xref: /openbmc/linux/drivers/thunderbolt/usb4.c (revision 0e3e0c93)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * USB4 specific functionality
4  *
5  * Copyright (C) 2019, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *	    Rajmohan Mani <rajmohan.mani@intel.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12 
13 #include "sb_regs.h"
14 #include "tb.h"
15 
16 #define USB4_DATA_DWORDS		16
17 #define USB4_DATA_RETRIES		3
18 
19 enum usb4_sb_target {
20 	USB4_SB_TARGET_ROUTER,
21 	USB4_SB_TARGET_PARTNER,
22 	USB4_SB_TARGET_RETIMER,
23 };
24 
25 #define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2)
26 #define USB4_NVM_READ_OFFSET_SHIFT	2
27 #define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24)
28 #define USB4_NVM_READ_LENGTH_SHIFT	24
29 
30 #define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK
31 #define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT
32 
33 #define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2)
34 #define USB4_DROM_ADDRESS_SHIFT		2
35 #define USB4_DROM_SIZE_MASK		GENMASK(19, 15)
36 #define USB4_DROM_SIZE_SHIFT		15
37 
38 #define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0)
39 
40 typedef int (*read_block_fn)(void *, unsigned int, void *, size_t);
41 typedef int (*write_block_fn)(void *, const void *, size_t);
42 
43 static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
44 				    u32 value, int timeout_msec)
45 {
46 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
47 
48 	do {
49 		u32 val;
50 		int ret;
51 
52 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
53 		if (ret)
54 			return ret;
55 
56 		if ((val & bit) == value)
57 			return 0;
58 
59 		usleep_range(50, 100);
60 	} while (ktime_before(ktime_get(), timeout));
61 
62 	return -ETIMEDOUT;
63 }
64 
65 static int usb4_do_read_data(u16 address, void *buf, size_t size,
66 			     read_block_fn read_block, void *read_block_data)
67 {
68 	unsigned int retries = USB4_DATA_RETRIES;
69 	unsigned int offset;
70 
71 	do {
72 		unsigned int dwaddress, dwords;
73 		u8 data[USB4_DATA_DWORDS * 4];
74 		size_t nbytes;
75 		int ret;
76 
77 		offset = address & 3;
78 		nbytes = min_t(size_t, size + offset, USB4_DATA_DWORDS * 4);
79 
80 		dwaddress = address / 4;
81 		dwords = ALIGN(nbytes, 4) / 4;
82 
83 		ret = read_block(read_block_data, dwaddress, data, dwords);
84 		if (ret) {
85 			if (ret != -ENODEV && retries--)
86 				continue;
87 			return ret;
88 		}
89 
90 		nbytes -= offset;
91 		memcpy(buf, data + offset, nbytes);
92 
93 		size -= nbytes;
94 		address += nbytes;
95 		buf += nbytes;
96 	} while (size > 0);
97 
98 	return 0;
99 }
100 
101 static int usb4_do_write_data(unsigned int address, const void *buf, size_t size,
102 	write_block_fn write_next_block, void *write_block_data)
103 {
104 	unsigned int retries = USB4_DATA_RETRIES;
105 	unsigned int offset;
106 
107 	offset = address & 3;
108 	address = address & ~3;
109 
110 	do {
111 		u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4);
112 		u8 data[USB4_DATA_DWORDS * 4];
113 		int ret;
114 
115 		memcpy(data + offset, buf, nbytes);
116 
117 		ret = write_next_block(write_block_data, data, nbytes / 4);
118 		if (ret) {
119 			if (ret == -ETIMEDOUT) {
120 				if (retries--)
121 					continue;
122 				ret = -EIO;
123 			}
124 			return ret;
125 		}
126 
127 		size -= nbytes;
128 		address += nbytes;
129 		buf += nbytes;
130 	} while (size > 0);
131 
132 	return 0;
133 }
134 
135 static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
136 				 u32 *metadata, u8 *status,
137 				 const void *tx_data, size_t tx_dwords,
138 				 void *rx_data, size_t rx_dwords)
139 {
140 	u32 val;
141 	int ret;
142 
143 	if (metadata) {
144 		ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
145 		if (ret)
146 			return ret;
147 	}
148 	if (tx_dwords) {
149 		ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
150 				  tx_dwords);
151 		if (ret)
152 			return ret;
153 	}
154 
155 	val = opcode | ROUTER_CS_26_OV;
156 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
157 	if (ret)
158 		return ret;
159 
160 	ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
161 	if (ret)
162 		return ret;
163 
164 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
165 	if (ret)
166 		return ret;
167 
168 	if (val & ROUTER_CS_26_ONS)
169 		return -EOPNOTSUPP;
170 
171 	if (status)
172 		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
173 			ROUTER_CS_26_STATUS_SHIFT;
174 
175 	if (metadata) {
176 		ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
177 		if (ret)
178 			return ret;
179 	}
180 	if (rx_dwords) {
181 		ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
182 				 rx_dwords);
183 		if (ret)
184 			return ret;
185 	}
186 
187 	return 0;
188 }
189 
190 static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
191 			    u8 *status, const void *tx_data, size_t tx_dwords,
192 			    void *rx_data, size_t rx_dwords)
193 {
194 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
195 
196 	if (tx_dwords > USB4_DATA_DWORDS || rx_dwords > USB4_DATA_DWORDS)
197 		return -EINVAL;
198 
199 	/*
200 	 * If the connection manager implementation provides USB4 router
201 	 * operation proxy callback, call it here instead of running the
202 	 * operation natively.
203 	 */
204 	if (cm_ops->usb4_switch_op) {
205 		int ret;
206 
207 		ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
208 					     tx_data, tx_dwords, rx_data,
209 					     rx_dwords);
210 		if (ret != -EOPNOTSUPP)
211 			return ret;
212 
213 		/*
214 		 * If the proxy was not supported then run the native
215 		 * router operation instead.
