xref: /openbmc/linux/drivers/thunderbolt/usb4.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * USB4 specific functionality
4  *
5  * Copyright (C) 2019, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *	    Rajmohan Mani <rajmohan.mani@intel.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12 
13 #include "tb.h"
14 
15 #define USB4_DATA_DWORDS		16
16 #define USB4_DATA_RETRIES		3
17 
18 enum usb4_switch_op {
19 	USB4_SWITCH_OP_QUERY_DP_RESOURCE = 0x10,
20 	USB4_SWITCH_OP_ALLOC_DP_RESOURCE = 0x11,
21 	USB4_SWITCH_OP_DEALLOC_DP_RESOURCE = 0x12,
22 	USB4_SWITCH_OP_NVM_WRITE = 0x20,
23 	USB4_SWITCH_OP_NVM_AUTH = 0x21,
24 	USB4_SWITCH_OP_NVM_READ = 0x22,
25 	USB4_SWITCH_OP_NVM_SET_OFFSET = 0x23,
26 	USB4_SWITCH_OP_DROM_READ = 0x24,
27 	USB4_SWITCH_OP_NVM_SECTOR_SIZE = 0x25,
28 };
29 
30 #define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2)
31 #define USB4_NVM_READ_OFFSET_SHIFT	2
32 #define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24)
33 #define USB4_NVM_READ_LENGTH_SHIFT	24
34 
35 #define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK
36 #define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT
37 
38 #define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2)
39 #define USB4_DROM_ADDRESS_SHIFT		2
40 #define USB4_DROM_SIZE_MASK		GENMASK(19, 15)
41 #define USB4_DROM_SIZE_SHIFT		15
42 
43 #define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0)
44 
45 typedef int (*read_block_fn)(struct tb_switch *, unsigned int, void *, size_t);
46 typedef int (*write_block_fn)(struct tb_switch *, const void *, size_t);
47 
48 static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
49 				    u32 value, int timeout_msec)
50 {
51 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
52 
53 	do {
54 		u32 val;
55 		int ret;
56 
57 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
58 		if (ret)
59 			return ret;
60 
61 		if ((val & bit) == value)
62 			return 0;
63 
64 		usleep_range(50, 100);
65 	} while (ktime_before(ktime_get(), timeout));
66 
67 	return -ETIMEDOUT;
68 }
69 
70 static int usb4_switch_op_read_data(struct tb_switch *sw, void *data,
71 				    size_t dwords)
72 {
73 	if (dwords > USB4_DATA_DWORDS)
74 		return -EINVAL;
75 
76 	return tb_sw_read(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
77 }
78 
79 static int usb4_switch_op_write_data(struct tb_switch *sw, const void *data,
80 				     size_t dwords)
81 {
82 	if (dwords > USB4_DATA_DWORDS)
83 		return -EINVAL;
84 
85 	return tb_sw_write(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
86 }
87 
88 static int usb4_switch_op_read_metadata(struct tb_switch *sw, u32 *metadata)
89 {
90 	return tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
91 }
92 
93 static int usb4_switch_op_write_metadata(struct tb_switch *sw, u32 metadata)
94 {
95 	return tb_sw_write(sw, &metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
96 }
97 
98 static int usb4_switch_do_read_data(struct tb_switch *sw, u16 address,
99 	void *buf, size_t size, read_block_fn read_block)
100 {
101 	unsigned int retries = USB4_DATA_RETRIES;
102 	unsigned int offset;
103 
104 	offset = address & 3;
105 	address = address & ~3;
106 
107 	do {
108 		size_t nbytes = min_t(size_t, size, USB4_DATA_DWORDS * 4);
109 		unsigned int dwaddress, dwords;
110 		u8 data[USB4_DATA_DWORDS * 4];
111 		int ret;
112 
113 		dwaddress = address / 4;
114 		dwords = ALIGN(nbytes, 4) / 4;
115 
116 		ret = read_block(sw, dwaddress, data, dwords);
117 		if (ret) {
118 			if (ret == -ETIMEDOUT) {
119 				if (retries--)
120 					continue;
121 				ret = -EIO;
122 			}
123 			return ret;
124 		}
125 
126 		memcpy(buf, data + offset, nbytes);
127 
128 		size -= nbytes;
129 		address += nbytes;
130 		buf += nbytes;
131 	} while (size > 0);
132 
133 	return 0;
134 }
135 
136 static int usb4_switch_do_write_data(struct tb_switch *sw, u16 address,
137 	const void *buf, size_t size, write_block_fn write_next_block)
138 {
139 	unsigned int retries = USB4_DATA_RETRIES;
140 	unsigned int offset;
141 
142 	offset = address & 3;
143 	address = address & ~3;
144 
145 	do {
146 		u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4);
147 		u8 data[USB4_DATA_DWORDS * 4];
148 		int ret;
149 
