1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * USB4 specific functionality 4 * 5 * Copyright (C) 2019, Intel Corporation 6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com> 7 * Rajmohan Mani <rajmohan.mani@intel.com> 8 */ 9 10 #include <linux/delay.h> 11 #include <linux/ktime.h> 12 13 #include "sb_regs.h" 14 #include "tb.h" 15 16 #define USB4_DATA_RETRIES 3 17 18 enum usb4_sb_target { 19 USB4_SB_TARGET_ROUTER, 20 USB4_SB_TARGET_PARTNER, 21 USB4_SB_TARGET_RETIMER, 22 }; 23 24 #define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2) 25 #define USB4_NVM_READ_OFFSET_SHIFT 2 26 #define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24) 27 #define USB4_NVM_READ_LENGTH_SHIFT 24 28 29 #define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK 30 #define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT 31 32 #define USB4_DROM_ADDRESS_MASK GENMASK(14, 2) 33 #define USB4_DROM_ADDRESS_SHIFT 2 34 #define USB4_DROM_SIZE_MASK GENMASK(19, 15) 35 #define USB4_DROM_SIZE_SHIFT 15 36 37 #define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0) 38 39 #define USB4_BA_LENGTH_MASK GENMASK(7, 0) 40 #define USB4_BA_INDEX_MASK GENMASK(15, 0) 41 42 enum usb4_ba_index { 43 USB4_BA_MAX_USB3 = 0x1, 44 USB4_BA_MIN_DP_AUX = 0x2, 45 USB4_BA_MIN_DP_MAIN = 0x3, 46 USB4_BA_MAX_PCIE = 0x4, 47 USB4_BA_MAX_HI = 0x5, 48 }; 49 50 #define USB4_BA_VALUE_MASK GENMASK(31, 16) 51 #define USB4_BA_VALUE_SHIFT 16 52 53 static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode, 54 u32 *metadata, u8 *status, 55 const void *tx_data, size_t tx_dwords, 56 void *rx_data, size_t rx_dwords) 57 { 58 u32 val; 59 int ret; 60 61 if (metadata) { 62 ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1); 63 if (ret) 64 return ret; 65 } 66 if (tx_dwords) { 67 ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9, 68 tx_dwords); 69 if (ret) 70 return ret; 71 } 72 73 val = opcode | ROUTER_CS_26_OV; 74 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1); 75 if (ret) 76 return ret; 77 78 ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500); 79 if (ret) 80 return ret; 81 82 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1); 83 if (ret) 84 return ret; 85 86 if (val & ROUTER_CS_26_ONS) 87 return -EOPNOTSUPP; 88 89 if (status) 90 *status = (val & ROUTER_CS_26_STATUS_MASK) >> 91 ROUTER_CS_26_STATUS_SHIFT; 92 93 if (metadata) { 94 ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1); 95 if (ret) 96 return ret; 97 } 98 if (rx_dwords) { 99 ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9, 100 rx_dwords); 101 if (ret) 102 return ret; 103 } 104 105 return 0; 106 } 107 108 static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata, 109 u8 *status, const void *tx_data, size_t tx_dwords, 110 void *rx_data, size_t rx_dwords) 111 { 112 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 113 114 if (tx_dwords > NVM_DATA_DWORDS || rx_dwords > NVM_DATA_DWORDS) 115 return -EINVAL; 116 117 /* 118 * If the connection manager implementation provides USB4 router 119 * operation proxy callback, call it here instead of running the 120 * operation natively. 121 */ 122 if (cm_ops->usb4_switch_op) { 123 int ret; 124 125 ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status, 126 tx_data, tx_dwords, rx_data, 127 rx_dwords); 128 if (ret != -EOPNOTSUPP) 129 return ret; 130 131 /* 132 * If the proxy was not supported then run the native 133 * router operation instead. 134 */ 135 } 136 137 return usb4_native_switch_op(sw, opcode, metadata, status, tx_data, 138 tx_dwords, rx_data, rx_dwords); 139 } 140 141 static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode, 142 u32 *metadata, u8 *status) 143 { 144 return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0); 145 } 146 147 static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode, 148 u32 *metadata, u8 *status, 149 const void *tx_data, size_t tx_dwords, 150 void *rx_data, size_t rx_dwords) 151 { 152 return __usb4_switch_op(sw, opcode, metadata, status, tx_data, 153 tx_dwords, rx_data, rx_dwords); 154 } 155 156 static void usb4_switch_check_wakes(struct tb_switch *sw) 157 { 158 bool wakeup_usb4 = false; 159 struct usb4_port *usb4; 160 struct tb_port *port; 161 bool wakeup = false; 162 u32 val; 163 164 if (!device_may_wakeup(&sw->dev)) 165 return; 166 167 if (tb_route(sw)) { 168 if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1)) 169 return; 170 171 tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n", 172 (val & ROUTER_CS_6_WOPS) ? "yes" : "no", 173 (val & ROUTER_CS_6_WOUS) ? "yes" : "no"); 174 175 wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS); 176 } 177 178 /* 179 * Check for any downstream ports for USB4 wake, 180 * connection wake and disconnection wake. 181 */ 182 tb_switch_for_each_port(sw, port) { 183 if (!port->cap_usb4) 184 continue; 185 186 if (tb_port_read(port, &val, TB_CFG_PORT, 187 port->cap_usb4 + PORT_CS_18, 1)) 188 break; 189 190 tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n", 191 (val & PORT_CS_18_WOU4S) ? "yes" : "no", 192 (val & PORT_CS_18_WOCS) ? "yes" : "no", 193 (val & PORT_CS_18_WODS) ? "yes" : "no"); 194 195 wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS | 196 PORT_CS_18_WODS); 197 198 usb4 = port->usb4; 199 if (device_may_wakeup(&usb4->dev) && wakeup_usb4) 200 pm_wakeup_event(&usb4->dev, 0); 201 202 wakeup |= wakeup_usb4; 203 } 204 205 if (wakeup) 206 pm_wakeup_event(&sw->dev, 0); 207 } 208 209 static bool link_is_usb4(struct tb_port *port) 210 { 211 u32 val; 212 213 if (!port->cap_usb4) 214 return false; 215 216 if (tb_port_read(port, &val, TB_CFG_PORT, 217 port->cap_usb4 + PORT_CS_18, 1)) 218 return false; 219 220 return !(val & PORT_CS_18_TCM); 221 } 222 223 /** 224 * usb4_switch_setup() - Additional setup for USB4 device 225 * @sw: USB4 router to setup 226 * 227 * USB4 routers need additional settings in order to enable all the 228 * tunneling. This function enables USB and PCIe tunneling if it can be 229 * enabled (e.g the parent switch also supports them). If USB tunneling 230 * is not available for some reason (like that there is Thunderbolt 3 231 * switch upstream) then the internal xHCI controller is enabled 232 * instead. 233 */ 234 int usb4_switch_setup(struct tb_switch *sw) 235 { 236 struct tb_port *downstream_port; 237 struct tb_switch *parent; 238 bool tbt3, xhci; 239 u32 val = 0; 240 int ret; 241 242 usb4_switch_check_wakes(sw); 243 244 if (!tb_route(sw)) 245 return 0; 246 247 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1); 248 if (ret) 249 return ret; 250 251 parent = tb_switch_parent(sw); 252 downstream_port = tb_port_at(tb_route(sw), parent); 253 sw->link_usb4 = link_is_usb4(downstream_port); 254 tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT"); 255 256 xhci = val & ROUTER_CS_6_HCI; 257 tbt3 = !(val & ROUTER_CS_6_TNS); 258 259 tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n", 260 tbt3 ? "yes" : "no", xhci ? "yes" : "no"); 261 262 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); 263 if (ret) 264 return ret; 265 266 if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 && 267 tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) { 268 val |= ROUTER_CS_5_UTO; 269 xhci = false; 270 } 271 272 /* 273 * Only enable PCIe tunneling if the parent router supports it 274 * and it is not disabled. 275 */ 276 if (tb_acpi_may_tunnel_pcie() && 277 tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) { 278 val |= ROUTER_CS_5_PTO; 279 /* 280 * xHCI can be enabled if PCIe tunneling is supported 281 * and the parent does not have any USB3 dowstream 282 * adapters (so we cannot do USB 3.x tunneling). 283 */ 284 if (xhci) 285 val |= ROUTER_CS_5_HCO; 286 } 287 288 /* TBT3 supported by the CM */ 289 val |= ROUTER_CS_5_C3S; 290 /* Tunneling configuration is ready now */ 291 val |= ROUTER_CS_5_CV; 292 293 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); 294 if (ret) 295 return ret; 296 297 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR, 298 ROUTER_CS_6_CR, 50); 299 } 300 301 /** 302 * usb4_switch_read_uid() - Read UID from USB4 router 303 * @sw: USB4 router 304 * @uid: UID is stored here 305 * 306 * Reads 64-bit UID from USB4 router config space. 307 */ 308 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid) 309 { 310 return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2); 311 } 312 313 static int usb4_switch_drom_read_block(void *data, 314 unsigned int dwaddress, void *buf, 315 size_t dwords) 316 { 317 struct tb_switch *sw = data; 318 u8 status = 0; 319 u32 metadata; 320 int ret; 321 322 metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK; 323 metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) & 324 USB4_DROM_ADDRESS_MASK; 325 326 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata, 327 &status, NULL, 0, buf, dwords); 328 if (ret) 329 return ret; 330 331 return status ? -EIO : 0; 332 } 333 334 /** 335 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM 336 * @sw: USB4 router 337 * @address: Byte address inside DROM to start reading 338 * @buf: Buffer where the DROM content is stored 339 * @size: Number of bytes to read from DROM 340 * 341 * Uses USB4 router operations to read router DROM. For devices this 342 * should always work but for hosts it may return %-EOPNOTSUPP in which 343 * case the host router does not have DROM. 344 */ 345 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf, 346 size_t size) 347 { 348 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES, 349 usb4_switch_drom_read_block, sw); 350 } 351 352 /** 353 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding 354 * @sw: USB4 router 355 * 356 * Checks whether conditions are met so that lane bonding can be 357 * established with the upstream router. Call only for device routers. 