xref: /openbmc/linux/drivers/thunderbolt/usb4.c (revision 2b1b1267080fe822789d0845a58ebb452724736b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * USB4 specific functionality
4  *
5  * Copyright (C) 2019, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *	    Rajmohan Mani <rajmohan.mani@intel.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12 
13 #include "tb.h"
14 
15 #define USB4_DATA_DWORDS		16
16 #define USB4_DATA_RETRIES		3
17 
18 enum usb4_switch_op {
19 	USB4_SWITCH_OP_QUERY_DP_RESOURCE = 0x10,
20 	USB4_SWITCH_OP_ALLOC_DP_RESOURCE = 0x11,
21 	USB4_SWITCH_OP_DEALLOC_DP_RESOURCE = 0x12,
22 	USB4_SWITCH_OP_NVM_WRITE = 0x20,
23 	USB4_SWITCH_OP_NVM_AUTH = 0x21,
24 	USB4_SWITCH_OP_NVM_READ = 0x22,
25 	USB4_SWITCH_OP_NVM_SET_OFFSET = 0x23,
26 	USB4_SWITCH_OP_DROM_READ = 0x24,
27 	USB4_SWITCH_OP_NVM_SECTOR_SIZE = 0x25,
28 };
29 
30 #define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2)
31 #define USB4_NVM_READ_OFFSET_SHIFT	2
32 #define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24)
33 #define USB4_NVM_READ_LENGTH_SHIFT	24
34 
35 #define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK
36 #define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT
37 
38 #define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2)
39 #define USB4_DROM_ADDRESS_SHIFT		2
40 #define USB4_DROM_SIZE_MASK		GENMASK(19, 15)
41 #define USB4_DROM_SIZE_SHIFT		15
42 
43 #define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0)
44 
45 typedef int (*read_block_fn)(struct tb_switch *, unsigned int, void *, size_t);
46 typedef int (*write_block_fn)(struct tb_switch *, const void *, size_t);
47 
48 static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
49 				    u32 value, int timeout_msec)
50 {
51 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
52 
53 	do {
54 		u32 val;
55 		int ret;
56 
57 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
58 		if (ret)
59 			return ret;
60 
61 		if ((val & bit) == value)
62 			return 0;
63 
64 		usleep_range(50, 100);
65 	} while (ktime_before(ktime_get(), timeout));
66 
67 	return -ETIMEDOUT;
68 }
69 
70 static int usb4_switch_op_read_data(struct tb_switch *sw, void *data,
71 				    size_t dwords)
72 {
73 	if (dwords > USB4_DATA_DWORDS)
74 		return -EINVAL;
75 
76 	return tb_sw_read(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
77 }
78 
79 static int usb4_switch_op_write_data(struct tb_switch *sw, const void *data,
80 				     size_t dwords)
81 {
82 	if (dwords > USB4_DATA_DWORDS)
83 		return -EINVAL;
84 
85 	return tb_sw_write(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
86 }
87 
88 static int usb4_switch_op_read_metadata(struct tb_switch *sw, u32 *metadata)
89 {
90 	return tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
91 }
92 
93 static int usb4_switch_op_write_metadata(struct tb_switch *sw, u32 metadata)
94 {
95 	return tb_sw_write(sw, &metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
96 }
97 
98 static int usb4_switch_do_read_data(struct tb_switch *sw, u16 address,
99 	void *buf, size_t size, read_block_fn read_block)
100 {
101 	unsigned int retries = USB4_DATA_RETRIES;
102 	unsigned int offset;
103 
104 	offset = address & 3;
105 	address = address & ~3;
106 
107 	do {
108 		size_t nbytes = min_t(size_t, size, USB4_DATA_DWORDS * 4);
109 		unsigned int dwaddress, dwords;
110 		u8 data[USB4_DATA_DWORDS * 4];
111 		int ret;
112 
113 		dwaddress = address / 4;
114 		dwords = ALIGN(nbytes, 4) / 4;
115 
116 		ret = read_block(sw, dwaddress, data, dwords);
117 		if (ret) {
118 			if (ret == -ETIMEDOUT) {
119 				if (retries--)
120 					continue;
121 				ret = -EIO;
122 			}
123 			return ret;
124 		}
125 
126 		memcpy(buf, data + offset, nbytes);
127 
