1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - Tunneling support 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2019, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/slab.h> 11 #include <linux/list.h> 12 13 #include "tunnel.h" 14 #include "tb.h" 15 16 /* PCIe adapters use always HopID of 8 for both directions */ 17 #define TB_PCI_HOPID 8 18 19 #define TB_PCI_PATH_DOWN 0 20 #define TB_PCI_PATH_UP 1 21 22 /* USB3 adapters use always HopID of 8 for both directions */ 23 #define TB_USB3_HOPID 8 24 25 #define TB_USB3_PATH_DOWN 0 26 #define TB_USB3_PATH_UP 1 27 28 /* DP adapters use HopID 8 for AUX and 9 for Video */ 29 #define TB_DP_AUX_TX_HOPID 8 30 #define TB_DP_AUX_RX_HOPID 8 31 #define TB_DP_VIDEO_HOPID 9 32 33 #define TB_DP_VIDEO_PATH_OUT 0 34 #define TB_DP_AUX_PATH_OUT 1 35 #define TB_DP_AUX_PATH_IN 2 36 37 /* Minimum number of credits needed for PCIe path */ 38 #define TB_MIN_PCIE_CREDITS 6U 39 /* 40 * Number of credits we try to allocate for each DMA path if not limited 41 * by the host router baMaxHI. 42 */ 43 #define TB_DMA_CREDITS 14U 44 /* Minimum number of credits for DMA path */ 45 #define TB_MIN_DMA_CREDITS 1U 46 47 static const char * const tb_tunnel_names[] = { "PCI", "DP", "DMA", "USB3" }; 48 49 #define __TB_TUNNEL_PRINT(level, tunnel, fmt, arg...) \ 50 do { \ 51 struct tb_tunnel *__tunnel = (tunnel); \ 52 level(__tunnel->tb, "%llx:%x <-> %llx:%x (%s): " fmt, \ 53 tb_route(__tunnel->src_port->sw), \ 54 __tunnel->src_port->port, \ 55 tb_route(__tunnel->dst_port->sw), \ 56 __tunnel->dst_port->port, \ 57 tb_tunnel_names[__tunnel->type], \ 58 ## arg); \ 59 } while (0) 60 61 #define tb_tunnel_WARN(tunnel, fmt, arg...) \ 62 __TB_TUNNEL_PRINT(tb_WARN, tunnel, fmt, ##arg) 63 #define tb_tunnel_warn(tunnel, fmt, arg...) \ 64 __TB_TUNNEL_PRINT(tb_warn, tunnel, fmt, ##arg) 65 #define tb_tunnel_info(tunnel, fmt, arg...) \ 66 __TB_TUNNEL_PRINT(tb_info, tunnel, fmt, ##arg) 67 #define tb_tunnel_dbg(tunnel, fmt, arg...) \ 68 __TB_TUNNEL_PRINT(tb_dbg, tunnel, fmt, ##arg) 69 70 static inline unsigned int tb_usable_credits(const struct tb_port *port) 71 { 72 return port->total_credits - port->ctl_credits; 73 } 74 75 /** 76 * tb_available_credits() - Available credits for PCIe and DMA 77 * @port: Lane adapter to check 78 * @max_dp_streams: If non-%NULL stores maximum number of simultaneous DP 79 * streams possible through this lane adapter 80 */ 81 static unsigned int tb_available_credits(const struct tb_port *port, 82 size_t *max_dp_streams) 83 { 84 const struct tb_switch *sw = port->sw; 85 int credits, usb3, pcie, spare; 86 size_t ndp; 87 88 usb3 = tb_acpi_may_tunnel_usb3() ? sw->max_usb3_credits : 0; 89 pcie = tb_acpi_may_tunnel_pcie() ? sw->max_pcie_credits : 0; 90 91 if (tb_acpi_is_xdomain_allowed()) { 92 spare = min_not_zero(sw->max_dma_credits, TB_DMA_CREDITS); 93 /* Add some credits for potential second DMA tunnel */ 94 spare += TB_MIN_DMA_CREDITS; 95 } else { 96 spare = 0; 97 } 98 99 credits = tb_usable_credits(port); 100 if (tb_acpi_may_tunnel_dp()) { 101 /* 102 * Maximum number of DP streams possible through the 103 * lane adapter. 