xref: /openbmc/linux/drivers/thunderbolt/usb4.c (revision 2bad466c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * USB4 specific functionality
4  *
5  * Copyright (C) 2019, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *	    Rajmohan Mani <rajmohan.mani@intel.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12 
13 #include "sb_regs.h"
14 #include "tb.h"
15 
16 #define USB4_DATA_RETRIES		3
17 
18 enum usb4_sb_target {
19 	USB4_SB_TARGET_ROUTER,
20 	USB4_SB_TARGET_PARTNER,
21 	USB4_SB_TARGET_RETIMER,
22 };
23 
24 #define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2)
25 #define USB4_NVM_READ_OFFSET_SHIFT	2
26 #define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24)
27 #define USB4_NVM_READ_LENGTH_SHIFT	24
28 
29 #define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK
30 #define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT
31 
32 #define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2)
33 #define USB4_DROM_ADDRESS_SHIFT		2
34 #define USB4_DROM_SIZE_MASK		GENMASK(19, 15)
35 #define USB4_DROM_SIZE_SHIFT		15
36 
37 #define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0)
38 
39 #define USB4_BA_LENGTH_MASK		GENMASK(7, 0)
40 #define USB4_BA_INDEX_MASK		GENMASK(15, 0)
41 
42 enum usb4_ba_index {
43 	USB4_BA_MAX_USB3 = 0x1,
44 	USB4_BA_MIN_DP_AUX = 0x2,
45 	USB4_BA_MIN_DP_MAIN = 0x3,
46 	USB4_BA_MAX_PCIE = 0x4,
47 	USB4_BA_MAX_HI = 0x5,
48 };
49 
50 #define USB4_BA_VALUE_MASK		GENMASK(31, 16)
51 #define USB4_BA_VALUE_SHIFT		16
52 
53 static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
54 				 u32 *metadata, u8 *status,
55 				 const void *tx_data, size_t tx_dwords,
56 				 void *rx_data, size_t rx_dwords)
57 {
58 	u32 val;
59 	int ret;
60 
61 	if (metadata) {
62 		ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
63 		if (ret)
64 			return ret;
65 	}
66 	if (tx_dwords) {
67 		ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
68 				  tx_dwords);
69 		if (ret)
70 			return ret;
71 	}
72 
73 	val = opcode | ROUTER_CS_26_OV;
74 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
75 	if (ret)
76 		return ret;
77 
78 	ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
79 	if (ret)
80 		return ret;
81 
82 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
83 	if (ret)
84 		return ret;
85 
86 	if (val & ROUTER_CS_26_ONS)
87 		return -EOPNOTSUPP;
88 
89 	if (status)
90 		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
91 			ROUTER_CS_26_STATUS_SHIFT;
92 
93 	if (metadata) {
94 		ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
95 		if (ret)
96 			return ret;
97 	}
98 	if (rx_dwords) {
99 		ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
100 				 rx_dwords);
101 		if (ret)
102 			return ret;
103 	}
104 
105 	return 0;
106 }
107 
108 static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
109 			    u8 *status, const void *tx_data, size_t tx_dwords,
110 			    void *rx_data, size_t rx_dwords)
111 {
112 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
113 
114 	if (tx_dwords > NVM_DATA_DWORDS || rx_dwords > NVM_DATA_DWORDS)
115 		return -EINVAL;
116 
117 	/*
118 	 * If the connection manager implementation provides USB4 router
119 	 * operation proxy callback, call it here instead of running the
120 	 * operation natively.
121 	 */
122 	if (cm_ops->usb4_switch_op) {
123 		int ret;
124 
125 		ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
126 					     tx_data, tx_dwords, rx_data,
127 					     rx_dwords);
128 		if (ret != -EOPNOTSUPP)
129 			return ret;
130 
131 		/*
132 		 * If the proxy was not supported then run the native
133 		 * router operation instead.
134 		 */
135 	}
136 
137 	return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
138 				     tx_dwords, rx_data, rx_dwords);
139 }
140 
141 static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
142 				 u32 *metadata, u8 *status)
143 {
144 	return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
145 }
146 
147 static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
148 				      u32 *metadata, u8 *status,
149 				      const void *tx_data, size_t tx_dwords,
150 				      void *rx_data, size_t rx_dwords)
151 {
152 	return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
153 				tx_dwords, rx_data, rx_dwords);
154 }
155 
156 static void usb4_switch_check_wakes(struct tb_switch *sw)
157 {
158 	bool wakeup_usb4 = false;
159 	struct usb4_port *usb4;
160 	struct tb_port *port;
161 	bool wakeup = false;
162 	u32 val;
163 
164 	if (!device_may_wakeup(&sw->dev))
165 		return;
166 
167 	if (tb_route(sw)) {
168 		if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
169 			return;
170 
171 		tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
172 			  (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
173 			  (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
174 
175 		wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
176 	}
177 
178 	/*
179 	 * Check for any downstream ports for USB4 wake,
180 	 * connection wake and disconnection wake.
181 	 */
182 	tb_switch_for_each_port(sw, port) {
183 		if (!port->cap_usb4)
184 			continue;
185 
186 		if (tb_port_read(port, &val, TB_CFG_PORT,
187 				 port->cap_usb4 + PORT_CS_18, 1))
188 			break;
189 
190 		tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n",
191 			    (val & PORT_CS_18_WOU4S) ? "yes" : "no",
192 			    (val & PORT_CS_18_WOCS) ? "yes" : "no",
193 			    (val & PORT_CS_18_WODS) ? "yes" : "no");
194 
195 		wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS |
196 				     PORT_CS_18_WODS);
197 
198 		usb4 = port->usb4;
199 		if (device_may_wakeup(&usb4->dev) && wakeup_usb4)
200 			pm_wakeup_event(&usb4->dev, 0);
201 
202 		wakeup |= wakeup_usb4;
203 	}
204 
205 	if (wakeup)
206 		pm_wakeup_event(&sw->dev, 0);
207 }
208 
209 static bool link_is_usb4(struct tb_port *port)
210 {
211 	u32 val;
212 
213 	if (!port->cap_usb4)
214 		return false;
215 
216 	if (tb_port_read(port, &val, TB_CFG_PORT,
217 			 port->cap_usb4 + PORT_CS_18, 1))
218 		return false;
219 
220 	return !(val & PORT_CS_18_TCM);
221 }
222 
223 /**
224  * usb4_switch_setup() - Additional setup for USB4 device
225  * @sw: USB4 router to setup
226  *
227  * USB4 routers need additional settings in order to enable all the
228  * tunneling. This function enables USB and PCIe tunneling if it can be
229  * enabled (e.g the parent switch also supports them). If USB tunneling
230  * is not available for some reason (like that there is Thunderbolt 3
231  * switch upstream) then the internal xHCI controller is enabled
232  * instead.
233  */
234 int usb4_switch_setup(struct tb_switch *sw)
235 {
236 	struct tb_port *downstream_port;
237 	struct tb_switch *parent;
238 	bool tbt3, xhci;
239 	u32 val = 0;
240 	int ret;
241 
242 	usb4_switch_check_wakes(sw);
243 
244 	if (!tb_route(sw))
245 		return 0;
246 
247 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
248 	if (ret)
249 		return ret;
250 
251 	parent = tb_switch_parent(sw);
252 	downstream_port = tb_port_at(tb_route(sw), parent);
253 	sw->link_usb4 = link_is_usb4(downstream_port);
254 	tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
255 
256 	xhci = val & ROUTER_CS_6_HCI;
257 	tbt3 = !(val & ROUTER_CS_6_TNS);
258 
259 	tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
260 		  tbt3 ? "yes" : "no", xhci ? "yes" : "no");
261 
262 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
263 	if (ret)
264 		return ret;
265 
266 	if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
267 	    tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
268 		val |= ROUTER_CS_5_UTO;
269 		xhci = false;
270 	}
271 
272 	/*
273 	 * Only enable PCIe tunneling if the parent router supports it
274 	 * and it is not disabled.
275 	 */
276 	if (tb_acpi_may_tunnel_pcie() &&
277 	    tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
278 		val |= ROUTER_CS_5_PTO;
279 		/*
280 		 * xHCI can be enabled if PCIe tunneling is supported
281 		 * and the parent does not have any USB3 dowstream
282 		 * adapters (so we cannot do USB 3.x tunneling).
283 		 */
284 		if (xhci)
285 			val |= ROUTER_CS_5_HCO;
286 	}
287 
288 	/* TBT3 supported by the CM */
289 	val |= ROUTER_CS_5_C3S;
290 	/* Tunneling configuration is ready now */
291 	val |= ROUTER_CS_5_CV;
292 
293 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
294 	if (ret)
295 		return ret;
296 
297 	return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
298 				      ROUTER_CS_6_CR, 50);
299 }
300 
301 /**
302  * usb4_switch_read_uid() - Read UID from USB4 router
303  * @sw: USB4 router
304  * @uid: UID is stored here
305  *
306  * Reads 64-bit UID from USB4 router config space.
307  */
308 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
309 {
310 	return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
311 }
312 
313 static int usb4_switch_drom_read_block(void *data,
314 				       unsigned int dwaddress, void *buf,
315 				       size_t dwords)
316 {
317 	struct tb_switch *sw = data;
318 	u8 status = 0;
319 	u32 metadata;
320 	int ret;
321 
322 	metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
323 	metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
324 		USB4_DROM_ADDRESS_MASK;
325 
326 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
327 				  &status, NULL, 0, buf, dwords);
328 	if (ret)
329 		return ret;
330 
331 	return status ? -EIO : 0;
332 }
333 
334 /**
335  * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
336  * @sw: USB4 router
337  * @address: Byte address inside DROM to start reading
338  * @buf: Buffer where the DROM content is stored
339  * @size: Number of bytes to read from DROM
340  *
341  * Uses USB4 router operations to read router DROM. For devices this
342  * should always work but for hosts it may return %-EOPNOTSUPP in which
343  * case the host router does not have DROM.
344  */
345 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
346 			  size_t size)
347 {
348 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
349 				usb4_switch_drom_read_block, sw);
350 }
351 
352 /**
353  * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
354  * @sw: USB4 router
355  *
356  * Checks whether conditions are met so that lane bonding can be
357  * established with the upstream router. Call only for device routers.