128 		size -= nbytes;
129 		address += nbytes;
130 		buf += nbytes;
131 	} while (size > 0);
132 
133 	return 0;
134 }
135 
136 static int usb4_switch_do_write_data(struct tb_switch *sw, u16 address,
137 	const void *buf, size_t size, write_block_fn write_next_block)
138 {
139 	unsigned int retries = USB4_DATA_RETRIES;
140 	unsigned int offset;
141 
142 	offset = address & 3;
143 	address = address & ~3;
144 
145 	do {
146 		u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4);
147 		u8 data[USB4_DATA_DWORDS * 4];
148 		int ret;
149 
150 		memcpy(data + offset, buf, nbytes);
151 
152 		ret = write_next_block(sw, data, nbytes / 4);
153 		if (ret) {
154 			if (ret == -ETIMEDOUT) {
155 				if (retries--)
156 					continue;
157 				ret = -EIO;
158 			}
159 			return ret;
160 		}
161 
162 		size -= nbytes;
163 		address += nbytes;
164 		buf += nbytes;
165 	} while (size > 0);
166 
167 	return 0;
168 }
169 
170 static int usb4_switch_op(struct tb_switch *sw, u16 opcode, u8 *status)
171 {
172 	u32 val;
173 	int ret;
174 
175 	val = opcode | ROUTER_CS_26_OV;
176 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
177 	if (ret)
178 		return ret;
179 
180 	ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
181 	if (ret)
182 		return ret;
183 
184 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
185 	if (ret)
186 		return ret;
187 
188 	if (val & ROUTER_CS_26_ONS)
189 		return -EOPNOTSUPP;
190 
191 	*status = (val & ROUTER_CS_26_STATUS_MASK) >> ROUTER_CS_26_STATUS_SHIFT;
192 	return 0;
193 }
194 
195 /**
196  * usb4_switch_setup() - Additional setup for USB4 device
197  * @sw: USB4 router to setup
198  *
199  * USB4 routers need additional settings in order to enable all the
200  * tunneling. This function enables USB and PCIe tunneling if it can be
201  * enabled (e.g the parent switch also supports them). If USB tunneling
202  * is not available for some reason (like that there is Thunderbolt 3
203  * switch upstream) then the internal xHCI controller is enabled
204  * instead.
205  */
206 int usb4_switch_setup(struct tb_switch *sw)
207 {
208 	struct tb_switch *parent;
209 	bool tbt3, xhci;
210 	u32 val = 0;
211 	int ret;
212 
213 	if (!tb_route(sw))
214 		return 0;
215 
216 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
217 	if (ret)
218 		return ret;
219 
220 	xhci = val & ROUTER_CS_6_HCI;
221 	tbt3 = !(val & ROUTER_CS_6_TNS);
222 
223 	tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
224 		  tbt3 ? "yes" : "no", xhci ? "yes" : "no");
225 
226 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
227 	if (ret)
228 		return ret;
229 
230 	parent = tb_switch_parent(sw);
231 
232 	if (tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
233 		val |= ROUTER_CS_5_UTO;
234 		xhci = false;
235 	}
236 
237 	/* Only enable PCIe tunneling if the parent router supports it */
238 	if (tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
239 		val |= ROUTER_CS_5_PTO;
240 		/*
241 		 * xHCI can be enabled if PCIe tunneling is supported
242 		 * and the parent does not have any USB3 dowstream
243 		 * adapters (so we cannot do USB 3.x tunneling).
244 		 */
245 		if (xhci)
246 			val |= ROUTER_CS_5_HCO;
247 	}
248 
249 	/* TBT3 supported by the CM */
250 	val |= ROUTER_CS_5_C3S;
251 	/* Tunneling configuration is ready now */
252 	val |= ROUTER_CS_5_CV;
253 
254 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
255 	if (ret)
256 		return ret;
257 
258 	return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
259 					ROUTER_CS_6_CR, 50);
260 }
261 
262 /**
263  * usb4_switch_read_uid() - Read UID from USB4 router
264  * @sw: USB4 router
265  * @uid: UID is stored here
266  *
267  * Reads 64-bit UID from USB4 router config space.