104 */ 105 if (sw->min_dp_aux_credits + sw->min_dp_main_credits) 106 ndp = (credits - (usb3 + pcie + spare)) / 107 (sw->min_dp_aux_credits + sw->min_dp_main_credits); 108 else 109 ndp = 0; 110 } else { 111 ndp = 0; 112 } 113 credits -= ndp * (sw->min_dp_aux_credits + sw->min_dp_main_credits); 114 credits -= usb3; 115 116 if (max_dp_streams) 117 *max_dp_streams = ndp; 118 119 return credits > 0 ? credits : 0; 120 } 121 122 static struct tb_tunnel *tb_tunnel_alloc(struct tb *tb, size_t npaths, 123 enum tb_tunnel_type type) 124 { 125 struct tb_tunnel *tunnel; 126 127 tunnel = kzalloc(sizeof(*tunnel), GFP_KERNEL); 128 if (!tunnel) 129 return NULL; 130 131 tunnel->paths = kcalloc(npaths, sizeof(tunnel->paths[0]), GFP_KERNEL); 132 if (!tunnel->paths) { 133 tb_tunnel_free(tunnel); 134 return NULL; 135 } 136 137 INIT_LIST_HEAD(&tunnel->list); 138 tunnel->tb = tb; 139 tunnel->npaths = npaths; 140 tunnel->type = type; 141 142 return tunnel; 143 } 144 145 static int tb_pci_activate(struct tb_tunnel *tunnel, bool activate) 146 { 147 int res; 148 149 res = tb_pci_port_enable(tunnel->src_port, activate); 150 if (res) 151 return res; 152 153 if (tb_port_is_pcie_up(tunnel->dst_port)) 154 return tb_pci_port_enable(tunnel->dst_port, activate); 155 156 return 0; 157 } 158 159 static int tb_pci_init_credits(struct tb_path_hop *hop) 160 { 161 struct tb_port *port = hop->in_port; 162 struct tb_switch *sw = port->sw; 163 unsigned int credits; 164 165 if (tb_port_use_credit_allocation(port)) { 166 unsigned int available; 167 168 available = tb_available_credits(port, NULL); 169 credits = min(sw->max_pcie_credits, available); 170 171 if (credits < TB_MIN_PCIE_CREDITS) 172 return -ENOSPC; 173 174 credits = max(TB_MIN_PCIE_CREDITS, credits); 175 } else { 176 if (tb_port_is_null(port)) 177 credits = port->bonded ? 32 : 16; 178 else 179 credits = 7; 180 } 181 182 hop->initial_credits = credits; 183 return 0; 184 } 185 186 static int tb_pci_init_path(struct tb_path *path) 187 { 188 struct tb_path_hop *hop; 189 190 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 191 path->egress_shared_buffer = TB_PATH_NONE; 192 path->ingress_fc_enable = TB_PATH_ALL; 193 path->ingress_shared_buffer = TB_PATH_NONE; 194 path->priority = 3; 195 path->weight = 1; 196 path->drop_packages = 0; 197 198 tb_path_for_each_hop(path, hop) { 199 int ret; 200 201 ret = tb_pci_init_credits(hop); 202 if (ret) 203 return ret; 204 } 205 206 return 0; 207 } 208 209 /** 210 * tb_tunnel_discover_pci() - Discover existing PCIe tunnels 211 * @tb: Pointer to the domain structure 212 * @down: PCIe downstream adapter 213 * @alloc_hopid: Allocate HopIDs from visited ports 214 * 215 * If @down adapter is active, follows the tunnel to the PCIe upstream 216 * adapter and back. Returns the discovered tunnel or %NULL if there was 217 * no tunnel. 218 */ 219 struct tb_tunnel *tb_tunnel_discover_pci(struct tb *tb, struct tb_port *down, 220 bool alloc_hopid) 221 { 222 struct tb_tunnel *tunnel; 223 struct tb_path *path; 224 225 if (!tb_pci_port_is_enabled(down)) 226 return NULL; 227 228 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_PCI); 229 if (!tunnel) 230 return NULL; 231 232 tunnel->activate = tb_pci_activate; 233 tunnel->src_port = down; 234 235 /* 236 * Discover both paths even if they are not complete. We will 237 * clean them up by calling tb_tunnel_deactivate() below in that 238 * case. 239 */ 240 path = tb_path_discover(down, TB_PCI_HOPID, NULL, -1, 241 &tunnel->dst_port, "PCIe