216 		 */
217 	}
218 
219 	return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
220 				     tx_dwords, rx_data, rx_dwords);
221 }
222 
223 static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
224 				 u32 *metadata, u8 *status)
225 {
226 	return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
227 }
228 
229 static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
230 				      u32 *metadata, u8 *status,
231 				      const void *tx_data, size_t tx_dwords,
232 				      void *rx_data, size_t rx_dwords)
233 {
234 	return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
235 				tx_dwords, rx_data, rx_dwords);
236 }
237 
238 static void usb4_switch_check_wakes(struct tb_switch *sw)
239 {
240 	struct tb_port *port;
241 	bool wakeup = false;
242 	u32 val;
243 
244 	if (!device_may_wakeup(&sw->dev))
245 		return;
246 
247 	if (tb_route(sw)) {
248 		if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
249 			return;
250 
251 		tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
252 			  (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
253 			  (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
254 
255 		wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
256 	}
257 
258 	/* Check for any connected downstream ports for USB4 wake */
259 	tb_switch_for_each_port(sw, port) {
260 		if (!tb_port_has_remote(port))
261 			continue;
262 
263 		if (tb_port_read(port, &val, TB_CFG_PORT,
264 				 port->cap_usb4 + PORT_CS_18, 1))
265 			break;
266 
267 		tb_port_dbg(port, "USB4 wake: %s\n",
268 			    (val & PORT_CS_18_WOU4S) ? "yes" : "no");
269 
270 		if (val & PORT_CS_18_WOU4S)
271 			wakeup = true;
272 	}
273 
274 	if (wakeup)
275 		pm_wakeup_event(&sw->dev, 0);
276 }
277 
278 static bool link_is_usb4(struct tb_port *port)
279 {
280 	u32 val;
281 
282 	if (!port->cap_usb4)
283 		return false;
284 
285 	if (tb_port_read(port, &val, TB_CFG_PORT,
286 			 port->cap_usb4 + PORT_CS_18, 1))
287 		return false;
288 
289 	return !(val & PORT_CS_18_TCM);
290 }
291 
292 /**
293  * usb4_switch_setup() - Additional setup for USB4 device
294  * @sw: USB4 router to setup
295  *
296  * USB4 routers need additional settings in order to enable all the
297  * tunneling. This function enables USB and PCIe tunneling if it can be
298  * enabled (e.g the parent switch also supports them). If USB tunneling
299  * is not available for some reason (like that there is Thunderbolt 3
300  * switch upstream) then the internal xHCI controller is enabled
301  * instead.
302  */
303 int usb4_switch_setup(struct tb_switch *sw)
304 {
305 	struct tb_port *downstream_port;
306 	struct tb_switch *parent;
307 	bool tbt3, xhci;
308 	u32 val = 0;
309 	int ret;
310 
311 	usb4_switch_check_wakes(sw);
312 
313 	if (!tb_route(sw))
314 		return 0;
315 
316 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
317 	if (ret)
318 		return ret;
319 
320 	parent = tb_switch_parent(sw);
321 	downstream_port = tb_port_at(tb_route(sw), parent);
322 	sw->link_usb4 = link_is_usb4(downstream_port);
323 	tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT3");
324 
325 	xhci = val & ROUTER_CS_6_HCI;
326 	tbt3 = !(val & ROUTER_CS_6_TNS);
327 
328 	tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
329 		  tbt3 ? "yes" : "no", xhci ? "yes" : "no");
330 
331 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
332 	if (ret)
333 		return ret;
334 
335 	if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
336 	    tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
337 		val |= ROUTER_CS_5_UTO;
338 		xhci = false;
339 	}
340 
341 	/*
342 	 * Only enable PCIe tunneling if the parent router supports it
343 	 * and it is not disabled.
344 	 */
345 	if (tb_acpi_may_tunnel_pcie() &&
346 	    tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
347 		val |= ROUTER_CS_5_PTO;
348 		/*
349 		 * xHCI can be enabled if PCIe tunneling is supported
350 		 * and the parent does not have any USB3 dowstream
351 		 * adapters (so we cannot do USB 3.x tunneling).
352 		 */
353 		if (xhci)
354 			val |= ROUTER_CS_5_HCO;
355 	}
356 
357 	/* TBT3 supported by the CM */
358 	val |= ROUTER_CS_5_C3S;
359 	/* Tunneling configuration is ready now */
360 	val |= ROUTER_CS_5_CV;
361 
362 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
363 	if (ret)
364 		return ret;
365 
366 	return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
367 					ROUTER_CS_6_CR, 50);
368 }
369 
370 /**
371  * usb4_switch_read_uid() - Read UID from USB4 router
372  * @sw: USB4 router
373  * @uid: UID is stored here
374  *
375  * Reads 64-bit UID from USB4 router config space.
376  */
377 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
378 {
379 	return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
380 }
381 
382 static int usb4_switch_drom_read_block(void *data,
383 				       unsigned int dwaddress, void *buf,
384 				       size_t dwords)
385 {
386 	struct tb_switch *sw = data;
387 	u8 status = 0;
388 	u32 metadata;
389 	int ret;
390 
391 	metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
392 	metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
393 		USB4_DROM_ADDRESS_MASK;
394 
395 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
396 				  &status, NULL, 0, buf, dwords);
397 	if (ret)
398 		return ret;
399 
400 	return status ? -EIO : 0;
401 }
402 
403 /**
404  * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
405  * @sw: USB4 router
406  * @address: Byte address inside DROM to start reading
407  * @buf: Buffer where the DROM content is stored
408  * @size: Number of bytes to read from DROM
409  *
410  * Uses USB4 router operations to read router DROM. For devices this
411  * should always work but for hosts it may return %-EOPNOTSUPP in which
412  * case the host router does not have DROM.
413  */
414 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
415 			  size_t size)
416 {
417 	return usb4_do_read_data(address, buf, size,
418 				 usb4_switch_drom_read_block, sw);
419 }
420 
421 /**
422  * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
423  * @sw: USB4 router
424  *
425  * Checks whether conditions are met so that lane bonding can be
426  * established with the upstream router. Call only for device routers.
427  */
428 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
429 {
430 	struct tb_port *up;
431 	int ret;
432 	u32 val;
433 
434 	up = tb_upstream_port(sw);
435 	ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
436 	if (ret)
437 		return false;
438 
439 	return !!(val & PORT_CS_18_BE);
440 }
441 
442 /**
443  * usb4_switch_set_wake() - Enabled/disable wake
444  * @sw: USB4 router
445  * @flags: Wakeup flags (%0 to disable)
446  *
447  * Enables/disables router to wake up from sleep.