358 */ 359 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw) 360 { 361 struct tb_port *up; 362 int ret; 363 u32 val; 364 365 up = tb_upstream_port(sw); 366 ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1); 367 if (ret) 368 return false; 369 370 return !!(val & PORT_CS_18_BE); 371 } 372 373 /** 374 * usb4_switch_set_wake() - Enabled/disable wake 375 * @sw: USB4 router 376 * @flags: Wakeup flags (%0 to disable) 377 * 378 * Enables/disables router to wake up from sleep. 379 */ 380 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags) 381 { 382 struct usb4_port *usb4; 383 struct tb_port *port; 384 u64 route = tb_route(sw); 385 u32 val; 386 int ret; 387 388 /* 389 * Enable wakes coming from all USB4 downstream ports (from 390 * child routers). For device routers do this also for the 391 * upstream USB4 port. 392 */ 393 tb_switch_for_each_port(sw, port) { 394 if (!tb_port_is_null(port)) 395 continue; 396 if (!route && tb_is_upstream_port(port)) 397 continue; 398 if (!port->cap_usb4) 399 continue; 400 401 ret = tb_port_read(port, &val, TB_CFG_PORT, 402 port->cap_usb4 + PORT_CS_19, 1); 403 if (ret) 404 return ret; 405 406 val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4); 407 408 if (tb_is_upstream_port(port)) { 409 val |= PORT_CS_19_WOU4; 410 } else { 411 bool configured = val & PORT_CS_19_PC; 412 usb4 = port->usb4; 413 414 if (((flags & TB_WAKE_ON_CONNECT) | 415 device_may_wakeup(&usb4->dev)) && !configured) 416 val |= PORT_CS_19_WOC; 417 if (((flags & TB_WAKE_ON_DISCONNECT) | 418 device_may_wakeup(&usb4->dev)) && configured) 419 val |= PORT_CS_19_WOD; 420 if ((flags & TB_WAKE_ON_USB4) && configured) 421 val |= PORT_CS_19_WOU4; 422 } 423 424 ret = tb_port_write(port, &val, TB_CFG_PORT, 425 port->cap_usb4 + PORT_CS_19, 1); 426 if (ret) 427 return ret; 428 } 429 430 /* 431 * Enable wakes from PCIe, USB 3.x and DP on this router. Only 432 * needed for device routers. 433 */ 434 if (route) { 435 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); 436 if (ret) 437 return ret; 438 439 val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD); 440 if (flags & TB_WAKE_ON_USB3) 441 val |= ROUTER_CS_5_WOU; 442 if (flags & TB_WAKE_ON_PCIE) 443 val |= ROUTER_CS_5_WOP; 444 if (flags & TB_WAKE_ON_DP) 445 val |= ROUTER_CS_5_WOD; 446 447 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); 448 if (ret) 449 return ret; 450 } 451 452 return 0; 453 } 454 455 /** 456 * usb4_switch_set_sleep() - Prepare the router to enter sleep 457 * @sw: USB4 router 458 * 459 * Sets sleep bit for the router. Returns when the router sleep ready 460 * bit has been asserted. 461 */ 462 int usb4_switch_set_sleep(struct tb_switch *sw) 463 { 464 int ret; 465 u32 val; 466 467 /* Set sleep bit and wait for sleep ready to be asserted */ 468 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); 469 if (ret) 470 return ret; 471 472 val |= ROUTER_CS_5_SLP; 473 474 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); 475 if (ret) 476 return ret; 477 478 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR, 479 ROUTER_CS_6_SLPR, 500); 480 } 481 482 /** 483 * usb4_switch_nvm_sector_size() - Return router NVM sector size 484 * @sw: USB4 router 485 * 486 * If the router supports NVM operations this function returns the NVM 487 * sector size in bytes. If NVM operations are not supported returns 488 * %-EOPNOTSUPP. 489 */ 490 int usb4_switch_nvm_sector_size(struct tb_switch *sw) 491 { 492 u32 metadata; 493 u8 status; 494 int ret; 495 496 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata, 497 &status); 498 if (ret) 499 return ret; 500 501 if (status) 502 return status == 0x2 ? -EOPNOTSUPP : -EIO; 503 504 return metadata & USB4_NVM_SECTOR_SIZE_MASK; 505 } 506 507 static int usb4_switch_nvm_read_block(void *data, 508 unsigned int dwaddress, void *buf, size_t dwords) 509 { 510 struct tb_switch *sw = data; 511 u8 status = 0; 512 u32 metadata; 513 int ret; 514 515 metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) & 516 USB4_NVM_READ_LENGTH_MASK; 517 metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) & 518 USB4_NVM_READ_OFFSET_MASK; 519 520 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata, 521 &status, NULL, 0, buf, dwords); 522 if (ret) 523 return ret; 524 525 return status ? -EIO : 0; 526 } 527 528 /** 529 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM 530 * @sw: USB4 router 531 * @address: Starting address in bytes 532 * @buf: Read data is placed here 533 * @size: How many bytes to read 534 * 535 * Reads NVM contents of the router. If NVM is not supported returns 536 * %-EOPNOTSUPP. 537 */ 538 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf, 539 size_t size) 540 { 541 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES, 542 usb4_switch_nvm_read_block, sw); 543 } 544 545 /** 546 * usb4_switch_nvm_set_offset() - Set NVM write offset 547 * @sw: USB4 router 548 * @address: Start offset 549 * 550 * Explicitly sets NVM write offset. Normally when writing to NVM this 551 * is done automatically by usb4_switch_nvm_write(). 552 * 553 * Returns %0 in success and negative errno if there was a failure. 554 */ 555 int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address) 556 { 557 u32 metadata, dwaddress; 558 u8 status = 0; 559 int ret; 560 561 dwaddress = address / 4; 562 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) & 563 USB4_NVM_SET_OFFSET_MASK; 564 565 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata, 566 &status); 567 if (ret) 568 return ret; 569 570 return status ? -EIO : 0; 571 } 572 573 static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress, 574 const void *buf, size_t dwords) 575 { 576 struct tb_switch *sw = data; 577 u8 status; 578 int ret; 579 580 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status, 581 buf, dwords, NULL, 0); 582 if (ret) 583 return ret; 584 585 return status ? -EIO : 0; 586 } 587 588 /** 589 * usb4_switch_nvm_write() - Write to the router NVM 590 * @sw: USB4 router 591 * @address: Start address where to write in bytes 592 * @buf: Pointer to the data to write 593 * @size: Size of @buf in bytes 594 * 595 * Writes @buf to the router NVM using USB4 router operations. If NVM 596 * write is not supported returns %-EOPNOTSUPP. 597 */ 598 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address, 599 const void *buf, size_t size) 600 { 601 int ret; 602 603 ret = usb4_switch_nvm_set_offset(sw, address); 604 if (ret) 605 return ret; 606 607 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES, 608 usb4_switch_nvm_write_next_block, sw); 609 } 610 611 /** 612 * usb4_switch_nvm_authenticate() - Authenticate new NVM 613 * @sw: USB4 router 614 * 615 * After the new NVM has been written via usb4_switch_nvm_write(), this 616 * function triggers NVM authentication process. The router gets power 617 * cycled and if the authentication is successful the new NVM starts 618 * running. In case of failure returns negative errno. 619 * 620 * The caller should call usb4_switch_nvm_authenticate_status() to read 621 * the status of the authentication after power cycle. It should be the 622 * first router operation to avoid the status being lost. 623 */ 624 int usb4_switch_nvm_authenticate(struct tb_switch *sw) 625 { 626 int ret; 627 628 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL); 629 switch (ret) { 630 /* 631 * The router is power cycled once NVM_AUTH is started so it is 632 * expected to get any of the following errors back. 633 */ 634 case -EACCES: 635 case -ENOTCONN: 636 case -ETIMEDOUT: 637 return 0; 638 639 default: 640 return ret; 641 } 642 } 643 644 /** 645 * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate 646 * @sw: USB4 router 647 * @status: Status code of the operation 648 * 649 * The function checks if there is status available from the last NVM 650 * authenticate router operation. If there is status then %0 is returned 651 * and the status code is placed in @status. Returns negative errno in case 652 * of failure. 653 * 654 * Must be called before any other router operation. 655 */ 656 int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status) 657 { 658 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 659 u16 opcode; 660 u32 val; 661 int ret; 662 663 if (cm_ops->usb4_switch_nvm_authenticate_status) { 664 ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status); 665 if (ret != -EOPNOTSUPP) 666 return ret; 667 } 668 669 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1); 670 if (ret) 671 return ret; 672 673 /* Check that the opcode is correct */ 674 opcode = val & ROUTER_CS_26_OPCODE_MASK; 675 if (opcode == USB4_SWITCH_OP_NVM_AUTH) { 676 if (val & ROUTER_CS_26_OV) 677 return -EBUSY; 678 if (val & ROUTER_CS_26_ONS) 679 return -EOPNOTSUPP; 680 681 *status = (val & ROUTER_CS_26_STATUS_MASK) >> 682 ROUTER_CS_26_STATUS_SHIFT; 683 } else { 684 *status = 0; 685 } 686 687 return 0; 688 } 689 690 /** 691 * usb4_switch_credits_init() - Read buffer allocation parameters 692 * @sw: USB4 router 693 * 694 * Reads @sw buffer allocation parameters and initializes @sw buffer 695 * allocation fields accordingly. Specifically @sw->credits_allocation 696 * is set to %true if these parameters can be used in tunneling. 697 * 698 * Returns %0 on success and negative errno otherwise. 