358  */
359 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
360 {
361 	struct tb_port *up;
362 	int ret;
363 	u32 val;
364 
365 	up = tb_upstream_port(sw);
366 	ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
367 	if (ret)
368 		return false;
369 
370 	return !!(val & PORT_CS_18_BE);
371 }
372 
373 /**
374  * usb4_switch_set_wake() - Enabled/disable wake
375  * @sw: USB4 router
376  * @flags: Wakeup flags (%0 to disable)
377  *
378  * Enables/disables router to wake up from sleep.
379  */
380 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
381 {
382 	struct usb4_port *usb4;
383 	struct tb_port *port;
384 	u64 route = tb_route(sw);
385 	u32 val;
386 	int ret;
387 
388 	/*
389 	 * Enable wakes coming from all USB4 downstream ports (from
390 	 * child routers). For device routers do this also for the
391 	 * upstream USB4 port.
392 	 */
393 	tb_switch_for_each_port(sw, port) {
394 		if (!tb_port_is_null(port))
395 			continue;
396 		if (!route && tb_is_upstream_port(port))
397 			continue;
398 		if (!port->cap_usb4)
399 			continue;
400 
401 		ret = tb_port_read(port, &val, TB_CFG_PORT,
402 				   port->cap_usb4 + PORT_CS_19, 1);
403 		if (ret)
404 			return ret;
405 
406 		val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
407 
408 		if (tb_is_upstream_port(port)) {
409 			val |= PORT_CS_19_WOU4;
410 		} else {
411 			bool configured = val & PORT_CS_19_PC;
412 			usb4 = port->usb4;
413 
414 			if (((flags & TB_WAKE_ON_CONNECT) |
415 			      device_may_wakeup(&usb4->dev)) && !configured)
416 				val |= PORT_CS_19_WOC;
417 			if (((flags & TB_WAKE_ON_DISCONNECT) |
418 			      device_may_wakeup(&usb4->dev)) && configured)
419 				val |= PORT_CS_19_WOD;
420 			if ((flags & TB_WAKE_ON_USB4) && configured)
421 				val |= PORT_CS_19_WOU4;
422 		}
423 
424 		ret = tb_port_write(port, &val, TB_CFG_PORT,
425 				    port->cap_usb4 + PORT_CS_19, 1);
426 		if (ret)
427 			return ret;
428 	}
429 
430 	/*
431 	 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
432 	 * needed for device routers.
433 	 */
434 	if (route) {
435 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
436 		if (ret)
437 			return ret;
438 
439 		val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
440 		if (flags & TB_WAKE_ON_USB3)
441 			val |= ROUTER_CS_5_WOU;
442 		if (flags & TB_WAKE_ON_PCIE)
443 			val |= ROUTER_CS_5_WOP;
444 		if (flags & TB_WAKE_ON_DP)
445 			val |= ROUTER_CS_5_WOD;
446 
447 		ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
448 		if (ret)
449 			return ret;
450 	}
451 
452 	return 0;
453 }
454 
455 /**
456  * usb4_switch_set_sleep() - Prepare the router to enter sleep
457  * @sw: USB4 router
458  *
459  * Sets sleep bit for the router. Returns when the router sleep ready
460  * bit has been asserted.
461  */
462 int usb4_switch_set_sleep(struct tb_switch *sw)
463 {
464 	int ret;
465 	u32 val;
466 
467 	/* Set sleep bit and wait for sleep ready to be asserted */
468 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
469 	if (ret)
470 		return ret;
471 
472 	val |= ROUTER_CS_5_SLP;
473 
474 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
475 	if (ret)
476 		return ret;
477 
478 	return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
479 				      ROUTER_CS_6_SLPR, 500);
480 }
481 
482 /**
483  * usb4_switch_nvm_sector_size() - Return router NVM sector size
484  * @sw: USB4 router
485  *
486  * If the router supports NVM operations this function returns the NVM
487  * sector size in bytes. If NVM operations are not supported returns
488  * %-EOPNOTSUPP.
489  */
490 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
491 {
492 	u32 metadata;
493 	u8 status;
494 	int ret;
495 
496 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
497 			     &status);
498 	if (ret)
499 		return ret;
500 
501 	if (status)
502 		return status == 0x2 ? -EOPNOTSUPP : -EIO;
503 
504 	return metadata & USB4_NVM_SECTOR_SIZE_MASK;
505 }
506 
507 static int usb4_switch_nvm_read_block(void *data,
508 	unsigned int dwaddress, void *buf, size_t dwords)
509 {
510 	struct tb_switch *sw = data;
511 	u8 status = 0;
512 	u32 metadata;
513 	int ret;
514 
515 	metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
516 		   USB4_NVM_READ_LENGTH_MASK;
517 	metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
518 		   USB4_NVM_READ_OFFSET_MASK;
519 
520 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
521 				  &status, NULL, 0, buf, dwords);
522 	if (ret)
523 		return ret;
524 
525 	return status ? -EIO : 0;
526 }
527 
528 /**
529  * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
530  * @sw: USB4 router
531  * @address: Starting address in bytes
532  * @buf: Read data is placed here
533  * @size: How many bytes to read
534  *
535  * Reads NVM contents of the router. If NVM is not supported returns
536  * %-EOPNOTSUPP.
537  */
538 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
539 			 size_t size)
540 {
541 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
542 				usb4_switch_nvm_read_block, sw);
543 }
544 
545 /**
546  * usb4_switch_nvm_set_offset() - Set NVM write offset
547  * @sw: USB4 router
548  * @address: Start offset
549  *
550  * Explicitly sets NVM write offset. Normally when writing to NVM this
551  * is done automatically by usb4_switch_nvm_write().
552  *
553  * Returns %0 in success and negative errno if there was a failure.
554  */
555 int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
556 {
557 	u32 metadata, dwaddress;
558 	u8 status = 0;
559 	int ret;
560 
561 	dwaddress = address / 4;
562 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
563 		   USB4_NVM_SET_OFFSET_MASK;
564 
565 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
566 			     &status);
567 	if (ret)
568 		return ret;
569 
570 	return status ? -EIO : 0;
571 }
572 
573 static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
574 					    const void *buf, size_t dwords)
575 {
576 	struct tb_switch *sw = data;
577 	u8 status;
578 	int ret;
579 
580 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
581 				  buf, dwords, NULL, 0);
582 	if (ret)
583 		return ret;
584 
585 	return status ? -EIO : 0;
586 }
587 
588 /**
589  * usb4_switch_nvm_write() - Write to the router NVM
590  * @sw: USB4 router
591  * @address: Start address where to write in bytes
592  * @buf: Pointer to the data to write
593  * @size: Size of @buf in bytes
594  *
595  * Writes @buf to the router NVM using USB4 router operations. If NVM
596  * write is not supported returns %-EOPNOTSUPP.
597  */
598 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
599 			  const void *buf, size_t size)
600 {
601 	int ret;
602 
603 	ret = usb4_switch_nvm_set_offset(sw, address);
604 	if (ret)
605 		return ret;
606 
607 	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
608 				 usb4_switch_nvm_write_next_block, sw);
609 }
610 
611 /**
612  * usb4_switch_nvm_authenticate() - Authenticate new NVM
613  * @sw: USB4 router
614  *
615  * After the new NVM has been written via usb4_switch_nvm_write(), this
616  * function triggers NVM authentication process. The router gets power
617  * cycled and if the authentication is successful the new NVM starts
618  * running. In case of failure returns negative errno.
619  *
620  * The caller should call usb4_switch_nvm_authenticate_status() to read
621  * the status of the authentication after power cycle. It should be the
622  * first router operation to avoid the status being lost.
623  */
624 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
625 {
626 	int ret;
627 
628 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
629 	switch (ret) {
630 	/*
631 	 * The router is power cycled once NVM_AUTH is started so it is
632 	 * expected to get any of the following errors back.
633 	 */
634 	case -EACCES:
635 	case -ENOTCONN:
636 	case -ETIMEDOUT:
637 		return 0;
638 
639 	default:
640 		return ret;
641 	}
642 }
643 
644 /**
645  * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
646  * @sw: USB4 router
647  * @status: Status code of the operation
648  *
649  * The function checks if there is status available from the last NVM
650  * authenticate router operation. If there is status then %0 is returned
651  * and the status code is placed in @status. Returns negative errno in case
652  * of failure.
653  *
654  * Must be called before any other router operation.
655  */
656 int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
657 {
658 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
659 	u16 opcode;
660 	u32 val;
661 	int ret;
662 
663 	if (cm_ops->usb4_switch_nvm_authenticate_status) {
664 		ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
665 		if (ret != -EOPNOTSUPP)
666 			return ret;
667 	}
668 
669 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
670 	if (ret)
671 		return ret;
672 
673 	/* Check that the opcode is correct */
674 	opcode = val & ROUTER_CS_26_OPCODE_MASK;
675 	if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
676 		if (val & ROUTER_CS_26_OV)
677 			return -EBUSY;
678 		if (val & ROUTER_CS_26_ONS)
679 			return -EOPNOTSUPP;
680 
681 		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
682 			ROUTER_CS_26_STATUS_SHIFT;
683 	} else {
684 		*status = 0;
685 	}
686 
687 	return 0;
688 }
689 
690 /**
691  * usb4_switch_credits_init() - Read buffer allocation parameters
692  * @sw: USB4 router
693  *
694  * Reads @sw buffer allocation parameters and initializes @sw buffer
695  * allocation fields accordingly. Specifically @sw->credits_allocation
696  * is set to %true if these parameters can be used in tunneling.
697  *
698  * Returns %0 on success and negative errno otherwise.