448  */
449 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
450 {
451 	struct tb_port *port;
452 	u64 route = tb_route(sw);
453 	u32 val;
454 	int ret;
455 
456 	/*
457 	 * Enable wakes coming from all USB4 downstream ports (from
458 	 * child routers). For device routers do this also for the
459 	 * upstream USB4 port.
460 	 */
461 	tb_switch_for_each_port(sw, port) {
462 		if (!tb_port_is_null(port))
463 			continue;
464 		if (!route && tb_is_upstream_port(port))
465 			continue;
466 		if (!port->cap_usb4)
467 			continue;
468 
469 		ret = tb_port_read(port, &val, TB_CFG_PORT,
470 				   port->cap_usb4 + PORT_CS_19, 1);
471 		if (ret)
472 			return ret;
473 
474 		val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
475 
476 		if (flags & TB_WAKE_ON_CONNECT)
477 			val |= PORT_CS_19_WOC;
478 		if (flags & TB_WAKE_ON_DISCONNECT)
479 			val |= PORT_CS_19_WOD;
480 		if (flags & TB_WAKE_ON_USB4)
481 			val |= PORT_CS_19_WOU4;
482 
483 		ret = tb_port_write(port, &val, TB_CFG_PORT,
484 				    port->cap_usb4 + PORT_CS_19, 1);
485 		if (ret)
486 			return ret;
487 	}
488 
489 	/*
490 	 * Enable wakes from PCIe and USB 3.x on this router. Only
491 	 * needed for device routers.
492 	 */
493 	if (route) {
494 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
495 		if (ret)
496 			return ret;
497 
498 		val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU);
499 		if (flags & TB_WAKE_ON_USB3)
500 			val |= ROUTER_CS_5_WOU;
501 		if (flags & TB_WAKE_ON_PCIE)
502 			val |= ROUTER_CS_5_WOP;
503 
504 		ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
505 		if (ret)
506 			return ret;
507 	}
508 
509 	return 0;
510 }
511 
512 /**
513  * usb4_switch_set_sleep() - Prepare the router to enter sleep
514  * @sw: USB4 router
515  *
516  * Sets sleep bit for the router. Returns when the router sleep ready
517  * bit has been asserted.
518  */
519 int usb4_switch_set_sleep(struct tb_switch *sw)
520 {
521 	int ret;
522 	u32 val;
523 
524 	/* Set sleep bit and wait for sleep ready to be asserted */
525 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
526 	if (ret)
527 		return ret;
528 
529 	val |= ROUTER_CS_5_SLP;
530 
531 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
532 	if (ret)
533 		return ret;
534 
535 	return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
536 					ROUTER_CS_6_SLPR, 500);
537 }
538 
539 /**
540  * usb4_switch_nvm_sector_size() - Return router NVM sector size
541  * @sw: USB4 router
542  *
543  * If the router supports NVM operations this function returns the NVM
544  * sector size in bytes. If NVM operations are not supported returns
545  * %-EOPNOTSUPP.
546  */
547 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
548 {
549 	u32 metadata;
550 	u8 status;
551 	int ret;
552 
553 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
554 			     &status);
555 	if (ret)
556 		return ret;
557 
558 	if (status)
559 		return status == 0x2 ? -EOPNOTSUPP : -EIO;
560 
561 	return metadata & USB4_NVM_SECTOR_SIZE_MASK;
562 }
563 
564 static int usb4_switch_nvm_read_block(void *data,
565 	unsigned int dwaddress, void *buf, size_t dwords)
566 {
567 	struct tb_switch *sw = data;
568 	u8 status = 0;
569 	u32 metadata;
570 	int ret;
571 
572 	metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
573 		   USB4_NVM_READ_LENGTH_MASK;
574 	metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
575 		   USB4_NVM_READ_OFFSET_MASK;
576 
577 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
578 				  &status, NULL, 0, buf, dwords);
579 	if (ret)
580 		return ret;
581 
582 	return status ? -EIO : 0;
583 }
584 
585 /**
586  * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
587  * @sw: USB4 router
588  * @address: Starting address in bytes
589  * @buf: Read data is placed here
590  * @size: How many bytes to read
591  *
592  * Reads NVM contents of the router. If NVM is not supported returns
593  * %-EOPNOTSUPP.
594  */
595 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
596 			 size_t size)
597 {
598 	return usb4_do_read_data(address, buf, size,
599 				 usb4_switch_nvm_read_block, sw);
600 }
601 
602 static int usb4_switch_nvm_set_offset(struct tb_switch *sw,
603 				      unsigned int address)
604 {
605 	u32 metadata, dwaddress;
606 	u8 status = 0;
607 	int ret;
608 
609 	dwaddress = address / 4;
610 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
611 		   USB4_NVM_SET_OFFSET_MASK;
612 
613 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
614 			     &status);
615 	if (ret)
616 		return ret;
617 
618 	return status ? -EIO : 0;
619 }
620 
621 static int usb4_switch_nvm_write_next_block(void *data, const void *buf,
622 					    size_t dwords)
623 {
624 	struct tb_switch *sw = data;
625 	u8 status;
626 	int ret;
627 
628 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
629 				  buf, dwords, NULL, 0);
630 	if (ret)
631 		return ret;
632 
633 	return status ? -EIO : 0;
634 }
635 
636 /**
637  * usb4_switch_nvm_write() - Write to the router NVM
638  * @sw: USB4 router
639  * @address: Start address where to write in bytes
640  * @buf: Pointer to the data to write
641  * @size: Size of @buf in bytes
642  *
643  * Writes @buf to the router NVM using USB4 router operations. If NVM
644  * write is not supported returns %-EOPNOTSUPP.
645  */
646 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
647 			  const void *buf, size_t size)
648 {
649 	int ret;
650 
651 	ret = usb4_switch_nvm_set_offset(sw, address);
652 	if (ret)
653 		return ret;
654 
655 	return usb4_do_write_data(address, buf, size,
656 				  usb4_switch_nvm_write_next_block, sw);
657 }
658 
659 /**
660  * usb4_switch_nvm_authenticate() - Authenticate new NVM
661  * @sw: USB4 router
662  *
663  * After the new NVM has been written via usb4_switch_nvm_write(), this
664  * function triggers NVM authentication process. The router gets power
665  * cycled and if the authentication is successful the new NVM starts
666  * running. In case of failure returns negative errno.