699 */ 700 int usb4_switch_credits_init(struct tb_switch *sw) 701 { 702 int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma; 703 int ret, length, i, nports; 704 const struct tb_port *port; 705 u32 data[NVM_DATA_DWORDS]; 706 u32 metadata = 0; 707 u8 status = 0; 708 709 memset(data, 0, sizeof(data)); 710 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata, 711 &status, NULL, 0, data, ARRAY_SIZE(data)); 712 if (ret) 713 return ret; 714 if (status) 715 return -EIO; 716 717 length = metadata & USB4_BA_LENGTH_MASK; 718 if (WARN_ON(length > ARRAY_SIZE(data))) 719 return -EMSGSIZE; 720 721 max_usb3 = -1; 722 min_dp_aux = -1; 723 min_dp_main = -1; 724 max_pcie = -1; 725 max_dma = -1; 726 727 tb_sw_dbg(sw, "credit allocation parameters:\n"); 728 729 for (i = 0; i < length; i++) { 730 u16 index, value; 731 732 index = data[i] & USB4_BA_INDEX_MASK; 733 value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT; 734 735 switch (index) { 736 case USB4_BA_MAX_USB3: 737 tb_sw_dbg(sw, " USB3: %u\n", value); 738 max_usb3 = value; 739 break; 740 case USB4_BA_MIN_DP_AUX: 741 tb_sw_dbg(sw, " DP AUX: %u\n", value); 742 min_dp_aux = value; 743 break; 744 case USB4_BA_MIN_DP_MAIN: 745 tb_sw_dbg(sw, " DP main: %u\n", value); 746 min_dp_main = value; 747 break; 748 case USB4_BA_MAX_PCIE: 749 tb_sw_dbg(sw, " PCIe: %u\n", value); 750 max_pcie = value; 751 break; 752 case USB4_BA_MAX_HI: 753 tb_sw_dbg(sw, " DMA: %u\n", value); 754 max_dma = value; 755 break; 756 default: 757 tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n", 758 index); 759 break; 760 } 761 } 762 763 /* 764 * Validate the buffer allocation preferences. If we find 765 * issues, log a warning and fall back using the hard-coded 766 * values. 767 */ 768 769 /* Host router must report baMaxHI */ 770 if (!tb_route(sw) && max_dma < 0) { 771 tb_sw_warn(sw, "host router is missing baMaxHI\n"); 772 goto err_invalid; 773 } 774 775 nports = 0; 776 tb_switch_for_each_port(sw, port) { 777 if (tb_port_is_null(port)) 778 nports++; 779 } 780 781 /* Must have DP buffer allocation (multiple USB4 ports) */ 782 if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) { 783 tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n"); 784 goto err_invalid; 785 } 786 787 tb_switch_for_each_port(sw, port) { 788 if (tb_port_is_dpout(port) && min_dp_main < 0) { 789 tb_sw_warn(sw, "missing baMinDPmain"); 790 goto err_invalid; 791 } 792 if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) && 793 min_dp_aux < 0) { 794 tb_sw_warn(sw, "missing baMinDPaux"); 795 goto err_invalid; 796 } 797 if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) && 798 max_usb3 < 0) { 799 tb_sw_warn(sw, "missing baMaxUSB3"); 800 goto err_invalid; 801 } 802 if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) && 803 max_pcie < 0) { 804 tb_sw_warn(sw, "missing baMaxPCIe"); 805 goto err_invalid; 806 } 807 } 808 809 /* 810 * Buffer allocation passed the validation so we can use it in 811 * path creation. 812 */ 813 sw->credit_allocation = true; 814 if (max_usb3 > 0) 815 sw->max_usb3_credits = max_usb3; 816 if (min_dp_aux > 0) 817 sw->min_dp_aux_credits = min_dp_aux; 818 if (min_dp_main > 0) 819 sw->min_dp_main_credits = min_dp_main; 820 if (max_pcie > 0) 821 sw->max_pcie_credits = max_pcie; 822 if (max_dma > 0) 823 sw->max_dma_credits = max_dma; 824 825 return 0; 826 827 err_invalid: 828 return -EINVAL; 829 } 830 831 /** 832 * usb4_switch_query_dp_resource() - Query availability of DP IN resource 833 * @sw: USB4 router 834 * @in: DP IN adapter 835 * 836 * For DP tunneling this function can be used to query availability of 837 * DP IN resource. Returns true if the resource is available for DP 838 * tunneling, false otherwise. 839 */ 840 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) 841 { 842 u32 metadata = in->port; 843 u8 status; 844 int ret; 845 846 ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata, 847 &status); 848 /* 849 * If DP resource allocation is not supported assume it is 850 * always available. 851 */ 852 if (ret == -EOPNOTSUPP) 853 return true; 854 else if (ret) 855 return false; 856 857 return !status; 858 } 859 860 /** 861 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource 862 * @sw: USB4 router 863 * @in: DP IN adapter 864 * 865 * Allocates DP IN resource for DP tunneling using USB4 router 866 * operations. If the resource was allocated returns %0. Otherwise 867 * returns negative errno, in particular %-EBUSY if the resource is 868 * already allocated. 869 */ 870 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 871 { 872 u32 metadata = in->port; 873 u8 status; 874 int ret; 875 876 ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata, 877 &status); 878 if (ret == -EOPNOTSUPP) 879 return 0; 880 else if (ret) 881 return ret; 882 883 return status ? -EBUSY : 0; 884 } 885 886 /** 887 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource 888 * @sw: USB4 router 889 * @in: DP IN adapter 890 * 891 * Releases the previously allocated DP IN resource. 892 */ 893 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 894 { 895 u32 metadata = in->port; 896 u8 status; 897 int ret; 898 899 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata, 900 &status); 901 if (ret == -EOPNOTSUPP) 902 return 0; 903 else if (ret) 904 return ret; 905 906 return status ? -EIO : 0; 907 } 908 909 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port) 910 { 911 struct tb_port *p; 912 int usb4_idx = 0; 913 914 /* Assume port is primary */ 915 tb_switch_for_each_port(sw, p) { 916 if (!tb_port_is_null(p)) 917 continue; 918 if (tb_is_upstream_port(p)) 919 continue; 920 if (!p->link_nr) { 921 if (p == port) 922 break; 923 usb4_idx++; 924 } 925 } 926 927 return usb4_idx; 928 } 929 930 /** 931 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter 932 * @sw: USB4 router 933 * @port: USB4 port 934 * 935 * USB4 routers have direct mapping between USB4 ports and PCIe 936 * downstream adapters where the PCIe topology is extended. This 937 * function returns the corresponding downstream PCIe adapter or %NULL 938 * if no such mapping was possible. 939 */ 940 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw, 941 const struct tb_port *port) 942 { 943 int usb4_idx = usb4_port_idx(sw, port); 944 struct tb_port *p; 945 int pcie_idx = 0; 946 947 /* Find PCIe down port matching usb4_port */ 948 tb_switch_for_each_port(sw, p) { 949 if (!tb_port_is_pcie_down(p)) 950 continue; 951 952 if (pcie_idx == usb4_idx) 953 return p; 954 955 pcie_idx++; 956 } 957 958 return NULL; 959 } 960 961 /** 962 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter 963 * @sw: USB4 router 964 * @port: USB4 port 965 * 966 * USB4 routers have direct mapping between USB4 ports and USB 3.x 967 * downstream adapters where the USB 3.x topology is extended. This 968 * function returns the corresponding downstream USB 3.x adapter or 969 * %NULL if no such mapping was possible. 970 */ 971 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw, 972 const struct tb_port *port) 973 { 974 int usb4_idx = usb4_port_idx(sw, port); 975 struct tb_port *p; 976 int usb_idx = 0; 977 978 /* Find USB3 down port matching usb4_port */ 979 tb_switch_for_each_port(sw, p) { 980 if (!tb_port_is_usb3_down(p)) 981 continue; 982 983 if (usb_idx == usb4_idx) 984 return p; 985 986 usb_idx++; 987 } 988 989 return NULL; 990 } 991 992 /** 993 * usb4_switch_add_ports() - Add USB4 ports for this router 994 * @sw: USB4 router 995 * 996 * For USB4 router finds all USB4 ports and registers devices for each. 997 * Can be called to any router. 998 * 999 * Return %0 in case of success and negative errno in case of failure. 1000 */ 1001 int usb4_switch_add_ports(struct tb_switch *sw) 1002 { 1003 struct tb_port *port; 1004 1005 if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw)) 1006 return 0; 1007 1008 tb_switch_for_each_port(sw, port) { 1009 struct usb4_port *usb4; 1010 1011 if (!tb_port_is_null(port)) 1012 continue; 1013 if (!port->cap_usb4) 1014 continue; 1015 1016 usb4 = usb4_port_device_add(port); 1017 if (IS_ERR(usb4)) { 1018 usb4_switch_remove_ports(sw); 1019 return PTR_ERR(usb4); 1020 } 1021 1022 port->usb4 = usb4; 1023 } 1024 1025 return 0; 1026 } 1027 1028 /** 1029 * usb4_switch_remove_ports() - Removes USB4 ports from this router 1030 * @sw: USB4 router 1031 * 1032 * Unregisters previously registered USB4 ports. 1033 */ 1034 void usb4_switch_remove_ports(struct tb_switch *sw) 1035 { 1036 struct tb_port *port; 1037 1038 tb_switch_for_each_port(sw, port) { 1039 if (port->usb4) { 1040 usb4_port_device_remove(port->usb4); 1041 port->usb4 = NULL; 1042 } 1043 } 1044 } 1045 1046 /** 1047 * usb4_port_unlock() - Unlock USB4 downstream port 1048 * @port: USB4 port to unlock 1049 * 1050 * Unlocks USB4 downstream port so that the connection manager can 1051 * access the router below this port. 1052 */ 1053 int usb4_port_unlock(struct tb_port *port) 1054 { 1055 int ret; 1056 u32 val; 1057 1058 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1); 1059 if (ret) 1060 return ret; 1061 1062 val &= ~ADP_CS_4_LCK; 1063 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1); 1064 } 1065 1066 /** 1067 * usb4_port_hotplug_enable() - Enables hotplug for a port 1068 * @port: USB4 port to operate on 1069 * 1070 * Enables hot plug events on a given port. This is only intended 1071 * to be used on lane, DP-IN, and DP-OUT adapters. 1072 */ 1073 int usb4_port_hotplug_enable(struct tb_port *port) 1074 { 1075 int ret; 1076 u32 val; 1077 1078 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1); 1079 if (ret) 1080 return ret; 1081 1082 val &= ~ADP_CS_5_DHP; 1083 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1); 1084 } 1085 1086 static int usb4_port_set_configured(struct tb_port *port, bool configured) 1087 { 1088 int ret; 1089 u32 val; 1090 1091 if (!port->cap_usb4) 1092 return -EINVAL; 1093 1094 ret = tb_port_read(port, &val, TB_CFG_PORT, 1095 port->cap_usb4 + PORT_CS_19, 1); 1096 if (ret) 1097 return ret; 1098 1099 if (configured) 1100 val |= PORT_CS_19_PC; 1101 else 1102 val &= ~PORT_CS_19_PC; 1103 1104 return tb_port_write(port, &val, TB_CFG_PORT, 1105 port->cap_usb4 + PORT_CS_19, 1); 1106 } 1107 1108 /** 1109 * usb4_port_configure() - Set USB4 port configured 1110 * @port: USB4 router 1111 * 1112 * Sets the USB4 link to be configured for power management purposes. 