699  */
700 int usb4_switch_credits_init(struct tb_switch *sw)
701 {
702 	int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
703 	int ret, length, i, nports;
704 	const struct tb_port *port;
705 	u32 data[NVM_DATA_DWORDS];
706 	u32 metadata = 0;
707 	u8 status = 0;
708 
709 	memset(data, 0, sizeof(data));
710 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
711 				  &status, NULL, 0, data, ARRAY_SIZE(data));
712 	if (ret)
713 		return ret;
714 	if (status)
715 		return -EIO;
716 
717 	length = metadata & USB4_BA_LENGTH_MASK;
718 	if (WARN_ON(length > ARRAY_SIZE(data)))
719 		return -EMSGSIZE;
720 
721 	max_usb3 = -1;
722 	min_dp_aux = -1;
723 	min_dp_main = -1;
724 	max_pcie = -1;
725 	max_dma = -1;
726 
727 	tb_sw_dbg(sw, "credit allocation parameters:\n");
728 
729 	for (i = 0; i < length; i++) {
730 		u16 index, value;
731 
732 		index = data[i] & USB4_BA_INDEX_MASK;
733 		value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
734 
735 		switch (index) {
736 		case USB4_BA_MAX_USB3:
737 			tb_sw_dbg(sw, " USB3: %u\n", value);
738 			max_usb3 = value;
739 			break;
740 		case USB4_BA_MIN_DP_AUX:
741 			tb_sw_dbg(sw, " DP AUX: %u\n", value);
742 			min_dp_aux = value;
743 			break;
744 		case USB4_BA_MIN_DP_MAIN:
745 			tb_sw_dbg(sw, " DP main: %u\n", value);
746 			min_dp_main = value;
747 			break;
748 		case USB4_BA_MAX_PCIE:
749 			tb_sw_dbg(sw, " PCIe: %u\n", value);
750 			max_pcie = value;
751 			break;
752 		case USB4_BA_MAX_HI:
753 			tb_sw_dbg(sw, " DMA: %u\n", value);
754 			max_dma = value;
755 			break;
756 		default:
757 			tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
758 				  index);
759 			break;
760 		}
761 	}
762 
763 	/*
764 	 * Validate the buffer allocation preferences. If we find
765 	 * issues, log a warning and fall back using the hard-coded
766 	 * values.
767 	 */
768 
769 	/* Host router must report baMaxHI */
770 	if (!tb_route(sw) && max_dma < 0) {
771 		tb_sw_warn(sw, "host router is missing baMaxHI\n");
772 		goto err_invalid;
773 	}
774 
775 	nports = 0;
776 	tb_switch_for_each_port(sw, port) {
777 		if (tb_port_is_null(port))
778 			nports++;
779 	}
780 
781 	/* Must have DP buffer allocation (multiple USB4 ports) */
782 	if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
783 		tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
784 		goto err_invalid;
785 	}
786 
787 	tb_switch_for_each_port(sw, port) {
788 		if (tb_port_is_dpout(port) && min_dp_main < 0) {
789 			tb_sw_warn(sw, "missing baMinDPmain");
790 			goto err_invalid;
791 		}
792 		if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
793 		    min_dp_aux < 0) {
794 			tb_sw_warn(sw, "missing baMinDPaux");
795 			goto err_invalid;
796 		}
797 		if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
798 		    max_usb3 < 0) {
799 			tb_sw_warn(sw, "missing baMaxUSB3");
800 			goto err_invalid;
801 		}
802 		if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
803 		    max_pcie < 0) {
804 			tb_sw_warn(sw, "missing baMaxPCIe");
805 			goto err_invalid;
806 		}
807 	}
808 
809 	/*
810 	 * Buffer allocation passed the validation so we can use it in
811 	 * path creation.
812 	 */
813 	sw->credit_allocation = true;
814 	if (max_usb3 > 0)
815 		sw->max_usb3_credits = max_usb3;
816 	if (min_dp_aux > 0)
817 		sw->min_dp_aux_credits = min_dp_aux;
818 	if (min_dp_main > 0)
819 		sw->min_dp_main_credits = min_dp_main;
820 	if (max_pcie > 0)
821 		sw->max_pcie_credits = max_pcie;
822 	if (max_dma > 0)
823 		sw->max_dma_credits = max_dma;
824 
825 	return 0;
826 
827 err_invalid:
828 	return -EINVAL;
829 }
830 
831 /**
832  * usb4_switch_query_dp_resource() - Query availability of DP IN resource
833  * @sw: USB4 router
834  * @in: DP IN adapter
835  *
836  * For DP tunneling this function can be used to query availability of
837  * DP IN resource. Returns true if the resource is available for DP
838  * tunneling, false otherwise.
839  */
840 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
841 {
842 	u32 metadata = in->port;
843 	u8 status;
844 	int ret;
845 
846 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
847 			     &status);
848 	/*
849 	 * If DP resource allocation is not supported assume it is
850 	 * always available.
851 	 */
852 	if (ret == -EOPNOTSUPP)
853 		return true;
854 	else if (ret)
855 		return false;
856 
857 	return !status;
858 }
859 
860 /**
861  * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
862  * @sw: USB4 router
863  * @in: DP IN adapter
864  *
865  * Allocates DP IN resource for DP tunneling using USB4 router
866  * operations. If the resource was allocated returns %0. Otherwise
867  * returns negative errno, in particular %-EBUSY if the resource is
868  * already allocated.
869  */
870 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
871 {
872 	u32 metadata = in->port;
873 	u8 status;
874 	int ret;
875 
876 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
877 			     &status);
878 	if (ret == -EOPNOTSUPP)
879 		return 0;
880 	else if (ret)
881 		return ret;
882 
883 	return status ? -EBUSY : 0;
884 }
885 
886 /**
887  * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
888  * @sw: USB4 router
889  * @in: DP IN adapter
890  *
891  * Releases the previously allocated DP IN resource.
892  */
893 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
894 {
895 	u32 metadata = in->port;
896 	u8 status;
897 	int ret;
898 
899 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
900 			     &status);
901 	if (ret == -EOPNOTSUPP)
902 		return 0;
903 	else if (ret)
904 		return ret;
905 
906 	return status ? -EIO : 0;
907 }
908 
909 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
910 {
911 	struct tb_port *p;
912 	int usb4_idx = 0;
913 
914 	/* Assume port is primary */
915 	tb_switch_for_each_port(sw, p) {
916 		if (!tb_port_is_null(p))
917 			continue;
918 		if (tb_is_upstream_port(p))
919 			continue;
920 		if (!p->link_nr) {
921 			if (p == port)
922 				break;
923 			usb4_idx++;
924 		}
925 	}
926 
927 	return usb4_idx;
928 }
929 
930 /**
931  * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
932  * @sw: USB4 router
933  * @port: USB4 port
934  *
935  * USB4 routers have direct mapping between USB4 ports and PCIe
936  * downstream adapters where the PCIe topology is extended. This
937  * function returns the corresponding downstream PCIe adapter or %NULL
938  * if no such mapping was possible.
939  */
940 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
941 					  const struct tb_port *port)
942 {
943 	int usb4_idx = usb4_port_idx(sw, port);
944 	struct tb_port *p;
945 	int pcie_idx = 0;
946 
947 	/* Find PCIe down port matching usb4_port */
948 	tb_switch_for_each_port(sw, p) {
949 		if (!tb_port_is_pcie_down(p))
950 			continue;
951 
952 		if (pcie_idx == usb4_idx)
953 			return p;
954 
955 		pcie_idx++;
956 	}
957 
958 	return NULL;
959 }
960 
961 /**
962  * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
963  * @sw: USB4 router
964  * @port: USB4 port
965  *
966  * USB4 routers have direct mapping between USB4 ports and USB 3.x
967  * downstream adapters where the USB 3.x topology is extended. This
968  * function returns the corresponding downstream USB 3.x adapter or
969  * %NULL if no such mapping was possible.
970  */
971 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
972 					  const struct tb_port *port)
973 {
974 	int usb4_idx = usb4_port_idx(sw, port);
975 	struct tb_port *p;
976 	int usb_idx = 0;
977 
978 	/* Find USB3 down port matching usb4_port */
979 	tb_switch_for_each_port(sw, p) {
980 		if (!tb_port_is_usb3_down(p))
981 			continue;
982 
983 		if (usb_idx == usb4_idx)
984 			return p;
985 
986 		usb_idx++;
987 	}
988 
989 	return NULL;
990 }
991 
992 /**
993  * usb4_switch_add_ports() - Add USB4 ports for this router
994  * @sw: USB4 router
995  *
996  * For USB4 router finds all USB4 ports and registers devices for each.
997  * Can be called to any router.
998  *
999  * Return %0 in case of success and negative errno in case of failure.
1000  */
1001 int usb4_switch_add_ports(struct tb_switch *sw)
1002 {
1003 	struct tb_port *port;
1004 
1005 	if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
1006 		return 0;
1007 
1008 	tb_switch_for_each_port(sw, port) {
1009 		struct usb4_port *usb4;
1010 
1011 		if (!tb_port_is_null(port))
1012 			continue;
1013 		if (!port->cap_usb4)
1014 			continue;
1015 
1016 		usb4 = usb4_port_device_add(port);
1017 		if (IS_ERR(usb4)) {
1018 			usb4_switch_remove_ports(sw);
1019 			return PTR_ERR(usb4);
1020 		}
1021 
1022 		port->usb4 = usb4;
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 /**
1029  * usb4_switch_remove_ports() - Removes USB4 ports from this router
1030  * @sw: USB4 router
1031  *
1032  * Unregisters previously registered USB4 ports.
1033  */
1034 void usb4_switch_remove_ports(struct tb_switch *sw)
1035 {
1036 	struct tb_port *port;
1037 
1038 	tb_switch_for_each_port(sw, port) {
1039 		if (port->usb4) {
1040 			usb4_port_device_remove(port->usb4);
1041 			port->usb4 = NULL;
1042 		}
1043 	}
1044 }
1045 
1046 /**
1047  * usb4_port_unlock() - Unlock USB4 downstream port
1048  * @port: USB4 port to unlock
1049  *
1050  * Unlocks USB4 downstream port so that the connection manager can
1051  * access the router below this port.
1052  */
1053 int usb4_port_unlock(struct tb_port *port)
1054 {
1055 	int ret;
1056 	u32 val;
1057 
1058 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1059 	if (ret)
1060 		return ret;
1061 
1062 	val &= ~ADP_CS_4_LCK;
1063 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1064 }
1065 
1066 /**
1067  * usb4_port_hotplug_enable() - Enables hotplug for a port
1068  * @port: USB4 port to operate on
1069  *
1070  * Enables hot plug events on a given port. This is only intended
1071  * to be used on lane, DP-IN, and DP-OUT adapters.
1072  */
1073 int usb4_port_hotplug_enable(struct tb_port *port)
1074 {
1075 	int ret;
1076 	u32 val;
1077 
1078 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1079 	if (ret)
1080 		return ret;
1081 
1082 	val &= ~ADP_CS_5_DHP;
1083 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1084 }
1085 
1086 static int usb4_port_set_configured(struct tb_port *port, bool configured)
1087 {
1088 	int ret;
1089 	u32 val;
1090 
1091 	if (!port->cap_usb4)
1092 		return -EINVAL;
1093 
1094 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1095 			   port->cap_usb4 + PORT_CS_19, 1);
1096 	if (ret)
1097 		return ret;
1098 
1099 	if (configured)
1100 		val |= PORT_CS_19_PC;
1101 	else
1102 		val &= ~PORT_CS_19_PC;
1103 
1104 	return tb_port_write(port, &val, TB_CFG_PORT,
1105 			     port->cap_usb4 + PORT_CS_19, 1);
1106 }
1107 
1108 /**
1109  * usb4_port_configure() - Set USB4 port configured
1110  * @port: USB4 router
1111  *
1112  * Sets the USB4 link to be configured for power management purposes.