667  *
668  * The caller should call usb4_switch_nvm_authenticate_status() to read
669  * the status of the authentication after power cycle. It should be the
670  * first router operation to avoid the status being lost.
671  */
672 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
673 {
674 	int ret;
675 
676 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
677 	switch (ret) {
678 	/*
679 	 * The router is power cycled once NVM_AUTH is started so it is
680 	 * expected to get any of the following errors back.
681 	 */
682 	case -EACCES:
683 	case -ENOTCONN:
684 	case -ETIMEDOUT:
685 		return 0;
686 
687 	default:
688 		return ret;
689 	}
690 }
691 
692 /**
693  * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
694  * @sw: USB4 router
695  * @status: Status code of the operation
696  *
697  * The function checks if there is status available from the last NVM
698  * authenticate router operation. If there is status then %0 is returned
699  * and the status code is placed in @status. Returns negative errno in case
700  * of failure.
701  *
702  * Must be called before any other router operation.
703  */
704 int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
705 {
706 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
707 	u16 opcode;
708 	u32 val;
709 	int ret;
710 
711 	if (cm_ops->usb4_switch_nvm_authenticate_status) {
712 		ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
713 		if (ret != -EOPNOTSUPP)
714 			return ret;
715 	}
716 
717 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
718 	if (ret)
719 		return ret;
720 
721 	/* Check that the opcode is correct */
722 	opcode = val & ROUTER_CS_26_OPCODE_MASK;
723 	if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
724 		if (val & ROUTER_CS_26_OV)
725 			return -EBUSY;
726 		if (val & ROUTER_CS_26_ONS)
727 			return -EOPNOTSUPP;
728 
729 		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
730 			ROUTER_CS_26_STATUS_SHIFT;
731 	} else {
732 		*status = 0;
733 	}
734 
735 	return 0;
736 }
737 
738 /**
739  * usb4_switch_query_dp_resource() - Query availability of DP IN resource
740  * @sw: USB4 router
741  * @in: DP IN adapter
742  *
743  * For DP tunneling this function can be used to query availability of
744  * DP IN resource. Returns true if the resource is available for DP
745  * tunneling, false otherwise.
746  */
747 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
748 {
749 	u32 metadata = in->port;
750 	u8 status;
751 	int ret;
752 
753 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
754 			     &status);
755 	/*
756 	 * If DP resource allocation is not supported assume it is
757 	 * always available.
758 	 */
759 	if (ret == -EOPNOTSUPP)
760 		return true;
761 	else if (ret)
762 		return false;
763 
764 	return !status;
765 }
766 
767 /**
768  * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
769  * @sw: USB4 router
770  * @in: DP IN adapter
771  *
772  * Allocates DP IN resource for DP tunneling using USB4 router
773  * operations. If the resource was allocated returns %0. Otherwise
774  * returns negative errno, in particular %-EBUSY if the resource is
775  * already allocated.
776  */
777 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
778 {
779 	u32 metadata = in->port;
780 	u8 status;
781 	int ret;
782 
783 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
784 			     &status);
785 	if (ret == -EOPNOTSUPP)
786 		return 0;
787 	else if (ret)
788 		return ret;
789 
790 	return status ? -EBUSY : 0;
791 }
792 
793 /**
794  * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
795  * @sw: USB4 router
796  * @in: DP IN adapter
797  *
798  * Releases the previously allocated DP IN resource.
799  */
800 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
801 {
802 	u32 metadata = in->port;
803 	u8 status;
804 	int ret;
805 
806 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
807 			     &status);
808 	if (ret == -EOPNOTSUPP)
809 		return 0;
810 	else if (ret)
811 		return ret;
812 
813 	return status ? -EIO : 0;
814 }
815 
816 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
817 {
818 	struct tb_port *p;
819 	int usb4_idx = 0;
820 
821 	/* Assume port is primary */
822 	tb_switch_for_each_port(sw, p) {
823 		if (!tb_port_is_null(p))
824 			continue;
825 		if (tb_is_upstream_port(p))
826 			continue;
827 		if (!p->link_nr) {
828 			if (p == port)
829 				break;
830 			usb4_idx++;
831 		}
832 	}
833 
834 	return usb4_idx;
835 }
836 
837 /**
838  * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
839  * @sw: USB4 router
840  * @port: USB4 port
841  *
842  * USB4 routers have direct mapping between USB4 ports and PCIe
843  * downstream adapters where the PCIe topology is extended. This
844  * function returns the corresponding downstream PCIe adapter or %NULL
845  * if no such mapping was possible.
846  */
847 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
848 					  const struct tb_port *port)
849 {
850 	int usb4_idx = usb4_port_idx(sw, port);
851 	struct tb_port *p;
852 	int pcie_idx = 0;
853 
854 	/* Find PCIe down port matching usb4_port */
855 	tb_switch_for_each_port(sw, p) {
856 		if (!tb_port_is_pcie_down(p))
857 			continue;
858 
859 		if (pcie_idx == usb4_idx)
860 			return p;
861 
862 		pcie_idx++;
863 	}
864 
865 	return NULL;
866 }
867 
868 /**
869  * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
870  * @sw: USB4 router
871  * @port: USB4 port
872  *
873  * USB4 routers have direct mapping between USB4 ports and USB 3.x
874  * downstream adapters where the USB 3.x topology is extended. This
875  * function returns the corresponding downstream USB 3.x adapter or
876  * %NULL if no such mapping was possible.
877  */
878 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
879 					  const struct tb_port *port)
880 {
881 	int usb4_idx = usb4_port_idx(sw, port);
882 	struct tb_port *p;
883 	int usb_idx = 0;
884 
885 	/* Find USB3 down port matching usb4_port */
886 	tb_switch_for_each_port(sw, p) {
887 		if (!tb_port_is_usb3_down(p))
888 			continue;
889 
890 		if (usb_idx == usb4_idx)
891 			return p;
892 
893 		usb_idx++;
894 	}
895 
896 	return NULL;
897 }
898 
899 /**
900  * usb4_port_unlock() - Unlock USB4 downstream port
901  * @port: USB4 port to unlock
902  *
903  * Unlocks USB4 downstream port so that the connection manager can
904  * access the router below this port.
