xref: /openbmc/linux/drivers/thunderbolt/usb4.c (revision 59f216cf04d973b4316761cbf3e7cb9556715b7a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * USB4 specific functionality
4  *
5  * Copyright (C) 2019, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *	    Rajmohan Mani <rajmohan.mani@intel.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12 
13 #include "sb_regs.h"
14 #include "tb.h"
15 
16 #define USB4_DATA_RETRIES		3
17 
18 enum usb4_sb_target {
19 	USB4_SB_TARGET_ROUTER,
20 	USB4_SB_TARGET_PARTNER,
21 	USB4_SB_TARGET_RETIMER,
22 };
23 
24 #define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2)
25 #define USB4_NVM_READ_OFFSET_SHIFT	2
26 #define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24)
27 #define USB4_NVM_READ_LENGTH_SHIFT	24
28 
29 #define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK
30 #define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT
31 
32 #define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2)
33 #define USB4_DROM_ADDRESS_SHIFT		2
34 #define USB4_DROM_SIZE_MASK		GENMASK(19, 15)
35 #define USB4_DROM_SIZE_SHIFT		15
36 
37 #define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0)
38 
39 #define USB4_BA_LENGTH_MASK		GENMASK(7, 0)
40 #define USB4_BA_INDEX_MASK		GENMASK(15, 0)
41 
42 enum usb4_ba_index {
43 	USB4_BA_MAX_USB3 = 0x1,
44 	USB4_BA_MIN_DP_AUX = 0x2,
45 	USB4_BA_MIN_DP_MAIN = 0x3,
46 	USB4_BA_MAX_PCIE = 0x4,
47 	USB4_BA_MAX_HI = 0x5,
48 };
49 
50 #define USB4_BA_VALUE_MASK		GENMASK(31, 16)
51 #define USB4_BA_VALUE_SHIFT		16
52 
53 static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
54 				    u32 value, int timeout_msec)
55 {
56 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
57 
58 	do {
59 		u32 val;
60 		int ret;
61 
62 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
63 		if (ret)
64 			return ret;
65 
66 		if ((val & bit) == value)
67 			return 0;
68 
69 		usleep_range(50, 100);
70 	} while (ktime_before(ktime_get(), timeout));
71 
72 	return -ETIMEDOUT;
73 }
74 
75 static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
76 				 u32 *metadata, u8 *status,
77 				 const void *tx_data, size_t tx_dwords,
78 				 void *rx_data, size_t rx_dwords)
79 {
80 	u32 val;
81 	int ret;
82 
83 	if (metadata) {
84 		ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
85 		if (ret)
86 			return ret;
87 	}
88 	if (tx_dwords) {
89 		ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
90 				  tx_dwords);
91 		if (ret)
92 			return ret;
93 	}
94 
95 	val = opcode | ROUTER_CS_26_OV;
96 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
97 	if (ret)
98 		return ret;
99 
100 	ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
101 	if (ret)
102 		return ret;
103 
104 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
105 	if (ret)
106 		return ret;
107 
108 	if (val & ROUTER_CS_26_ONS)
109 		return -EOPNOTSUPP;
110 
111 	if (status)
112 		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
113 			ROUTER_CS_26_STATUS_SHIFT;
114 
115 	if (metadata) {
116 		ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
117 		if (ret)
118 			return ret;
119 	}
120 	if (rx_dwords) {
121 		ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
122 				 rx_dwords);
123 		if (ret)
124 			return ret;
125 	}
126 
127 	return 0;
128 }
129 
130 static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
131 			    u8 *status, const void *tx_data, size_t tx_dwords,
132 			    void *rx_data, size_t rx_dwords)
133 {
134 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
135 
136 	if (tx_dwords > NVM_DATA_DWORDS || rx_dwords > NVM_DATA_DWORDS)
137 		return -EINVAL;
138 
139 	/*
140 	 * If the connection manager implementation provides USB4 router
141 	 * operation proxy callback, call it here instead of running the
142 	 * operation natively.
143 	 */
144 	if (cm_ops->usb4_switch_op) {
145 		int ret;
146 
147 		ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
148 					     tx_data, tx_dwords, rx_data,
149 					     rx_dwords);
150 		if (ret != -EOPNOTSUPP)
151 			return ret;
152 
153 		/*
154 		 * If the proxy was not supported then run the native
155 		 * router operation instead.
156 		 */
157 	}
158 
159 	return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
160 				     tx_dwords, rx_data, rx_dwords);
161 }
162 
163 static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
164 				 u32 *metadata, u8 *status)
165 {
166 	return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
167 }
168 
169 static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
170 				      u32 *metadata, u8 *status,
171 				      const void *tx_data, size_t tx_dwords,
172 				      void *rx_data, size_t rx_dwords)
173 {
174 	return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
175 				tx_dwords, rx_data, rx_dwords);
176 }
177 
178 static void usb4_switch_check_wakes(struct tb_switch *sw)
179 {
180 	struct tb_port *port;
181 	bool wakeup = false;
182 	u32 val;
183 
184 	if (!device_may_wakeup(&sw->dev))
185 		return;
186 
187 	if (tb_route(sw)) {
188 		if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
189 			return;
190 
191 		tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
192 			  (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
193 			  (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
194 
195 		wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
196 	}
197 
198 	/* Check for any connected downstream ports for USB4 wake */
199 	tb_switch_for_each_port(sw, port) {
200 		if (!tb_port_has_remote(port))
201 			continue;
202 
203 		if (tb_port_read(port, &val, TB_CFG_PORT,
204 				 port->cap_usb4 + PORT_CS_18, 1))
205 			break;
206 
207 		tb_port_dbg(port, "USB4 wake: %s\n",
208 			    (val & PORT_CS_18_WOU4S) ? "yes" : "no");
209 
210 		if (val & PORT_CS_18_WOU4S)
211 			wakeup = true;
212 	}
213 
214 	if (wakeup)
215 		pm_wakeup_event(&sw->dev, 0);
216 }
217 
218 static bool link_is_usb4(struct tb_port *port)
219 {
220 	u32 val;
221 
222 	if (!port->cap_usb4)
223 		return false;
224 
225 	if (tb_port_read(port, &val, TB_CFG_PORT,
226 			 port->cap_usb4 + PORT_CS_18, 1))
227 		return false;
228 
229 	return !(val & PORT_CS_18_TCM);
230 }
231 
232 /**
233  * usb4_switch_setup() - Additional setup for USB4 device
234  * @sw: USB4 router to setup
235  *
236  * USB4 routers need additional settings in order to enable all the
237  * tunneling. This function enables USB and PCIe tunneling if it can be
238  * enabled (e.g the parent switch also supports them). If USB tunneling
239  * is not available for some reason (like that there is Thunderbolt 3
240  * switch upstream) then the internal xHCI controller is enabled
241  * instead.