1113  */
1114 int usb4_port_configure(struct tb_port *port)
1115 {
1116 	return usb4_port_set_configured(port, true);
1117 }
1118 
1119 /**
1120  * usb4_port_unconfigure() - Set USB4 port unconfigured
1121  * @port: USB4 router
1122  *
1123  * Sets the USB4 link to be unconfigured for power management purposes.
1124  */
1125 void usb4_port_unconfigure(struct tb_port *port)
1126 {
1127 	usb4_port_set_configured(port, false);
1128 }
1129 
1130 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1131 {
1132 	int ret;
1133 	u32 val;
1134 
1135 	if (!port->cap_usb4)
1136 		return -EINVAL;
1137 
1138 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1139 			   port->cap_usb4 + PORT_CS_19, 1);
1140 	if (ret)
1141 		return ret;
1142 
1143 	if (configured)
1144 		val |= PORT_CS_19_PID;
1145 	else
1146 		val &= ~PORT_CS_19_PID;
1147 
1148 	return tb_port_write(port, &val, TB_CFG_PORT,
1149 			     port->cap_usb4 + PORT_CS_19, 1);
1150 }
1151 
1152 /**
1153  * usb4_port_configure_xdomain() - Configure port for XDomain
1154  * @port: USB4 port connected to another host
1155  * @xd: XDomain that is connected to the port
1156  *
1157  * Marks the USB4 port as being connected to another host and updates
1158  * the link type. Returns %0 in success and negative errno in failure.
1159  */
1160 int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
1161 {
1162 	xd->link_usb4 = link_is_usb4(port);
1163 	return usb4_set_xdomain_configured(port, true);
1164 }
1165 
1166 /**
1167  * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1168  * @port: USB4 port that was connected to another host
1169  *
1170  * Clears USB4 port from being marked as XDomain.
1171  */
1172 void usb4_port_unconfigure_xdomain(struct tb_port *port)
1173 {
1174 	usb4_set_xdomain_configured(port, false);
1175 }
1176 
1177 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1178 				  u32 value, int timeout_msec)
1179 {
1180 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1181 
1182 	do {
1183 		u32 val;
1184 		int ret;
1185 
1186 		ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1187 		if (ret)
1188 			return ret;
1189 
1190 		if ((val & bit) == value)
1191 			return 0;
1192 
1193 		usleep_range(50, 100);
1194 	} while (ktime_before(ktime_get(), timeout));
1195 
1196 	return -ETIMEDOUT;
1197 }
1198 
1199 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1200 {
1201 	if (dwords > NVM_DATA_DWORDS)
1202 		return -EINVAL;
1203 
1204 	return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1205 			    dwords);
1206 }
1207 
1208 static int usb4_port_write_data(struct tb_port *port, const void *data,
1209 				size_t dwords)
1210 {
1211 	if (dwords > NVM_DATA_DWORDS)
1212 		return -EINVAL;
1213 
1214 	return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1215 			     dwords);
1216 }
1217 
1218 static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1219 			     u8 index, u8 reg, void *buf, u8 size)
1220 {
1221 	size_t dwords = DIV_ROUND_UP(size, 4);
1222 	int ret;
1223 	u32 val;
1224 
1225 	if (!port->cap_usb4)
1226 		return -EINVAL;
1227 
1228 	val = reg;
1229 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1230 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1231 	if (target == USB4_SB_TARGET_RETIMER)
1232 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1233 	val |= PORT_CS_1_PND;
1234 
1235 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1236 			    port->cap_usb4 + PORT_CS_1, 1);
1237 	if (ret)
1238 		return ret;
1239 
1240 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1241 				     PORT_CS_1_PND, 0, 500);
1242 	if (ret)
1243 		return ret;
1244 
1245 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1246 			    port->cap_usb4 + PORT_CS_1, 1);
1247 	if (ret)
1248 		return ret;
1249 
1250 	if (val & PORT_CS_1_NR)
1251 		return -ENODEV;
1252 	if (val & PORT_CS_1_RC)
1253 		return -EIO;
1254 
1255 	return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1256 }
1257 
1258 static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1259 			      u8 index, u8 reg, const void *buf, u8 size)
1260 {
1261 	size_t dwords = DIV_ROUND_UP(size, 4);
1262 	int ret;
1263 	u32 val;
1264 
1265 	if (!port->cap_usb4)
1266 		return -EINVAL;
1267 
1268 	if (buf) {
1269 		ret = usb4_port_write_data(port, buf, dwords);
1270 		if (ret)
1271 			return ret;
1272 	}
1273 
1274 	val = reg;
1275 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1276 	val |= PORT_CS_1_WNR_WRITE;
1277 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1278 	if (target == USB4_SB_TARGET_RETIMER)
1279 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1280 	val |= PORT_CS_1_PND;
1281 
1282 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1283 			    port->cap_usb4 + PORT_CS_1, 1);
1284 	if (ret)
1285 		return ret;
1286 
1287 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1288 				     PORT_CS_1_PND, 0, 500);
1289 	if (ret)
1290 		return ret;
1291 
1292 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1293 			    port->cap_usb4 + PORT_CS_1, 1);
1294 	if (ret)
1295 		return ret;
1296 
1297 	if (val & PORT_CS_1_NR)
1298 		return -ENODEV;
1299 	if (val & PORT_CS_1_RC)
1300 		return -EIO;
1301 
1302 	return 0;
1303 }
1304 
1305 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1306 			   u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1307 {
1308 	ktime_t timeout;
1309 	u32 val;
1310 	int ret;
1311 
1312 	val = opcode;
1313 	ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1314 				 sizeof(val));
1315 	if (ret)
1316 		return ret;
1317 
1318 	timeout = ktime_add_ms(ktime_get(), timeout_msec);
1319 
1320 	do {
1321 		/* Check results */
1322 		ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1323 					&val, sizeof(val));
1324 		if (ret)
1325 			return ret;
1326 
1327 		switch (val) {
1328 		case 0:
1329 			return 0;
1330 
1331 		case USB4_SB_OPCODE_ERR:
1332 			return -EAGAIN;
1333 
1334 		case USB4_SB_OPCODE_ONS:
1335 			return -EOPNOTSUPP;
1336 
1337 		default:
1338 			if (val != opcode)
1339 				return -EIO;
1340 			break;
1341 		}
1342 	} while (ktime_before(ktime_get(), timeout));
1343 
1344 	return -ETIMEDOUT;
1345 }
1346 
1347 static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1348 {
1349 	u32 val = !offline;
1350 	int ret;
1351 
1352 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1353 				  USB4_SB_METADATA, &val, sizeof(val));
1354 	if (ret)
1355 		return ret;
1356 
1357 	val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1358 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1359 				  USB4_SB_OPCODE, &val, sizeof(val));
1360 }
1361 
1362 /**
1363  * usb4_port_router_offline() - Put the USB4 port to offline mode
1364  * @port: USB4 port
1365  *
1366  * This function puts the USB4 port into offline mode. In this mode the
1367  * port does not react on hotplug events anymore. This needs to be
1368  * called before retimer access is done when the USB4 links is not up.
1369  *
1370  * Returns %0 in case of success and negative errno if there was an
1371  * error.
1372  */
1373 int usb4_port_router_offline(struct tb_port *port)
1374 {
1375 	return usb4_port_set_router_offline(port, true);
1376 }
1377 
1378 /**
1379  * usb4_port_router_online() - Put the USB4 port back to online
1380  * @port: USB4 port
1381  *
1382  * Makes the USB4 port functional again.
1383  */
1384 int usb4_port_router_online(struct tb_port *port)
1385 {
1386 	return usb4_port_set_router_offline(port, false);
1387 }
1388 
1389 /**
1390  * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1391  * @port: USB4 port
1392  *
1393  * This forces the USB4 port to send broadcast RT transaction which
1394  * makes the retimers on the link to assign index to themselves. Returns
1395  * %0 in case of success and negative errno if there was an error.
1396  */
1397 int usb4_port_enumerate_retimers(struct tb_port *port)
1398 {
1399 	u32 val;
1400 
1401 	val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1402 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1403 				  USB4_SB_OPCODE, &val, sizeof(val));
1404 }
1405 
1406 /**
1407  * usb4_port_clx_supported() - Check if CLx is supported by the link
1408  * @port: Port to check for CLx support for
1409  *
1410  * PORT_CS_18_CPS bit reflects if the link supports CLx including
1411  * active cables (if connected on the link).
1412  */
1413 bool usb4_port_clx_supported(struct tb_port *port)
1414 {
1415 	int ret;
1416 	u32 val;
1417 
1418 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1419 			   port->cap_usb4 + PORT_CS_18, 1);
1420 	if (ret)
1421 		return false;
1422 
1423 	return !!(val & PORT_CS_18_CPS);
1424 }
1425 
1426 /**
1427  * usb4_port_margining_caps() - Read USB4 port marginig capabilities
1428  * @port: USB4 port
1429  * @caps: Array with at least two elements to hold the results
1430  *
1431  * Reads the USB4 port lane margining capabilities into @caps.
1432  */
1433 int usb4_port_margining_caps(struct tb_port *port, u32 *caps)
1434 {
1435 	int ret;
1436 
1437 	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1438 			      USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500);
1439 	if (ret)
1440 		return ret;
1441 
1442 	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1443 				 USB4_SB_DATA, caps, sizeof(*caps) * 2);
1444 }
1445 
1446 /**
1447  * usb4_port_hw_margin() - Run hardware lane margining on port
1448  * @port: USB4 port
1449  * @lanes: Which lanes to run (must match the port capabilities). Can be
1450  *	   %0, %1 or %7.
1451  * @ber_level: BER level contour value
1452  * @timing: Perform timing margining instead of voltage
1453  * @right_high: Use Right/high margin instead of left/low
1454  * @results: Array with at least two elements to hold the results
1455  *
1456  * Runs hardware lane margining on USB4 port and returns the result in
1457  * @results.
