sb_opcode_err_to_errno(u32 val)
1336 {
1337 	switch (val) {
1338 	case 0:
1339 		return 0;
1340 	case USB4_SB_OPCODE_ERR:
1341 		return -EAGAIN;
1342 	case USB4_SB_OPCODE_ONS:
1343 		return -EOPNOTSUPP;
1344 	default:
1345 		return -EIO;
1346 	}
1347 }
1348 
1349 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1350 			   u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1351 {
1352 	ktime_t timeout;
1353 	u32 val;
1354 	int ret;
1355 
1356 	val = opcode;
1357 	ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1358 				 sizeof(val));
1359 	if (ret)
1360 		return ret;
1361 
1362 	timeout = ktime_add_ms(ktime_get(), timeout_msec);
1363 
1364 	do {
1365 		/* Check results */
1366 		ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1367 					&val, sizeof(val));
1368 		if (ret)
1369 			return ret;
1370 
1371 		if (val != opcode)
1372 			return usb4_port_sb_opcode_err_to_errno(val);
1373 	} while (ktime_before(ktime_get(), timeout));
1374 
1375 	return -ETIMEDOUT;
1376 }
1377 
1378 static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1379 {
1380 	u32 val = !offline;
1381 	int ret;
1382 
1383 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1384 				  USB4_SB_METADATA, &val, sizeof(val));
1385 	if (ret)
1386 		return ret;
1387 
1388 	val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1389 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1390 				  USB4_SB_OPCODE, &val, sizeof(val));
1391 }
1392 
1393 /**
1394  * usb4_port_router_offline() - Put the USB4 port to offline mode
1395  * @port: USB4 port
1396  *
1397  * This function puts the USB4 port into offline mode. In this mode the
1398  * port does not react on hotplug events anymore. This needs to be
1399  * called before retimer access is done when the USB4 links is not up.
1400  *
1401  * Returns %0 in case of success and negative errno if there was an
1402  * error.
1403  */
1404 int usb4_port_router_offline(struct tb_port *port)
1405 {
1406 	return usb4_port_set_router_offline(port, true);
1407 }
1408 
1409 /**
1410  * usb4_port_router_online() - Put the USB4 port back to online
1411  * @port: USB4 port
1412  *
1413  * Makes the USB4 port functional again.
1414  */
1415 int usb4_port_router_online(struct tb_port *port)
1416 {
1417 	return usb4_port_set_router_offline(port, false);
1418 }
1419 
1420 /**
1421  * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1422  * @port: USB4 port
1423  *
1424  * This forces the USB4 port to send broadcast RT transaction which
1425  * makes the retimers on the link to assign index to themselves. Returns
1426  * %0 in case of success and negative errno if there was an error.
1427  */
1428 int usb4_port_enumerate_retimers(struct tb_port *port)
1429 {
1430 	u32 val;
1431 
1432 	val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1433 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1434 				  USB4_SB_OPCODE, &val, sizeof(val));
1435 }
1436 
1437 /**
1438  * usb4_port_clx_supported() - Check if CLx is supported by the link
1439  * @port: Port to check for CLx support for
1440  *
1441  * PORT_CS_18_CPS bit reflects if the link supports CLx including
1442  * active cables (if connected on the link).
1443  */
1444 bool usb4_port_clx_supported(struct tb_port *port)
1445 {
1446 	int ret;
1447 	u32 val;
1448 
1449 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1450 			   port->cap_usb4 + PORT_CS_18, 1);
1451 	if (ret)
1452 		return false;
1453 
1454 	return !!(val & PORT_CS_18_CPS);
1455 }
1456 
1457 /**
1458  * usb4_port_margining_caps() - Read USB4 port marginig capabilities
1459  * @port: USB4 port
1460  * @caps: Array with at least two elements to hold the results
1461  *
1462  * Reads the USB4 port lane margining capabilities into @caps.
1463  */
1464 int usb4_port_margining_caps(struct tb_port *port, u32 *caps)
1465 {
1466 	int ret;
1467 
1468 	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1469 			      USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500);
1470 	if (ret)
1471 		return ret;
1472 
1473 	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1474 				 USB4_SB_DATA, caps, sizeof(*caps) * 2);
1475 }
1476 
1477 /**
1478  * usb4_port_hw_margin() - Run hardware lane margining on port
1479  * @port: USB4 port
1480  * @lanes: Which lanes to run (must match the port capabilities). Can be
1481  *	   %0, %1 or %7.
1482  * @ber_level: BER level contour value
1483  * @timing: Perform timing margining instead of voltage
1484  * @right_high: Use Right/high margin instead of left/low
1485  * @results: Array with at least two elements to hold the results
1486  *
1487  * Runs hardware lane margining on USB4 port and returns the result in
1488  * @results.
1489  */
1490 int usb4_port_hw_margin(struct tb_port *port, unsigned int lanes,
1491 			unsigned int ber_level, bool timing, bool right_high,
1492 			u32 *results)
1493 {
1494 	u32 val;
1495 	int ret;
1496 
1497 	val = lanes;
1498 	if (timing)
1499 		val |= USB4_MARGIN_HW_TIME;
1500 	if (right_high)
1501 		val |= USB4_MARGIN_HW_RH;
1502 	if (ber_level)
1503 		val |= (ber_level << USB4_MARGIN_HW_BER_SHIFT) &
1504 			USB4_MARGIN_HW_BER_MASK;
1505 
1506 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1507 				 USB4_SB_METADATA, &val, sizeof(val));
1508 	if (ret)
1509 		return ret;
1510 
1511 	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1512 			      USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500);
1513 	if (ret)
1514 		return ret;
1515 
1516 	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1517 				 USB4_SB_DATA, results, sizeof(*results) * 2);
1518 }
1519 
1520 /**
1521  * usb4_port_sw_margin() - Run software lane margining on port
1522  * @port: USB4 port
1523  * @lanes: Which lanes to run (must match the port capabilities). Can be
1524  *	   %0, %1 or %7.