242  */
243 int usb4_switch_setup(struct tb_switch *sw)
244 {
245 	struct tb_port *downstream_port;
246 	struct tb_switch *parent;
247 	bool tbt3, xhci;
248 	u32 val = 0;
249 	int ret;
250 
251 	usb4_switch_check_wakes(sw);
252 
253 	if (!tb_route(sw))
254 		return 0;
255 
256 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
257 	if (ret)
258 		return ret;
259 
260 	parent = tb_switch_parent(sw);
261 	downstream_port = tb_port_at(tb_route(sw), parent);
262 	sw->link_usb4 = link_is_usb4(downstream_port);
263 	tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
264 
265 	xhci = val & ROUTER_CS_6_HCI;
266 	tbt3 = !(val & ROUTER_CS_6_TNS);
267 
268 	tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
269 		  tbt3 ? "yes" : "no", xhci ? "yes" : "no");
270 
271 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
272 	if (ret)
273 		return ret;
274 
275 	if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
276 	    tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
277 		val |= ROUTER_CS_5_UTO;
278 		xhci = false;
279 	}
280 
281 	/*
282 	 * Only enable PCIe tunneling if the parent router supports it
283 	 * and it is not disabled.
284 	 */
285 	if (tb_acpi_may_tunnel_pcie() &&
286 	    tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
287 		val |= ROUTER_CS_5_PTO;
288 		/*
289 		 * xHCI can be enabled if PCIe tunneling is supported
290 		 * and the parent does not have any USB3 dowstream
291 		 * adapters (so we cannot do USB 3.x tunneling).
292 		 */
293 		if (xhci)
294 			val |= ROUTER_CS_5_HCO;
295 	}
296 
297 	/* TBT3 supported by the CM */
298 	val |= ROUTER_CS_5_C3S;
299 	/* Tunneling configuration is ready now */
300 	val |= ROUTER_CS_5_CV;
301 
302 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
303 	if (ret)
304 		return ret;
305 
306 	return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
307 					ROUTER_CS_6_CR, 50);
308 }
309 
310 /**
311  * usb4_switch_read_uid() - Read UID from USB4 router
312  * @sw: USB4 router
313  * @uid: UID is stored here
314  *
315  * Reads 64-bit UID from USB4 router config space.
316  */
317 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
318 {
319 	return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
320 }
321 
322 static int usb4_switch_drom_read_block(void *data,
323 				       unsigned int dwaddress, void *buf,
324 				       size_t dwords)
325 {
326 	struct tb_switch *sw = data;
327 	u8 status = 0;
328 	u32 metadata;
329 	int ret;
330 
331 	metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
332 	metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
333 		USB4_DROM_ADDRESS_MASK;
334 
335 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
336 				  &status, NULL, 0, buf, dwords);
337 	if (ret)
338 		return ret;
339 
340 	return status ? -EIO : 0;
341 }
342 
343 /**
344  * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
345  * @sw: USB4 router
346  * @address: Byte address inside DROM to start reading
347  * @buf: Buffer where the DROM content is stored
348  * @size: Number of bytes to read from DROM
349  *
350  * Uses USB4 router operations to read router DROM. For devices this
351  * should always work but for hosts it may return %-EOPNOTSUPP in which
352  * case the host router does not have DROM.
353  */
354 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
355 			  size_t size)
356 {
357 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
358 				usb4_switch_drom_read_block, sw);
359 }
360 
361 /**
362  * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
363  * @sw: USB4 router
364  *
365  * Checks whether conditions are met so that lane bonding can be
366  * established with the upstream router. Call only for device routers.
367  */
368 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
369 {
370 	struct tb_port *up;
371 	int ret;
372 	u32 val;
373 
374 	up = tb_upstream_port(sw);
375 	ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
376 	if (ret)
377 		return false;
378 
379 	return !!(val & PORT_CS_18_BE);
380 }
381 
382 /**
383  * usb4_switch_set_wake() - Enabled/disable wake
384  * @sw: USB4 router
385  * @flags: Wakeup flags (%0 to disable)
386  *
387  * Enables/disables router to wake up from sleep.
388  */
389 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
390 {
391 	struct tb_port *port;
392 	u64 route = tb_route(sw);
393 	u32 val;
394 	int ret;
395 
396 	/*
397 	 * Enable wakes coming from all USB4 downstream ports (from
398 	 * child routers). For device routers do this also for the
399 	 * upstream USB4 port.
400 	 */
401 	tb_switch_for_each_port(sw, port) {
402 		if (!tb_port_is_null(port))
403 			continue;
404 		if (!route && tb_is_upstream_port(port))
405 			continue;
406 		if (!port->cap_usb4)
407 			continue;
408 
409 		ret = tb_port_read(port, &val, TB_CFG_PORT,
410 				   port->cap_usb4 + PORT_CS_19, 1);
411 		if (ret)
412 			return ret;
413 
414 		val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
415 
416 		if (tb_is_upstream_port(port)) {
417 			val |= PORT_CS_19_WOU4;
418 		} else {
419 			bool configured = val & PORT_CS_19_PC;
420 
421 			if ((flags & TB_WAKE_ON_CONNECT) && !configured)
422 				val |= PORT_CS_19_WOC;
423 			if ((flags & TB_WAKE_ON_DISCONNECT) && configured)
424 				val |= PORT_CS_19_WOD;
425 			if ((flags & TB_WAKE_ON_USB4) && configured)
426 				val |= PORT_CS_19_WOU4;
427 		}
428 
429 		ret = tb_port_write(port, &val, TB_CFG_PORT,
430 				    port->cap_usb4 + PORT_CS_19, 1);
431 		if (ret)
432 			return ret;
433 	}
434 
435 	/*
436 	 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
437 	 * needed for device routers.
438 	 */
439 	if (route) {
440 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
441 		if (ret)
442 			return ret;
443 
444 		val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
445 		if (flags & TB_WAKE_ON_USB3)
446 			val |= ROUTER_CS_5_WOU;
447 		if (flags & TB_WAKE_ON_PCIE)
448 			val |= ROUTER_CS_5_WOP;
449 		if (flags & TB_WAKE_ON_DP)
450 			val |= ROUTER_CS_5_WOD;
451 
452 		ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
453 		if (ret)
454 			return ret;
455 	}
456 
457 	return 0;
458 }
459 
460 /**
461  * usb4_switch_set_sleep() - Prepare the router to enter sleep
462  * @sw: USB4 router
463  *
464  * Sets sleep bit for the router. Returns when the router sleep ready
465  * bit has been asserted.
466  */
467 int usb4_switch_set_sleep(struct tb_switch *sw)
468 {
469 	int ret;
470 	u32 val;
471 
472 	/* Set sleep bit and wait for sleep ready to be asserted */
473 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
474 	if (ret)
475 		return ret;
476 
477 	val |= ROUTER_CS_5_SLP;
478 
479 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
480 	if (ret)
481 		return ret;
482 
483 	return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
484 					ROUTER_CS_6_SLPR, 500);
485 }
486 
487 /**
488  * usb4_switch_nvm_sector_size() - Return router NVM sector size
489  * @sw: USB4 router
490  *
491  * If the router supports NVM operations this function returns the NVM
492  * sector size in bytes. If NVM operations are not supported returns
493  * %-EOPNOTSUPP.