268  */
269 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
270 {
271 	return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
272 }
273 
274 static int usb4_switch_drom_read_block(struct tb_switch *sw,
275 				       unsigned int dwaddress, void *buf,
276 				       size_t dwords)
277 {
278 	u8 status = 0;
279 	u32 metadata;
280 	int ret;
281 
282 	metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
283 	metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
284 		USB4_DROM_ADDRESS_MASK;
285 
286 	ret = usb4_switch_op_write_metadata(sw, metadata);
287 	if (ret)
288 		return ret;
289 
290 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DROM_READ, &status);
291 	if (ret)
292 		return ret;
293 
294 	if (status)
295 		return -EIO;
296 
297 	return usb4_switch_op_read_data(sw, buf, dwords);
298 }
299 
300 /**
301  * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
302  * @sw: USB4 router
303  * @address: Byte address inside DROM to start reading
304  * @buf: Buffer where the DROM content is stored
305  * @size: Number of bytes to read from DROM
306  *
307  * Uses USB4 router operations to read router DROM. For devices this
308  * should always work but for hosts it may return %-EOPNOTSUPP in which
309  * case the host router does not have DROM.
310  */
311 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
312 			  size_t size)
313 {
314 	return usb4_switch_do_read_data(sw, address, buf, size,
315 					usb4_switch_drom_read_block);
316 }
317 
318 static int usb4_set_port_configured(struct tb_port *port, bool configured)
319 {
320 	int ret;
321 	u32 val;
322 
323 	ret = tb_port_read(port, &val, TB_CFG_PORT,
324 			   port->cap_usb4 + PORT_CS_19, 1);
325 	if (ret)
326 		return ret;
327 
328 	if (configured)
329 		val |= PORT_CS_19_PC;
330 	else
331 		val &= ~PORT_CS_19_PC;
332 
333 	return tb_port_write(port, &val, TB_CFG_PORT,
334 			     port->cap_usb4 + PORT_CS_19, 1);
335 }
336 
337 /**
338  * usb4_switch_configure_link() - Set upstream USB4 link configured
339  * @sw: USB4 router
340  *
341  * Sets the upstream USB4 link to be configured for power management
342  * purposes.
343  */
344 int usb4_switch_configure_link(struct tb_switch *sw)
345 {
346 	struct tb_port *up;
347 
348 	if (!tb_route(sw))
349 		return 0;
350 
351 	up = tb_upstream_port(sw);
352 	return usb4_set_port_configured(up, true);
353 }
354 
355 /**
356  * usb4_switch_unconfigure_link() - Un-set upstream USB4 link configuration
357  * @sw: USB4 router
358  *
359  * Reverse of usb4_switch_configure_link().
360  */
361 void usb4_switch_unconfigure_link(struct tb_switch *sw)
362 {
363 	struct tb_port *up;
364 
365 	if (sw->is_unplugged || !tb_route(sw))
366 		return;
367 
368 	up = tb_upstream_port(sw);
369 	usb4_set_port_configured(up, false);
370 }
371 
372 /**
373  * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
374  * @sw: USB4 router
375  *
376  * Checks whether conditions are met so that lane bonding can be
377  * established with the upstream router. Call only for device routers.
378  */
379 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
380 {
381 	struct tb_port *up;
382 	int ret;
383 	u32 val;
384 
385 	up = tb_upstream_port(sw);
386 	ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
387 	if (ret)
388 		return false;
389 
390 	return !!(val & PORT_CS_18_BE);
391 }
392 
393 /**
394  * usb4_switch_set_sleep() - Prepare the router to enter sleep
395  * @sw: USB4 router
396  *
397  * Enables wakes and sets sleep bit for the router. Returns when the
398  * router sleep ready bit has been asserted.
399  */
400 int usb4_switch_set_sleep(struct tb_switch *sw)
401 {
402 	int ret;
403 	u32 val;
404 
405 	/* Set sleep bit and wait for sleep ready to be asserted */
406 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
407 	if (ret)
408 		return ret;
409 
410 	val |= ROUTER_CS_5_SLP;
411 
412 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
413 	if (ret)
414 		return ret;
415 
416 	return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
417 					ROUTER_CS_6_SLPR, 500);
418 }
419 
420 /**
421  * usb4_switch_nvm_sector_size() - Return router NVM sector size
422  * @sw: USB4 router
423  *
424  * If the router supports NVM operations this function returns the NVM
425  * sector size in bytes. If NVM operations are not supported returns
426  * %-EOPNOTSUPP.