1525  * @timing: Perform timing margining instead of voltage
1526  * @right_high: Use Right/high margin instead of left/low
1527  * @counter: What to do with the error counter
1528  *
1529  * Runs software lane margining on USB4 port. Read back the error
1530  * counters by calling usb4_port_sw_margin_errors(). Returns %0 in
1531  * success and negative errno otherwise.
1532  */
1533 int usb4_port_sw_margin(struct tb_port *port, unsigned int lanes, bool timing,
1534 			bool right_high, u32 counter)
1535 {
1536 	u32 val;
1537 	int ret;
1538 
1539 	val = lanes;
1540 	if (timing)
1541 		val |= USB4_MARGIN_SW_TIME;
1542 	if (right_high)
1543 		val |= USB4_MARGIN_SW_RH;
1544 	val |= (counter << USB4_MARGIN_SW_COUNTER_SHIFT) &
1545 		USB4_MARGIN_SW_COUNTER_MASK;
1546 
1547 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1548 				 USB4_SB_METADATA, &val, sizeof(val));
1549 	if (ret)
1550 		return ret;
1551 
1552 	return usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1553 			       USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500);
1554 }
1555 
1556 /**
1557  * usb4_port_sw_margin_errors() - Read the software margining error counters
1558  * @port: USB4 port
1559  * @errors: Error metadata is copied here.
1560  *
1561  * This reads back the software margining error counters from the port.
1562  * Returns %0 in success and negative errno otherwise.
1563  */
1564 int usb4_port_sw_margin_errors(struct tb_port *port, u32 *errors)
1565 {
1566 	int ret;
1567 
1568 	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1569 			      USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150);
1570 	if (ret)
1571 		return ret;
1572 
1573 	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1574 				 USB4_SB_METADATA, errors, sizeof(*errors));
1575 }
1576 
1577 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1578 				       enum usb4_sb_opcode opcode,
1579 				       int timeout_msec)
1580 {
1581 	return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1582 			       timeout_msec);
1583 }
1584 
1585 /**
1586  * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1587  * @port: USB4 port
1588  * @index: Retimer index
1589  *
1590  * Enables sideband channel transations on SBTX. Can be used when USB4
1591  * link does not go up, for example if there is no device connected.
1592  */
1593 int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1594 {
1595 	int ret;
1596 
1597 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1598 				   500);
1599 
1600 	if (ret != -ENODEV)
1601 		return ret;
1602 
1603 	/*
1604 	 * Per the USB4 retimer spec, the retimer is not required to
1605 	 * send an RT (Retimer Transaction) response for the first
1606 	 * SET_INBOUND_SBTX command
1607 	 */
1608 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1609 				    500);
1610 }
1611 
1612 /**
1613  * usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions
1614  * @port: USB4 port
1615  * @index: Retimer index
1616  *
1617  * Disables sideband channel transations on SBTX. The reverse of
1618  * usb4_port_retimer_set_inbound_sbtx().
1619  */
1620 int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index)
1621 {
1622 	return usb4_port_retimer_op(port, index,
1623 				    USB4_SB_OPCODE_UNSET_INBOUND_SBTX, 500);
1624 }
1625 
1626 /**
1627  * usb4_port_retimer_read() - Read from retimer sideband registers
1628  * @port: USB4 port
1629  * @index: Retimer index
1630  * @reg: Sideband register to read
1631  * @buf: Data from @reg is stored here
1632  * @size: Number of bytes to read
1633  *
1634  * Function reads retimer sideband registers starting from @reg. The
1635  * retimer is connected to @port at @index. Returns %0 in case of
1636  * success, and read data is copied to @buf. If there is no retimer
1637  * present at given @index returns %-ENODEV. In any other failure
1638  * returns negative errno.
1639  */
1640 int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1641 			   u8 size)
1642 {
1643 	return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1644 				 size);
1645 }
1646 
1647 /**
1648  * usb4_port_retimer_write() - Write to retimer sideband registers
1649  * @port: USB4 port
1650  * @index: Retimer index
1651  * @reg: Sideband register to write
1652  * @buf: Data that is written starting from @reg
1653  * @size: Number of bytes to write
1654  *
1655  * Writes retimer sideband registers starting from @reg. The retimer is
1656  * connected to @port at @index. Returns %0 in case of success. If there
1657  * is no retimer present at given @index returns %-ENODEV. In any other
1658  * failure returns negative errno.
1659  */
1660 int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1661 			    const void *buf, u8 size)
1662 {
1663 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1664 				  size);
1665 }
1666 
1667 /**
1668  * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1669  * @port: USB4 port
1670  * @index: Retimer index
1671  *
1672  * If the retimer at @index is last one (connected directly to the
1673  * Type-C port) this function returns %1. If it is not returns %0. If
1674  * the retimer is not present returns %-ENODEV. Otherwise returns
1675  * negative errno.
1676  */
1677 int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1678 {
1679 	u32 metadata;
1680 	int ret;
1681 
1682 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1683 				   500);
1684 	if (ret)
1685 		return ret;
1686 
1687 	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1688 				     sizeof(metadata));
1689 	return ret ? ret : metadata & 1;
1690 }
1691 
1692 /**
1693  * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1694  * @port: USB4 port
1695  * @index: Retimer index
1696  *
1697  * Reads NVM sector size (in bytes) of a retimer at @index. This
1698  * operation can be used to determine whether the retimer supports NVM
1699  * upgrade for example. Returns sector size in bytes or negative errno
1700  * in case of error. Specifically returns %-ENODEV if there is no
1701  * retimer at @index.
1702  */
1703 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1704 {
1705 	u32 metadata;
1706 	int ret;
1707 
1708 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1709 				   500);
1710 	if (ret)
1711 		return ret;
1712 
1713 	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1714 				     sizeof(metadata));
1715 	return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1716 }
1717 
1718 /**
1719  * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1720  * @port: USB4 port
1721  * @index: Retimer index
1722  * @address: Start offset
1723  *
1724  * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1725  * done automatically by usb4_port_retimer_nvm_write().
1726  *
1727  * Returns %0 in success and negative errno if there was a failure.