494  */
495 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
496 {
497 	u32 metadata;
498 	u8 status;
499 	int ret;
500 
501 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
502 			     &status);
503 	if (ret)
504 		return ret;
505 
506 	if (status)
507 		return status == 0x2 ? -EOPNOTSUPP : -EIO;
508 
509 	return metadata & USB4_NVM_SECTOR_SIZE_MASK;
510 }
511 
512 static int usb4_switch_nvm_read_block(void *data,
513 	unsigned int dwaddress, void *buf, size_t dwords)
514 {
515 	struct tb_switch *sw = data;
516 	u8 status = 0;
517 	u32 metadata;
518 	int ret;
519 
520 	metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
521 		   USB4_NVM_READ_LENGTH_MASK;
522 	metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
523 		   USB4_NVM_READ_OFFSET_MASK;
524 
525 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
526 				  &status, NULL, 0, buf, dwords);
527 	if (ret)
528 		return ret;
529 
530 	return status ? -EIO : 0;
531 }
532 
533 /**
534  * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
535  * @sw: USB4 router
536  * @address: Starting address in bytes
537  * @buf: Read data is placed here
538  * @size: How many bytes to read
539  *
540  * Reads NVM contents of the router. If NVM is not supported returns
541  * %-EOPNOTSUPP.
542  */
543 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
544 			 size_t size)
545 {
546 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
547 				usb4_switch_nvm_read_block, sw);
548 }
549 
550 /**
551  * usb4_switch_nvm_set_offset() - Set NVM write offset
552  * @sw: USB4 router
553  * @address: Start offset
554  *
555  * Explicitly sets NVM write offset. Normally when writing to NVM this
556  * is done automatically by usb4_switch_nvm_write().
557  *
558  * Returns %0 in success and negative errno if there was a failure.
559  */
560 int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
561 {
562 	u32 metadata, dwaddress;
563 	u8 status = 0;
564 	int ret;
565 
566 	dwaddress = address / 4;
567 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
568 		   USB4_NVM_SET_OFFSET_MASK;
569 
570 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
571 			     &status);
572 	if (ret)
573 		return ret;
574 
575 	return status ? -EIO : 0;
576 }
577 
578 static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
579 					    const void *buf, size_t dwords)
580 {
581 	struct tb_switch *sw = data;
582 	u8 status;
583 	int ret;
584 
585 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
586 				  buf, dwords, NULL, 0);
587 	if (ret)
588 		return ret;
589 
590 	return status ? -EIO : 0;
591 }
592 
593 /**
594  * usb4_switch_nvm_write() - Write to the router NVM
595  * @sw: USB4 router
596  * @address: Start address where to write in bytes
597  * @buf: Pointer to the data to write
598  * @size: Size of @buf in bytes
599  *
600  * Writes @buf to the router NVM using USB4 router operations. If NVM
601  * write is not supported returns %-EOPNOTSUPP.
602  */
603 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
604 			  const void *buf, size_t size)
605 {
606 	int ret;
607 
608 	ret = usb4_switch_nvm_set_offset(sw, address);
609 	if (ret)
610 		return ret;
611 
612 	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
613 				 usb4_switch_nvm_write_next_block, sw);
614 }
615 
616 /**
617  * usb4_switch_nvm_authenticate() - Authenticate new NVM
618  * @sw: USB4 router
619  *
620  * After the new NVM has been written via usb4_switch_nvm_write(), this
621  * function triggers NVM authentication process. The router gets power
622  * cycled and if the authentication is successful the new NVM starts
623  * running. In case of failure returns negative errno.
624  *
625  * The caller should call usb4_switch_nvm_authenticate_status() to read
626  * the status of the authentication after power cycle. It should be the
627  * first router operation to avoid the status being lost.
628  */
629 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
630 {
631 	int ret;
632 
633 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
634 	switch (ret) {
635 	/*
636 	 * The router is power cycled once NVM_AUTH is started so it is
637 	 * expected to get any of the following errors back.
638 	 */
639 	case -EACCES:
640 	case -ENOTCONN:
641 	case -ETIMEDOUT:
642 		return 0;
643 
644 	default:
645 		return ret;
646 	}
647 }
648 
649 /**
650  * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
651  * @sw: USB4 router
652  * @status: Status code of the operation
653  *
654  * The function checks if there is status available from the last NVM
655  * authenticate router operation. If there is status then %0 is returned
656  * and the status code is placed in @status. Returns negative errno in case
657  * of failure.
658  *
659  * Must be called before any other router operation.
660  */
661 int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
662 {
663 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
664 	u16 opcode;
665 	u32 val;
666 	int ret;
667 
668 	if (cm_ops->usb4_switch_nvm_authenticate_status) {
669 		ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
670 		if (ret != -EOPNOTSUPP)
671 			return ret;
672 	}
673 
674 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
675 	if (ret)
676 		return ret;
677 
678 	/* Check that the opcode is correct */
679 	opcode = val & ROUTER_CS_26_OPCODE_MASK;
680 	if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
681 		if (val & ROUTER_CS_26_OV)
682 			return -EBUSY;
683 		if (val & ROUTER_CS_26_ONS)
684 			return -EOPNOTSUPP;
685 
686 		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
687 			ROUTER_CS_26_STATUS_SHIFT;
688 	} else {
689 		*status = 0;
690 	}
691 
692 	return 0;
693 }
694 
695 /**
696  * usb4_switch_credits_init() - Read buffer allocation parameters
697  * @sw: USB4 router
698  *
699  * Reads @sw buffer allocation parameters and initializes @sw buffer
700  * allocation fields accordingly. Specifically @sw->credits_allocation
701  * is set to %true if these parameters can be used in tunneling.
702  *
703  * Returns %0 on success and negative errno otherwise.
704  */
705 int usb4_switch_credits_init(struct tb_switch *sw)
706 {
707 	int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
708 	int ret, length, i, nports;
709 	const struct tb_port *port;
710 	u32 data[NVM_DATA_DWORDS];
711 	u32 metadata = 0;
712 	u8 status = 0;
713 
714 	memset(data, 0, sizeof(data));
715 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
716 				  &status, NULL, 0, data, ARRAY_SIZE(data));
717 	if (ret)
718 		return ret;
719 	if (status)
720 		return -EIO;
721 
722 	length = metadata & USB4_BA_LENGTH_MASK;
723 	if (WARN_ON(length > ARRAY_SIZE(data)))
724 		return -EMSGSIZE;
725 
726 	max_usb3 = -1;
727 	min_dp_aux = -1;
728 	min_dp_main = -1;
729 	max_pcie = -1;
730 	max_dma = -1;
731 
732 	tb_sw_dbg(sw, "credit allocation parameters:\n");
733 
734 	for (i = 0; i < length; i++) {
735 		u16 index, value;
736 
737 		index = data[i] & USB4_BA_INDEX_MASK;
738 		value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
739 
740 		switch (index) {
741 		case USB4_BA_MAX_USB3:
742 			tb_sw_dbg(sw, " USB3: %u\n", value);
743 			max_usb3 = value;
744 			break;
745 		case USB4_BA_MIN_DP_AUX:
746 			tb_sw_dbg(sw, " DP AUX: %u\n", value);
747 			min_dp_aux = value;
748 			break;
749 		case USB4_BA_MIN_DP_MAIN:
750 			tb_sw_dbg(sw, " DP main: %u\n", value);
751 			min_dp_main = value;
752 			break;
753 		case USB4_BA_MAX_PCIE:
754 			tb_sw_dbg(sw, " PCIe: %u\n", value);
755 			max_pcie = value;
756 			break;
757 		case USB4_BA_MAX_HI:
758 			tb_sw_dbg(sw, " DMA: %u\n", value);
759 			max_dma = value;
760 			break;
761 		default:
762 			tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
763 				  index);
764 			break;
765 		}
766 	}
767 
768 	/*
769 	 * Validate the buffer allocation preferences. If we find
770 	 * issues, log a warning and fall back using the hard-coded
771 	 * values.