150 		memcpy(data + offset, buf, nbytes);
151 
152 		ret = write_next_block(sw, data, nbytes / 4);
153 		if (ret) {
154 			if (ret == -ETIMEDOUT) {
155 				if (retries--)
156 					continue;
157 				ret = -EIO;
158 			}
159 			return ret;
160 		}
161 
162 		size -= nbytes;
163 		address += nbytes;
164 		buf += nbytes;
165 	} while (size > 0);
166 
167 	return 0;
168 }
169 
170 static int usb4_switch_op(struct tb_switch *sw, u16 opcode, u8 *status)
171 {
172 	u32 val;
173 	int ret;
174 
175 	val = opcode | ROUTER_CS_26_OV;
176 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
177 	if (ret)
178 		return ret;
179 
180 	ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
181 	if (ret)
182 		return ret;
183 
184 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
185 	if (val & ROUTER_CS_26_ONS)
186 		return -EOPNOTSUPP;
187 
188 	*status = (val & ROUTER_CS_26_STATUS_MASK) >> ROUTER_CS_26_STATUS_SHIFT;
189 	return 0;
190 }
191 
192 /**
193  * usb4_switch_setup() - Additional setup for USB4 device
194  * @sw: USB4 router to setup
195  *
196  * USB4 routers need additional settings in order to enable all the
197  * tunneling. This function enables USB and PCIe tunneling if it can be
198  * enabled (e.g the parent switch also supports them). If USB tunneling
199  * is not available for some reason (like that there is Thunderbolt 3
200  * switch upstream) then the internal xHCI controller is enabled
201  * instead.
202  */
203 int usb4_switch_setup(struct tb_switch *sw)
204 {
205 	struct tb_switch *parent;
206 	bool tbt3, xhci;
207 	u32 val = 0;
208 	int ret;
209 
210 	if (!tb_route(sw))
211 		return 0;
212 
213 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
214 	if (ret)
215 		return ret;
216 
217 	xhci = val & ROUTER_CS_6_HCI;
218 	tbt3 = !(val & ROUTER_CS_6_TNS);
219 
220 	tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
221 		  tbt3 ? "yes" : "no", xhci ? "yes" : "no");
222 
223 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
224 	if (ret)
225 		return ret;
226 
227 	parent = tb_switch_parent(sw);
228 
229 	if (tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
230 		val |= ROUTER_CS_5_UTO;
231 		xhci = false;
232 	}
233 
234 	/* Only enable PCIe tunneling if the parent router supports it */
235 	if (tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
236 		val |= ROUTER_CS_5_PTO;
237 		/*
238 		 * xHCI can be enabled if PCIe tunneling is supported
239 		 * and the parent does not have any USB3 dowstream
240 		 * adapters (so we cannot do USB 3.x tunneling).
241 		 */
242 		if (xhci)
243 			val |= ROUTER_CS_5_HCO;
244 	}
245 
246 	/* TBT3 supported by the CM */
247 	val |= ROUTER_CS_5_C3S;
248 	/* Tunneling configuration is ready now */
249 	val |= ROUTER_CS_5_CV;
250 
251 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
252 	if (ret)
253 		return ret;
254 
255 	return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
256 					ROUTER_CS_6_CR, 50);
257 }
258 
259 /**
260  * usb4_switch_read_uid() - Read UID from USB4 router
261  * @sw: USB4 router
262  *
263  * Reads 64-bit UID from USB4 router config space.
264  */
265 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
266 {
267 	return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
268 }
269 
270 static int usb4_switch_drom_read_block(struct tb_switch *sw,
271 				       unsigned int dwaddress, void *buf,
272 				       size_t dwords)
273 {
274 	u8 status = 0;
275 	u32 metadata;
276 	int ret;
277 
278 	metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
279 	metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
280 		USB4_DROM_ADDRESS_MASK;
281 
282 	ret = usb4_switch_op_write_metadata(sw, metadata);
283 	if (ret)
284 		return ret;
285 
286 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DROM_READ, &status);
287 	if (ret)
288 		return ret;
289 
290 	if (status)
291 		return -EIO;
292 
293 	return usb4_switch_op_read_data(sw, buf, dwords);
294 }
295 
296 /**
297  * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
298  * @sw: USB4 router
299  *
300  * Uses USB4 router operations to read router DROM. For devices this
301  * should always work but for hosts it may return %-EOPNOTSUPP in which
302  * case the host router does not have DROM.