1728  */
1729 int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1730 				     unsigned int address)
1731 {
1732 	u32 metadata, dwaddress;
1733 	int ret;
1734 
1735 	dwaddress = address / 4;
1736 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1737 		  USB4_NVM_SET_OFFSET_MASK;
1738 
1739 	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1740 				      sizeof(metadata));
1741 	if (ret)
1742 		return ret;
1743 
1744 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1745 				    500);
1746 }
1747 
1748 struct retimer_info {
1749 	struct tb_port *port;
1750 	u8 index;
1751 };
1752 
1753 static int usb4_port_retimer_nvm_write_next_block(void *data,
1754 	unsigned int dwaddress, const void *buf, size_t dwords)
1755 
1756 {
1757 	const struct retimer_info *info = data;
1758 	struct tb_port *port = info->port;
1759 	u8 index = info->index;
1760 	int ret;
1761 
1762 	ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1763 				      buf, dwords * 4);
1764 	if (ret)
1765 		return ret;
1766 
1767 	return usb4_port_retimer_op(port, index,
1768 			USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1769 }
1770 
1771 /**
1772  * usb4_port_retimer_nvm_write() - Write to retimer NVM
1773  * @port: USB4 port
1774  * @index: Retimer index
1775  * @address: Byte address where to start the write
1776  * @buf: Data to write
1777  * @size: Size in bytes how much to write
1778  *
1779  * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1780  * upgrade. Returns %0 if the data was written successfully and negative
1781  * errno in case of failure. Specifically returns %-ENODEV if there is
1782  * no retimer at @index.
1783  */
1784 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1785 				const void *buf, size_t size)
1786 {
1787 	struct retimer_info info = { .port = port, .index = index };
1788 	int ret;
1789 
1790 	ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1791 	if (ret)
1792 		return ret;
1793 
1794 	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1795 				 usb4_port_retimer_nvm_write_next_block, &info);
1796 }
1797 
1798 /**
1799  * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1800  * @port: USB4 port
1801  * @index: Retimer index
1802  *
1803  * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1804  * this function can be used to trigger the NVM upgrade process. If
1805  * successful the retimer restarts with the new NVM and may not have the
1806  * index set so one needs to call usb4_port_enumerate_retimers() to
1807  * force index to be assigned.
1808  */
1809 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1810 {
1811 	u32 val;
1812 
1813 	/*
1814 	 * We need to use the raw operation here because once the
1815 	 * authentication completes the retimer index is not set anymore
1816 	 * so we do not get back the status now.
1817 	 */
1818 	val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1819 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1820 				  USB4_SB_OPCODE, &val, sizeof(val));
1821 }
1822 
1823 /**
1824  * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1825  * @port: USB4 port
1826  * @index: Retimer index
1827  * @status: Raw status code read from metadata
1828  *
1829  * This can be called after usb4_port_retimer_nvm_authenticate() and
1830  * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1831  *
1832  * Returns %0 if the authentication status was successfully read. The
1833  * completion metadata (the result) is then stored into @status. If
1834  * reading the status fails, returns negative errno.
1835  */
1836 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1837 					      u32 *status)
1838 {
1839 	u32 metadata, val;
1840 	int ret;
1841 
1842 	ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1843 				     sizeof(val));
1844 	if (ret)
1845 		return ret;
1846 
1847 	ret = usb4_port_sb_opcode_err_to_errno(val);
1848 	switch (ret) {
1849 	case 0:
1850 		*status = 0;
1851 		return 0;
1852 
1853 	case -EAGAIN:
1854 		ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1855 					     &metadata, sizeof(metadata));
1856 		if (ret)
1857 			return ret;
1858 
1859 		*status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1860 		return 0;
1861 
1862 	default:
1863 		return ret;
1864 	}
1865 }
1866 
1867 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1868 					    void *buf, size_t dwords)
1869 {
1870 	const struct retimer_info *info = data;
1871 	struct tb_port *port = info->port;
1872 	u8 index = info->index;
1873 	u32 metadata;
1874 	int ret;
1875 
1876 	metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1877 	if (dwords < USB4_DATA_DWORDS)
1878 		metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1879 
1880 	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1881 				      sizeof(metadata));
1882 	if (ret)
1883 		return ret;
1884 
1885 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1886 	if (ret)
1887 		return ret;
1888 
1889 	return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1890 				      dwords * 4);
1891 }
1892 
1893 /**
1894  * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1895  * @port: USB4 port
1896  * @index: Retimer index
1897  * @address: NVM address (in bytes) to start reading
1898  * @buf: Data read from NVM is stored here
1899  * @size: Number of bytes to read
1900  *
1901  * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1902  * read was successful and negative errno in case of failure.
1903  * Specifically returns %-ENODEV if there is no retimer at @index.
1904  */
1905 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1906 			       unsigned int address, void *buf, size_t size)
1907 {
1908 	struct retimer_info info = { .port = port, .index = index };
1909 
1910 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
1911 				usb4_port_retimer_nvm_read_block, &info);
1912 }
1913 
1914 static inline unsigned int
1915 usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw)
1916 {
1917 	/* Take the possible bandwidth limitation into account */
1918 	if (port->max_bw)
1919 		return min(bw, port->max_bw);
1920 	return bw;
1921 }
1922 
1923 /**
1924  * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1925  * @port: USB3 adapter port
1926  *
1927  * Return maximum supported link rate of a USB3 adapter in Mb/s.
1928  * Negative errno in case of error.
1929  */
1930 int usb4_usb3_port_max_link_rate(struct tb_port *port)
1931 {
1932 	int ret, lr;
1933 	u32 val;
1934 
1935 	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1936 		return -EINVAL;
1937 
1938 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1939 			   port->cap_adap + ADP_USB3_CS_4, 1);
1940 	if (ret)
1941 		return ret;
1942 
1943 	lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
1944 	ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
1945 
1946 	return usb4_usb3_port_max_bandwidth(port, ret);
1947 }
1948 
1949 /**
1950  * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1951  * @port: USB3 adapter port
1952  *
1953  * Return actual established link rate of a USB3 adapter in Mb/s. If the
1954  * link is not up returns %0 and negative errno in case of failure.