772 	 */
773 
774 	/* Host router must report baMaxHI */
775 	if (!tb_route(sw) && max_dma < 0) {
776 		tb_sw_warn(sw, "host router is missing baMaxHI\n");
777 		goto err_invalid;
778 	}
779 
780 	nports = 0;
781 	tb_switch_for_each_port(sw, port) {
782 		if (tb_port_is_null(port))
783 			nports++;
784 	}
785 
786 	/* Must have DP buffer allocation (multiple USB4 ports) */
787 	if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
788 		tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
789 		goto err_invalid;
790 	}
791 
792 	tb_switch_for_each_port(sw, port) {
793 		if (tb_port_is_dpout(port) && min_dp_main < 0) {
794 			tb_sw_warn(sw, "missing baMinDPmain");
795 			goto err_invalid;
796 		}
797 		if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
798 		    min_dp_aux < 0) {
799 			tb_sw_warn(sw, "missing baMinDPaux");
800 			goto err_invalid;
801 		}
802 		if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
803 		    max_usb3 < 0) {
804 			tb_sw_warn(sw, "missing baMaxUSB3");
805 			goto err_invalid;
806 		}
807 		if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
808 		    max_pcie < 0) {
809 			tb_sw_warn(sw, "missing baMaxPCIe");
810 			goto err_invalid;
811 		}
812 	}
813 
814 	/*
815 	 * Buffer allocation passed the validation so we can use it in
816 	 * path creation.
817 	 */
818 	sw->credit_allocation = true;
819 	if (max_usb3 > 0)
820 		sw->max_usb3_credits = max_usb3;
821 	if (min_dp_aux > 0)
822 		sw->min_dp_aux_credits = min_dp_aux;
823 	if (min_dp_main > 0)
824 		sw->min_dp_main_credits = min_dp_main;
825 	if (max_pcie > 0)
826 		sw->max_pcie_credits = max_pcie;
827 	if (max_dma > 0)
828 		sw->max_dma_credits = max_dma;
829 
830 	return 0;
831 
832 err_invalid:
833 	return -EINVAL;
834 }
835 
836 /**
837  * usb4_switch_query_dp_resource() - Query availability of DP IN resource
838  * @sw: USB4 router
839  * @in: DP IN adapter
840  *
841  * For DP tunneling this function can be used to query availability of
842  * DP IN resource. Returns true if the resource is available for DP
843  * tunneling, false otherwise.
844  */
845 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
846 {
847 	u32 metadata = in->port;
848 	u8 status;
849 	int ret;
850 
851 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
852 			     &status);
853 	/*
854 	 * If DP resource allocation is not supported assume it is
855 	 * always available.
856 	 */
857 	if (ret == -EOPNOTSUPP)
858 		return true;
859 	else if (ret)
860 		return false;
861 
862 	return !status;
863 }
864 
865 /**
866  * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
867  * @sw: USB4 router
868  * @in: DP IN adapter
869  *
870  * Allocates DP IN resource for DP tunneling using USB4 router
871  * operations. If the resource was allocated returns %0. Otherwise
872  * returns negative errno, in particular %-EBUSY if the resource is
873  * already allocated.
874  */
875 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
876 {
877 	u32 metadata = in->port;
878 	u8 status;
879 	int ret;
880 
881 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
882 			     &status);
883 	if (ret == -EOPNOTSUPP)
884 		return 0;
885 	else if (ret)
886 		return ret;
887 
888 	return status ? -EBUSY : 0;
889 }
890 
891 /**
892  * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
893  * @sw: USB4 router
894  * @in: DP IN adapter
895  *
896  * Releases the previously allocated DP IN resource.
897  */
898 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
899 {
900 	u32 metadata = in->port;
901 	u8 status;
902 	int ret;
903 
904 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
905 			     &status);
906 	if (ret == -EOPNOTSUPP)
907 		return 0;
908 	else if (ret)
909 		return ret;
910 
911 	return status ? -EIO : 0;
912 }
913 
914 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
915 {
916 	struct tb_port *p;
917 	int usb4_idx = 0;
918 
919 	/* Assume port is primary */
920 	tb_switch_for_each_port(sw, p) {
921 		if (!tb_port_is_null(p))
922 			continue;
923 		if (tb_is_upstream_port(p))
924 			continue;
925 		if (!p->link_nr) {
926 			if (p == port)
927 				break;
928 			usb4_idx++;
929 		}
930 	}
931 
932 	return usb4_idx;
933 }
934 
935 /**
936  * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
937  * @sw: USB4 router
938  * @port: USB4 port
939  *
940  * USB4 routers have direct mapping between USB4 ports and PCIe
941  * downstream adapters where the PCIe topology is extended. This
942  * function returns the corresponding downstream PCIe adapter or %NULL
943  * if no such mapping was possible.
944  */
945 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
946 					  const struct tb_port *port)
947 {
948 	int usb4_idx = usb4_port_idx(sw, port);
949 	struct tb_port *p;
950 	int pcie_idx = 0;
951 
952 	/* Find PCIe down port matching usb4_port */
953 	tb_switch_for_each_port(sw, p) {
954 		if (!tb_port_is_pcie_down(p))
955 			continue;
956 
957 		if (pcie_idx == usb4_idx)
958 			return p;
959 
960 		pcie_idx++;
961 	}
962 
963 	return NULL;
964 }
965 
966 /**
967  * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
968  * @sw: USB4 router
969  * @port: USB4 port
970  *
971  * USB4 routers have direct mapping between USB4 ports and USB 3.x
972  * downstream adapters where the USB 3.x topology is extended. This
973  * function returns the corresponding downstream USB 3.x adapter or
974  * %NULL if no such mapping was possible.
975  */
976 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
977 					  const struct tb_port *port)
978 {
979 	int usb4_idx = usb4_port_idx(sw, port);
980 	struct tb_port *p;
981 	int usb_idx = 0;
982 
983 	/* Find USB3 down port matching usb4_port */
984 	tb_switch_for_each_port(sw, p) {
985 		if (!tb_port_is_usb3_down(p))
986 			continue;
987 
988 		if (usb_idx == usb4_idx)
989 			return p;
990 
991 		usb_idx++;
992 	}
993 
994 	return NULL;
995 }
996 
997 /**
998  * usb4_switch_add_ports() - Add USB4 ports for this router
999  * @sw: USB4 router
1000  *
1001  * For USB4 router finds all USB4 ports and registers devices for each.
1002  * Can be called to any router.
1003  *
1004  * Return %0 in case of success and negative errno in case of failure.