427  */
428 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
429 {
430 	u32 metadata;
431 	u8 status;
432 	int ret;
433 
434 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &status);
435 	if (ret)
436 		return ret;
437 
438 	if (status)
439 		return status == 0x2 ? -EOPNOTSUPP : -EIO;
440 
441 	ret = usb4_switch_op_read_metadata(sw, &metadata);
442 	if (ret)
443 		return ret;
444 
445 	return metadata & USB4_NVM_SECTOR_SIZE_MASK;
446 }
447 
448 static int usb4_switch_nvm_read_block(struct tb_switch *sw,
449 	unsigned int dwaddress, void *buf, size_t dwords)
450 {
451 	u8 status = 0;
452 	u32 metadata;
453 	int ret;
454 
455 	metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
456 		   USB4_NVM_READ_LENGTH_MASK;
457 	metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
458 		   USB4_NVM_READ_OFFSET_MASK;
459 
460 	ret = usb4_switch_op_write_metadata(sw, metadata);
461 	if (ret)
462 		return ret;
463 
464 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_READ, &status);
465 	if (ret)
466 		return ret;
467 
468 	if (status)
469 		return -EIO;
470 
471 	return usb4_switch_op_read_data(sw, buf, dwords);
472 }
473 
474 /**
475  * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
476  * @sw: USB4 router
477  * @address: Starting address in bytes
478  * @buf: Read data is placed here
479  * @size: How many bytes to read
480  *
481  * Reads NVM contents of the router. If NVM is not supported returns
482  * %-EOPNOTSUPP.
483  */
484 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
485 			 size_t size)
486 {
487 	return usb4_switch_do_read_data(sw, address, buf, size,
488 					usb4_switch_nvm_read_block);
489 }
490 
491 static int usb4_switch_nvm_set_offset(struct tb_switch *sw,
492 				      unsigned int address)
493 {
494 	u32 metadata, dwaddress;
495 	u8 status = 0;
496 	int ret;
497 
498 	dwaddress = address / 4;
499 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
500 		   USB4_NVM_SET_OFFSET_MASK;
501 
502 	ret = usb4_switch_op_write_metadata(sw, metadata);
503 	if (ret)
504 		return ret;
505 
506 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &status);
507 	if (ret)
508 		return ret;
509 
510 	return status ? -EIO : 0;
511 }
512 
513 static int usb4_switch_nvm_write_next_block(struct tb_switch *sw,
514 					    const void *buf, size_t dwords)
515 {
516 	u8 status;
517 	int ret;
518 
519 	ret = usb4_switch_op_write_data(sw, buf, dwords);
520 	if (ret)
521 		return ret;
522 
523 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_WRITE, &status);
524 	if (ret)
525 		return ret;
526 
527 	return status ? -EIO : 0;
528 }
529 
530 /**
531  * usb4_switch_nvm_write() - Write to the router NVM
532  * @sw: USB4 router
533  * @address: Start address where to write in bytes
534  * @buf: Pointer to the data to write
535  * @size: Size of @buf in bytes
536  *
537  * Writes @buf to the router NVM using USB4 router operations. If NVM
538  * write is not supported returns %-EOPNOTSUPP.
539  */
540 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
541 			  const void *buf, size_t size)
542 {
543 	int ret;
544 
545 	ret = usb4_switch_nvm_set_offset(sw, address);
546 	if (ret)
547 		return ret;
548 
549 	return usb4_switch_do_write_data(sw, address, buf, size,
550 					 usb4_switch_nvm_write_next_block);
551 }
552 
553 /**
554  * usb4_switch_nvm_authenticate() - Authenticate new NVM
555  * @sw: USB4 router
556  *
557  * After the new NVM has been written via usb4_switch_nvm_write(), this
558  * function triggers NVM authentication process. If the authentication
559  * is successful the router is power cycled and the new NVM starts
560  * running. In case of failure returns negative errno.
561  */
562 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
563 {
564 	u8 status = 0;
565 	int ret;
566 
567 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, &status);
568 	if (ret)
569 		return ret;
570 
571 	switch (status) {
572 	case 0x0:
573 		tb_sw_dbg(sw, "NVM authentication successful\n");
574 		return 0;
575 	case 0x1:
576 		return -EINVAL;
577 	case 0x2:
578 		return -EAGAIN;
579 	case 0x3:
580 		return -EOPNOTSUPP;
581 	default:
582 		return -EIO;
583 	}
584 }
585 
586 /**
587  * usb4_switch_query_dp_resource() - Query availability of DP IN resource
588  * @sw: USB4 router
589  * @in: DP IN adapter
590  *
591  * For DP tunneling this function can be used to query availability of
592  * DP IN resource. Returns true if the resource is available for DP
593  * tunneling, false otherwise.
594  */
595 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
596 {
597 	u8 status;
598 	int ret;
599 
600 	ret = usb4_switch_op_write_metadata(sw, in->port);
601 	if (ret)
602 		return false;
603 
604 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &status);
605 	/*
606 	 * If DP resource allocation is not supported assume it is
607 	 * always available.