1955  */
1956 int usb4_usb3_port_actual_link_rate(struct tb_port *port)
1957 {
1958 	int ret, lr;
1959 	u32 val;
1960 
1961 	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1962 		return -EINVAL;
1963 
1964 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1965 			   port->cap_adap + ADP_USB3_CS_4, 1);
1966 	if (ret)
1967 		return ret;
1968 
1969 	if (!(val & ADP_USB3_CS_4_ULV))
1970 		return 0;
1971 
1972 	lr = val & ADP_USB3_CS_4_ALR_MASK;
1973 	ret = lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
1974 
1975 	return usb4_usb3_port_max_bandwidth(port, ret);
1976 }
1977 
1978 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
1979 {
1980 	int ret;
1981 	u32 val;
1982 
1983 	if (!tb_port_is_usb3_down(port))
1984 		return -EINVAL;
1985 	if (tb_route(port->sw))
1986 		return -EINVAL;
1987 
1988 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1989 			   port->cap_adap + ADP_USB3_CS_2, 1);
1990 	if (ret)
1991 		return ret;
1992 
1993 	if (request)
1994 		val |= ADP_USB3_CS_2_CMR;
1995 	else
1996 		val &= ~ADP_USB3_CS_2_CMR;
1997 
1998 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1999 			    port->cap_adap + ADP_USB3_CS_2, 1);
2000 	if (ret)
2001 		return ret;
2002 
2003 	/*
2004 	 * We can use val here directly as the CMR bit is in the same place
2005 	 * as HCA. Just mask out others.
2006 	 */
2007 	val &= ADP_USB3_CS_2_CMR;
2008 	return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
2009 				      ADP_USB3_CS_1_HCA, val, 1500);
2010 }
2011 
2012 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
2013 {
2014 	return usb4_usb3_port_cm_request(port, true);
2015 }
2016 
2017 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
2018 {
2019 	return usb4_usb3_port_cm_request(port, false);
2020 }
2021 
2022 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
2023 {
2024 	unsigned long uframes;
2025 
2026 	uframes = bw * 512UL << scale;
2027 	return DIV_ROUND_CLOSEST(uframes * 8000, MEGA);
2028 }
2029 
2030 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
2031 {
2032 	unsigned long uframes;
2033 
2034 	/* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
2035 	uframes = ((unsigned long)mbps * MEGA) / 8000;
2036 	return DIV_ROUND_UP(uframes, 512UL << scale);
2037 }
2038 
2039 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
2040 						   int *upstream_bw,
2041 						   int *downstream_bw)
2042 {
2043 	u32 val, bw, scale;
2044 	int ret;
2045 
2046 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2047 			   port->cap_adap + ADP_USB3_CS_2, 1);
2048 	if (ret)
2049 		return ret;
2050 
2051 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
2052 			   port->cap_adap + ADP_USB3_CS_3, 1);
2053 	if (ret)
2054 		return ret;
2055 
2056 	scale &= ADP_USB3_CS_3_SCALE_MASK;
2057 
2058 	bw = val & ADP_USB3_CS_2_AUBW_MASK;
2059 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
2060 
2061 	bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
2062 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
2063 
2064 	return 0;
2065 }
2066 
2067 /**
2068  * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
2069  * @port: USB3 adapter port
2070  * @upstream_bw: Allocated upstream bandwidth is stored here
2071  * @downstream_bw: Allocated downstream bandwidth is stored here
2072  *
2073  * Stores currently allocated USB3 bandwidth into @upstream_bw and
2074  * @downstream_bw in Mb/s. Returns %0 in case of success and negative
2075  * errno in failure.
2076  */
2077 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
2078 				       int *downstream_bw)
2079 {
2080 	int ret;
2081 
2082 	ret = usb4_usb3_port_set_cm_request(port);
2083 	if (ret)
2084 		return ret;
2085 
2086 	ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
2087 						      downstream_bw);
2088 	usb4_usb3_port_clear_cm_request(port);
2089 
2090 	return ret;
2091 }
2092 
2093 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
2094 						  int *upstream_bw,
2095 						  int *downstream_bw)
2096 {
2097 	u32 val, bw, scale;
2098 	int ret;
2099 
2100 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2101 			   port->cap_adap + ADP_USB3_CS_1, 1);
2102 	if (ret)
2103 		return ret;
2104 
2105 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
2106 			   port->cap_adap + ADP_USB3_CS_3, 1);
2107 	if (ret)
2108 		return ret;
2109 
2110 	scale &= ADP_USB3_CS_3_SCALE_MASK;
2111 
2112 	bw = val & ADP_USB3_CS_1_CUBW_MASK;
2113 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
2114 
2115 	bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
2116 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
2117 
2118 	return 0;
2119 }
2120 
2121 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
2122 						    int upstream_bw,
2123 						    int downstream_bw)
2124 {
2125 	u32 val, ubw, dbw, scale;
2126 	int ret, max_bw;
2127 
2128 	/* Figure out suitable scale */
2129 	scale = 0;
2130 	max_bw = max(upstream_bw, downstream_bw);
2131 	while (scale < 64) {
2132 		if (mbps_to_usb3_bw(max_bw, scale) < 4096)
2133 			break;
2134 		scale++;
2135 	}
2136 
2137 	if (WARN_ON(scale >= 64))
2138 		return -EINVAL;
2139 
2140 	ret = tb_port_write(port, &scale, TB_CFG_PORT,
2141 			    port->cap_adap + ADP_USB3_CS_3, 1);
2142 	if (ret)
2143 		return ret;
2144 
2145 	ubw = mbps_to_usb3_bw(upstream_bw, scale);
2146 	dbw = mbps_to_usb3_bw(downstream_bw, scale);
2147 
2148 	tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale);
2149 
2150 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2151 			   port->cap_adap + ADP_USB3_CS_2, 1);
2152 	if (ret)
2153 		return ret;
2154 
2155 	val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
2156 	val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
2157 	val |= ubw;
2158 
2159 	return tb_port_write(port, &val, TB_CFG_PORT,
2160 			     port->cap_adap + ADP_USB3_CS_2, 1);
2161 }
2162 
2163 /**
2164  * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
2165  * @port: USB3 adapter port
2166  * @upstream_bw: New upstream bandwidth
2167  * @downstream_bw: New downstream bandwidth
2168  *
2169  * This can be used to set how much bandwidth is allocated for the USB3
2170  * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
2171  * new values programmed to the USB3 adapter allocation registers. If
2172  * the values are lower than what is currently consumed the allocation
2173  * is set to what is currently consumed instead (consumed bandwidth
2174  * cannot be taken away by CM). The actual new values are returned in
2175  * @upstream_bw and @downstream_bw.