1005  */
1006 int usb4_switch_add_ports(struct tb_switch *sw)
1007 {
1008 	struct tb_port *port;
1009 
1010 	if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
1011 		return 0;
1012 
1013 	tb_switch_for_each_port(sw, port) {
1014 		struct usb4_port *usb4;
1015 
1016 		if (!tb_port_is_null(port))
1017 			continue;
1018 		if (!port->cap_usb4)
1019 			continue;
1020 
1021 		usb4 = usb4_port_device_add(port);
1022 		if (IS_ERR(usb4)) {
1023 			usb4_switch_remove_ports(sw);
1024 			return PTR_ERR(usb4);
1025 		}
1026 
1027 		port->usb4 = usb4;
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 /**
1034  * usb4_switch_remove_ports() - Removes USB4 ports from this router
1035  * @sw: USB4 router
1036  *
1037  * Unregisters previously registered USB4 ports.
1038  */
1039 void usb4_switch_remove_ports(struct tb_switch *sw)
1040 {
1041 	struct tb_port *port;
1042 
1043 	tb_switch_for_each_port(sw, port) {
1044 		if (port->usb4) {
1045 			usb4_port_device_remove(port->usb4);
1046 			port->usb4 = NULL;
1047 		}
1048 	}
1049 }
1050 
1051 /**
1052  * usb4_port_unlock() - Unlock USB4 downstream port
1053  * @port: USB4 port to unlock
1054  *
1055  * Unlocks USB4 downstream port so that the connection manager can
1056  * access the router below this port.
1057  */
1058 int usb4_port_unlock(struct tb_port *port)
1059 {
1060 	int ret;
1061 	u32 val;
1062 
1063 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1064 	if (ret)
1065 		return ret;
1066 
1067 	val &= ~ADP_CS_4_LCK;
1068 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1069 }
1070 
1071 static int usb4_port_set_configured(struct tb_port *port, bool configured)
1072 {
1073 	int ret;
1074 	u32 val;
1075 
1076 	if (!port->cap_usb4)
1077 		return -EINVAL;
1078 
1079 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1080 			   port->cap_usb4 + PORT_CS_19, 1);
1081 	if (ret)
1082 		return ret;
1083 
1084 	if (configured)
1085 		val |= PORT_CS_19_PC;
1086 	else
1087 		val &= ~PORT_CS_19_PC;
1088 
1089 	return tb_port_write(port, &val, TB_CFG_PORT,
1090 			     port->cap_usb4 + PORT_CS_19, 1);
1091 }
1092 
1093 /**
1094  * usb4_port_configure() - Set USB4 port configured
1095  * @port: USB4 router
1096  *
1097  * Sets the USB4 link to be configured for power management purposes.
1098  */
1099 int usb4_port_configure(struct tb_port *port)
1100 {
1101 	return usb4_port_set_configured(port, true);
1102 }
1103 
1104 /**
1105  * usb4_port_unconfigure() - Set USB4 port unconfigured
1106  * @port: USB4 router
1107  *
1108  * Sets the USB4 link to be unconfigured for power management purposes.
1109  */
1110 void usb4_port_unconfigure(struct tb_port *port)
1111 {
1112 	usb4_port_set_configured(port, false);
1113 }
1114 
1115 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1116 {
1117 	int ret;
1118 	u32 val;
1119 
1120 	if (!port->cap_usb4)
1121 		return -EINVAL;
1122 
1123 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1124 			   port->cap_usb4 + PORT_CS_19, 1);
1125 	if (ret)
1126 		return ret;
1127 
1128 	if (configured)
1129 		val |= PORT_CS_19_PID;
1130 	else
1131 		val &= ~PORT_CS_19_PID;
1132 
1133 	return tb_port_write(port, &val, TB_CFG_PORT,
1134 			     port->cap_usb4 + PORT_CS_19, 1);
1135 }
1136 
1137 /**
1138  * usb4_port_configure_xdomain() - Configure port for XDomain
1139  * @port: USB4 port connected to another host
1140  *
1141  * Marks the USB4 port as being connected to another host. Returns %0 in
1142  * success and negative errno in failure.
1143  */
1144 int usb4_port_configure_xdomain(struct tb_port *port)
1145 {
1146 	return usb4_set_xdomain_configured(port, true);
1147 }
1148 
1149 /**
1150  * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1151  * @port: USB4 port that was connected to another host
1152  *
1153  * Clears USB4 port from being marked as XDomain.
1154  */
1155 void usb4_port_unconfigure_xdomain(struct tb_port *port)
1156 {
1157 	usb4_set_xdomain_configured(port, false);
1158 }
1159 
1160 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1161 				  u32 value, int timeout_msec)
1162 {
1163 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1164 
1165 	do {
1166 		u32 val;
1167 		int ret;
1168 
1169 		ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1170 		if (ret)
1171 			return ret;
1172 
1173 		if ((val & bit) == value)
1174 			return 0;
1175 
1176 		usleep_range(50, 100);
1177 	} while (ktime_before(ktime_get(), timeout));
1178 
1179 	return -ETIMEDOUT;
1180 }
1181 
1182 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1183 {
1184 	if (dwords > NVM_DATA_DWORDS)
1185 		return -EINVAL;
1186 
1187 	return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1188 			    dwords);
1189 }
1190 
1191 static int usb4_port_write_data(struct tb_port *port, const void *data,
1192 				size_t dwords)
1193 {
1194 	if (dwords > NVM_DATA_DWORDS)
1195 		return -EINVAL;
1196 
1197 	return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1198 			     dwords);
1199 }
1200 
1201 static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1202 			     u8 index, u8 reg, void *buf, u8 size)
1203 {
1204 	size_t dwords = DIV_ROUND_UP(size, 4);
1205 	int ret;
1206 	u32 val;
1207 
1208 	if (!port->cap_usb4)
1209 		return -EINVAL;
1210 
1211 	val = reg;
1212 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1213 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1214 	if (target == USB4_SB_TARGET_RETIMER)
1215 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1216 	val |= PORT_CS_1_PND;
1217 
1218 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1219 			    port->cap_usb4 + PORT_CS_1, 1);
1220 	if (ret)
1221 		return ret;
1222 
1223 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1224 				     PORT_CS_1_PND, 0, 500);
1225 	if (ret)
1226 		return ret;
1227 
1228 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1229 			    port->cap_usb4 + PORT_CS_1, 1);
1230 	if (ret)
1231 		return ret;
1232 
1233 	if (val & PORT_CS_1_NR)
1234 		return -ENODEV;
1235 	if (val & PORT_CS_1_RC)
1236 		return -EIO;
1237 
1238 	return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1239 }
1240 
1241 static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1242 			      u8 index, u8 reg, const void *buf, u8 size)
1243 {
1244 	size_t dwords = DIV_ROUND_UP(size, 4);
1245 	int ret;
1246 	u32 val;
1247 
1248 	if (!port->cap_usb4)
1249 		return -EINVAL;
1250 
1251 	if (buf) {
1252 		ret = usb4_port_write_data(port, buf, dwords);
1253 		if (ret)
1254 			return ret;
1255 	}
1256 
1257 	val = reg;
1258 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1259 	val |= PORT_CS_1_WNR_WRITE;
1260 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1261 	if (target == USB4_SB_TARGET_RETIMER)
1262 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1263 	val |= PORT_CS_1_PND;
1264 
1265 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1266 			    port->cap_usb4 + PORT_CS_1, 1);
1267 	if (ret)
1268 		return ret;
1269 
1270 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1271 				     PORT_CS_1_PND, 0, 500);
1272 	if (ret)
1273 		return ret;
1274 
1275 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1276 			    port->cap_usb4 + PORT_CS_1, 1);
1277 	if (ret)
1278 		return ret;
1279 
1280 	if (val & PORT_CS_1_NR)
1281 		return -ENODEV;
1282 	if (val & PORT_CS_1_RC)
1283 		return -EIO;
1284 
1285 	return 0;
1286 }
1287 