1113 */ 1114 int usb4_port_configure(struct tb_port *port) 1115 { 1116 return usb4_port_set_configured(port, true); 1117 } 1118 1119 /** 1120 * usb4_port_unconfigure() - Set USB4 port unconfigured 1121 * @port: USB4 router 1122 * 1123 * Sets the USB4 link to be unconfigured for power management purposes. 1124 */ 1125 void usb4_port_unconfigure(struct tb_port *port) 1126 { 1127 usb4_port_set_configured(port, false); 1128 } 1129 1130 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured) 1131 { 1132 int ret; 1133 u32 val; 1134 1135 if (!port->cap_usb4) 1136 return -EINVAL; 1137 1138 ret = tb_port_read(port, &val, TB_CFG_PORT, 1139 port->cap_usb4 + PORT_CS_19, 1); 1140 if (ret) 1141 return ret; 1142 1143 if (configured) 1144 val |= PORT_CS_19_PID; 1145 else 1146 val &= ~PORT_CS_19_PID; 1147 1148 return tb_port_write(port, &val, TB_CFG_PORT, 1149 port->cap_usb4 + PORT_CS_19, 1); 1150 } 1151 1152 /** 1153 * usb4_port_configure_xdomain() - Configure port for XDomain 1154 * @port: USB4 port connected to another host 1155 * @xd: XDomain that is connected to the port 1156 * 1157 * Marks the USB4 port as being connected to another host and updates 1158 * the link type. Returns %0 in success and negative errno in failure. 1159 */ 1160 int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd) 1161 { 1162 xd->link_usb4 = link_is_usb4(port); 1163 return usb4_set_xdomain_configured(port, true); 1164 } 1165 1166 /** 1167 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain 1168 * @port: USB4 port that was connected to another host 1169 * 1170 * Clears USB4 port from being marked as XDomain. 1171 */ 1172 void usb4_port_unconfigure_xdomain(struct tb_port *port) 1173 { 1174 usb4_set_xdomain_configured(port, false); 1175 } 1176 1177 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit, 1178 u32 value, int timeout_msec) 1179 { 1180 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 1181 1182 do { 1183 u32 val; 1184 int ret; 1185 1186 ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1); 1187 if (ret) 1188 return ret; 1189 1190 if ((val & bit) == value) 1191 return 0; 1192 1193 usleep_range(50, 100); 1194 } while (ktime_before(ktime_get(), timeout)); 1195 1196 return -ETIMEDOUT; 1197 } 1198 1199 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords) 1200 { 1201 if (dwords > NVM_DATA_DWORDS) 1202 return -EINVAL; 1203 1204 return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2, 1205 dwords); 1206 } 1207 1208 static int usb4_port_write_data(struct tb_port *port, const void *data, 1209 size_t dwords) 1210 { 1211 if (dwords > NVM_DATA_DWORDS) 1212 return -EINVAL; 1213 1214 return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2, 1215 dwords); 1216 } 1217 1218 static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target, 1219 u8 index, u8 reg, void *buf, u8 size) 1220 { 1221 size_t dwords = DIV_ROUND_UP(size, 4); 1222 int ret; 1223 u32 val; 1224 1225 if (!port->cap_usb4) 1226 return -EINVAL; 1227 1228 val = reg; 1229 val |= size << PORT_CS_1_LENGTH_SHIFT; 1230 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK; 1231 if (target == USB4_SB_TARGET_RETIMER) 1232 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT); 1233 val |= PORT_CS_1_PND; 1234 1235 ret = tb_port_write(port, &val, TB_CFG_PORT, 1236 port->cap_usb4 + PORT_CS_1, 1); 1237 if (ret) 1238 return ret; 1239 1240 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1, 1241 PORT_CS_1_PND, 0, 500); 1242 if (ret) 1243 return ret; 1244 1245 ret = tb_port_read(port, &val, TB_CFG_PORT, 1246 port->cap_usb4 + PORT_CS_1, 1); 1247 if (ret) 1248 return ret; 1249 1250 if (val & PORT_CS_1_NR) 1251 return -ENODEV; 1252 if (val & PORT_CS_1_RC) 1253 return -EIO; 1254 1255 return buf ? usb4_port_read_data(port, buf, dwords) : 0; 1256 } 1257 1258 static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target, 1259 u8 index, u8 reg, const void *buf, u8 size) 1260 { 1261 size_t dwords = DIV_ROUND_UP(size, 4); 1262 int ret; 1263 u32 val; 1264 1265 if (!port->cap_usb4) 1266 return -EINVAL; 1267 1268 if (buf) { 1269 ret = usb4_port_write_data(port, buf, dwords); 1270 if (ret) 1271 return ret; 1272 } 1273 1274 val = reg; 1275 val |= size << PORT_CS_1_LENGTH_SHIFT; 1276 val |= PORT_CS_1_WNR_WRITE; 1277 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK; 1278 if (target == USB4_SB_TARGET_RETIMER) 1279 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT); 1280 val |= PORT_CS_1_PND; 1281 1282 ret = tb_port_write(port, &val, TB_CFG_PORT, 1283 port->cap_usb4 + PORT_CS_1, 1); 1284 if (ret) 1285 return ret; 1286 1287 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1, 1288 PORT_CS_1_PND, 0, 500); 1289 if (ret) 1290 return ret; 1291 1292 ret = tb_port_read(port, &val, TB_CFG_PORT, 1293 port->cap_usb4 + PORT_CS_1, 1); 1294 if (ret) 1295 return ret; 1296 1297 if (val & PORT_CS_1_NR) 1298 return -ENODEV; 1299 if (val & PORT_CS_1_RC) 1300 return -EIO; 1301 1302 return 0; 1303 } 1304 1305 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target, 1306 u8 index, enum usb4_sb_opcode opcode, int timeout_msec) 1307 { 1308 ktime_t timeout; 1309 u32 val; 1310 int ret; 1311 1312 val = opcode; 1313 ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val, 1314 sizeof(val)); 1315 if (ret) 1316 return ret; 1317 1318 timeout = ktime_add_ms(ktime_get(), timeout_msec); 1319 1320 do { 1321 /* Check results */ 1322 ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE, 1323 &val, sizeof(val)); 1324 if (ret) 1325 return ret; 1326 1327 switch (val) { 1328 case 0: 1329 return 0; 1330 1331 case USB4_SB_OPCODE_ERR: 1332 return -EAGAIN; 1333 1334 case USB4_SB_OPCODE_ONS: 1335 return -EOPNOTSUPP; 1336 1337 default: 1338 if (val != opcode) 1339 return -EIO; 1340 break; 1341 } 1342 } while (ktime_before(ktime_get(), timeout)); 1343 1344 return -ETIMEDOUT; 1345 } 1346 1347 static int usb4_port_set_router_offline(struct tb_port *port, bool offline) 1348 { 1349 u32 val = !offline; 1350 int ret; 1351 1352 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0, 1353 USB4_SB_METADATA, &val, sizeof(val)); 1354 if (ret) 1355 return ret; 1356 1357 val = USB4_SB_OPCODE_ROUTER_OFFLINE; 1358 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0, 1359 USB4_SB_OPCODE, &val, sizeof(val)); 1360 } 1361 1362 /** 1363 * usb4_port_router_offline() - Put the USB4 port to offline mode 1364 * @port: USB4 port 1365 * 1366 * This function puts the USB4 port into offline mode. In this mode the 1367 * port does not react on hotplug events anymore. This needs to be 1368 * called before retimer access is done when the USB4 links is not up. 1369 * 1370 * Returns %0 in case of success and negative errno if there was an 1371 * error. 1372 */ 1373 int usb4_port_router_offline(struct tb_port *port) 1374 { 1375 return usb4_port_set_router_offline(port, true); 1376 } 1377 1378 /** 1379 * usb4_port_router_online() - Put the USB4 port back to online 1380 * @port: USB4 port 1381 * 1382 * Makes the USB4 port functional again. 1383 */ 1384 int usb4_port_router_online(struct tb_port *port) 1385 { 1386 return usb4_port_set_router_offline(port, false); 1387 } 1388 1389 /** 1390 * usb4_port_enumerate_retimers() - Send RT broadcast transaction 1391 * @port: USB4 port 1392 * 1393 * This forces the USB4 port to send broadcast RT transaction which 1394 * makes the retimers on the link to assign index to themselves. Returns 1395 * %0 in case of success and negative errno if there was an error. 1396 */ 1397 int usb4_port_enumerate_retimers(struct tb_port *port) 1398 { 1399 u32 val; 1400 1401 val = USB4_SB_OPCODE_ENUMERATE_RETIMERS; 1402 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0, 1403 USB4_SB_OPCODE, &val, sizeof(val)); 1404 } 1405 1406 /** 1407 * usb4_port_clx_supported() - Check if CLx is supported by the link 1408 * @port: Port to check for CLx support for 1409 * 1410 * PORT_CS_18_CPS bit reflects if the link supports CLx including 1411 * active cables (if connected on the link). 1412 */ 1413 bool usb4_port_clx_supported(struct tb_port *port) 1414 { 1415 int ret; 1416 u32 val; 1417 1418 ret = tb_port_read(port, &val, TB_CFG_PORT, 1419 port->cap_usb4 + PORT_CS_18, 1); 1420 if (ret) 1421 return false; 1422 1423 return !!(val & PORT_CS_18_CPS); 1424 } 1425 1426 /** 1427 * usb4_port_margining_caps() - Read USB4 port marginig capabilities 1428 * @port: USB4 port 1429 * @caps: Array with at least two elements to hold the results 1430 * 1431 * Reads the USB4 port lane margining capabilities into @caps. 1432 */ 1433 int usb4_port_margining_caps(struct tb_port *port, u32 *caps) 1434 { 1435 int ret; 1436 1437 ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0, 1438 USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500); 1439 if (ret) 1440 return ret; 1441 1442 return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0, 1443 USB4_SB_DATA, caps, sizeof(*caps) * 2); 1444 } 1445 1446 /** 1447 * usb4_port_hw_margin() - Run hardware lane margining on port 1448 * @port: USB4 port 1449 * @lanes: Which lanes to run (must match the port capabilities). Can be 1450 * %0, %1 or %7. 1451 * @ber_level: BER level contour value 1452 * @timing: Perform timing margining instead of voltage 1453 * @right_high: Use Right/high margin instead of left/low 1454 * @results: Array with at least two elements to hold the results 1455 * 1456 * Runs hardware lane margining on USB4 port and returns the result in 1457 * @results. 