303  */
304 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
305 			  size_t size)
306 {
307 	return usb4_switch_do_read_data(sw, address, buf, size,
308 					usb4_switch_drom_read_block);
309 }
310 
311 static int usb4_set_port_configured(struct tb_port *port, bool configured)
312 {
313 	int ret;
314 	u32 val;
315 
316 	ret = tb_port_read(port, &val, TB_CFG_PORT,
317 			   port->cap_usb4 + PORT_CS_19, 1);
318 	if (ret)
319 		return ret;
320 
321 	if (configured)
322 		val |= PORT_CS_19_PC;
323 	else
324 		val &= ~PORT_CS_19_PC;
325 
326 	return tb_port_write(port, &val, TB_CFG_PORT,
327 			     port->cap_usb4 + PORT_CS_19, 1);
328 }
329 
330 /**
331  * usb4_switch_configure_link() - Set upstream USB4 link configured
332  * @sw: USB4 router
333  *
334  * Sets the upstream USB4 link to be configured for power management
335  * purposes.
336  */
337 int usb4_switch_configure_link(struct tb_switch *sw)
338 {
339 	struct tb_port *up;
340 
341 	if (!tb_route(sw))
342 		return 0;
343 
344 	up = tb_upstream_port(sw);
345 	return usb4_set_port_configured(up, true);
346 }
347 
348 /**
349  * usb4_switch_unconfigure_link() - Un-set upstream USB4 link configuration
350  * @sw: USB4 router
351  *
352  * Reverse of usb4_switch_configure_link().
353  */
354 void usb4_switch_unconfigure_link(struct tb_switch *sw)
355 {
356 	struct tb_port *up;
357 
358 	if (sw->is_unplugged || !tb_route(sw))
359 		return;
360 
361 	up = tb_upstream_port(sw);
362 	usb4_set_port_configured(up, false);
363 }
364 
365 /**
366  * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
367  * @sw: USB4 router
368  *
369  * Checks whether conditions are met so that lane bonding can be
370  * established with the upstream router. Call only for device routers.
371  */
372 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
373 {
374 	struct tb_port *up;
375 	int ret;
376 	u32 val;
377 
378 	up = tb_upstream_port(sw);
379 	ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
380 	if (ret)
381 		return false;
382 
383 	return !!(val & PORT_CS_18_BE);
384 }
385 
386 /**
387  * usb4_switch_set_sleep() - Prepare the router to enter sleep
388  * @sw: USB4 router
389  *
390  * Enables wakes and sets sleep bit for the router. Returns when the
391  * router sleep ready bit has been asserted.
392  */
393 int usb4_switch_set_sleep(struct tb_switch *sw)
394 {
395 	int ret;
396 	u32 val;
397 
398 	/* Set sleep bit and wait for sleep ready to be asserted */
399 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
400 	if (ret)
401 		return ret;
402 
403 	val |= ROUTER_CS_5_SLP;
404 
405 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
406 	if (ret)
407 		return ret;
408 
409 	return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
410 					ROUTER_CS_6_SLPR, 500);
411 }
412 
413 /**
414  * usb4_switch_nvm_sector_size() - Return router NVM sector size
415  * @sw: USB4 router
416  *
417  * If the router supports NVM operations this function returns the NVM
418  * sector size in bytes. If NVM operations are not supported returns
419  * %-EOPNOTSUPP.