1288 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1289 			   u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1290 {
1291 	ktime_t timeout;
1292 	u32 val;
1293 	int ret;
1294 
1295 	val = opcode;
1296 	ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1297 				 sizeof(val));
1298 	if (ret)
1299 		return ret;
1300 
1301 	timeout = ktime_add_ms(ktime_get(), timeout_msec);
1302 
1303 	do {
1304 		/* Check results */
1305 		ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1306 					&val, sizeof(val));
1307 		if (ret)
1308 			return ret;
1309 
1310 		switch (val) {
1311 		case 0:
1312 			return 0;
1313 
1314 		case USB4_SB_OPCODE_ERR:
1315 			return -EAGAIN;
1316 
1317 		case USB4_SB_OPCODE_ONS:
1318 			return -EOPNOTSUPP;
1319 
1320 		default:
1321 			if (val != opcode)
1322 				return -EIO;
1323 			break;
1324 		}
1325 	} while (ktime_before(ktime_get(), timeout));
1326 
1327 	return -ETIMEDOUT;
1328 }
1329 
1330 static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1331 {
1332 	u32 val = !offline;
1333 	int ret;
1334 
1335 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1336 				  USB4_SB_METADATA, &val, sizeof(val));
1337 	if (ret)
1338 		return ret;
1339 
1340 	val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1341 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1342 				  USB4_SB_OPCODE, &val, sizeof(val));
1343 }
1344 
1345 /**
1346  * usb4_port_router_offline() - Put the USB4 port to offline mode
1347  * @port: USB4 port
1348  *
1349  * This function puts the USB4 port into offline mode. In this mode the
1350  * port does not react on hotplug events anymore. This needs to be
1351  * called before retimer access is done when the USB4 links is not up.
1352  *
1353  * Returns %0 in case of success and negative errno if there was an
1354  * error.
1355  */
1356 int usb4_port_router_offline(struct tb_port *port)
1357 {
1358 	return usb4_port_set_router_offline(port, true);
1359 }
1360 
1361 /**
1362  * usb4_port_router_online() - Put the USB4 port back to online
1363  * @port: USB4 port
1364  *
1365  * Makes the USB4 port functional again.
1366  */
1367 int usb4_port_router_online(struct tb_port *port)
1368 {
1369 	return usb4_port_set_router_offline(port, false);
1370 }
1371 
1372 /**
1373  * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1374  * @port: USB4 port
1375  *
1376  * This forces the USB4 port to send broadcast RT transaction which
1377  * makes the retimers on the link to assign index to themselves. Returns
1378  * %0 in case of success and negative errno if there was an error.
1379  */
1380 int usb4_port_enumerate_retimers(struct tb_port *port)
1381 {
1382 	u32 val;
1383 
1384 	val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1385 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1386 				  USB4_SB_OPCODE, &val, sizeof(val));
1387 }
1388 
1389 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1390 				       enum usb4_sb_opcode opcode,
1391 				       int timeout_msec)
1392 {
1393 	return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1394 			       timeout_msec);
1395 }
1396 
1397 /**
1398  * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1399  * @port: USB4 port
1400  * @index: Retimer index
1401  *
1402  * Enables sideband channel transations on SBTX. Can be used when USB4
1403  * link does not go up, for example if there is no device connected.
1404  */
1405 int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1406 {
1407 	int ret;
1408 
1409 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1410 				   500);
1411 
1412 	if (ret != -ENODEV)
1413 		return ret;
1414 
1415 	/*
1416 	 * Per the USB4 retimer spec, the retimer is not required to
1417 	 * send an RT (Retimer Transaction) response for the first
1418 	 * SET_INBOUND_SBTX command
1419 	 */
1420 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1421 				    500);
1422 }
1423 
1424 /**
1425  * usb4_port_retimer_read() - Read from retimer sideband registers
1426  * @port: USB4 port
1427  * @index: Retimer index
1428  * @reg: Sideband register to read
1429  * @buf: Data from @reg is stored here
1430  * @size: Number of bytes to read
1431  *
1432  * Function reads retimer sideband registers starting from @reg. The
1433  * retimer is connected to @port at @index. Returns %0 in case of
1434  * success, and read data is copied to @buf. If there is no retimer
1435  * present at given @index returns %-ENODEV. In any other failure
1436  * returns negative errno.
1437  */
1438 int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1439 			   u8 size)
1440 {
1441 	return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1442 				 size);
1443 }
1444 
1445 /**
1446  * usb4_port_retimer_write() - Write to retimer sideband registers
1447  * @port: USB4 port
1448  * @index: Retimer index
1449  * @reg: Sideband register to write
1450  * @buf: Data that is written starting from @reg
1451  * @size: Number of bytes to write
1452  *
1453  * Writes retimer sideband registers starting from @reg. The retimer is
1454  * connected to @port at @index. Returns %0 in case of success. If there
1455  * is no retimer present at given @index returns %-ENODEV. In any other
1456  * failure returns negative errno.
1457  */
1458 int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1459 			    const void *buf, u8 size)
1460 {
1461 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1462 				  size);
1463 }
1464 
1465 /**
1466  * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1467  * @port: USB4 port
1468  * @index: Retimer index
1469  *
1470  * If the retimer at @index is last one (connected directly to the
1471  * Type-C port) this function returns %1. If it is not returns %0. If
1472  * the retimer is not present returns %-ENODEV. Otherwise returns
1473  * negative errno.
1474  */
1475 int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1476 {
1477 	u32 metadata;
1478 	int ret;
1479 
1480 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1481 				   500);
1482 	if (ret)
1483 		return ret;
1484 
1485 	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1486 				     sizeof(metadata));
1487 	return ret ? ret : metadata & 1;
1488 }
1489 
1490 /**
1491  * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1492  * @port: USB4 port
1493  * @index: Retimer index
1494  *
1495  * Reads NVM sector size (in bytes) of a retimer at @index. This
1496  * operation can be used to determine whether the retimer supports NVM
1497  * upgrade for example. Returns sector size in bytes or negative errno
1498  * in case of error. Specifically returns %-ENODEV if there is no
1499  * retimer at @index.
1500  */
1501 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1502 {
1503 	u32 metadata;
1504 	int ret;
1505 
1506 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1507 				   500);
1508 	if (ret)
1509 		return ret;
1510 
1511 	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1512 				     sizeof(metadata));
1513 	return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1514 }
1515 
1516 /**
1517  * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1518  * @port: USB4 port
1519  * @index: Retimer index
1520  * @address: Start offset
1521  *
1522  * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1523  * done automatically by usb4_port_retimer_nvm_write().
1524  *
1525  * Returns %0 in success and negative errno if there was a failure.