2176  *
2177  * Returns %0 in case of success and negative errno if there was a
2178  * failure.
2179  */
2180 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
2181 				      int *downstream_bw)
2182 {
2183 	int ret, consumed_up, consumed_down, allocate_up, allocate_down;
2184 
2185 	ret = usb4_usb3_port_set_cm_request(port);
2186 	if (ret)
2187 		return ret;
2188 
2189 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2190 						     &consumed_down);
2191 	if (ret)
2192 		goto err_request;
2193 
2194 	/* Don't allow it go lower than what is consumed */
2195 	allocate_up = max(*upstream_bw, consumed_up);
2196 	allocate_down = max(*downstream_bw, consumed_down);
2197 
2198 	ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
2199 						       allocate_down);
2200 	if (ret)
2201 		goto err_request;
2202 
2203 	*upstream_bw = allocate_up;
2204 	*downstream_bw = allocate_down;
2205 
2206 err_request:
2207 	usb4_usb3_port_clear_cm_request(port);
2208 	return ret;
2209 }
2210 
2211 /**
2212  * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
2213  * @port: USB3 adapter port
2214  * @upstream_bw: New allocated upstream bandwidth
2215  * @downstream_bw: New allocated downstream bandwidth
2216  *
2217  * Releases USB3 allocated bandwidth down to what is actually consumed.
2218  * The new bandwidth is returned in @upstream_bw and @downstream_bw.
2219  *
2220  * Returns 0% in success and negative errno in case of failure.
2221  */
2222 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
2223 				     int *downstream_bw)
2224 {
2225 	int ret, consumed_up, consumed_down;
2226 
2227 	ret = usb4_usb3_port_set_cm_request(port);
2228 	if (ret)
2229 		return ret;
2230 
2231 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2232 						     &consumed_down);
2233 	if (ret)
2234 		goto err_request;
2235 
2236 	/*
2237 	 * Always keep 1000 Mb/s to make sure xHCI has at least some
2238 	 * bandwidth available for isochronous traffic.
2239 	 */
2240 	if (consumed_up < 1000)
2241 		consumed_up = 1000;
2242 	if (consumed_down < 1000)
2243 		consumed_down = 1000;
2244 
2245 	ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
2246 						       consumed_down);
2247 	if (ret)
2248 		goto err_request;
2249 
2250 	*upstream_bw = consumed_up;
2251 	*downstream_bw = consumed_down;
2252 
2253 err_request:
2254 	usb4_usb3_port_clear_cm_request(port);
2255 	return ret;
2256 }
2257 
2258 static bool is_usb4_dpin(const struct tb_port *port)
2259 {
2260 	if (!tb_port_is_dpin(port))
2261 		return false;
2262 	if (!tb_switch_is_usb4(port->sw))
2263 		return false;
2264 	return true;
2265 }
2266 
2267 /**
2268  * usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter
2269  * @port: DP IN adapter
2270  * @cm_id: CM ID to assign
2271  *
2272  * Sets CM ID for the @port. Returns %0 on success and negative errno
2273  * otherwise. Speficially returns %-EOPNOTSUPP if the @port does not
2274  * support this.
2275  */
2276 int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id)
2277 {
2278 	u32 val;
2279 	int ret;
2280 
2281 	if (!is_usb4_dpin(port))
2282 		return -EOPNOTSUPP;
2283 
2284 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2285 			   port->cap_adap + ADP_DP_CS_2, 1);
2286 	if (ret)
2287 		return ret;
2288 
2289 	val &= ~ADP_DP_CS_2_CM_ID_MASK;
2290 	val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT;
2291 
2292 	return tb_port_write(port, &val, TB_CFG_PORT,
2293 			     port->cap_adap + ADP_DP_CS_2, 1);
2294 }
2295 
2296 /**
2297  * usb4_dp_port_bandwidth_mode_supported() - Is the bandwidth allocation mode
2298  *					     supported
2299  * @port: DP IN adapter to check
2300  *
2301  * Can be called to any DP IN adapter. Returns true if the adapter
2302  * supports USB4 bandwidth allocation mode, false otherwise.
2303  */
2304 bool usb4_dp_port_bandwidth_mode_supported(struct tb_port *port)
2305 {
2306 	int ret;
2307 	u32 val;
2308 
2309 	if (!is_usb4_dpin(port))
2310 		return false;
2311 
2312 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2313 			   port->cap_adap + DP_LOCAL_CAP, 1);
2314 	if (ret)
2315 		return false;
2316 
2317 	return !!(val & DP_COMMON_CAP_BW_MODE);
2318 }
2319 
2320 /**
2321  * usb4_dp_port_bandwidth_mode_enabled() - Is the bandwidth allocation mode
2322  *					   enabled
2323  * @port: DP IN adapter to check
2324  *
2325  * Can be called to any DP IN adapter. Returns true if the bandwidth
2326  * allocation mode has been enabled, false otherwise.
2327  */
2328 bool usb4_dp_port_bandwidth_mode_enabled(struct tb_port *port)
2329 {
2330 	int ret;
2331 	u32 val;
2332 
2333 	if (!is_usb4_dpin(port))
2334 		return false;
2335 
2336 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2337 			   port->cap_adap + ADP_DP_CS_8, 1);
2338 	if (ret)
2339 		return false;
2340 
2341 	return !!(val & ADP_DP_CS_8_DPME);
2342 }
2343 
2344 /**
2345  * usb4_dp_port_set_cm_bandwidth_mode_supported() - Set/clear CM support for
2346  *						    bandwidth allocation mode
2347  * @port: DP IN adapter
2348  * @supported: Does the CM support bandwidth allocation mode
2349  *
2350  * Can be called to any DP IN adapter. Sets or clears the CM support bit
2351  * of the DP IN adapter. Returns %0 in success and negative errno
2352  * otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter
2353  * does not support this.