1458  */
1459 int usb4_port_hw_margin(struct tb_port *port, unsigned int lanes,
1460 			unsigned int ber_level, bool timing, bool right_high,
1461 			u32 *results)
1462 {
1463 	u32 val;
1464 	int ret;
1465 
1466 	val = lanes;
1467 	if (timing)
1468 		val |= USB4_MARGIN_HW_TIME;
1469 	if (right_high)
1470 		val |= USB4_MARGIN_HW_RH;
1471 	if (ber_level)
1472 		val |= (ber_level << USB4_MARGIN_HW_BER_SHIFT) &
1473 			USB4_MARGIN_HW_BER_MASK;
1474 
1475 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1476 				 USB4_SB_METADATA, &val, sizeof(val));
1477 	if (ret)
1478 		return ret;
1479 
1480 	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1481 			      USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500);
1482 	if (ret)
1483 		return ret;
1484 
1485 	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1486 				 USB4_SB_DATA, results, sizeof(*results) * 2);
1487 }
1488 
1489 /**
1490  * usb4_port_sw_margin() - Run software lane margining on port
1491  * @port: USB4 port
1492  * @lanes: Which lanes to run (must match the port capabilities). Can be
1493  *	   %0, %1 or %7.
1494  * @timing: Perform timing margining instead of voltage
1495  * @right_high: Use Right/high margin instead of left/low
1496  * @counter: What to do with the error counter
1497  *
1498  * Runs software lane margining on USB4 port. Read back the error
1499  * counters by calling usb4_port_sw_margin_errors(). Returns %0 in
1500  * success and negative errno otherwise.
1501  */
1502 int usb4_port_sw_margin(struct tb_port *port, unsigned int lanes, bool timing,
1503 			bool right_high, u32 counter)
1504 {
1505 	u32 val;
1506 	int ret;
1507 
1508 	val = lanes;
1509 	if (timing)
1510 		val |= USB4_MARGIN_SW_TIME;
1511 	if (right_high)
1512 		val |= USB4_MARGIN_SW_RH;
1513 	val |= (counter << USB4_MARGIN_SW_COUNTER_SHIFT) &
1514 		USB4_MARGIN_SW_COUNTER_MASK;
1515 
1516 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1517 				 USB4_SB_METADATA, &val, sizeof(val));
1518 	if (ret)
1519 		return ret;
1520 
1521 	return usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1522 			       USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500);
1523 }
1524 
1525 /**
1526  * usb4_port_sw_margin_errors() - Read the software margining error counters
1527  * @port: USB4 port
1528  * @errors: Error metadata is copied here.
1529  *
1530  * This reads back the software margining error counters from the port.
1531  * Returns %0 in success and negative errno otherwise.
1532  */
1533 int usb4_port_sw_margin_errors(struct tb_port *port, u32 *errors)
1534 {
1535 	int ret;
1536 
1537 	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1538 			      USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150);
1539 	if (ret)
1540 		return ret;
1541 
1542 	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1543 				 USB4_SB_METADATA, errors, sizeof(*errors));
1544 }
1545 
1546 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1547 				       enum usb4_sb_opcode opcode,
1548 				       int timeout_msec)
1549 {
1550 	return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1551 			       timeout_msec);
1552 }
1553 
1554 /**
1555  * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1556  * @port: USB4 port
1557  * @index: Retimer index
1558  *
1559  * Enables sideband channel transations on SBTX. Can be used when USB4
1560  * link does not go up, for example if there is no device connected.
1561  */
1562 int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1563 {
1564 	int ret;
1565 
1566 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1567 				   500);
1568 
1569 	if (ret != -ENODEV)
1570 		return ret;
1571 
1572 	/*
1573 	 * Per the USB4 retimer spec, the retimer is not required to
1574 	 * send an RT (Retimer Transaction) response for the first
1575 	 * SET_INBOUND_SBTX command
1576 	 */
1577 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1578 				    500);
1579 }
1580 
1581 /**
1582  * usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions
1583  * @port: USB4 port
1584  * @index: Retimer index
1585  *
1586  * Disables sideband channel transations on SBTX. The reverse of
1587  * usb4_port_retimer_set_inbound_sbtx().
1588  */
1589 int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index)
1590 {
1591 	return usb4_port_retimer_op(port, index,
1592 				    USB4_SB_OPCODE_UNSET_INBOUND_SBTX, 500);
1593 }
1594 
1595 /**
1596  * usb4_port_retimer_read() - Read from retimer sideband registers
1597  * @port: USB4 port
1598  * @index: Retimer index
1599  * @reg: Sideband register to read
1600  * @buf: Data from @reg is stored here
1601  * @size: Number of bytes to read
1602  *
1603  * Function reads retimer sideband registers starting from @reg. The
1604  * retimer is connected to @port at @index. Returns %0 in case of
1605  * success, and read data is copied to @buf. If there is no retimer
1606  * present at given @index returns %-ENODEV. In any other failure
1607  * returns negative errno.
1608  */
1609 int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1610 			   u8 size)
1611 {
1612 	return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1613 				 size);
1614 }
1615 
1616 /**
1617  * usb4_port_retimer_write() - Write to retimer sideband registers
1618  * @port: USB4 port
1619  * @index: Retimer index
1620  * @reg: Sideband register to write
1621  * @buf: Data that is written starting from @reg
1622  * @size: Number of bytes to write
1623  *
1624  * Writes retimer sideband registers starting from @reg. The retimer is
1625  * connected to @port at @index. Returns %0 in case of success. If there
1626  * is no retimer present at given @index returns %-ENODEV. In any other
1627  * failure returns negative errno.
1628  */
1629 int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1630 			    const void *buf, u8 size)
1631 {
1632 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1633 				  size);
1634 }
1635 
1636 /**
1637  * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1638  * @port: USB4 port
1639  * @index: Retimer index
1640  *
1641  * If the retimer at @index is last one (connected directly to the
1642  * Type-C port) this function returns %1. If it is not returns %0. If
1643  * the retimer is not present returns %-ENODEV. Otherwise returns
1644  * negative errno.
1645  */
1646 int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1647 {
1648 	u32 metadata;
1649 	int ret;
1650 
1651 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1652 				   500);
1653 	if (ret)
1654 		return ret;
1655 
1656 	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1657 				     sizeof(metadata));
1658 	return ret ? ret : metadata & 1;
1659 }
1660 
1661 /**
1662  * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1663  * @port: USB4 port
1664  * @index: Retimer index
1665  *
1666  * Reads NVM sector size (in bytes) of a retimer at @index. This
1667  * operation can be used to determine whether the retimer supports NVM
1668  * upgrade for example. Returns sector size in bytes or negative errno
1669  * in case of error. Specifically returns %-ENODEV if there is no
1670  * retimer at @index.
1671  */
1672 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1673 {
1674 	u32 metadata;
1675 	int ret;
1676 
1677 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1678 				   500);
1679 	if (ret)
1680 		return ret;
1681 
1682 	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1683 				     sizeof(metadata));
1684 	return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1685 }
1686 
1687 /**
1688  * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1689  * @port: USB4 port
1690  * @index: Retimer index
1691  * @address: Start offset
1692  *
1693  * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1694  * done automatically by usb4_port_retimer_nvm_write().
1695  *
1696  * Returns %0 in success and negative errno if there was a failure.
1697  */
1698 int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1699 				     unsigned int address)
1700 {
1701 	u32 metadata, dwaddress;
1702 	int ret;
1703 
1704 	dwaddress = address / 4;
1705 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1706 		  USB4_NVM_SET_OFFSET_MASK;
1707 
1708 	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1709 				      sizeof(metadata));
1710 	if (ret)
1711 		return ret;
1712 
1713 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1714 				    500);
1715 }
1716 
1717 struct retimer_info {
1718 	struct tb_port *port;
1719 	u8 index;
1720 };
1721 
1722 static int usb4_port_retimer_nvm_write_next_block(void *data,
1723 	unsigned int dwaddress, const void *buf, size_t dwords)
1724 
1725 {
1726 	const struct retimer_info *info = data;
1727 	struct tb_port *port = info->port;
1728 	u8 index = info->index;
1729 	int ret;
1730 
1731 	ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1732 				      buf, dwords * 4);
1733 	if (ret)
1734 		return ret;
1735 
1736 	return usb4_port_retimer_op(port, index,
1737 			USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1738 }
1739 
1740 /**
1741  * usb4_port_retimer_nvm_write() - Write to retimer NVM
1742  * @port: USB4 port
1743  * @index: Retimer index
1744  * @address: Byte address where to start the write
1745  * @buf: Data to write
1746  * @size: Size in bytes how much to write
1747  *
1748  * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1749  * upgrade. Returns %0 if the data was written successfully and negative
1750  * errno in case of failure. Specifically returns %-ENODEV if there is
1751  * no retimer at @index.
1752  */
1753 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1754 				const void *buf, size_t size)
1755 {
1756 	struct retimer_info info = { .port = port, .index = index };
1757 	int ret;
1758 
1759 	ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1760 	if (ret)
1761 		return ret;
1762 
1763 	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1764 				 usb4_port_retimer_nvm_write_next_block, &info);
1765 }
1766 
1767 /**
1768  * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1769  * @port: USB4 port
1770  * @index: Retimer index
1771  *
1772  * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1773  * this function can be used to trigger the NVM upgrade process. If
1774  * successful the retimer restarts with the new NVM and may not have the
1775  * index set so one needs to call usb4_port_enumerate_retimers() to
1776  * force index to be assigned.
1777  */
1778 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1779 {
1780 	u32 val;
1781 
1782 	/*
1783 	 * We need to use the raw operation here because once the
1784 	 * authentication completes the retimer index is not set anymore
1785 	 * so we do not get back the status now.
1786 	 */
1787 	val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1788 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1789 				  USB4_SB_OPCODE, &val, sizeof(val));
1790 }
1791 
1792 /**
1793  * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1794  * @port: USB4 port
1795  * @index: Retimer index
1796  * @status: Raw status code read from metadata
1797  *
1798  * This can be called after usb4_port_retimer_nvm_authenticate() and
1799  * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1800  *
1801  * Returns %0 if the authentication status was successfully read. The
1802  * completion metadata (the result) is then stored into @status. If
1803  * reading the status fails, returns negative errno.