1526  */
1527 int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1528 				     unsigned int address)
1529 {
1530 	u32 metadata, dwaddress;
1531 	int ret;
1532 
1533 	dwaddress = address / 4;
1534 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1535 		  USB4_NVM_SET_OFFSET_MASK;
1536 
1537 	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1538 				      sizeof(metadata));
1539 	if (ret)
1540 		return ret;
1541 
1542 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1543 				    500);
1544 }
1545 
1546 struct retimer_info {
1547 	struct tb_port *port;
1548 	u8 index;
1549 };
1550 
1551 static int usb4_port_retimer_nvm_write_next_block(void *data,
1552 	unsigned int dwaddress, const void *buf, size_t dwords)
1553 
1554 {
1555 	const struct retimer_info *info = data;
1556 	struct tb_port *port = info->port;
1557 	u8 index = info->index;
1558 	int ret;
1559 
1560 	ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1561 				      buf, dwords * 4);
1562 	if (ret)
1563 		return ret;
1564 
1565 	return usb4_port_retimer_op(port, index,
1566 			USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1567 }
1568 
1569 /**
1570  * usb4_port_retimer_nvm_write() - Write to retimer NVM
1571  * @port: USB4 port
1572  * @index: Retimer index
1573  * @address: Byte address where to start the write
1574  * @buf: Data to write
1575  * @size: Size in bytes how much to write
1576  *
1577  * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1578  * upgrade. Returns %0 if the data was written successfully and negative
1579  * errno in case of failure. Specifically returns %-ENODEV if there is
1580  * no retimer at @index.
1581  */
1582 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1583 				const void *buf, size_t size)
1584 {
1585 	struct retimer_info info = { .port = port, .index = index };
1586 	int ret;
1587 
1588 	ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1589 	if (ret)
1590 		return ret;
1591 
1592 	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1593 				 usb4_port_retimer_nvm_write_next_block, &info);
1594 }
1595 
1596 /**
1597  * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1598  * @port: USB4 port
1599  * @index: Retimer index
1600  *
1601  * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1602  * this function can be used to trigger the NVM upgrade process. If
1603  * successful the retimer restarts with the new NVM and may not have the
1604  * index set so one needs to call usb4_port_enumerate_retimers() to
1605  * force index to be assigned.
1606  */
1607 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1608 {
1609 	u32 val;
1610 
1611 	/*
1612 	 * We need to use the raw operation here because once the
1613 	 * authentication completes the retimer index is not set anymore
1614 	 * so we do not get back the status now.
1615 	 */
1616 	val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1617 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1618 				  USB4_SB_OPCODE, &val, sizeof(val));
1619 }
1620 
1621 /**
1622  * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1623  * @port: USB4 port
1624  * @index: Retimer index
1625  * @status: Raw status code read from metadata
1626  *
1627  * This can be called after usb4_port_retimer_nvm_authenticate() and
1628  * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1629  *
1630  * Returns %0 if the authentication status was successfully read. The
1631  * completion metadata (the result) is then stored into @status. If
1632  * reading the status fails, returns negative errno.
1633  */
1634 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1635 					      u32 *status)
1636 {
1637 	u32 metadata, val;
1638 	int ret;
1639 
1640 	ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1641 				     sizeof(val));
1642 	if (ret)
1643 		return ret;
1644 
1645 	switch (val) {
1646 	case 0:
1647 		*status = 0;
1648 		return 0;
1649 
1650 	case USB4_SB_OPCODE_ERR:
1651 		ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1652 					     &metadata, sizeof(metadata));
1653 		if (ret)
1654 			return ret;
1655 
1656 		*status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1657 		return 0;
1658 
1659 	case USB4_SB_OPCODE_ONS:
1660 		return -EOPNOTSUPP;
1661 
1662 	default:
1663 		return -EIO;
1664 	}
1665 }
1666 
1667 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1668 					    void *buf, size_t dwords)
1669 {
1670 	const struct retimer_info *info = data;
1671 	struct tb_port *port = info->port;
1672 	u8 index = info->index;
1673 	u32 metadata;
1674 	int ret;
1675 
1676 	metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1677 	if (dwords < NVM_DATA_DWORDS)
1678 		metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1679 
1680 	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1681 				      sizeof(metadata));
1682 	if (ret)
1683 		return ret;
1684 
1685 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1686 	if (ret)
1687 		return ret;
1688 
1689 	return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1690 				      dwords * 4);
1691 }
1692 
1693 /**
1694  * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1695  * @port: USB4 port
1696  * @index: Retimer index
1697  * @address: NVM address (in bytes) to start reading
1698  * @buf: Data read from NVM is stored here
1699  * @size: Number of bytes to read
1700  *
1701  * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1702  * read was successful and negative errno in case of failure.
1703  * Specifically returns %-ENODEV if there is no retimer at @index.
1704  */
1705 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1706 			       unsigned int address, void *buf, size_t size)
1707 {
1708 	struct retimer_info info = { .port = port, .index = index };
1709 
1710 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
1711 				usb4_port_retimer_nvm_read_block, &info);
1712 }
1713 
1714 /**
1715  * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1716  * @port: USB3 adapter port
1717  *
1718  * Return maximum supported link rate of a USB3 adapter in Mb/s.
1719  * Negative errno in case of error.
1720  */
1721 int usb4_usb3_port_max_link_rate(struct tb_port *port)
1722 {
1723 	int ret, lr;
1724 	u32 val;
1725 
1726 	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1727 		return -EINVAL;
1728 
1729 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1730 			   port->cap_adap + ADP_USB3_CS_4, 1);
1731 	if (ret)
1732 		return ret;
1733 
1734 	lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
1735 	return lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
1736 }
1737 
1738 /**
1739  * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1740  * @port: USB3 adapter port
1741  *
1742  * Return actual established link rate of a USB3 adapter in Mb/s. If the
1743  * link is not up returns %0 and negative errno in case of failure.
1744  */
1745 int usb4_usb3_port_actual_link_rate(struct tb_port *port)
1746 {
1747 	int ret, lr;
1748 	u32 val;
1749 
1750 	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1751 		return -EINVAL;
1752 
1753 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1754 			   port->cap_adap + ADP_USB3_CS_4, 1);
1755 	if (ret)
1756 		return ret;
1757 
1758 	if (!(val & ADP_USB3_CS_4_ULV))
1759 		return 0;
1760 
1761 	lr = val & ADP_USB3_CS_4_ALR_MASK;
1762 	return lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
1763 }
1764 
1765 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
1766 {
1767 	int ret;
1768 	u32 val;
1769 
1770 	if (!tb_port_is_usb3_down(port))
1771 		return -EINVAL;
1772 	if (tb_route(port->sw))
1773 		return -EINVAL;
1774 
1775 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1776 			   port->cap_adap + ADP_USB3_CS_2, 1);
1777 	if (ret)
1778 		return ret;
1779 
1780 	if (request)
1781 		val |= ADP_USB3_CS_2_CMR;
1782 	else
1783 		val &= ~ADP_USB3_CS_2_CMR;
1784 
1785 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1786 			    port->cap_adap + ADP_USB3_CS_2, 1);
1787 	if (ret)
1788 		return ret;
1789 
1790 	/*
1791 	 * We can use val here directly as the CMR bit is in the same place
1792 	 * as HCA. Just mask out others.