2354  */
2355 int usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port *port,
2356 						 bool supported)
2357 {
2358 	u32 val;
2359 	int ret;
2360 
2361 	if (!is_usb4_dpin(port))
2362 		return -EOPNOTSUPP;
2363 
2364 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2365 			   port->cap_adap + ADP_DP_CS_2, 1);
2366 	if (ret)
2367 		return ret;
2368 
2369 	if (supported)
2370 		val |= ADP_DP_CS_2_CMMS;
2371 	else
2372 		val &= ~ADP_DP_CS_2_CMMS;
2373 
2374 	return tb_port_write(port, &val, TB_CFG_PORT,
2375 			     port->cap_adap + ADP_DP_CS_2, 1);
2376 }
2377 
2378 /**
2379  * usb4_dp_port_group_id() - Return Group ID assigned for the adapter
2380  * @port: DP IN adapter
2381  *
2382  * Reads bandwidth allocation Group ID from the DP IN adapter and
2383  * returns it. If the adapter does not support setting Group_ID
2384  * %-EOPNOTSUPP is returned.
2385  */
2386 int usb4_dp_port_group_id(struct tb_port *port)
2387 {
2388 	u32 val;
2389 	int ret;
2390 
2391 	if (!is_usb4_dpin(port))
2392 		return -EOPNOTSUPP;
2393 
2394 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2395 			   port->cap_adap + ADP_DP_CS_2, 1);
2396 	if (ret)
2397 		return ret;
2398 
2399 	return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT;
2400 }
2401 
2402 /**
2403  * usb4_dp_port_set_group_id() - Set adapter Group ID
2404  * @port: DP IN adapter
2405  * @group_id: Group ID for the adapter
2406  *
2407  * Sets bandwidth allocation mode Group ID for the DP IN adapter.
2408  * Returns %0 in case of success and negative errno otherwise.
2409  * Specifically returns %-EOPNOTSUPP if the adapter does not support
2410  * this.
2411  */
2412 int usb4_dp_port_set_group_id(struct tb_port *port, int group_id)
2413 {
2414 	u32 val;
2415 	int ret;
2416 
2417 	if (!is_usb4_dpin(port))
2418 		return -EOPNOTSUPP;
2419 
2420 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2421 			   port->cap_adap + ADP_DP_CS_2, 1);
2422 	if (ret)
2423 		return ret;
2424 
2425 	val &= ~ADP_DP_CS_2_GROUP_ID_MASK;
2426 	val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT;
2427 
2428 	return tb_port_write(port, &val, TB_CFG_PORT,
2429 			     port->cap_adap + ADP_DP_CS_2, 1);
2430 }
2431 
2432 /**
2433  * usb4_dp_port_nrd() - Read non-reduced rate and lanes
2434  * @port: DP IN adapter
2435  * @rate: Non-reduced rate in Mb/s is placed here
2436  * @lanes: Non-reduced lanes are placed here
2437  *
2438  * Reads the non-reduced rate and lanes from the DP IN adapter. Returns
2439  * %0 in success and negative errno otherwise. Specifically returns
2440  * %-EOPNOTSUPP if the adapter does not support this.
2441  */
2442 int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes)
2443 {
2444 	u32 val, tmp;
2445 	int ret;
2446 
2447 	if (!is_usb4_dpin(port))
2448 		return -EOPNOTSUPP;
2449 
2450 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2451 			   port->cap_adap + ADP_DP_CS_2, 1);
2452 	if (ret)
2453 		return ret;
2454 
2455 	tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT;
2456 	switch (tmp) {
2457 	case DP_COMMON_CAP_RATE_RBR:
2458 		*rate = 1620;
2459 		break;
2460 	case DP_COMMON_CAP_RATE_HBR:
2461 		*rate = 2700;
2462 		break;
2463 	case DP_COMMON_CAP_RATE_HBR2:
2464 		*rate = 5400;
2465 		break;
2466 	case DP_COMMON_CAP_RATE_HBR3:
2467 		*rate = 8100;
2468 		break;
2469 	}
2470 
2471 	tmp = val & ADP_DP_CS_2_NRD_MLC_MASK;
2472 	switch (tmp) {
2473 	case DP_COMMON_CAP_1_LANE:
2474 		*lanes = 1;
2475 		break;
2476 	case DP_COMMON_CAP_2_LANES:
2477 		*lanes = 2;
2478 		break;
2479 	case DP_COMMON_CAP_4_LANES:
2480 		*lanes = 4;
2481 		break;
2482 	}
2483 
2484 	return 0;
2485 }
2486 
2487 /**
2488  * usb4_dp_port_set_nrd() - Set non-reduced rate and lanes
2489  * @port: DP IN adapter
2490  * @rate: Non-reduced rate in Mb/s
2491  * @lanes: Non-reduced lanes
2492  *
2493  * Before the capabilities reduction this function can be used to set
2494  * the non-reduced values for the DP IN adapter. Returns %0 in success
2495  * and negative errno otherwise. If the adapter does not support this
2496  * %-EOPNOTSUPP is returned.