905  */
906 int usb4_port_unlock(struct tb_port *port)
907 {
908 	int ret;
909 	u32 val;
910 
911 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
912 	if (ret)
913 		return ret;
914 
915 	val &= ~ADP_CS_4_LCK;
916 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
917 }
918 
919 static int usb4_port_set_configured(struct tb_port *port, bool configured)
920 {
921 	int ret;
922 	u32 val;
923 
924 	if (!port->cap_usb4)
925 		return -EINVAL;
926 
927 	ret = tb_port_read(port, &val, TB_CFG_PORT,
928 			   port->cap_usb4 + PORT_CS_19, 1);
929 	if (ret)
930 		return ret;
931 
932 	if (configured)
933 		val |= PORT_CS_19_PC;
934 	else
935 		val &= ~PORT_CS_19_PC;
936 
937 	return tb_port_write(port, &val, TB_CFG_PORT,
938 			     port->cap_usb4 + PORT_CS_19, 1);
939 }
940 
941 /**
942  * usb4_port_configure() - Set USB4 port configured
943  * @port: USB4 router
944  *
945  * Sets the USB4 link to be configured for power management purposes.
946  */
947 int usb4_port_configure(struct tb_port *port)
948 {
949 	return usb4_port_set_configured(port, true);
950 }
951 
952 /**
953  * usb4_port_unconfigure() - Set USB4 port unconfigured
954  * @port: USB4 router
955  *
956  * Sets the USB4 link to be unconfigured for power management purposes.
957  */
958 void usb4_port_unconfigure(struct tb_port *port)
959 {
960 	usb4_port_set_configured(port, false);
961 }
962 
963 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
964 {
965 	int ret;
966 	u32 val;
967 
968 	if (!port->cap_usb4)
969 		return -EINVAL;
970 
971 	ret = tb_port_read(port, &val, TB_CFG_PORT,
972 			   port->cap_usb4 + PORT_CS_19, 1);
973 	if (ret)
974 		return ret;
975 
976 	if (configured)
977 		val |= PORT_CS_19_PID;
978 	else
979 		val &= ~PORT_CS_19_PID;
980 
981 	return tb_port_write(port, &val, TB_CFG_PORT,
982 			     port->cap_usb4 + PORT_CS_19, 1);
983 }
984 
985 /**
986  * usb4_port_configure_xdomain() - Configure port for XDomain
987  * @port: USB4 port connected to another host
988  *
989  * Marks the USB4 port as being connected to another host. Returns %0 in
990  * success and negative errno in failure.
991  */
992 int usb4_port_configure_xdomain(struct tb_port *port)
993 {
994 	return usb4_set_xdomain_configured(port, true);
995 }
996 
997 /**
998  * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
999  * @port: USB4 port that was connected to another host
1000  *
1001  * Clears USB4 port from being marked as XDomain.
1002  */
1003 void usb4_port_unconfigure_xdomain(struct tb_port *port)
1004 {
1005 	usb4_set_xdomain_configured(port, false);
1006 }
1007 
1008 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1009 				  u32 value, int timeout_msec)
1010 {
1011 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1012 
1013 	do {
1014 		u32 val;
1015 		int ret;
1016 
1017 		ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1018 		if (ret)
1019 			return ret;
1020 
1021 		if ((val & bit) == value)
1022 			return 0;
1023 
1024 		usleep_range(50, 100);
1025 	} while (ktime_before(ktime_get(), timeout));
1026 
1027 	return -ETIMEDOUT;
1028 }
1029 
1030 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1031 {
1032 	if (dwords > USB4_DATA_DWORDS)
1033 		return -EINVAL;
1034 
1035 	return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1036 			    dwords);
1037 }
1038 
1039 static int usb4_port_write_data(struct tb_port *port, const void *data,
1040 				size_t dwords)
1041 {
1042 	if (dwords > USB4_DATA_DWORDS)
1043 		return -EINVAL;
1044 
1045 	return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1046 			     dwords);
1047 }
1048 
1049 static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1050 			     u8 index, u8 reg, void *buf, u8 size)
1051 {
1052 	size_t dwords = DIV_ROUND_UP(size, 4);
1053 	int ret;
1054 	u32 val;
1055 
1056 	if (!port->cap_usb4)
1057 		return -EINVAL;
1058 
1059 	val = reg;
1060 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1061 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1062 	if (target == USB4_SB_TARGET_RETIMER)
1063 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1064 	val |= PORT_CS_1_PND;
1065 
1066 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1067 			    port->cap_usb4 + PORT_CS_1, 1);
1068 	if (ret)
1069 		return ret;
1070 
1071 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1072 				     PORT_CS_1_PND, 0, 500);
1073 	if (ret)
1074 		return ret;
1075 
1076 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1077 			    port->cap_usb4 + PORT_CS_1, 1);
1078 	if (ret)
1079 		return ret;
1080 
1081 	if (val & PORT_CS_1_NR)
1082 		return -ENODEV;
1083 	if (val & PORT_CS_1_RC)
1084 		return -EIO;
1085 
1086 	return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1087 }
1088 
1089 static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1090 			      u8 index, u8 reg, const void *buf, u8 size)
1091 {
1092 	size_t dwords = DIV_ROUND_UP(size, 4);
1093 	int ret;
1094 	u32 val;
1095 
1096 	if (!port->cap_usb4)
1097 		return -EINVAL;
1098 
1099 	if (buf) {
1100 		ret = usb4_port_write_data(port, buf, dwords);
1101 		if (ret)
1102 			return ret;
1103 	}
1104 
1105 	val = reg;
1106 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1107 	val |= PORT_CS_1_WNR_WRITE;
1108 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1109 	if (target == USB4_SB_TARGET_RETIMER)
1110 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1111 	val |= PORT_CS_1_PND;
1112 
1113 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1114 			    port->cap_usb4 + PORT_CS_1, 1);
1115 	if (ret)
1116 		return ret;
1117 
1118 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1119 				     PORT_CS_1_PND, 0, 500);
1120 	if (ret)
1121 		return ret;
1122 
1123 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1124 			    port->cap_usb4 + PORT_CS_1, 1);
1125 	if (ret)
1126 		return ret;
1127 
1128 	if (val & PORT_CS_1_NR)
1129 		return -ENODEV;
1130 	if (val & PORT_CS_1_RC)
1131 		return -EIO;
1132 
1133 	return 0;
1134 }
1135 
1136 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1137 			   u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1138 {
1139 	ktime_t timeout;
1140 	u32 val;
1141 	int ret;
1142 
1143 	val = opcode;
1144 	ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1145 				 sizeof(val));
1146 	if (ret)
1147 		return ret;
1148 
1149 	timeout = ktime_add_ms(ktime_get(), timeout_msec);
1150 
1151 	do {
1152 		/* Check results */
1153 		ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1154 					&val, sizeof(val));
1155 		if (ret)
1156 			return ret;
1157 
1158 		switch (val) {
1159 		case 0:
1160 			return 0;
1161 
1162 		case USB4_SB_OPCODE_ERR:
1163 			return -EAGAIN;
1164 
1165 		case USB4_SB_OPCODE_ONS:
1166 			return -EOPNOTSUPP;
1167 
1168 		default:
1169 			if (val != opcode)
1170 				return -EIO;
1171 			break;
1172 		}
1173 	} while (ktime_before(ktime_get(), timeout));
1174 
1175 	return -ETIMEDOUT;
1176 }
1177 
1178 /**
1179  * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1180  * @port: USB4 port
1181  *
1182  * This forces the USB4 port to send broadcast RT transaction which
1183  * makes the retimers on the link to assign index to themselves. Returns
1184  * %0 in case of success and negative errno if there was an error.