1804  */
1805 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1806 					      u32 *status)
1807 {
1808 	u32 metadata, val;
1809 	int ret;
1810 
1811 	ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1812 				     sizeof(val));
1813 	if (ret)
1814 		return ret;
1815 
1816 	switch (val) {
1817 	case 0:
1818 		*status = 0;
1819 		return 0;
1820 
1821 	case USB4_SB_OPCODE_ERR:
1822 		ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1823 					     &metadata, sizeof(metadata));
1824 		if (ret)
1825 			return ret;
1826 
1827 		*status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1828 		return 0;
1829 
1830 	case USB4_SB_OPCODE_ONS:
1831 		return -EOPNOTSUPP;
1832 
1833 	default:
1834 		return -EIO;
1835 	}
1836 }
1837 
1838 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1839 					    void *buf, size_t dwords)
1840 {
1841 	const struct retimer_info *info = data;
1842 	struct tb_port *port = info->port;
1843 	u8 index = info->index;
1844 	u32 metadata;
1845 	int ret;
1846 
1847 	metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1848 	if (dwords < NVM_DATA_DWORDS)
1849 		metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1850 
1851 	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1852 				      sizeof(metadata));
1853 	if (ret)
1854 		return ret;
1855 
1856 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1857 	if (ret)
1858 		return ret;
1859 
1860 	return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1861 				      dwords * 4);
1862 }
1863 
1864 /**
1865  * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1866  * @port: USB4 port
1867  * @index: Retimer index
1868  * @address: NVM address (in bytes) to start reading
1869  * @buf: Data read from NVM is stored here
1870  * @size: Number of bytes to read
1871  *
1872  * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1873  * read was successful and negative errno in case of failure.
1874  * Specifically returns %-ENODEV if there is no retimer at @index.
1875  */
1876 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1877 			       unsigned int address, void *buf, size_t size)
1878 {
1879 	struct retimer_info info = { .port = port, .index = index };
1880 
1881 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
1882 				usb4_port_retimer_nvm_read_block, &info);
1883 }
1884 
1885 static inline unsigned int
1886 usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw)
1887 {
1888 	/* Take the possible bandwidth limitation into account */
1889 	if (port->max_bw)
1890 		return min(bw, port->max_bw);
1891 	return bw;
1892 }
1893 
1894 /**
1895  * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1896  * @port: USB3 adapter port
1897  *
1898  * Return maximum supported link rate of a USB3 adapter in Mb/s.
1899  * Negative errno in case of error.
1900  */
1901 int usb4_usb3_port_max_link_rate(struct tb_port *port)
1902 {
1903 	int ret, lr;
1904 	u32 val;
1905 
1906 	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1907 		return -EINVAL;
1908 
1909 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1910 			   port->cap_adap + ADP_USB3_CS_4, 1);
1911 	if (ret)
1912 		return ret;
1913 
1914 	lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
1915 	ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
1916 
1917 	return usb4_usb3_port_max_bandwidth(port, ret);
1918 }
1919 
1920 /**
1921  * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1922  * @port: USB3 adapter port
1923  *
1924  * Return actual established link rate of a USB3 adapter in Mb/s. If the
1925  * link is not up returns %0 and negative errno in case of failure.
1926  */
1927 int usb4_usb3_port_actual_link_rate(struct tb_port *port)
1928 {
1929 	int ret, lr;
1930 	u32 val;
1931 
1932 	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1933 		return -EINVAL;
1934 
1935 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1936 			   port->cap_adap + ADP_USB3_CS_4, 1);
1937 	if (ret)
1938 		return ret;
1939 
1940 	if (!(val & ADP_USB3_CS_4_ULV))
1941 		return 0;
1942 
1943 	lr = val & ADP_USB3_CS_4_ALR_MASK;
1944 	ret = lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
1945 
1946 	return usb4_usb3_port_max_bandwidth(port, ret);
1947 }
1948 
1949 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
1950 {
1951 	int ret;
1952 	u32 val;
1953 
1954 	if (!tb_port_is_usb3_down(port))
1955 		return -EINVAL;
1956 	if (tb_route(port->sw))
1957 		return -EINVAL;
1958 
1959 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1960 			   port->cap_adap + ADP_USB3_CS_2, 1);
1961 	if (ret)
1962 		return ret;
1963 
1964 	if (request)
1965 		val |= ADP_USB3_CS_2_CMR;
1966 	else
1967 		val &= ~ADP_USB3_CS_2_CMR;
1968 
1969 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1970 			    port->cap_adap + ADP_USB3_CS_2, 1);
1971 	if (ret)
1972 		return ret;
1973 
1974 	/*
1975 	 * We can use val here directly as the CMR bit is in the same place
1976 	 * as HCA. Just mask out others.
1977 	 */
1978 	val &= ADP_USB3_CS_2_CMR;
1979 	return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
1980 				      ADP_USB3_CS_1_HCA, val, 1500);
1981 }
1982 
1983 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
1984 {
1985 	return usb4_usb3_port_cm_request(port, true);
1986 }
1987 
1988 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
1989 {
1990 	return usb4_usb3_port_cm_request(port, false);
1991 }
1992 
1993 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
1994 {
1995 	unsigned long uframes;
1996 
1997 	uframes = bw * 512UL << scale;
1998 	return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000);
1999 }
2000 
2001 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
2002 {
2003 	unsigned long uframes;
2004 
2005 	/* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
2006 	uframes = ((unsigned long)mbps * 1000 *  1000) / 8000;
2007 	return DIV_ROUND_UP(uframes, 512UL << scale);
2008 }
2009 
2010 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
2011 						   int *upstream_bw,
2012 						   int *downstream_bw)
2013 {
2014 	u32 val, bw, scale;
2015 	int ret;
2016 
2017 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2018 			   port->cap_adap + ADP_USB3_CS_2, 1);
2019 	if (ret)
2020 		return ret;
2021 
2022 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
2023 			   port->cap_adap + ADP_USB3_CS_3, 1);
2024 	if (ret)
2025 		return ret;
2026 
2027 	scale &= ADP_USB3_CS_3_SCALE_MASK;
2028 
2029 	bw = val & ADP_USB3_CS_2_AUBW_MASK;
2030 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
2031 
2032 	bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
2033 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
2034 
2035 	return 0;
2036 }
2037 
2038 /**
2039  * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
2040  * @port: USB3 adapter port
2041  * @upstream_bw: Allocated upstream bandwidth is stored here
2042  * @downstream_bw: Allocated downstream bandwidth is stored here
2043  *
2044  * Stores currently allocated USB3 bandwidth into @upstream_bw and
2045  * @downstream_bw in Mb/s. Returns %0 in case of success and negative
2046  * errno in failure.
2047  */
2048 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
2049 				       int *downstream_bw)
2050 {
2051 	int ret;
2052 
2053 	ret = usb4_usb3_port_set_cm_request(port);
2054 	if (ret)
2055 		return ret;
2056 
2057 	ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
2058 						      downstream_bw);
2059 	usb4_usb3_port_clear_cm_request(port);
2060 
2061 	return ret;
2062 }
2063 
2064 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
2065 						  int *upstream_bw,
2066 						  int *downstream_bw)
2067 {
2068 	u32 val, bw, scale;
2069 	int ret;
2070 
2071 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2072 			   port->cap_adap + ADP_USB3_CS_1, 1);
2073 	if (ret)
2074 		return ret;
2075 
2076 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
2077 			   port->cap_adap + ADP_USB3_CS_3, 1);
2078 	if (ret)
2079 		return ret;
2080 
2081 	scale &= ADP_USB3_CS_3_SCALE_MASK;
2082 
2083 	bw = val & ADP_USB3_CS_1_CUBW_MASK;
2084 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
2085 
2086 	bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
2087 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
2088 
2089 	return 0;
2090 }
2091 
2092 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
2093 						    int upstream_bw,
2094 						    int downstream_bw)
2095 {
2096 	u32 val, ubw, dbw, scale;
2097 	int ret, max_bw;
2098 
2099 	/* Figure out suitable scale */
2100 	scale = 0;
2101 	max_bw = max(upstream_bw, downstream_bw);
2102 	while (scale < 64) {
2103 		if (mbps_to_usb3_bw(max_bw, scale) < 4096)
2104 			break;
2105 		scale++;
2106 	}
2107 
2108 	if (WARN_ON(scale >= 64))
2109 		return -EINVAL;
2110 
2111 	ret = tb_port_write(port, &scale, TB_CFG_PORT,
2112 			    port->cap_adap + ADP_USB3_CS_3, 1);
2113 	if (ret)
2114 		return ret;
2115 
2116 	ubw = mbps_to_usb3_bw(upstream_bw, scale);
2117 	dbw = mbps_to_usb3_bw(downstream_bw, scale);
2118 
2119 	tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale);
2120 
2121 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2122 			   port->cap_adap + ADP_USB3_CS_2, 1);
2123 	if (ret)
2124 		return ret;
2125 
2126 	val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
2127 	val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
2128 	val |= ubw;
2129 
2130 	return tb_port_write(port, &val, TB_CFG_PORT,
2131 			     port->cap_adap + ADP_USB3_CS_2, 1);
2132 }
2133 
2134 /**
2135  * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
2136  * @port: USB3 adapter port
2137  * @upstream_bw: New upstream bandwidth
2138  * @downstream_bw: New downstream bandwidth
2139  *
2140  * This can be used to set how much bandwidth is allocated for the USB3
2141  * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
2142  * new values programmed to the USB3 adapter allocation registers. If
2143  * the values are lower than what is currently consumed the allocation
2144  * is set to what is currently consumed instead (consumed bandwidth
2145  * cannot be taken away by CM). The actual new values are returned in
2146  * @upstream_bw and @downstream_bw.
2147  *
2148  * Returns %0 in case of success and negative errno if there was a
2149  * failure.
2150  */
2151 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
2152 				      int *downstream_bw)
2153 {
2154 	int ret, consumed_up, consumed_down, allocate_up, allocate_down;
2155 
2156 	ret = usb4_usb3_port_set_cm_request(port);
2157 	if (ret)
2158 		return ret;
2159 
2160 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2161 						     &consumed_down);
2162 	if (ret)
2163 		goto err_request;
2164 
2165 	/* Don't allow it go lower than what is consumed */
2166 	allocate_up = max(*upstream_bw, consumed_up);
2167 	allocate_down = max(*downstream_bw, consumed_down);
2168 
2169 	ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
2170 						       allocate_down);
2171 	if (ret)
2172 		goto err_request;
2173 
2174 	*upstream_bw = allocate_up;
2175 	*downstream_bw = allocate_down;
2176 
2177 err_request:
2178 	usb4_usb3_port_clear_cm_request(port);
2179 	return ret;
2180 }
2181 
2182 /**
2183  * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
2184  * @port: USB3 adapter port
2185  * @upstream_bw: New allocated upstream bandwidth
2186  * @downstream_bw: New allocated downstream bandwidth
2187  *
2188  * Releases USB3 allocated bandwidth down to what is actually consumed.