1458 */ 1459 int usb4_port_hw_margin(struct tb_port *port, unsigned int lanes, 1460 unsigned int ber_level, bool timing, bool right_high, 1461 u32 *results) 1462 { 1463 u32 val; 1464 int ret; 1465 1466 val = lanes; 1467 if (timing) 1468 val |= USB4_MARGIN_HW_TIME; 1469 if (right_high) 1470 val |= USB4_MARGIN_HW_RH; 1471 if (ber_level) 1472 val |= (ber_level << USB4_MARGIN_HW_BER_SHIFT) & 1473 USB4_MARGIN_HW_BER_MASK; 1474 1475 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0, 1476 USB4_SB_METADATA, &val, sizeof(val)); 1477 if (ret) 1478 return ret; 1479 1480 ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0, 1481 USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500); 1482 if (ret) 1483 return ret; 1484 1485 return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0, 1486 USB4_SB_DATA, results, sizeof(*results) * 2); 1487 } 1488 1489 /** 1490 * usb4_port_sw_margin() - Run software lane margining on port 1491 * @port: USB4 port 1492 * @lanes: Which lanes to run (must match the port capabilities). Can be 1493 * %0, %1 or %7. 1494 * @timing: Perform timing margining instead of voltage 1495 * @right_high: Use Right/high margin instead of left/low 1496 * @counter: What to do with the error counter 1497 * 1498 * Runs software lane margining on USB4 port. Read back the error 1499 * counters by calling usb4_port_sw_margin_errors(). Returns %0 in 1500 * success and negative errno otherwise. 1501 */ 1502 int usb4_port_sw_margin(struct tb_port *port, unsigned int lanes, bool timing, 1503 bool right_high, u32 counter) 1504 { 1505 u32 val; 1506 int ret; 1507 1508 val = lanes; 1509 if (timing) 1510 val |= USB4_MARGIN_SW_TIME; 1511 if (right_high) 1512 val |= USB4_MARGIN_SW_RH; 1513 val |= (counter << USB4_MARGIN_SW_COUNTER_SHIFT) & 1514 USB4_MARGIN_SW_COUNTER_MASK; 1515 1516 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0, 1517 USB4_SB_METADATA, &val, sizeof(val)); 1518 if (ret) 1519 return ret; 1520 1521 return usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0, 1522 USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500); 1523 } 1524 1525 /** 1526 * usb4_port_sw_margin_errors() - Read the software margining error counters 1527 * @port: USB4 port 1528 * @errors: Error metadata is copied here. 1529 * 1530 * This reads back the software margining error counters from the port. 1531 * Returns %0 in success and negative errno otherwise. 1532 */ 1533 int usb4_port_sw_margin_errors(struct tb_port *port, u32 *errors) 1534 { 1535 int ret; 1536 1537 ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0, 1538 USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150); 1539 if (ret) 1540 return ret; 1541 1542 return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0, 1543 USB4_SB_METADATA, errors, sizeof(*errors)); 1544 } 1545 1546 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index, 1547 enum usb4_sb_opcode opcode, 1548 int timeout_msec) 1549 { 1550 return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode, 1551 timeout_msec); 1552 } 1553 1554 /** 1555 * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions 1556 * @port: USB4 port 1557 * @index: Retimer index 1558 * 1559 * Enables sideband channel transations on SBTX. Can be used when USB4 1560 * link does not go up, for example if there is no device connected. 1561 */ 1562 int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index) 1563 { 1564 int ret; 1565 1566 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX, 1567 500); 1568 1569 if (ret != -ENODEV) 1570 return ret; 1571 1572 /* 1573 * Per the USB4 retimer spec, the retimer is not required to 1574 * send an RT (Retimer Transaction) response for the first 1575 * SET_INBOUND_SBTX command 1576 */ 1577 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX, 1578 500); 1579 } 1580 1581 /** 1582 * usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions 1583 * @port: USB4 port 1584 * @index: Retimer index 1585 * 1586 * Disables sideband channel transations on SBTX. The reverse of 1587 * usb4_port_retimer_set_inbound_sbtx(). 1588 */ 1589 int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index) 1590 { 1591 return usb4_port_retimer_op(port, index, 1592 USB4_SB_OPCODE_UNSET_INBOUND_SBTX, 500); 1593 } 1594 1595 /** 1596 * usb4_port_retimer_read() - Read from retimer sideband registers 1597 * @port: USB4 port 1598 * @index: Retimer index 1599 * @reg: Sideband register to read 1600 * @buf: Data from @reg is stored here 1601 * @size: Number of bytes to read 1602 * 1603 * Function reads retimer sideband registers starting from @reg. The 1604 * retimer is connected to @port at @index. Returns %0 in case of 1605 * success, and read data is copied to @buf. If there is no retimer 1606 * present at given @index returns %-ENODEV. In any other failure 1607 * returns negative errno. 1608 */ 1609 int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf, 1610 u8 size) 1611 { 1612 return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf, 1613 size); 1614 } 1615 1616 /** 1617 * usb4_port_retimer_write() - Write to retimer sideband registers 1618 * @port: USB4 port 1619 * @index: Retimer index 1620 * @reg: Sideband register to write 1621 * @buf: Data that is written starting from @reg 1622 * @size: Number of bytes to write 1623 * 1624 * Writes retimer sideband registers starting from @reg. The retimer is 1625 * connected to @port at @index. Returns %0 in case of success. If there 1626 * is no retimer present at given @index returns %-ENODEV. In any other 1627 * failure returns negative errno. 1628 */ 1629 int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg, 1630 const void *buf, u8 size) 1631 { 1632 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf, 1633 size); 1634 } 1635 1636 /** 1637 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer 1638 * @port: USB4 port 1639 * @index: Retimer index 1640 * 1641 * If the retimer at @index is last one (connected directly to the 1642 * Type-C port) this function returns %1. If it is not returns %0. If 1643 * the retimer is not present returns %-ENODEV. Otherwise returns 1644 * negative errno. 1645 */ 1646 int usb4_port_retimer_is_last(struct tb_port *port, u8 index) 1647 { 1648 u32 metadata; 1649 int ret; 1650 1651 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER, 1652 500); 1653 if (ret) 1654 return ret; 1655 1656 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata, 1657 sizeof(metadata)); 1658 return ret ? ret : metadata & 1; 1659 } 1660 1661 /** 1662 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size 1663 * @port: USB4 port 1664 * @index: Retimer index 1665 * 1666 * Reads NVM sector size (in bytes) of a retimer at @index. This 1667 * operation can be used to determine whether the retimer supports NVM 1668 * upgrade for example. Returns sector size in bytes or negative errno 1669 * in case of error. Specifically returns %-ENODEV if there is no 1670 * retimer at @index. 1671 */ 1672 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index) 1673 { 1674 u32 metadata; 1675 int ret; 1676 1677 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE, 1678 500); 1679 if (ret) 1680 return ret; 1681 1682 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata, 1683 sizeof(metadata)); 1684 return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK; 1685 } 1686 1687 /** 1688 * usb4_port_retimer_nvm_set_offset() - Set NVM write offset 1689 * @port: USB4 port 1690 * @index: Retimer index 1691 * @address: Start offset 1692 * 1693 * Exlicitly sets NVM write offset. Normally when writing to NVM this is 1694 * done automatically by usb4_port_retimer_nvm_write(). 1695 * 1696 * Returns %0 in success and negative errno if there was a failure. 1697 */ 1698 int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index, 1699 unsigned int address) 1700 { 1701 u32 metadata, dwaddress; 1702 int ret; 1703 1704 dwaddress = address / 4; 1705 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) & 1706 USB4_NVM_SET_OFFSET_MASK; 1707 1708 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata, 1709 sizeof(metadata)); 1710 if (ret) 1711 return ret; 1712 1713 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET, 1714 500); 1715 } 1716 1717 struct retimer_info { 1718 struct tb_port *port; 1719 u8 index; 1720 }; 1721 1722 static int usb4_port_retimer_nvm_write_next_block(void *data, 1723 unsigned int dwaddress, const void *buf, size_t dwords) 1724 1725 { 1726 const struct retimer_info *info = data; 1727 struct tb_port *port = info->port; 1728 u8 index = info->index; 1729 int ret; 1730 1731 ret = usb4_port_retimer_write(port, index, USB4_SB_DATA, 1732 buf, dwords * 4); 1733 if (ret) 1734 return ret; 1735 1736 return usb4_port_retimer_op(port, index, 1737 USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000); 1738 } 1739 1740 /** 1741 * usb4_port_retimer_nvm_write() - Write to retimer NVM 1742 * @port: USB4 port 1743 * @index: Retimer index 1744 * @address: Byte address where to start the write 1745 * @buf: Data to write 1746 * @size: Size in bytes how much to write 1747 * 1748 * Writes @size bytes from @buf to the retimer NVM. Used for NVM 1749 * upgrade. Returns %0 if the data was written successfully and negative 1750 * errno in case of failure. Specifically returns %-ENODEV if there is 1751 * no retimer at @index. 