1185  */
1186 int usb4_port_enumerate_retimers(struct tb_port *port)
1187 {
1188 	u32 val;
1189 
1190 	val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1191 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1192 				  USB4_SB_OPCODE, &val, sizeof(val));
1193 }
1194 
1195 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1196 				       enum usb4_sb_opcode opcode,
1197 				       int timeout_msec)
1198 {
1199 	return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1200 			       timeout_msec);
1201 }
1202 
1203 /**
1204  * usb4_port_retimer_read() - Read from retimer sideband registers
1205  * @port: USB4 port
1206  * @index: Retimer index
1207  * @reg: Sideband register to read
1208  * @buf: Data from @reg is stored here
1209  * @size: Number of bytes to read
1210  *
1211  * Function reads retimer sideband registers starting from @reg. The
1212  * retimer is connected to @port at @index. Returns %0 in case of
1213  * success, and read data is copied to @buf. If there is no retimer
1214  * present at given @index returns %-ENODEV. In any other failure
1215  * returns negative errno.
1216  */
1217 int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1218 			   u8 size)
1219 {
1220 	return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1221 				 size);
1222 }
1223 
1224 /**
1225  * usb4_port_retimer_write() - Write to retimer sideband registers
1226  * @port: USB4 port
1227  * @index: Retimer index
1228  * @reg: Sideband register to write
1229  * @buf: Data that is written starting from @reg
1230  * @size: Number of bytes to write
1231  *
1232  * Writes retimer sideband registers starting from @reg. The retimer is
1233  * connected to @port at @index. Returns %0 in case of success. If there
1234  * is no retimer present at given @index returns %-ENODEV. In any other
1235  * failure returns negative errno.
1236  */
1237 int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1238 			    const void *buf, u8 size)
1239 {
1240 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1241 				  size);
1242 }
1243 
1244 /**
1245  * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1246  * @port: USB4 port
1247  * @index: Retimer index
1248  *
1249  * If the retimer at @index is last one (connected directly to the
1250  * Type-C port) this function returns %1. If it is not returns %0. If
1251  * the retimer is not present returns %-ENODEV. Otherwise returns
1252  * negative errno.
1253  */
1254 int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1255 {
1256 	u32 metadata;
1257 	int ret;
1258 
1259 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1260 				   500);
1261 	if (ret)
1262 		return ret;
1263 
1264 	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1265 				     sizeof(metadata));
1266 	return ret ? ret : metadata & 1;
1267 }
1268 
1269 /**
1270  * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1271  * @port: USB4 port
1272  * @index: Retimer index
1273  *
1274  * Reads NVM sector size (in bytes) of a retimer at @index. This
1275  * operation can be used to determine whether the retimer supports NVM
1276  * upgrade for example. Returns sector size in bytes or negative errno
1277  * in case of error. Specifically returns %-ENODEV if there is no
1278  * retimer at @index.
1279  */
1280 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1281 {
1282 	u32 metadata;
1283 	int ret;
1284 
1285 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1286 				   500);
1287 	if (ret)
1288 		return ret;
1289 
1290 	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1291 				     sizeof(metadata));
1292 	return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1293 }
1294 
1295 static int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1296 					    unsigned int address)
1297 {
1298 	u32 metadata, dwaddress;
1299 	int ret;
1300 
1301 	dwaddress = address / 4;
1302 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1303 		  USB4_NVM_SET_OFFSET_MASK;
1304 
1305 	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1306 				      sizeof(metadata));
1307 	if (ret)
1308 		return ret;
1309 
1310 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1311 				    500);
1312 }
1313 
1314 struct retimer_info {
1315 	struct tb_port *port;
1316 	u8 index;
1317 };
1318 
1319 static int usb4_port_retimer_nvm_write_next_block(void *data, const void *buf,
1320 						  size_t dwords)
1321 
1322 {
1323 	const struct retimer_info *info = data;
1324 	struct tb_port *port = info->port;
1325 	u8 index = info->index;
1326 	int ret;
1327 
1328 	ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1329 				      buf, dwords * 4);
1330 	if (ret)
1331 		return ret;
1332 
1333 	return usb4_port_retimer_op(port, index,
1334 			USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1335 }
1336 
1337 /**
1338  * usb4_port_retimer_nvm_write() - Write to retimer NVM
1339  * @port: USB4 port
1340  * @index: Retimer index
1341  * @address: Byte address where to start the write
1342  * @buf: Data to write
1343  * @size: Size in bytes how much to write
1344  *
1345  * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1346  * upgrade. Returns %0 if the data was written successfully and negative
1347  * errno in case of failure. Specifically returns %-ENODEV if there is
1348  * no retimer at @index.
1349  */
1350 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1351 				const void *buf, size_t size)
1352 {
1353 	struct retimer_info info = { .port = port, .index = index };
1354 	int ret;
1355 
1356 	ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1357 	if (ret)
1358 		return ret;
1359 
1360 	return usb4_do_write_data(address, buf, size,
1361 			usb4_port_retimer_nvm_write_next_block, &info);
1362 }
1363 
1364 /**
1365  * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1366  * @port: USB4 port
1367  * @index: Retimer index
1368  *
1369  * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1370  * this function can be used to trigger the NVM upgrade process. If
1371  * successful the retimer restarts with the new NVM and may not have the
1372  * index set so one needs to call usb4_port_enumerate_retimers() to
1373  * force index to be assigned.