608 	 */
609 	if (ret == -EOPNOTSUPP)
610 		return true;
611 	else if (ret)
612 		return false;
613 
614 	return !status;
615 }
616 
617 /**
618  * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
619  * @sw: USB4 router
620  * @in: DP IN adapter
621  *
622  * Allocates DP IN resource for DP tunneling using USB4 router
623  * operations. If the resource was allocated returns %0. Otherwise
624  * returns negative errno, in particular %-EBUSY if the resource is
625  * already allocated.
626  */
627 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
628 {
629 	u8 status;
630 	int ret;
631 
632 	ret = usb4_switch_op_write_metadata(sw, in->port);
633 	if (ret)
634 		return ret;
635 
636 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &status);
637 	if (ret == -EOPNOTSUPP)
638 		return 0;
639 	else if (ret)
640 		return ret;
641 
642 	return status ? -EBUSY : 0;
643 }
644 
645 /**
646  * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
647  * @sw: USB4 router
648  * @in: DP IN adapter
649  *
650  * Releases the previously allocated DP IN resource.
651  */
652 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
653 {
654 	u8 status;
655 	int ret;
656 
657 	ret = usb4_switch_op_write_metadata(sw, in->port);
658 	if (ret)
659 		return ret;
660 
661 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &status);
662 	if (ret == -EOPNOTSUPP)
663 		return 0;
664 	else if (ret)
665 		return ret;
666 
667 	return status ? -EIO : 0;
668 }
669 
670 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
671 {
672 	struct tb_port *p;
673 	int usb4_idx = 0;
674 
675 	/* Assume port is primary */
676 	tb_switch_for_each_port(sw, p) {
677 		if (!tb_port_is_null(p))
678 			continue;
679 		if (tb_is_upstream_port(p))
680 			continue;
681 		if (!p->link_nr) {
682 			if (p == port)
683 				break;
684 			usb4_idx++;
685 		}
686 	}
687 
688 	return usb4_idx;
689 }
690 
691 /**
692  * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
693  * @sw: USB4 router
694  * @port: USB4 port
695  *
696  * USB4 routers have direct mapping between USB4 ports and PCIe
697  * downstream adapters where the PCIe topology is extended. This
698  * function returns the corresponding downstream PCIe adapter or %NULL
699  * if no such mapping was possible.
700  */
701 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
702 					  const struct tb_port *port)
703 {
704 	int usb4_idx = usb4_port_idx(sw, port);
705 	struct tb_port *p;
706 	int pcie_idx = 0;
707 
708 	/* Find PCIe down port matching usb4_port */
709 	tb_switch_for_each_port(sw, p) {
710 		if (!tb_port_is_pcie_down(p))
711 			continue;
712 
713 		if (pcie_idx == usb4_idx && !tb_pci_port_is_enabled(p))
714 			return p;
715 
716 		pcie_idx++;
717 	}
718 
719 	return NULL;
720 }
721 
722 /**
723  * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
724  * @sw: USB4 router
725  * @port: USB4 port
726  *
727  * USB4 routers have direct mapping between USB4 ports and USB 3.x
728  * downstream adapters where the USB 3.x topology is extended. This
729  * function returns the corresponding downstream USB 3.x adapter or
730  * %NULL if no such mapping was possible.
731  */
732 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
733 					  const struct tb_port *port)
734 {
735 	int usb4_idx = usb4_port_idx(sw, port);
736 	struct tb_port *p;
737 	int usb_idx = 0;
738 
739 	/* Find USB3 down port matching usb4_port */
740 	tb_switch_for_each_port(sw, p) {
741 		if (!tb_port_is_usb3_down(p))
742 			continue;
743 
744 		if (usb_idx == usb4_idx && !tb_usb3_port_is_enabled(p))
745 			return p;
746 
747 		usb_idx++;
748 	}
749 
750 	return NULL;
751 }
752 
753 /**
754  * usb4_port_unlock() - Unlock USB4 downstream port
755  * @port: USB4 port to unlock
756  *
757  * Unlocks USB4 downstream port so that the connection manager can
758  * access the router below this port.
759  */
760 int usb4_port_unlock(struct tb_port *port)
761 {
762 	int ret;
763 	u32 val;
764 
765 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
766 	if (ret)
767 		return ret;
768 
769 	val &= ~ADP_CS_4_LCK;
770 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
771 }
772