1752 */ 1753 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address, 1754 const void *buf, size_t size) 1755 { 1756 struct retimer_info info = { .port = port, .index = index }; 1757 int ret; 1758 1759 ret = usb4_port_retimer_nvm_set_offset(port, index, address); 1760 if (ret) 1761 return ret; 1762 1763 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES, 1764 usb4_port_retimer_nvm_write_next_block, &info); 1765 } 1766 1767 /** 1768 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade 1769 * @port: USB4 port 1770 * @index: Retimer index 1771 * 1772 * After the new NVM image has been written via usb4_port_retimer_nvm_write() 1773 * this function can be used to trigger the NVM upgrade process. If 1774 * successful the retimer restarts with the new NVM and may not have the 1775 * index set so one needs to call usb4_port_enumerate_retimers() to 1776 * force index to be assigned. 1777 */ 1778 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index) 1779 { 1780 u32 val; 1781 1782 /* 1783 * We need to use the raw operation here because once the 1784 * authentication completes the retimer index is not set anymore 1785 * so we do not get back the status now. 1786 */ 1787 val = USB4_SB_OPCODE_NVM_AUTH_WRITE; 1788 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, 1789 USB4_SB_OPCODE, &val, sizeof(val)); 1790 } 1791 1792 /** 1793 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade 1794 * @port: USB4 port 1795 * @index: Retimer index 1796 * @status: Raw status code read from metadata 1797 * 1798 * This can be called after usb4_port_retimer_nvm_authenticate() and 1799 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade. 1800 * 1801 * Returns %0 if the authentication status was successfully read. The 1802 * completion metadata (the result) is then stored into @status. If 1803 * reading the status fails, returns negative errno. 1804 */ 1805 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index, 1806 u32 *status) 1807 { 1808 u32 metadata, val; 1809 int ret; 1810 1811 ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val, 1812 sizeof(val)); 1813 if (ret) 1814 return ret; 1815 1816 switch (val) { 1817 case 0: 1818 *status = 0; 1819 return 0; 1820 1821 case USB4_SB_OPCODE_ERR: 1822 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, 1823 &metadata, sizeof(metadata)); 1824 if (ret) 1825 return ret; 1826 1827 *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK; 1828 return 0; 1829 1830 case USB4_SB_OPCODE_ONS: 1831 return -EOPNOTSUPP; 1832 1833 default: 1834 return -EIO; 1835 } 1836 } 1837 1838 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress, 1839 void *buf, size_t dwords) 1840 { 1841 const struct retimer_info *info = data; 1842 struct tb_port *port = info->port; 1843 u8 index = info->index; 1844 u32 metadata; 1845 int ret; 1846 1847 metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT; 1848 if (dwords < NVM_DATA_DWORDS) 1849 metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT; 1850 1851 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata, 1852 sizeof(metadata)); 1853 if (ret) 1854 return ret; 1855 1856 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500); 1857 if (ret) 1858 return ret; 1859 1860 return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf, 1861 dwords * 4); 1862 } 1863 1864 /** 1865 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM 1866 * @port: USB4 port 1867 * @index: Retimer index 1868 * @address: NVM address (in bytes) to start reading 1869 * @buf: Data read from NVM is stored here 1870 * @size: Number of bytes to read 1871 * 1872 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the 1873 * read was successful and negative errno in case of failure. 1874 * Specifically returns %-ENODEV if there is no retimer at @index. 1875 */ 1876 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index, 1877 unsigned int address, void *buf, size_t size) 1878 { 1879 struct retimer_info info = { .port = port, .index = index }; 1880 1881 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES, 1882 usb4_port_retimer_nvm_read_block, &info); 1883 } 1884 1885 static inline unsigned int 1886 usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw) 1887 { 1888 /* Take the possible bandwidth limitation into account */ 1889 if (port->max_bw) 1890 return min(bw, port->max_bw); 1891 return bw; 1892 } 1893 1894 /** 1895 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate 1896 * @port: USB3 adapter port 1897 * 1898 * Return maximum supported link rate of a USB3 adapter in Mb/s. 1899 * Negative errno in case of error. 1900 */ 1901 int usb4_usb3_port_max_link_rate(struct tb_port *port) 1902 { 1903 int ret, lr; 1904 u32 val; 1905 1906 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port)) 1907 return -EINVAL; 1908 1909 ret = tb_port_read(port, &val, TB_CFG_PORT, 1910 port->cap_adap + ADP_USB3_CS_4, 1); 1911 if (ret) 1912 return ret; 1913 1914 lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT; 1915 ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000; 1916 1917 return usb4_usb3_port_max_bandwidth(port, ret); 1918 } 1919 1920 /** 1921 * usb4_usb3_port_actual_link_rate() - Established USB3 link rate 1922 * @port: USB3 adapter port 1923 * 1924 * Return actual established link rate of a USB3 adapter in Mb/s. If the 1925 * link is not up returns %0 and negative errno in case of failure. 1926 */ 1927 int usb4_usb3_port_actual_link_rate(struct tb_port *port) 1928 { 1929 int ret, lr; 1930 u32 val; 1931 1932 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port)) 1933 return -EINVAL; 1934 1935 ret = tb_port_read(port, &val, TB_CFG_PORT, 1936 port->cap_adap + ADP_USB3_CS_4, 1); 1937 if (ret) 1938 return ret; 1939 1940 if (!(val & ADP_USB3_CS_4_ULV)) 1941 return 0; 1942 1943 lr = val & ADP_USB3_CS_4_ALR_MASK; 1944 ret = lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000; 1945 1946 return usb4_usb3_port_max_bandwidth(port, ret); 1947 } 1948 1949 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request) 1950 { 1951 int ret; 1952 u32 val; 1953 1954 if (!tb_port_is_usb3_down(port)) 1955 return -EINVAL; 1956 if (tb_route(port->sw)) 1957 return -EINVAL; 1958 1959 ret = tb_port_read(port, &val, TB_CFG_PORT, 1960 port->cap_adap + ADP_USB3_CS_2, 1); 1961 if (ret) 1962 return ret; 1963 1964 if (request) 1965 val |= ADP_USB3_CS_2_CMR; 1966 else 1967 val &= ~ADP_USB3_CS_2_CMR; 1968 1969 ret = tb_port_write(port, &val, TB_CFG_PORT, 1970 port->cap_adap + ADP_USB3_CS_2, 1); 1971 if (ret) 1972 return ret; 1973 1974 /* 1975 * We can use val here directly as the CMR bit is in the same place 1976 * as HCA. Just mask out others. 1977 */ 1978 val &= ADP_USB3_CS_2_CMR; 1979 return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1, 1980 ADP_USB3_CS_1_HCA, val, 1500); 1981 } 1982 1983 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port) 1984 { 1985 return usb4_usb3_port_cm_request(port, true); 1986 } 1987 1988 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port) 1989 { 1990 return usb4_usb3_port_cm_request(port, false); 1991 } 1992 1993 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale) 1994 { 1995 unsigned long uframes; 1996 1997 uframes = bw * 512UL << scale; 1998 return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000); 1999 } 2000 2001 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale) 2002 { 2003 unsigned long uframes; 2004 2005 /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */ 2006 uframes = ((unsigned long)mbps * 1000 * 1000) / 8000; 2007 return DIV_ROUND_UP(uframes, 512UL << scale); 2008 } 2009 2010 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port, 2011 int *upstream_bw, 2012 int *downstream_bw) 2013 { 2014 u32 val, bw, scale; 2015 int ret; 2016 2017 ret = tb_port_read(port, &val, TB_CFG_PORT, 2018 port->cap_adap + ADP_USB3_CS_2, 1); 2019 if (ret) 2020 return ret; 2021 2022 ret = tb_port_read(port, &scale, TB_CFG_PORT, 2023 port->cap_adap + ADP_USB3_CS_3, 1); 2024 if (ret) 2025 return ret; 2026 2027 scale &= ADP_USB3_CS_3_SCALE_MASK; 2028 2029 bw = val & ADP_USB3_CS_2_AUBW_MASK; 2030 *upstream_bw = usb3_bw_to_mbps(bw, scale); 2031 2032 bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT; 2033 *downstream_bw = usb3_bw_to_mbps(bw, scale); 2034 2035 return 0; 2036 } 2037 2038 /** 2039 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3 2040 * @port: USB3 adapter port 2041 * @upstream_bw: Allocated upstream bandwidth is stored here 2042 * @downstream_bw: Allocated downstream bandwidth is stored here 2043 * 2044 * Stores currently allocated USB3 bandwidth into @upstream_bw and 2045 * @downstream_bw in Mb/s. Returns %0 in case of success and negative 2046 * errno in failure. 