420  */
421 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
422 {
423 	u32 metadata;
424 	u8 status;
425 	int ret;
426 
427 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &status);
428 	if (ret)
429 		return ret;
430 
431 	if (status)
432 		return status == 0x2 ? -EOPNOTSUPP : -EIO;
433 
434 	ret = usb4_switch_op_read_metadata(sw, &metadata);
435 	if (ret)
436 		return ret;
437 
438 	return metadata & USB4_NVM_SECTOR_SIZE_MASK;
439 }
440 
441 static int usb4_switch_nvm_read_block(struct tb_switch *sw,
442 	unsigned int dwaddress, void *buf, size_t dwords)
443 {
444 	u8 status = 0;
445 	u32 metadata;
446 	int ret;
447 
448 	metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
449 		   USB4_NVM_READ_LENGTH_MASK;
450 	metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
451 		   USB4_NVM_READ_OFFSET_MASK;
452 
453 	ret = usb4_switch_op_write_metadata(sw, metadata);
454 	if (ret)
455 		return ret;
456 
457 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_READ, &status);
458 	if (ret)
459 		return ret;
460 
461 	if (status)
462 		return -EIO;
463 
464 	return usb4_switch_op_read_data(sw, buf, dwords);
465 }
466 
467 /**
468  * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
469  * @sw: USB4 router
470  * @address: Starting address in bytes
471  * @buf: Read data is placed here
472  * @size: How many bytes to read
473  *
474  * Reads NVM contents of the router. If NVM is not supported returns
475  * %-EOPNOTSUPP.
476  */
477 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
478 			 size_t size)
479 {
480 	return usb4_switch_do_read_data(sw, address, buf, size,
481 					usb4_switch_nvm_read_block);
482 }
483 
484 static int usb4_switch_nvm_set_offset(struct tb_switch *sw,
485 				      unsigned int address)
486 {
487 	u32 metadata, dwaddress;
488 	u8 status = 0;
489 	int ret;
490 
491 	dwaddress = address / 4;
492 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
493 		   USB4_NVM_SET_OFFSET_MASK;
494 
495 	ret = usb4_switch_op_write_metadata(sw, metadata);
496 	if (ret)
497 		return ret;
498 
499 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &status);
500 	if (ret)
501 		return ret;
502 
503 	return status ? -EIO : 0;
504 }
505 
506 static int usb4_switch_nvm_write_next_block(struct tb_switch *sw,
507 					    const void *buf, size_t dwords)
508 {
509 	u8 status;
510 	int ret;
511 
512 	ret = usb4_switch_op_write_data(sw, buf, dwords);
513 	if (ret)
514 		return ret;
515 
516 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_WRITE, &status);
517 	if (ret)
518 		return ret;
519 
520 	return status ? -EIO : 0;
521 }
522 
523 /**
524  * usb4_switch_nvm_write() - Write to the router NVM
525  * @sw: USB4 router
526  * @address: Start address where to write in bytes
527  * @buf: Pointer to the data to write
528  * @size: Size of @buf in bytes
529  *
530  * Writes @buf to the router NVM using USB4 router operations. If NVM
531  * write is not supported returns %-EOPNOTSUPP.
532  */
533 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
534 			  const void *buf, size_t size)
535 {
536 	int ret;
537 
538 	ret = usb4_switch_nvm_set_offset(sw, address);
539 	if (ret)
540 		return ret;
541 
542 	return usb4_switch_do_write_data(sw, address, buf, size,
543 					 usb4_switch_nvm_write_next_block);
544 }
545 
546 /**
547  * usb4_switch_nvm_authenticate() - Authenticate new NVM
548  * @sw: USB4 router
549  *
550  * After the new NVM has been written via usb4_switch_nvm_write(), this
551  * function triggers NVM authentication process. If the authentication
552  * is successful the router is power cycled and the new NVM starts
553  * running. In case of failure returns negative errno.
554  */
555 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
556 {
557 	u8 status = 0;
558 	int ret;
559 
560 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, &status);
561 	if (ret)
562 		return ret;
563 
564 	switch (status) {
565 	case 0x0:
566 		tb_sw_dbg(sw, "NVM authentication successful\n");
567 		return 0;
568 	case 0x1:
569 		return -EINVAL;
570 	case 0x2:
571 		return -EAGAIN;
572 	case 0x3:
573 		return -EOPNOTSUPP;
574 	default:
575 		return -EIO;
576 	}
577 }
578 
579 /**
580  * usb4_switch_query_dp_resource() - Query availability of DP IN resource
581  * @sw: USB4 router
582  * @in: DP IN adapter
583  *
584  * For DP tunneling this function can be used to query availability of
585  * DP IN resource. Returns true if the resource is available for DP
586  * tunneling, false otherwise.
587  */
588 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
589 {
590 	u8 status;
591 	int ret;
592 
593 	ret = usb4_switch_op_write_metadata(sw, in->port);
594 	if (ret)
595 		return false;
596 
597 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &status);
598 	/*
599 	 * If DP resource allocation is not supported assume it is
600 	 * always available.