2497  */
2498 int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes)
2499 {
2500 	u32 val;
2501 	int ret;
2502 
2503 	if (!is_usb4_dpin(port))
2504 		return -EOPNOTSUPP;
2505 
2506 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2507 			   port->cap_adap + ADP_DP_CS_2, 1);
2508 	if (ret)
2509 		return ret;
2510 
2511 	val &= ~ADP_DP_CS_2_NRD_MLR_MASK;
2512 
2513 	switch (rate) {
2514 	case 1620:
2515 		break;
2516 	case 2700:
2517 		val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT)
2518 			& ADP_DP_CS_2_NRD_MLR_MASK;
2519 		break;
2520 	case 5400:
2521 		val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2522 			& ADP_DP_CS_2_NRD_MLR_MASK;
2523 		break;
2524 	case 8100:
2525 		val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2526 			& ADP_DP_CS_2_NRD_MLR_MASK;
2527 		break;
2528 	default:
2529 		return -EINVAL;
2530 	}
2531 
2532 	val &= ~ADP_DP_CS_2_NRD_MLC_MASK;
2533 
2534 	switch (lanes) {
2535 	case 1:
2536 		break;
2537 	case 2:
2538 		val |= DP_COMMON_CAP_2_LANES;
2539 		break;
2540 	case 4:
2541 		val |= DP_COMMON_CAP_4_LANES;
2542 		break;
2543 	default:
2544 		return -EINVAL;
2545 	}
2546 
2547 	return tb_port_write(port, &val, TB_CFG_PORT,
2548 			     port->cap_adap + ADP_DP_CS_2, 1);
2549 }
2550 
2551 /**
2552  * usb4_dp_port_granularity() - Return granularity for the bandwidth values
2553  * @port: DP IN adapter
2554  *
2555  * Reads the programmed granularity from @port. If the DP IN adapter does
2556  * not support bandwidth allocation mode returns %-EOPNOTSUPP and negative
2557  * errno in other error cases.
2558  */
2559 int usb4_dp_port_granularity(struct tb_port *port)
2560 {
2561 	u32 val;
2562 	int ret;
2563 
2564 	if (!is_usb4_dpin(port))
2565 		return -EOPNOTSUPP;
2566 
2567 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2568 			   port->cap_adap + ADP_DP_CS_2, 1);
2569 	if (ret)
2570 		return ret;
2571 
2572 	val &= ADP_DP_CS_2_GR_MASK;
2573 	val >>= ADP_DP_CS_2_GR_SHIFT;
2574 
2575 	switch (val) {
2576 	case ADP_DP_CS_2_GR_0_25G:
2577 		return 250;
2578 	case ADP_DP_CS_2_GR_0_5G:
2579 		return 500;
2580 	case ADP_DP_CS_2_GR_1G:
2581 		return 1000;
2582 	}
2583 
2584 	return -EINVAL;
2585 }
2586 
2587 /**
2588  * usb4_dp_port_set_granularity() - Set granularity for the bandwidth values
2589  * @port: DP IN adapter
2590  * @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250.
2591  *
2592  * Sets the granularity used with the estimated, allocated and requested
2593  * bandwidth. Returns %0 in success and negative errno otherwise. If the
2594  * adapter does not support this %-EOPNOTSUPP is returned.
2595  */
2596 int usb4_dp_port_set_granularity(struct tb_port *port, int granularity)
2597 {
2598 	u32 val;
2599 	int ret;
2600 
2601 	if (!is_usb4_dpin(port))
2602 		return -EOPNOTSUPP;
2603 
2604 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2605 			   port->cap_adap + ADP_DP_CS_2, 1);
2606 	if (ret)
2607 		return ret;
2608 
2609 	val &= ~ADP_DP_CS_2_GR_MASK;
2610 
2611 	switch (granularity) {
2612 	case 250:
2613 		val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT;
2614 		break;
2615 	case 500:
2616 		val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT;
2617 		break;
2618 	case 1000:
2619 		val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT;
2620 		break;
2621 	default:
2622 		return -EINVAL;
2623 	}
2624 
2625 	return tb_port_write(port, &val, TB_CFG_PORT,
2626 			     port->cap_adap + ADP_DP_CS_2, 1);
2627 }
2628 
2629 /**
2630  * usb4_dp_port_set_estimated_bandwidth() - Set estimated bandwidth
2631  * @port: DP IN adapter
2632  * @bw: Estimated bandwidth in Mb/s.
2633  *
2634  * Sets the estimated bandwidth to @bw. Set the granularity by calling
2635  * usb4_dp_port_set_granularity() before calling this. The @bw is round
2636  * down to the closest granularity multiplier. Returns %0 in success
2637  * and negative errno otherwise. Specifically returns %-EOPNOTSUPP if
2638  * the adapter does not support this.
2639  */
2640 int usb4_dp_port_set_estimated_bandwidth(struct tb_port *port, int bw)
2641 {
2642 	u32 val, granularity;
2643 	int ret;
2644 
2645 	if (!is_usb4_dpin(port))
2646 		return -EOPNOTSUPP;
2647 
2648 	ret = usb4_dp_port_granularity(port);
2649 	if (ret < 0)
2650 		return ret;
2651 	granularity = ret;
2652 
2653 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2654 			   port->cap_adap + ADP_DP_CS_2, 1);
2655 	if (ret)
2656 		return ret;
2657 
2658 	val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK;
2659 	val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT;
2660 
2661 	return tb_port_write(port, &val, TB_CFG_PORT,
2662 			     port->cap_adap + ADP_DP_CS_2, 1);
2663 }
2664 
2665 /**
2666  * usb4_dp_port_allocated_bandwidth() - Return allocated bandwidth
2667  * @port: DP IN adapter
2668  *
2669  * Reads and returns allocated bandwidth for @port in Mb/s (taking into
2670  * account the programmed granularity). Returns negative errno in case
2671  * of error.