1374  */
1375 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1376 {
1377 	u32 val;
1378 
1379 	/*
1380 	 * We need to use the raw operation here because once the
1381 	 * authentication completes the retimer index is not set anymore
1382 	 * so we do not get back the status now.
1383 	 */
1384 	val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1385 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1386 				  USB4_SB_OPCODE, &val, sizeof(val));
1387 }
1388 
1389 /**
1390  * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1391  * @port: USB4 port
1392  * @index: Retimer index
1393  * @status: Raw status code read from metadata
1394  *
1395  * This can be called after usb4_port_retimer_nvm_authenticate() and
1396  * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1397  *
1398  * Returns %0 if the authentication status was successfully read. The
1399  * completion metadata (the result) is then stored into @status. If
1400  * reading the status fails, returns negative errno.
1401  */
1402 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1403 					      u32 *status)
1404 {
1405 	u32 metadata, val;
1406 	int ret;
1407 
1408 	ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1409 				     sizeof(val));
1410 	if (ret)
1411 		return ret;
1412 
1413 	switch (val) {
1414 	case 0:
1415 		*status = 0;
1416 		return 0;
1417 
1418 	case USB4_SB_OPCODE_ERR:
1419 		ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1420 					     &metadata, sizeof(metadata));
1421 		if (ret)
1422 			return ret;
1423 
1424 		*status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1425 		return 0;
1426 
1427 	case USB4_SB_OPCODE_ONS:
1428 		return -EOPNOTSUPP;
1429 
1430 	default:
1431 		return -EIO;
1432 	}
1433 }
1434 
1435 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1436 					    void *buf, size_t dwords)
1437 {
1438 	const struct retimer_info *info = data;
1439 	struct tb_port *port = info->port;
1440 	u8 index = info->index;
1441 	u32 metadata;
1442 	int ret;
1443 
1444 	metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1445 	if (dwords < USB4_DATA_DWORDS)
1446 		metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1447 
1448 	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1449 				      sizeof(metadata));
1450 	if (ret)
1451 		return ret;
1452 
1453 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1454 	if (ret)
1455 		return ret;
1456 
1457 	return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1458 				      dwords * 4);
1459 }
1460 
1461 /**
1462  * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1463  * @port: USB4 port
1464  * @index: Retimer index
1465  * @address: NVM address (in bytes) to start reading
1466  * @buf: Data read from NVM is stored here
1467  * @size: Number of bytes to read
1468  *
1469  * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1470  * read was successful and negative errno in case of failure.
1471  * Specifically returns %-ENODEV if there is no retimer at @index.
1472  */
1473 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1474 			       unsigned int address, void *buf, size_t size)
1475 {
1476 	struct retimer_info info = { .port = port, .index = index };
1477 
1478 	return usb4_do_read_data(address, buf, size,
1479 			usb4_port_retimer_nvm_read_block, &info);
1480 }
1481 
1482 /**
1483  * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1484  * @port: USB3 adapter port
1485  *
1486  * Return maximum supported link rate of a USB3 adapter in Mb/s.
1487  * Negative errno in case of error.
1488  */
1489 int usb4_usb3_port_max_link_rate(struct tb_port *port)
1490 {
1491 	int ret, lr;
1492 	u32 val;
1493 
1494 	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1495 		return -EINVAL;
1496 
1497 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1498 			   port->cap_adap + ADP_USB3_CS_4, 1);
1499 	if (ret)
1500 		return ret;
1501 
1502 	lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
1503 	return lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
1504 }
1505 
1506 /**
1507  * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1508  * @port: USB3 adapter port
1509  *
1510  * Return actual established link rate of a USB3 adapter in Mb/s. If the
1511  * link is not up returns %0 and negative errno in case of failure.
1512  */
1513 int usb4_usb3_port_actual_link_rate(struct tb_port *port)
1514 {
1515 	int ret, lr;
1516 	u32 val;
1517 
1518 	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1519 		return -EINVAL;
1520 
1521 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1522 			   port->cap_adap + ADP_USB3_CS_4, 1);
1523 	if (ret)
1524 		return ret;
1525 
1526 	if (!(val & ADP_USB3_CS_4_ULV))
1527 		return 0;
1528 
1529 	lr = val & ADP_USB3_CS_4_ALR_MASK;
1530 	return lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
1531 }
1532 
1533 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
1534 {
1535 	int ret;
1536 	u32 val;
1537 
1538 	if (!tb_port_is_usb3_down(port))
1539 		return -EINVAL;
1540 	if (tb_route(port->sw))
1541 		return -EINVAL;
1542 
1543 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1544 			   port->cap_adap + ADP_USB3_CS_2, 1);
1545 	if (ret)
1546 		return ret;
1547 
1548 	if (request)
1549 		val |= ADP_USB3_CS_2_CMR;
1550 	else
1551 		val &= ~ADP_USB3_CS_2_CMR;
1552 
1553 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1554 			    port->cap_adap + ADP_USB3_CS_2, 1);
1555 	if (ret)
1556 		return ret;
1557 
1558 	/*
1559 	 * We can use val here directly as the CMR bit is in the same place
1560 	 * as HCA. Just mask out others.