2047 */ 2048 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw, 2049 int *downstream_bw) 2050 { 2051 int ret; 2052 2053 ret = usb4_usb3_port_set_cm_request(port); 2054 if (ret) 2055 return ret; 2056 2057 ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw, 2058 downstream_bw); 2059 usb4_usb3_port_clear_cm_request(port); 2060 2061 return ret; 2062 } 2063 2064 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port, 2065 int *upstream_bw, 2066 int *downstream_bw) 2067 { 2068 u32 val, bw, scale; 2069 int ret; 2070 2071 ret = tb_port_read(port, &val, TB_CFG_PORT, 2072 port->cap_adap + ADP_USB3_CS_1, 1); 2073 if (ret) 2074 return ret; 2075 2076 ret = tb_port_read(port, &scale, TB_CFG_PORT, 2077 port->cap_adap + ADP_USB3_CS_3, 1); 2078 if (ret) 2079 return ret; 2080 2081 scale &= ADP_USB3_CS_3_SCALE_MASK; 2082 2083 bw = val & ADP_USB3_CS_1_CUBW_MASK; 2084 *upstream_bw = usb3_bw_to_mbps(bw, scale); 2085 2086 bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT; 2087 *downstream_bw = usb3_bw_to_mbps(bw, scale); 2088 2089 return 0; 2090 } 2091 2092 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port, 2093 int upstream_bw, 2094 int downstream_bw) 2095 { 2096 u32 val, ubw, dbw, scale; 2097 int ret, max_bw; 2098 2099 /* Figure out suitable scale */ 2100 scale = 0; 2101 max_bw = max(upstream_bw, downstream_bw); 2102 while (scale < 64) { 2103 if (mbps_to_usb3_bw(max_bw, scale) < 4096) 2104 break; 2105 scale++; 2106 } 2107 2108 if (WARN_ON(scale >= 64)) 2109 return -EINVAL; 2110 2111 ret = tb_port_write(port, &scale, TB_CFG_PORT, 2112 port->cap_adap + ADP_USB3_CS_3, 1); 2113 if (ret) 2114 return ret; 2115 2116 ubw = mbps_to_usb3_bw(upstream_bw, scale); 2117 dbw = mbps_to_usb3_bw(downstream_bw, scale); 2118 2119 tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale); 2120 2121 ret = tb_port_read(port, &val, TB_CFG_PORT, 2122 port->cap_adap + ADP_USB3_CS_2, 1); 2123 if (ret) 2124 return ret; 2125 2126 val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK); 2127 val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT; 2128 val |= ubw; 2129 2130 return tb_port_write(port, &val, TB_CFG_PORT, 2131 port->cap_adap + ADP_USB3_CS_2, 1); 2132 } 2133 2134 /** 2135 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3 2136 * @port: USB3 adapter port 2137 * @upstream_bw: New upstream bandwidth 2138 * @downstream_bw: New downstream bandwidth 2139 * 2140 * This can be used to set how much bandwidth is allocated for the USB3 2141 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the 2142 * new values programmed to the USB3 adapter allocation registers. If 2143 * the values are lower than what is currently consumed the allocation 2144 * is set to what is currently consumed instead (consumed bandwidth 2145 * cannot be taken away by CM). The actual new values are returned in 2146 * @upstream_bw and @downstream_bw. 2147 * 2148 * Returns %0 in case of success and negative errno if there was a 2149 * failure. 2150 */ 2151 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw, 2152 int *downstream_bw) 2153 { 2154 int ret, consumed_up, consumed_down, allocate_up, allocate_down; 2155 2156 ret = usb4_usb3_port_set_cm_request(port); 2157 if (ret) 2158 return ret; 2159 2160 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up, 2161 &consumed_down); 2162 if (ret) 2163 goto err_request; 2164 2165 /* Don't allow it go lower than what is consumed */ 2166 allocate_up = max(*upstream_bw, consumed_up); 2167 allocate_down = max(*downstream_bw, consumed_down); 2168 2169 ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up, 2170 allocate_down); 2171 if (ret) 2172 goto err_request; 2173 2174 *upstream_bw = allocate_up; 2175 *downstream_bw = allocate_down; 2176 2177 err_request: 2178 usb4_usb3_port_clear_cm_request(port); 2179 return ret; 2180 } 2181 2182 /** 2183 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth 2184 * @port: USB3 adapter port 2185 * @upstream_bw: New allocated upstream bandwidth 2186 * @downstream_bw: New allocated downstream bandwidth 2187 * 2188 * Releases USB3 allocated bandwidth down to what is actually consumed. 2189 * The new bandwidth is returned in @upstream_bw and @downstream_bw. 2190 * 2191 * Returns 0% in success and negative errno in case of failure. 2192 */ 2193 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw, 2194 int *downstream_bw) 2195 { 2196 int ret, consumed_up, consumed_down; 2197 2198 ret = usb4_usb3_port_set_cm_request(port); 2199 if (ret) 2200 return ret; 2201 2202 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up, 2203 &consumed_down); 2204 if (ret) 2205 goto err_request; 2206 2207 /* 2208 * Always keep 1000 Mb/s to make sure xHCI has at least some 2209 * bandwidth available for isochronous traffic. 2210 */ 2211 if (consumed_up < 1000) 2212 consumed_up = 1000; 2213 if (consumed_down < 1000) 2214 consumed_down = 1000; 2215 2216 ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up, 2217 consumed_down); 2218 if (ret) 2219 goto err_request; 2220 2221 *upstream_bw = consumed_up; 2222 *downstream_bw = consumed_down; 2223 2224 err_request: 2225 usb4_usb3_port_clear_cm_request(port); 2226 return ret; 2227 } 2228 2229 static bool is_usb4_dpin(const struct tb_port *port) 2230 { 2231 if (!tb_port_is_dpin(port)) 2232 return false; 2233 if (!tb_switch_is_usb4(port->sw)) 2234 return false; 2235 return true; 2236 } 2237 2238 /** 2239 * usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter 2240 * @port: DP IN adapter 2241 * @cm_id: CM ID to assign 2242 * 2243 * Sets CM ID for the @port. Returns %0 on success and negative errno 2244 * otherwise. Speficially returns %-EOPNOTSUPP if the @port does not 2245 * support this. 2246 */ 2247 int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id) 2248 { 2249 u32 val; 2250 int ret; 2251 2252 if (!is_usb4_dpin(port)) 2253 return -EOPNOTSUPP; 2254 2255 ret = tb_port_read(port, &val, TB_CFG_PORT, 2256 port->cap_adap + ADP_DP_CS_2, 1); 2257 if (ret) 2258 return ret; 2259 2260 val &= ~ADP_DP_CS_2_CM_ID_MASK; 2261 val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT; 2262 2263 return tb_port_write(port, &val, TB_CFG_PORT, 2264 port->cap_adap + ADP_DP_CS_2, 1); 2265 } 2266 2267 /** 2268 * usb4_dp_port_bw_mode_supported() - Is the bandwidth allocation mode supported 2269 * @port: DP IN adapter to check 2270 * 2271 * Can be called to any DP IN adapter. Returns true if the adapter 2272 * supports USB4 bandwidth allocation mode, false otherwise. 2273 */ 2274 bool usb4_dp_port_bw_mode_supported(struct tb_port *port) 2275 { 2276 int ret; 2277 u32 val; 2278 2279 if (!is_usb4_dpin(port)) 2280 return false; 2281 2282 ret = tb_port_read(port, &val, TB_CFG_PORT, 2283 port->cap_adap + DP_LOCAL_CAP, 1); 2284 if (ret) 2285 return false; 2286 2287 return !!(val & DP_COMMON_CAP_BW_MODE); 2288 } 2289 2290 /** 2291 * usb4_dp_port_bw_mode_enabled() - Is the bandwidth allocation mode enabled 2292 * @port: DP IN adapter to check 2293 * 2294 * Can be called to any DP IN adapter. Returns true if the bandwidth 2295 * allocation mode has been enabled, false otherwise. 2296 */ 2297 bool usb4_dp_port_bw_mode_enabled(struct tb_port *port) 2298 { 2299 int ret; 2300 u32 val; 2301 2302 if (!is_usb4_dpin(port)) 2303 return false; 2304 2305 ret = tb_port_read(port, &val, TB_CFG_PORT, 2306 port->cap_adap + ADP_DP_CS_8, 1); 2307 if (ret) 2308 return false; 2309 2310 return !!(val & ADP_DP_CS_8_DPME); 2311 } 2312 2313 /** 2314 * usb4_dp_port_set_cm_bw_mode_supported() - Set/clear CM support for bandwidth allocation mode 2315 * @port: DP IN adapter 2316 * @supported: Does the CM support bandwidth allocation mode 2317 * 2318 * Can be called to any DP IN adapter. Sets or clears the CM support bit 2319 * of the DP IN adapter. Returns %0 in success and negative errno 2320 * otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter 2321 * does not support this. 2322 */ 2323 int usb4_dp_port_set_cm_bw_mode_supported(struct tb_port *port, bool supported) 2324 { 2325 u32 val; 2326 int ret; 2327 2328 if (!is_usb4_dpin(port)) 2329 return -EOPNOTSUPP; 2330 2331 ret = tb_port_read(port, &val, TB_CFG_PORT, 2332 port->cap_adap + ADP_DP_CS_2, 1); 2333 if (ret) 2334 return ret; 2335 2336 if (supported) 2337 val |= ADP_DP_CS_2_CMMS; 2338 else 2339 val &= ~ADP_DP_CS_2_CMMS; 2340 2341 return tb_port_write(port, &val, TB_CFG_PORT, 2342 port->cap_adap + ADP_DP_CS_2, 1); 2343 } 2344 2345 /** 2346 * usb4_dp_port_group_id() - Return Group ID assigned for the adapter 2347 * @port: DP IN adapter 2348 * 2349 * Reads bandwidth allocation Group ID from the DP IN adapter and 2350 * returns it. If the adapter does not support setting Group_ID 2351 * %-EOPNOTSUPP is returned. 2352 */ 2353 int usb4_dp_port_group_id(struct tb_port *port) 2354 { 2355 u32 val; 2356 int ret; 2357 2358 if (!is_usb4_dpin(port)) 2359 return -EOPNOTSUPP; 2360 2361 ret = tb_port_read(port, &val, TB_CFG_PORT, 2362 port->cap_adap + ADP_DP_CS_2, 1); 2363 if (ret) 2364 return ret; 2365 2366 return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT; 2367 } 2368 2369 /** 2370 * usb4_dp_port_set_group_id() - Set adapter Group ID 2371 * @port: DP IN adapter 2372 * @group_id: Group ID for the adapter 2373 * 2374 * Sets bandwidth allocation mode Group ID for the DP IN adapter. 2375 * Returns %0 in case of success and negative errno otherwise. 2376 * Specifically returns %-EOPNOTSUPP if the adapter does not support 2377 * this. 2378 */ 2379 int usb4_dp_port_set_group_id(struct tb_port *port, int group_id) 2380 { 2381 u32 val; 2382 int ret; 2383 2384 if (!is_usb4_dpin(port)) 2385 return -EOPNOTSUPP; 2386 2387 ret = tb_port_read(port, &val, TB_CFG_PORT, 2388 port->cap_adap + ADP_DP_CS_2, 1); 2389 if (ret) 2390 return ret; 2391 2392 val &= ~ADP_DP_CS_2_GROUP_ID_MASK; 2393 val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT; 2394 2395 return tb_port_write(port, &val, TB_CFG_PORT, 2396 port->cap_adap + ADP_DP_CS_2, 1); 2397 } 2398 2399 /** 2400 * usb4_dp_port_nrd() - Read non-reduced rate and lanes 2401 * @port: DP IN adapter 2402 * @rate: Non-reduced rate in Mb/s is placed here 2403 * @lanes: Non-reduced lanes are placed here 2404 * 2405 * Reads the non-reduced rate and lanes from the DP IN adapter. Returns 2406 * %0 in success and negative errno otherwise. Specifically returns 2407 * %-EOPNOTSUPP if the adapter does not support this. 2408 */ 2409 int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes) 2410 { 2411 u32 val, tmp; 2412 int ret; 2413 2414 if (!is_usb4_dpin(port)) 2415 return -EOPNOTSUPP; 2416 2417 ret = tb_port_read(port, &val, TB_CFG_PORT, 2418 port->cap_adap + ADP_DP_CS_2, 1); 2419 if (ret) 2420 return ret; 2421 2422 tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT; 2423 switch (tmp) { 2424 case DP_COMMON_CAP_RATE_RBR: 2425 *rate = 1620; 2426 break; 2427 case DP_COMMON_CAP_RATE_HBR: 2428 *rate = 2700; 2429 break; 2430 case DP_COMMON_CAP_RATE_HBR2: 2431 *rate = 5400; 2432 break; 2433 case DP_COMMON_CAP_RATE_HBR3: 2434 *rate = 8100; 2435 break; 2436 } 2437 2438 tmp = val & ADP_DP_CS_2_NRD_MLC_MASK; 2439 switch (tmp) { 2440 case DP_COMMON_CAP_1_LANE: 2441 *lanes = 1; 2442 break; 2443 case DP_COMMON_CAP_2_LANES: 2444 *lanes = 2; 2445 break; 2446 case DP_COMMON_CAP_4_LANES: 2447 *lanes = 4; 2448 break; 2449 } 2450 2451 return 0; 2452 } 2453 2454 /** 2455 * usb4_dp_port_set_nrd() - Set non-reduced rate and lanes 2456 * @port: DP IN adapter 2457 * @rate: Non-reduced rate in Mb/s 2458 * @lanes: Non-reduced lanes 2459 * 2460 * Before the capabilities reduction this function can be used to set 2461 * the non-reduced values for the DP IN adapter. Returns %0 in success 2462 * and negative errno otherwise. If the adapter does not support this 2463 * %-EOPNOTSUPP is returned. 