2672  */
2673 int usb4_dp_port_allocated_bandwidth(struct tb_port *port)
2674 {
2675 	u32 val, granularity;
2676 	int ret;
2677 
2678 	if (!is_usb4_dpin(port))
2679 		return -EOPNOTSUPP;
2680 
2681 	ret = usb4_dp_port_granularity(port);
2682 	if (ret < 0)
2683 		return ret;
2684 	granularity = ret;
2685 
2686 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2687 			   port->cap_adap + DP_STATUS, 1);
2688 	if (ret)
2689 		return ret;
2690 
2691 	val &= DP_STATUS_ALLOCATED_BW_MASK;
2692 	val >>= DP_STATUS_ALLOCATED_BW_SHIFT;
2693 
2694 	return val * granularity;
2695 }
2696 
2697 static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack)
2698 {
2699 	u32 val;
2700 	int ret;
2701 
2702 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2703 			   port->cap_adap + ADP_DP_CS_2, 1);
2704 	if (ret)
2705 		return ret;
2706 
2707 	if (ack)
2708 		val |= ADP_DP_CS_2_CA;
2709 	else
2710 		val &= ~ADP_DP_CS_2_CA;
2711 
2712 	return tb_port_write(port, &val, TB_CFG_PORT,
2713 			     port->cap_adap + ADP_DP_CS_2, 1);
2714 }
2715 
2716 static inline int usb4_dp_port_set_cm_ack(struct tb_port *port)
2717 {
2718 	return __usb4_dp_port_set_cm_ack(port, true);
2719 }
2720 
2721 static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port,
2722 					      int timeout_msec)
2723 {
2724 	ktime_t end;
2725 	u32 val;
2726 	int ret;
2727 
2728 	ret = __usb4_dp_port_set_cm_ack(port, false);
2729 	if (ret)
2730 		return ret;
2731 
2732 	end = ktime_add_ms(ktime_get(), timeout_msec);
2733 	do {
2734 		ret = tb_port_read(port, &val, TB_CFG_PORT,
2735 				   port->cap_adap + ADP_DP_CS_8, 1);
2736 		if (ret)
2737 			return ret;
2738 
2739 		if (!(val & ADP_DP_CS_8_DR))
2740 			break;
2741 
2742 		usleep_range(50, 100);
2743 	} while (ktime_before(ktime_get(), end));
2744 
2745 	if (val & ADP_DP_CS_8_DR)
2746 		return -ETIMEDOUT;
2747 
2748 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2749 			   port->cap_adap + ADP_DP_CS_2, 1);
2750 	if (ret)
2751 		return ret;
2752 
2753 	val &= ~ADP_DP_CS_2_CA;
2754 	return tb_port_write(port, &val, TB_CFG_PORT,
2755 			     port->cap_adap + ADP_DP_CS_2, 1);
2756 }
2757 
2758 /**
2759  * usb4_dp_port_allocate_bandwidth() - Set allocated bandwidth
2760  * @port: DP IN adapter
2761  * @bw: New allocated bandwidth in Mb/s
2762  *
2763  * Communicates the new allocated bandwidth with the DPCD (graphics
2764  * driver). Takes into account the programmed granularity. Returns %0 in
2765  * success and negative errno in case of error.
2766  */
2767 int usb4_dp_port_allocate_bandwidth(struct tb_port *port, int bw)
2768 {
2769 	u32 val, granularity;
2770 	int ret;
2771 
2772 	if (!is_usb4_dpin(port))
2773 		return -EOPNOTSUPP;
2774 
2775 	ret = usb4_dp_port_granularity(port);
2776 	if (ret < 0)
2777 		return ret;
2778 	granularity = ret;
2779 
2780 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2781 			   port->cap_adap + DP_STATUS, 1);
2782 	if (ret)
2783 		return ret;
2784 
2785 	val &= ~DP_STATUS_ALLOCATED_BW_MASK;
2786 	val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT;
2787 
2788 	ret = tb_port_write(port, &val, TB_CFG_PORT,
2789 			    port->cap_adap + DP_STATUS, 1);
2790 	if (ret)
2791 		return ret;
2792 
2793 	ret = usb4_dp_port_set_cm_ack(port);
2794 	if (ret)
2795 		return ret;
2796 
2797 	return usb4_dp_port_wait_and_clear_cm_ack(port, 500);
2798 }
2799 
2800 /**
2801  * usb4_dp_port_requested_bandwidth() - Read requested bandwidth
2802  * @port: DP IN adapter
2803  *
2804  * Reads the DPCD (graphics driver) requested bandwidth and returns it
2805  * in Mb/s. Takes the programmed granularity into account. In case of
2806  * error returns negative errno. Specifically returns %-EOPNOTSUPP if
2807  * the adapter does not support bandwidth allocation mode, and %ENODATA
2808  * if there is no active bandwidth request from the graphics driver.
2809  */
2810 int usb4_dp_port_requested_bandwidth(struct tb_port *port)
2811 {
2812 	u32 val, granularity;
2813 	int ret;
2814 
2815 	if (!is_usb4_dpin(port))
2816 		return -EOPNOTSUPP;
2817 
2818 	ret = usb4_dp_port_granularity(port);
2819 	if (ret < 0)
2820 		return ret;
2821 	granularity = ret;
2822 
2823 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2824 			   port->cap_adap + ADP_DP_CS_8, 1);
2825 	if (ret)
2826 		return ret;
2827 
2828 	if (!(val & ADP_DP_CS_8_DR))
2829 		return -ENODATA;
2830 
2831 	return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity;
2832 }
2833 
2834 /**
2835  * usb4_pci_port_set_ext_encapsulation() - Enable/disable extended encapsulation
2836  * @port: PCIe adapter
2837  * @enable: Enable/disable extended encapsulation
2838  *
2839  * Enables or disables extended encapsulation used in PCIe tunneling. Caller
2840  * needs to make sure both adapters support this before enabling. Returns %0 on
2841  * success and negative errno otherwise.
2842  */
2843 int usb4_pci_port_set_ext_encapsulation(struct tb_port *port, bool enable)
2844 {
2845 	u32 val;
2846 	int ret;
2847 
2848 	if (!tb_port_is_pcie_up(port) && !tb_port_is_pcie_down(port))
2849 		return -EINVAL;
2850 
2851 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2852 			   port->cap_adap + ADP_PCIE_CS_1, 1);
2853 	if (ret)
2854 		return ret;
2855 
2856 	if (enable)
2857 		val |= ADP_PCIE_CS_1_EE;
2858 	else
2859 		val &= ~ADP_PCIE_CS_1_EE;
2860 
2861 	return tb_port_write(port, &val, TB_CFG_PORT,
2862 			     port->cap_adap + ADP_PCIE_CS_1, 1);
2863 }
2864