2189  * The new bandwidth is returned in @upstream_bw and @downstream_bw.
2190  *
2191  * Returns 0% in success and negative errno in case of failure.
2192  */
2193 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
2194 				     int *downstream_bw)
2195 {
2196 	int ret, consumed_up, consumed_down;
2197 
2198 	ret = usb4_usb3_port_set_cm_request(port);
2199 	if (ret)
2200 		return ret;
2201 
2202 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2203 						     &consumed_down);
2204 	if (ret)
2205 		goto err_request;
2206 
2207 	/*
2208 	 * Always keep 1000 Mb/s to make sure xHCI has at least some
2209 	 * bandwidth available for isochronous traffic.
2210 	 */
2211 	if (consumed_up < 1000)
2212 		consumed_up = 1000;
2213 	if (consumed_down < 1000)
2214 		consumed_down = 1000;
2215 
2216 	ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
2217 						       consumed_down);
2218 	if (ret)
2219 		goto err_request;
2220 
2221 	*upstream_bw = consumed_up;
2222 	*downstream_bw = consumed_down;
2223 
2224 err_request:
2225 	usb4_usb3_port_clear_cm_request(port);
2226 	return ret;
2227 }
2228 
2229 static bool is_usb4_dpin(const struct tb_port *port)
2230 {
2231 	if (!tb_port_is_dpin(port))
2232 		return false;
2233 	if (!tb_switch_is_usb4(port->sw))
2234 		return false;
2235 	return true;
2236 }
2237 
2238 /**
2239  * usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter
2240  * @port: DP IN adapter
2241  * @cm_id: CM ID to assign
2242  *
2243  * Sets CM ID for the @port. Returns %0 on success and negative errno
2244  * otherwise. Speficially returns %-EOPNOTSUPP if the @port does not
2245  * support this.
2246  */
2247 int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id)
2248 {
2249 	u32 val;
2250 	int ret;
2251 
2252 	if (!is_usb4_dpin(port))
2253 		return -EOPNOTSUPP;
2254 
2255 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2256 			   port->cap_adap + ADP_DP_CS_2, 1);
2257 	if (ret)
2258 		return ret;
2259 
2260 	val &= ~ADP_DP_CS_2_CM_ID_MASK;
2261 	val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT;
2262 
2263 	return tb_port_write(port, &val, TB_CFG_PORT,
2264 			     port->cap_adap + ADP_DP_CS_2, 1);
2265 }
2266 
2267 /**
2268  * usb4_dp_port_bw_mode_supported() - Is the bandwidth allocation mode supported
2269  * @port: DP IN adapter to check
2270  *
2271  * Can be called to any DP IN adapter. Returns true if the adapter
2272  * supports USB4 bandwidth allocation mode, false otherwise.
2273  */
2274 bool usb4_dp_port_bw_mode_supported(struct tb_port *port)
2275 {
2276 	int ret;
2277 	u32 val;
2278 
2279 	if (!is_usb4_dpin(port))
2280 		return false;
2281 
2282 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2283 			   port->cap_adap + DP_LOCAL_CAP, 1);
2284 	if (ret)
2285 		return false;
2286 
2287 	return !!(val & DP_COMMON_CAP_BW_MODE);
2288 }
2289 
2290 /**
2291  * usb4_dp_port_bw_mode_enabled() - Is the bandwidth allocation mode enabled
2292  * @port: DP IN adapter to check
2293  *
2294  * Can be called to any DP IN adapter. Returns true if the bandwidth
2295  * allocation mode has been enabled, false otherwise.
2296  */
2297 bool usb4_dp_port_bw_mode_enabled(struct tb_port *port)
2298 {
2299 	int ret;
2300 	u32 val;
2301 
2302 	if (!is_usb4_dpin(port))
2303 		return false;
2304 
2305 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2306 			   port->cap_adap + ADP_DP_CS_8, 1);
2307 	if (ret)
2308 		return false;
2309 
2310 	return !!(val & ADP_DP_CS_8_DPME);
2311 }
2312 
2313 /**
2314  * usb4_dp_port_set_cm_bw_mode_supported() - Set/clear CM support for bandwidth allocation mode
2315  * @port: DP IN adapter
2316  * @supported: Does the CM support bandwidth allocation mode
2317  *
2318  * Can be called to any DP IN adapter. Sets or clears the CM support bit
2319  * of the DP IN adapter. Returns %0 in success and negative errno
2320  * otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter
2321  * does not support this.
2322  */
2323 int usb4_dp_port_set_cm_bw_mode_supported(struct tb_port *port, bool supported)
2324 {
2325 	u32 val;
2326 	int ret;
2327 
2328 	if (!is_usb4_dpin(port))
2329 		return -EOPNOTSUPP;
2330 
2331 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2332 			   port->cap_adap + ADP_DP_CS_2, 1);
2333 	if (ret)
2334 		return ret;
2335 
2336 	if (supported)
2337 		val |= ADP_DP_CS_2_CMMS;
2338 	else
2339 		val &= ~ADP_DP_CS_2_CMMS;
2340 
2341 	return tb_port_write(port, &val, TB_CFG_PORT,
2342 			     port->cap_adap + ADP_DP_CS_2, 1);
2343 }
2344 
2345 /**
2346  * usb4_dp_port_group_id() - Return Group ID assigned for the adapter
2347  * @port: DP IN adapter
2348  *
2349  * Reads bandwidth allocation Group ID from the DP IN adapter and
2350  * returns it. If the adapter does not support setting Group_ID
2351  * %-EOPNOTSUPP is returned.
2352  */
2353 int usb4_dp_port_group_id(struct tb_port *port)
2354 {
2355 	u32 val;
2356 	int ret;
2357 
2358 	if (!is_usb4_dpin(port))
2359 		return -EOPNOTSUPP;
2360 
2361 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2362 			   port->cap_adap + ADP_DP_CS_2, 1);
2363 	if (ret)
2364 		return ret;
2365 
2366 	return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT;
2367 }
2368 
2369 /**
2370  * usb4_dp_port_set_group_id() - Set adapter Group ID
2371  * @port: DP IN adapter
2372  * @group_id: Group ID for the adapter
2373  *
2374  * Sets bandwidth allocation mode Group ID for the DP IN adapter.
2375  * Returns %0 in case of success and negative errno otherwise.
2376  * Specifically returns %-EOPNOTSUPP if the adapter does not support
2377  * this.
2378  */
2379 int usb4_dp_port_set_group_id(struct tb_port *port, int group_id)
2380 {
2381 	u32 val;
2382 	int ret;
2383 
2384 	if (!is_usb4_dpin(port))
2385 		return -EOPNOTSUPP;
2386 
2387 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2388 			   port->cap_adap + ADP_DP_CS_2, 1);
2389 	if (ret)
2390 		return ret;
2391 
2392 	val &= ~ADP_DP_CS_2_GROUP_ID_MASK;
2393 	val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT;
2394 
2395 	return tb_port_write(port, &val, TB_CFG_PORT,
2396 			     port->cap_adap + ADP_DP_CS_2, 1);
2397 }
2398 
2399 /**
2400  * usb4_dp_port_nrd() - Read non-reduced rate and lanes
2401  * @port: DP IN adapter
2402  * @rate: Non-reduced rate in Mb/s is placed here
2403  * @lanes: Non-reduced lanes are placed here
2404  *
2405  * Reads the non-reduced rate and lanes from the DP IN adapter. Returns
2406  * %0 in success and negative errno otherwise. Specifically returns
2407  * %-EOPNOTSUPP if the adapter does not support this.
2408  */
2409 int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes)
2410 {
2411 	u32 val, tmp;
2412 	int ret;
2413 
2414 	if (!is_usb4_dpin(port))
2415 		return -EOPNOTSUPP;
2416 
2417 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2418 			   port->cap_adap + ADP_DP_CS_2, 1);
2419 	if (ret)
2420 		return ret;
2421 
2422 	tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT;
2423 	switch (tmp) {
2424 	case DP_COMMON_CAP_RATE_RBR:
2425 		*rate = 1620;
2426 		break;
2427 	case DP_COMMON_CAP_RATE_HBR:
2428 		*rate = 2700;
2429 		break;
2430 	case DP_COMMON_CAP_RATE_HBR2:
2431 		*rate = 5400;
2432 		break;
2433 	case DP_COMMON_CAP_RATE_HBR3:
2434 		*rate = 8100;
2435 		break;
2436 	}
2437 
2438 	tmp = val & ADP_DP_CS_2_NRD_MLC_MASK;
2439 	switch (tmp) {
2440 	case DP_COMMON_CAP_1_LANE:
2441 		*lanes = 1;
2442 		break;
2443 	case DP_COMMON_CAP_2_LANES:
2444 		*lanes = 2;
2445 		break;
2446 	case DP_COMMON_CAP_4_LANES:
2447 		*lanes = 4;
2448 		break;
2449 	}
2450 
2451 	return 0;
2452 }
2453 
2454 /**
2455  * usb4_dp_port_set_nrd() - Set non-reduced rate and lanes
2456  * @port: DP IN adapter
2457  * @rate: Non-reduced rate in Mb/s
2458  * @lanes: Non-reduced lanes
2459  *
2460  * Before the capabilities reduction this function can be used to set
2461  * the non-reduced values for the DP IN adapter. Returns %0 in success
2462  * and negative errno otherwise. If the adapter does not support this
2463  * %-EOPNOTSUPP is returned.