1793 	 */
1794 	val &= ADP_USB3_CS_2_CMR;
1795 	return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
1796 				      ADP_USB3_CS_1_HCA, val, 1500);
1797 }
1798 
1799 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
1800 {
1801 	return usb4_usb3_port_cm_request(port, true);
1802 }
1803 
1804 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
1805 {
1806 	return usb4_usb3_port_cm_request(port, false);
1807 }
1808 
1809 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
1810 {
1811 	unsigned long uframes;
1812 
1813 	uframes = bw * 512UL << scale;
1814 	return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000);
1815 }
1816 
1817 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
1818 {
1819 	unsigned long uframes;
1820 
1821 	/* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
1822 	uframes = ((unsigned long)mbps * 1000 *  1000) / 8000;
1823 	return DIV_ROUND_UP(uframes, 512UL << scale);
1824 }
1825 
1826 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
1827 						   int *upstream_bw,
1828 						   int *downstream_bw)
1829 {
1830 	u32 val, bw, scale;
1831 	int ret;
1832 
1833 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1834 			   port->cap_adap + ADP_USB3_CS_2, 1);
1835 	if (ret)
1836 		return ret;
1837 
1838 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
1839 			   port->cap_adap + ADP_USB3_CS_3, 1);
1840 	if (ret)
1841 		return ret;
1842 
1843 	scale &= ADP_USB3_CS_3_SCALE_MASK;
1844 
1845 	bw = val & ADP_USB3_CS_2_AUBW_MASK;
1846 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
1847 
1848 	bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
1849 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
1850 
1851 	return 0;
1852 }
1853 
1854 /**
1855  * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
1856  * @port: USB3 adapter port
1857  * @upstream_bw: Allocated upstream bandwidth is stored here
1858  * @downstream_bw: Allocated downstream bandwidth is stored here
1859  *
1860  * Stores currently allocated USB3 bandwidth into @upstream_bw and
1861  * @downstream_bw in Mb/s. Returns %0 in case of success and negative
1862  * errno in failure.
1863  */
1864 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
1865 				       int *downstream_bw)
1866 {
1867 	int ret;
1868 
1869 	ret = usb4_usb3_port_set_cm_request(port);
1870 	if (ret)
1871 		return ret;
1872 
1873 	ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
1874 						      downstream_bw);
1875 	usb4_usb3_port_clear_cm_request(port);
1876 
1877 	return ret;
1878 }
1879 
1880 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
1881 						  int *upstream_bw,
1882 						  int *downstream_bw)
1883 {
1884 	u32 val, bw, scale;
1885 	int ret;
1886 
1887 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1888 			   port->cap_adap + ADP_USB3_CS_1, 1);
1889 	if (ret)
1890 		return ret;
1891 
1892 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
1893 			   port->cap_adap + ADP_USB3_CS_3, 1);
1894 	if (ret)
1895 		return ret;
1896 
1897 	scale &= ADP_USB3_CS_3_SCALE_MASK;
1898 
1899 	bw = val & ADP_USB3_CS_1_CUBW_MASK;
1900 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
1901 
1902 	bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
1903 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
1904 
1905 	return 0;
1906 }
1907 
1908 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
1909 						    int upstream_bw,
1910 						    int downstream_bw)
1911 {
1912 	u32 val, ubw, dbw, scale;
1913 	int ret;
1914 
1915 	/* Read the used scale, hardware default is 0 */
1916 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
1917 			   port->cap_adap + ADP_USB3_CS_3, 1);
1918 	if (ret)
1919 		return ret;
1920 
1921 	scale &= ADP_USB3_CS_3_SCALE_MASK;
1922 	ubw = mbps_to_usb3_bw(upstream_bw, scale);
1923 	dbw = mbps_to_usb3_bw(downstream_bw, scale);
1924 
1925 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1926 			   port->cap_adap + ADP_USB3_CS_2, 1);
1927 	if (ret)
1928 		return ret;
1929 
1930 	val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
1931 	val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
1932 	val |= ubw;
1933 
1934 	return tb_port_write(port, &val, TB_CFG_PORT,
1935 			     port->cap_adap + ADP_USB3_CS_2, 1);
1936 }
1937 
1938 /**
1939  * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
1940  * @port: USB3 adapter port
1941  * @upstream_bw: New upstream bandwidth
1942  * @downstream_bw: New downstream bandwidth
1943  *
1944  * This can be used to set how much bandwidth is allocated for the USB3
1945  * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
1946  * new values programmed to the USB3 adapter allocation registers. If
1947  * the values are lower than what is currently consumed the allocation
1948  * is set to what is currently consumed instead (consumed bandwidth
1949  * cannot be taken away by CM). The actual new values are returned in
1950  * @upstream_bw and @downstream_bw.
1951  *
1952  * Returns %0 in case of success and negative errno if there was a
1953  * failure.
1954  */
1955 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
1956 				      int *downstream_bw)
1957 {
1958 	int ret, consumed_up, consumed_down, allocate_up, allocate_down;
1959 
1960 	ret = usb4_usb3_port_set_cm_request(port);
1961 	if (ret)
1962 		return ret;
1963 
1964 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1965 						     &consumed_down);
1966 	if (ret)
1967 		goto err_request;
1968 
1969 	/* Don't allow it go lower than what is consumed */
1970 	allocate_up = max(*upstream_bw, consumed_up);
1971 	allocate_down = max(*downstream_bw, consumed_down);
1972 
1973 	ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
1974 						       allocate_down);
1975 	if (ret)
1976 		goto err_request;
1977 
1978 	*upstream_bw = allocate_up;
1979 	*downstream_bw = allocate_down;
1980 
1981 err_request:
1982 	usb4_usb3_port_clear_cm_request(port);
1983 	return ret;
1984 }
1985 
1986 /**
1987  * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
1988  * @port: USB3 adapter port
1989  * @upstream_bw: New allocated upstream bandwidth
1990  * @downstream_bw: New allocated downstream bandwidth
1991  *
1992  * Releases USB3 allocated bandwidth down to what is actually consumed.
1993  * The new bandwidth is returned in @upstream_bw and @downstream_bw.
1994  *
1995  * Returns 0% in success and negative errno in case of failure.
1996  */
1997 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
1998 				     int *downstream_bw)
1999 {
2000 	int ret, consumed_up, consumed_down;
2001 
2002 	ret = usb4_usb3_port_set_cm_request(port);
2003 	if (ret)
2004 		return ret;
2005 
2006 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2007 						     &consumed_down);
2008 	if (ret)
2009 		goto err_request;
2010 
2011 	/*
2012 	 * Always keep 1000 Mb/s to make sure xHCI has at least some
2013 	 * bandwidth available for isochronous traffic.
2014 	 */
2015 	if (consumed_up < 1000)
2016 		consumed_up = 1000;
2017 	if (consumed_down < 1000)
2018 		consumed_down = 1000;
2019 
2020 	ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
2021 						       consumed_down);
2022 	if (ret)
2023 		goto err_request;
2024 
2025 	*upstream_bw = consumed_up;
2026 	*downstream_bw = consumed_down;
2027 
2028 err_request:
2029 	usb4_usb3_port_clear_cm_request(port);
2030 	return ret;
2031 }
2032