1561 	 */
1562 	val &= ADP_USB3_CS_2_CMR;
1563 	return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
1564 				      ADP_USB3_CS_1_HCA, val, 1500);
1565 }
1566 
1567 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
1568 {
1569 	return usb4_usb3_port_cm_request(port, true);
1570 }
1571 
1572 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
1573 {
1574 	return usb4_usb3_port_cm_request(port, false);
1575 }
1576 
1577 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
1578 {
1579 	unsigned long uframes;
1580 
1581 	uframes = bw * 512UL << scale;
1582 	return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000);
1583 }
1584 
1585 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
1586 {
1587 	unsigned long uframes;
1588 
1589 	/* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
1590 	uframes = ((unsigned long)mbps * 1000 *  1000) / 8000;
1591 	return DIV_ROUND_UP(uframes, 512UL << scale);
1592 }
1593 
1594 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
1595 						   int *upstream_bw,
1596 						   int *downstream_bw)
1597 {
1598 	u32 val, bw, scale;
1599 	int ret;
1600 
1601 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1602 			   port->cap_adap + ADP_USB3_CS_2, 1);
1603 	if (ret)
1604 		return ret;
1605 
1606 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
1607 			   port->cap_adap + ADP_USB3_CS_3, 1);
1608 	if (ret)
1609 		return ret;
1610 
1611 	scale &= ADP_USB3_CS_3_SCALE_MASK;
1612 
1613 	bw = val & ADP_USB3_CS_2_AUBW_MASK;
1614 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
1615 
1616 	bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
1617 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
1618 
1619 	return 0;
1620 }
1621 
1622 /**
1623  * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
1624  * @port: USB3 adapter port
1625  * @upstream_bw: Allocated upstream bandwidth is stored here
1626  * @downstream_bw: Allocated downstream bandwidth is stored here
1627  *
1628  * Stores currently allocated USB3 bandwidth into @upstream_bw and
1629  * @downstream_bw in Mb/s. Returns %0 in case of success and negative
1630  * errno in failure.
1631  */
1632 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
1633 				       int *downstream_bw)
1634 {
1635 	int ret;
1636 
1637 	ret = usb4_usb3_port_set_cm_request(port);
1638 	if (ret)
1639 		return ret;
1640 
1641 	ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
1642 						      downstream_bw);
1643 	usb4_usb3_port_clear_cm_request(port);
1644 
1645 	return ret;
1646 }
1647 
1648 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
1649 						  int *upstream_bw,
1650 						  int *downstream_bw)
1651 {
1652 	u32 val, bw, scale;
1653 	int ret;
1654 
1655 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1656 			   port->cap_adap + ADP_USB3_CS_1, 1);
1657 	if (ret)
1658 		return ret;
1659 
1660 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
1661 			   port->cap_adap + ADP_USB3_CS_3, 1);
1662 	if (ret)
1663 		return ret;
1664 
1665 	scale &= ADP_USB3_CS_3_SCALE_MASK;
1666 
1667 	bw = val & ADP_USB3_CS_1_CUBW_MASK;
1668 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
1669 
1670 	bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
1671 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
1672 
1673 	return 0;
1674 }
1675 
1676 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
1677 						    int upstream_bw,
1678 						    int downstream_bw)
1679 {
1680 	u32 val, ubw, dbw, scale;
1681 	int ret;
1682 
1683 	/* Read the used scale, hardware default is 0 */
1684 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
1685 			   port->cap_adap + ADP_USB3_CS_3, 1);
1686 	if (ret)
1687 		return ret;
1688 
1689 	scale &= ADP_USB3_CS_3_SCALE_MASK;
1690 	ubw = mbps_to_usb3_bw(upstream_bw, scale);
1691 	dbw = mbps_to_usb3_bw(downstream_bw, scale);
1692 
1693 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1694 			   port->cap_adap + ADP_USB3_CS_2, 1);
1695 	if (ret)
1696 		return ret;
1697 
1698 	val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
1699 	val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
1700 	val |= ubw;
1701 
1702 	return tb_port_write(port, &val, TB_CFG_PORT,
1703 			     port->cap_adap + ADP_USB3_CS_2, 1);
1704 }
1705 
1706 /**
1707  * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
1708  * @port: USB3 adapter port
1709  * @upstream_bw: New upstream bandwidth
1710  * @downstream_bw: New downstream bandwidth
1711  *
1712  * This can be used to set how much bandwidth is allocated for the USB3
1713  * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
1714  * new values programmed to the USB3 adapter allocation registers. If
1715  * the values are lower than what is currently consumed the allocation
1716  * is set to what is currently consumed instead (consumed bandwidth
1717  * cannot be taken away by CM). The actual new values are returned in
1718  * @upstream_bw and @downstream_bw.
1719  *
1720  * Returns %0 in case of success and negative errno if there was a
1721  * failure.
1722  */
1723 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
1724 				      int *downstream_bw)
1725 {
1726 	int ret, consumed_up, consumed_down, allocate_up, allocate_down;
1727 
1728 	ret = usb4_usb3_port_set_cm_request(port);
1729 	if (ret)
1730 		return ret;
1731 
1732 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1733 						     &consumed_down);
1734 	if (ret)
1735 		goto err_request;
1736 
1737 	/* Don't allow it go lower than what is consumed */
1738 	allocate_up = max(*upstream_bw, consumed_up);
1739 	allocate_down = max(*downstream_bw, consumed_down);
1740 
1741 	ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
1742 						       allocate_down);
1743 	if (ret)
1744 		goto err_request;
1745 
1746 	*upstream_bw = allocate_up;
1747 	*downstream_bw = allocate_down;
1748 
1749 err_request:
1750 	usb4_usb3_port_clear_cm_request(port);
1751 	return ret;
1752 }
1753 
1754 /**
1755  * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
1756  * @port: USB3 adapter port
1757  * @upstream_bw: New allocated upstream bandwidth
1758  * @downstream_bw: New allocated downstream bandwidth
1759  *
1760  * Releases USB3 allocated bandwidth down to what is actually consumed.
1761  * The new bandwidth is returned in @upstream_bw and @downstream_bw.
1762  *
1763  * Returns 0% in success and negative errno in case of failure.
1764  */
1765 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
1766 				     int *downstream_bw)
1767 {
1768 	int ret, consumed_up, consumed_down;
1769 
1770 	ret = usb4_usb3_port_set_cm_request(port);
1771 	if (ret)
1772 		return ret;
1773 
1774 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1775 						     &consumed_down);
1776 	if (ret)
1777 		goto err_request;
1778 
1779 	/*
1780 	 * Always keep 1000 Mb/s to make sure xHCI has at least some
1781 	 * bandwidth available for isochronous traffic.
1782 	 */
1783 	if (consumed_up < 1000)
1784 		consumed_up = 1000;
1785 	if (consumed_down < 1000)
1786 		consumed_down = 1000;
1787 
1788 	ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
1789 						       consumed_down);
1790 	if (ret)
1791 		goto err_request;
1792 
1793 	*upstream_bw = consumed_up;
1794 	*downstream_bw = consumed_down;
1795 
1796 err_request:
1797 	usb4_usb3_port_clear_cm_request(port);
1798 	return ret;
1799 }
1800