2464  */
2465 int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes)
2466 {
2467 	u32 val;
2468 	int ret;
2469 
2470 	if (!is_usb4_dpin(port))
2471 		return -EOPNOTSUPP;
2472 
2473 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2474 			   port->cap_adap + ADP_DP_CS_2, 1);
2475 	if (ret)
2476 		return ret;
2477 
2478 	val &= ~ADP_DP_CS_2_NRD_MLR_MASK;
2479 
2480 	switch (rate) {
2481 	case 1620:
2482 		break;
2483 	case 2700:
2484 		val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT)
2485 			& ADP_DP_CS_2_NRD_MLR_MASK;
2486 		break;
2487 	case 5400:
2488 		val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2489 			& ADP_DP_CS_2_NRD_MLR_MASK;
2490 		break;
2491 	case 8100:
2492 		val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2493 			& ADP_DP_CS_2_NRD_MLR_MASK;
2494 		break;
2495 	default:
2496 		return -EINVAL;
2497 	}
2498 
2499 	val &= ~ADP_DP_CS_2_NRD_MLC_MASK;
2500 
2501 	switch (lanes) {
2502 	case 1:
2503 		break;
2504 	case 2:
2505 		val |= DP_COMMON_CAP_2_LANES;
2506 		break;
2507 	case 4:
2508 		val |= DP_COMMON_CAP_4_LANES;
2509 		break;
2510 	default:
2511 		return -EINVAL;
2512 	}
2513 
2514 	return tb_port_write(port, &val, TB_CFG_PORT,
2515 			     port->cap_adap + ADP_DP_CS_2, 1);
2516 }
2517 
2518 /**
2519  * usb4_dp_port_granularity() - Return granularity for the bandwidth values
2520  * @port: DP IN adapter
2521  *
2522  * Reads the programmed granularity from @port. If the DP IN adapter does
2523  * not support bandwidth allocation mode returns %-EOPNOTSUPP and negative
2524  * errno in other error cases.
2525  */
2526 int usb4_dp_port_granularity(struct tb_port *port)
2527 {
2528 	u32 val;
2529 	int ret;
2530 
2531 	if (!is_usb4_dpin(port))
2532 		return -EOPNOTSUPP;
2533 
2534 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2535 			   port->cap_adap + ADP_DP_CS_2, 1);
2536 	if (ret)
2537 		return ret;
2538 
2539 	val &= ADP_DP_CS_2_GR_MASK;
2540 	val >>= ADP_DP_CS_2_GR_SHIFT;
2541 
2542 	switch (val) {
2543 	case ADP_DP_CS_2_GR_0_25G:
2544 		return 250;
2545 	case ADP_DP_CS_2_GR_0_5G:
2546 		return 500;
2547 	case ADP_DP_CS_2_GR_1G:
2548 		return 1000;
2549 	}
2550 
2551 	return -EINVAL;
2552 }
2553 
2554 /**
2555  * usb4_dp_port_set_granularity() - Set granularity for the bandwidth values
2556  * @port: DP IN adapter
2557  * @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250.
2558  *
2559  * Sets the granularity used with the estimated, allocated and requested
2560  * bandwidth. Returns %0 in success and negative errno otherwise. If the
2561  * adapter does not support this %-EOPNOTSUPP is returned.
2562  */
2563 int usb4_dp_port_set_granularity(struct tb_port *port, int granularity)
2564 {
2565 	u32 val;
2566 	int ret;
2567 
2568 	if (!is_usb4_dpin(port))
2569 		return -EOPNOTSUPP;
2570 
2571 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2572 			   port->cap_adap + ADP_DP_CS_2, 1);
2573 	if (ret)
2574 		return ret;
2575 
2576 	val &= ~ADP_DP_CS_2_GR_MASK;
2577 
2578 	switch (granularity) {
2579 	case 250:
2580 		val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT;
2581 		break;
2582 	case 500:
2583 		val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT;
2584 		break;
2585 	case 1000:
2586 		val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT;
2587 		break;
2588 	default:
2589 		return -EINVAL;
2590 	}
2591 
2592 	return tb_port_write(port, &val, TB_CFG_PORT,
2593 			     port->cap_adap + ADP_DP_CS_2, 1);
2594 }
2595 
2596 /**
2597  * usb4_dp_port_set_estimated_bw() - Set estimated bandwidth
2598  * @port: DP IN adapter
2599  * @bw: Estimated bandwidth in Mb/s.
2600  *
2601  * Sets the estimated bandwidth to @bw. Set the granularity by calling
2602  * usb4_dp_port_set_granularity() before calling this. The @bw is round
2603  * down to the closest granularity multiplier. Returns %0 in success
2604  * and negative errno otherwise. Specifically returns %-EOPNOTSUPP if
2605  * the adapter does not support this.
2606  */
2607 int usb4_dp_port_set_estimated_bw(struct tb_port *port, int bw)
2608 {
2609 	u32 val, granularity;
2610 	int ret;
2611 
2612 	if (!is_usb4_dpin(port))
2613 		return -EOPNOTSUPP;
2614 
2615 	ret = usb4_dp_port_granularity(port);
2616 	if (ret < 0)
2617 		return ret;
2618 	granularity = ret;
2619 
2620 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2621 			   port->cap_adap + ADP_DP_CS_2, 1);
2622 	if (ret)
2623 		return ret;
2624 
2625 	val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK;
2626 	val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT;
2627 
2628 	return tb_port_write(port, &val, TB_CFG_PORT,
2629 			     port->cap_adap + ADP_DP_CS_2, 1);
2630 }
2631 
2632 /**
2633  * usb4_dp_port_allocated_bw() - Return allocated bandwidth
2634  * @port: DP IN adapter
2635  *
2636  * Reads and returns allocated bandwidth for @port in Mb/s (taking into
2637  * account the programmed granularity). Returns negative errno in case
2638  * of error.
2639  */
2640 int usb4_dp_port_allocated_bw(struct tb_port *port)
2641 {
2642 	u32 val, granularity;
2643 	int ret;
2644 
2645 	if (!is_usb4_dpin(port))
2646 		return -EOPNOTSUPP;
2647 
2648 	ret = usb4_dp_port_granularity(port);
2649 	if (ret < 0)
2650 		return ret;
2651 	granularity = ret;
2652 
2653 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2654 			   port->cap_adap + DP_STATUS, 1);
2655 	if (ret)
2656 		return ret;
2657 
2658 	val &= DP_STATUS_ALLOCATED_BW_MASK;
2659 	val >>= DP_STATUS_ALLOCATED_BW_SHIFT;
2660 
2661 	return val * granularity;
2662 }
2663 
2664 static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack)
2665 {
2666 	u32 val;
2667 	int ret;
2668 
2669 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2670 			   port->cap_adap + ADP_DP_CS_2, 1);
2671 	if (ret)
2672 		return ret;
2673 
2674 	if (ack)
2675 		val |= ADP_DP_CS_2_CA;
2676 	else
2677 		val &= ~ADP_DP_CS_2_CA;
2678 
2679 	return tb_port_write(port, &val, TB_CFG_PORT,
2680 			     port->cap_adap + ADP_DP_CS_2, 1);
2681 }
2682 
2683 static inline int usb4_dp_port_set_cm_ack(struct tb_port *port)
2684 {
2685 	return __usb4_dp_port_set_cm_ack(port, true);
2686 }
2687 
2688 static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port,
2689 					      int timeout_msec)
2690 {
2691 	ktime_t end;
2692 	u32 val;
2693 	int ret;
2694 
2695 	ret = __usb4_dp_port_set_cm_ack(port, false);
2696 	if (ret)
2697 		return ret;
2698 
2699 	end = ktime_add_ms(ktime_get(), timeout_msec);
2700 	do {
2701 		ret = tb_port_read(port, &val, TB_CFG_PORT,
2702 				   port->cap_adap + ADP_DP_CS_8, 1);
2703 		if (ret)
2704 			return ret;
2705 
2706 		if (!(val & ADP_DP_CS_8_DR))
2707 			break;
2708 
2709 		usleep_range(50, 100);
2710 	} while (ktime_before(ktime_get(), end));
2711 
2712 	if (val & ADP_DP_CS_8_DR)
2713 		return -ETIMEDOUT;
2714 
2715 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2716 			   port->cap_adap + ADP_DP_CS_2, 1);
2717 	if (ret)
2718 		return ret;
2719 
2720 	val &= ~ADP_DP_CS_2_CA;
2721 	return tb_port_write(port, &val, TB_CFG_PORT,
2722 			     port->cap_adap + ADP_DP_CS_2, 1);
2723 }
2724 
2725 /**
2726  * usb4_dp_port_allocate_bw() - Set allocated bandwidth
2727  * @port: DP IN adapter
2728  * @bw: New allocated bandwidth in Mb/s
2729  *
2730  * Communicates the new allocated bandwidth with the DPCD (graphics
2731  * driver). Takes into account the programmed granularity. Returns %0 in
2732  * success and negative errno in case of error.
2733  */
2734 int usb4_dp_port_allocate_bw(struct tb_port *port, int bw)
2735 {
2736 	u32 val, granularity;
2737 	int ret;
2738 
2739 	if (!is_usb4_dpin(port))
2740 		return -EOPNOTSUPP;
2741 
2742 	ret = usb4_dp_port_granularity(port);
2743 	if (ret < 0)
2744 		return ret;
2745 	granularity = ret;
2746 
2747 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2748 			   port->cap_adap + DP_STATUS, 1);
2749 	if (ret)
2750 		return ret;
2751 
2752 	val &= ~DP_STATUS_ALLOCATED_BW_MASK;
2753 	val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT;
2754 
2755 	ret = tb_port_write(port, &val, TB_CFG_PORT,
2756 			    port->cap_adap + DP_STATUS, 1);
2757 	if (ret)
2758 		return ret;
2759 
2760 	ret = usb4_dp_port_set_cm_ack(port);
2761 	if (ret)
2762 		return ret;
2763 
2764 	return usb4_dp_port_wait_and_clear_cm_ack(port, 500);
2765 }
2766 
2767 /**
2768  * usb4_dp_port_requested_bw() - Read requested bandwidth
2769  * @port: DP IN adapter
2770  *
2771  * Reads the DPCD (graphics driver) requested bandwidth and returns it
2772  * in Mb/s. Takes the programmed granularity into account. In case of
2773  * error returns negative errno. Specifically returns %-EOPNOTSUPP if
2774  * the adapter does not support bandwidth allocation mode, and %ENODATA
2775  * if there is no active bandwidth request from the graphics driver.
2776  */
2777 int usb4_dp_port_requested_bw(struct tb_port *port)
2778 {
2779 	u32 val, granularity;
2780 	int ret;
2781 
2782 	if (!is_usb4_dpin(port))
2783 		return -EOPNOTSUPP;
2784 
2785 	ret = usb4_dp_port_granularity(port);
2786 	if (ret < 0)
2787 		return ret;
2788 	granularity = ret;
2789 
2790 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2791 			   port->cap_adap + ADP_DP_CS_8, 1);
2792 	if (ret)
2793 		return ret;
2794 
2795 	if (!(val & ADP_DP_CS_8_DR))
2796 		return -ENODATA;
2797 
2798 	return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity;
2799 }
2800