2464 */ 2465 int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes) 2466 { 2467 u32 val; 2468 int ret; 2469 2470 if (!is_usb4_dpin(port)) 2471 return -EOPNOTSUPP; 2472 2473 ret = tb_port_read(port, &val, TB_CFG_PORT, 2474 port->cap_adap + ADP_DP_CS_2, 1); 2475 if (ret) 2476 return ret; 2477 2478 val &= ~ADP_DP_CS_2_NRD_MLR_MASK; 2479 2480 switch (rate) { 2481 case 1620: 2482 break; 2483 case 2700: 2484 val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT) 2485 & ADP_DP_CS_2_NRD_MLR_MASK; 2486 break; 2487 case 5400: 2488 val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT) 2489 & ADP_DP_CS_2_NRD_MLR_MASK; 2490 break; 2491 case 8100: 2492 val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT) 2493 & ADP_DP_CS_2_NRD_MLR_MASK; 2494 break; 2495 default: 2496 return -EINVAL; 2497 } 2498 2499 val &= ~ADP_DP_CS_2_NRD_MLC_MASK; 2500 2501 switch (lanes) { 2502 case 1: 2503 break; 2504 case 2: 2505 val |= DP_COMMON_CAP_2_LANES; 2506 break; 2507 case 4: 2508 val |= DP_COMMON_CAP_4_LANES; 2509 break; 2510 default: 2511 return -EINVAL; 2512 } 2513 2514 return tb_port_write(port, &val, TB_CFG_PORT, 2515 port->cap_adap + ADP_DP_CS_2, 1); 2516 } 2517 2518 /** 2519 * usb4_dp_port_granularity() - Return granularity for the bandwidth values 2520 * @port: DP IN adapter 2521 * 2522 * Reads the programmed granularity from @port. If the DP IN adapter does 2523 * not support bandwidth allocation mode returns %-EOPNOTSUPP and negative 2524 * errno in other error cases. 2525 */ 2526 int usb4_dp_port_granularity(struct tb_port *port) 2527 { 2528 u32 val; 2529 int ret; 2530 2531 if (!is_usb4_dpin(port)) 2532 return -EOPNOTSUPP; 2533 2534 ret = tb_port_read(port, &val, TB_CFG_PORT, 2535 port->cap_adap + ADP_DP_CS_2, 1); 2536 if (ret) 2537 return ret; 2538 2539 val &= ADP_DP_CS_2_GR_MASK; 2540 val >>= ADP_DP_CS_2_GR_SHIFT; 2541 2542 switch (val) { 2543 case ADP_DP_CS_2_GR_0_25G: 2544 return 250; 2545 case ADP_DP_CS_2_GR_0_5G: 2546 return 500; 2547 case ADP_DP_CS_2_GR_1G: 2548 return 1000; 2549 } 2550 2551 return -EINVAL; 2552 } 2553 2554 /** 2555 * usb4_dp_port_set_granularity() - Set granularity for the bandwidth values 2556 * @port: DP IN adapter 2557 * @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250. 2558 * 2559 * Sets the granularity used with the estimated, allocated and requested 2560 * bandwidth. Returns %0 in success and negative errno otherwise. If the 2561 * adapter does not support this %-EOPNOTSUPP is returned. 2562 */ 2563 int usb4_dp_port_set_granularity(struct tb_port *port, int granularity) 2564 { 2565 u32 val; 2566 int ret; 2567 2568 if (!is_usb4_dpin(port)) 2569 return -EOPNOTSUPP; 2570 2571 ret = tb_port_read(port, &val, TB_CFG_PORT, 2572 port->cap_adap + ADP_DP_CS_2, 1); 2573 if (ret) 2574 return ret; 2575 2576 val &= ~ADP_DP_CS_2_GR_MASK; 2577 2578 switch (granularity) { 2579 case 250: 2580 val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT; 2581 break; 2582 case 500: 2583 val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT; 2584 break; 2585 case 1000: 2586 val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT; 2587 break; 2588 default: 2589 return -EINVAL; 2590 } 2591 2592 return tb_port_write(port, &val, TB_CFG_PORT, 2593 port->cap_adap + ADP_DP_CS_2, 1); 2594 } 2595 2596 /** 2597 * usb4_dp_port_set_estimated_bw() - Set estimated bandwidth 2598 * @port: DP IN adapter 2599 * @bw: Estimated bandwidth in Mb/s. 2600 * 2601 * Sets the estimated bandwidth to @bw. Set the granularity by calling 2602 * usb4_dp_port_set_granularity() before calling this. The @bw is round 2603 * down to the closest granularity multiplier. Returns %0 in success 2604 * and negative errno otherwise. Specifically returns %-EOPNOTSUPP if 2605 * the adapter does not support this. 2606 */ 2607 int usb4_dp_port_set_estimated_bw(struct tb_port *port, int bw) 2608 { 2609 u32 val, granularity; 2610 int ret; 2611 2612 if (!is_usb4_dpin(port)) 2613 return -EOPNOTSUPP; 2614 2615 ret = usb4_dp_port_granularity(port); 2616 if (ret < 0) 2617 return ret; 2618 granularity = ret; 2619 2620 ret = tb_port_read(port, &val, TB_CFG_PORT, 2621 port->cap_adap + ADP_DP_CS_2, 1); 2622 if (ret) 2623 return ret; 2624 2625 val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK; 2626 val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT; 2627 2628 return tb_port_write(port, &val, TB_CFG_PORT, 2629 port->cap_adap + ADP_DP_CS_2, 1); 2630 } 2631 2632 /** 2633 * usb4_dp_port_allocated_bw() - Return allocated bandwidth 2634 * @port: DP IN adapter 2635 * 2636 * Reads and returns allocated bandwidth for @port in Mb/s (taking into 2637 * account the programmed granularity). Returns negative errno in case 2638 * of error. 2639 */ 2640 int usb4_dp_port_allocated_bw(struct tb_port *port) 2641 { 2642 u32 val, granularity; 2643 int ret; 2644 2645 if (!is_usb4_dpin(port)) 2646 return -EOPNOTSUPP; 2647 2648 ret = usb4_dp_port_granularity(port); 2649 if (ret < 0) 2650 return ret; 2651 granularity = ret; 2652 2653 ret = tb_port_read(port, &val, TB_CFG_PORT, 2654 port->cap_adap + DP_STATUS, 1); 2655 if (ret) 2656 return ret; 2657 2658 val &= DP_STATUS_ALLOCATED_BW_MASK; 2659 val >>= DP_STATUS_ALLOCATED_BW_SHIFT; 2660 2661 return val * granularity; 2662 } 2663 2664 static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack) 2665 { 2666 u32 val; 2667 int ret; 2668 2669 ret = tb_port_read(port, &val, TB_CFG_PORT, 2670 port->cap_adap + ADP_DP_CS_2, 1); 2671 if (ret) 2672 return ret; 2673 2674 if (ack) 2675 val |= ADP_DP_CS_2_CA; 2676 else 2677 val &= ~ADP_DP_CS_2_CA; 2678 2679 return tb_port_write(port, &val, TB_CFG_PORT, 2680 port->cap_adap + ADP_DP_CS_2, 1); 2681 } 2682 2683 static inline int usb4_dp_port_set_cm_ack(struct tb_port *port) 2684 { 2685 return __usb4_dp_port_set_cm_ack(port, true); 2686 } 2687 2688 static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port, 2689 int timeout_msec) 2690 { 2691 ktime_t end; 2692 u32 val; 2693 int ret; 2694 2695 ret = __usb4_dp_port_set_cm_ack(port, false); 2696 if (ret) 2697 return ret; 2698 2699 end = ktime_add_ms(ktime_get(), timeout_msec); 2700 do { 2701 ret = tb_port_read(port, &val, TB_CFG_PORT, 2702 port->cap_adap + ADP_DP_CS_8, 1); 2703 if (ret) 2704 return ret; 2705 2706 if (!(val & ADP_DP_CS_8_DR)) 2707 break; 2708 2709 usleep_range(50, 100); 2710 } while (ktime_before(ktime_get(), end)); 2711 2712 if (val & ADP_DP_CS_8_DR) 2713 return -ETIMEDOUT; 2714 2715 ret = tb_port_read(port, &val, TB_CFG_PORT, 2716 port->cap_adap + ADP_DP_CS_2, 1); 2717 if (ret) 2718 return ret; 2719 2720 val &= ~ADP_DP_CS_2_CA; 2721 return tb_port_write(port, &val, TB_CFG_PORT, 2722 port->cap_adap + ADP_DP_CS_2, 1); 2723 } 2724 2725 /** 2726 * usb4_dp_port_allocate_bw() - Set allocated bandwidth 2727 * @port: DP IN adapter 2728 * @bw: New allocated bandwidth in Mb/s 2729 * 2730 * Communicates the new allocated bandwidth with the DPCD (graphics 2731 * driver). Takes into account the programmed granularity. Returns %0 in 2732 * success and negative errno in case of error. 2733 */ 2734 int usb4_dp_port_allocate_bw(struct tb_port *port, int bw) 2735 { 2736 u32 val, granularity; 2737 int ret; 2738 2739 if (!is_usb4_dpin(port)) 2740 return -EOPNOTSUPP; 2741 2742 ret = usb4_dp_port_granularity(port); 2743 if (ret < 0) 2744 return ret; 2745 granularity = ret; 2746 2747 ret = tb_port_read(port, &val, TB_CFG_PORT, 2748 port->cap_adap + DP_STATUS, 1); 2749 if (ret) 2750 return ret; 2751 2752 val &= ~DP_STATUS_ALLOCATED_BW_MASK; 2753 val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT; 2754 2755 ret = tb_port_write(port, &val, TB_CFG_PORT, 2756 port->cap_adap + DP_STATUS, 1); 2757 if (ret) 2758 return ret; 2759 2760 ret = usb4_dp_port_set_cm_ack(port); 2761 if (ret) 2762 return ret; 2763 2764 return usb4_dp_port_wait_and_clear_cm_ack(port, 500); 2765 } 2766 2767 /** 2768 * usb4_dp_port_requested_bw() - Read requested bandwidth 2769 * @port: DP IN adapter 2770 * 2771 * Reads the DPCD (graphics driver) requested bandwidth and returns it 2772 * in Mb/s. Takes the programmed granularity into account. In case of 2773 * error returns negative errno. Specifically returns %-EOPNOTSUPP if 2774 * the adapter does not support bandwidth allocation mode, and %ENODATA 2775 * if there is no active bandwidth request from the graphics driver. 2776 */ 2777 int usb4_dp_port_requested_bw(struct tb_port *port) 2778 { 2779 u32 val, granularity; 2780 int ret; 2781 2782 if (!is_usb4_dpin(port)) 2783 return -EOPNOTSUPP; 2784 2785 ret = usb4_dp_port_granularity(port); 2786 if (ret < 0) 2787 return ret; 2788 granularity = ret; 2789 2790 ret = tb_port_read(port, &val, TB_CFG_PORT, 2791 port->cap_adap + ADP_DP_CS_8, 1); 2792 if (ret) 2793 return ret; 2794 2795 if (!(val & ADP_DP_CS_8_DR)) 2796 return -ENODATA; 2797 2798 return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity; 2799 } 2800