601 	 */
602 	if (ret == -EOPNOTSUPP)
603 		return true;
604 	else if (ret)
605 		return false;
606 
607 	return !status;
608 }
609 
610 /**
611  * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
612  * @sw: USB4 router
613  * @in: DP IN adapter
614  *
615  * Allocates DP IN resource for DP tunneling using USB4 router
616  * operations. If the resource was allocated returns %0. Otherwise
617  * returns negative errno, in particular %-EBUSY if the resource is
618  * already allocated.
619  */
620 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
621 {
622 	u8 status;
623 	int ret;
624 
625 	ret = usb4_switch_op_write_metadata(sw, in->port);
626 	if (ret)
627 		return ret;
628 
629 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &status);
630 	if (ret == -EOPNOTSUPP)
631 		return 0;
632 	else if (ret)
633 		return ret;
634 
635 	return status ? -EBUSY : 0;
636 }
637 
638 /**
639  * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
640  * @sw: USB4 router
641  * @in: DP IN adapter
642  *
643  * Releases the previously allocated DP IN resource.
644  */
645 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
646 {
647 	u8 status;
648 	int ret;
649 
650 	ret = usb4_switch_op_write_metadata(sw, in->port);
651 	if (ret)
652 		return ret;
653 
654 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &status);
655 	if (ret == -EOPNOTSUPP)
656 		return 0;
657 	else if (ret)
658 		return ret;
659 
660 	return status ? -EIO : 0;
661 }
662 
663 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
664 {
665 	struct tb_port *p;
666 	int usb4_idx = 0;
667 
668 	/* Assume port is primary */
669 	tb_switch_for_each_port(sw, p) {
670 		if (!tb_port_is_null(p))
671 			continue;
672 		if (tb_is_upstream_port(p))
673 			continue;
674 		if (!p->link_nr) {
675 			if (p == port)
676 				break;
677 			usb4_idx++;
678 		}
679 	}
680 
681 	return usb4_idx;
682 }
683 
684 /**
685  * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
686  * @sw: USB4 router
687  * @port: USB4 port
688  *
689  * USB4 routers have direct mapping between USB4 ports and PCIe
690  * downstream adapters where the PCIe topology is extended. This
691  * function returns the corresponding downstream PCIe adapter or %NULL
692  * if no such mapping was possible.
693  */
694 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
695 					  const struct tb_port *port)
696 {
697 	int usb4_idx = usb4_port_idx(sw, port);
698 	struct tb_port *p;
699 	int pcie_idx = 0;
700 
701 	/* Find PCIe down port matching usb4_port */
702 	tb_switch_for_each_port(sw, p) {
703 		if (!tb_port_is_pcie_down(p))
704 			continue;
705 
706 		if (pcie_idx == usb4_idx && !tb_pci_port_is_enabled(p))
707 			return p;
708 
709 		pcie_idx++;
710 	}
711 
712 	return NULL;
713 }
714 
715 /**
716  * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
717  * @sw: USB4 router
718  * @port: USB4 port
719  *
720  * USB4 routers have direct mapping between USB4 ports and USB 3.x
721  * downstream adapters where the USB 3.x topology is extended. This
722  * function returns the corresponding downstream USB 3.x adapter or
723  * %NULL if no such mapping was possible.
724  */
725 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
726 					  const struct tb_port *port)
727 {
728 	int usb4_idx = usb4_port_idx(sw, port);
729 	struct tb_port *p;
730 	int usb_idx = 0;
731 
732 	/* Find USB3 down port matching usb4_port */
733 	tb_switch_for_each_port(sw, p) {
734 		if (!tb_port_is_usb3_down(p))
735 			continue;
736 
737 		if (usb_idx == usb4_idx && !tb_usb3_port_is_enabled(p))
738 			return p;
739 
740 		usb_idx++;
741 	}
742 
743 	return NULL;
744 }
745 
746 /**
747  * usb4_port_unlock() - Unlock USB4 downstream port
748  * @port: USB4 port to unlock
749  *
750  * Unlocks USB4 downstream port so that the connection manager can
751  * access the router below this port.
752  */
753 int usb4_port_unlock(struct tb_port *port)
754 {
755 	int ret;
756 	u32 val;
757 
758 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
759 	if (ret)
760 		return ret;
761 
762 	val &= ~ADP_CS_4_LCK;
763 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
764 }
765