Up", alloc_hopid); 242 if (!path) { 243 /* Just disable the downstream port */ 244 tb_pci_port_enable(down, false); 245 goto err_free; 246 } 247 tunnel->paths[TB_PCI_PATH_UP] = path; 248 if (tb_pci_init_path(tunnel->paths[TB_PCI_PATH_UP])) 249 goto err_free; 250 251 path = tb_path_discover(tunnel->dst_port, -1, down, TB_PCI_HOPID, NULL, 252 "PCIe Down", alloc_hopid); 253 if (!path) 254 goto err_deactivate; 255 tunnel->paths[TB_PCI_PATH_DOWN] = path; 256 if (tb_pci_init_path(tunnel->paths[TB_PCI_PATH_DOWN])) 257 goto err_deactivate; 258 259 /* Validate that the tunnel is complete */ 260 if (!tb_port_is_pcie_up(tunnel->dst_port)) { 261 tb_port_warn(tunnel->dst_port, 262 "path does not end on a PCIe adapter, cleaning up\n"); 263 goto err_deactivate; 264 } 265 266 if (down != tunnel->src_port) { 267 tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n"); 268 goto err_deactivate; 269 } 270 271 if (!tb_pci_port_is_enabled(tunnel->dst_port)) { 272 tb_tunnel_warn(tunnel, 273 "tunnel is not fully activated, cleaning up\n"); 274 goto err_deactivate; 275 } 276 277 tb_tunnel_dbg(tunnel, "discovered\n"); 278 return tunnel; 279 280 err_deactivate: 281 tb_tunnel_deactivate(tunnel); 282 err_free: 283 tb_tunnel_free(tunnel); 284 285 return NULL; 286 } 287 288 /** 289 * tb_tunnel_alloc_pci() - allocate a pci tunnel 290 * @tb: Pointer to the domain structure 291 * @up: PCIe upstream adapter port 292 * @down: PCIe downstream adapter port 293 * 294 * Allocate a PCI tunnel. The ports must be of type TB_TYPE_PCIE_UP and 295 * TB_TYPE_PCIE_DOWN. 296 * 297 * Return: Returns a tb_tunnel on success or NULL on failure. 298 */ 299 struct tb_tunnel *tb_tunnel_alloc_pci(struct tb *tb, struct tb_port *up, 300 struct tb_port *down) 301 { 302 struct tb_tunnel *tunnel; 303 struct tb_path *path; 304 305 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_PCI); 306 if (!tunnel) 307 return NULL; 308 309 tunnel->activate = tb_pci_activate; 310 tunnel->src_port = down; 311 tunnel->dst_port = up; 312 313 path = tb_path_alloc(tb, down, TB_PCI_HOPID, up, TB_PCI_HOPID, 0, 314 "PCIe Down"); 315 if (!path) 316 goto err_free; 317 tunnel->paths[TB_PCI_PATH_DOWN] = path; 318 if (tb_pci_init_path(path)) 319 goto err_free; 320 321 path = tb_path_alloc(tb, up, TB_PCI_HOPID, down, TB_PCI_HOPID, 0, 322 "PCIe Up"); 323 if (!path) 324 goto err_free; 325 tunnel->paths[TB_PCI_PATH_UP] = path; 326 if (tb_pci_init_path(path)) 327 goto err_free; 328 329 return tunnel; 330 331 err_free: 332 tb_tunnel_free(tunnel); 333 return NULL; 334 } 335 336 static bool tb_dp_is_usb4(const struct tb_switch *sw) 337 { 338 /* Titan Ridge DP adapters need the same treatment as USB4 */ 339 return tb_switch_is_usb4(sw) || tb_switch_is_titan_ridge(sw); 340 } 341 342 static int tb_dp_cm_handshake(struct tb_port *in, struct tb_port *out) 343 { 344 int timeout = 10; 345 u32 val; 346 int ret; 347 348 /* Both ends need to support this */ 349 if (!tb_dp_is_usb4(in->sw) || !tb_dp_is_usb4(out->sw)) 350 return 0; 351 352 ret = tb_port_read(out, &val, TB_CFG_PORT, 353 out->cap_adap + DP_STATUS_CTRL, 1); 354 if (ret) 355 return ret; 356 357 val |= DP_STATUS_CTRL_UF | DP_STATUS_CTRL_CMHS; 358 359 ret = tb_port_write(out, &val, TB_CFG_PORT, 360 out->cap_adap + DP_STATUS_CTRL, 1); 361 if (ret) 362 return ret; 363 364 do { 365 ret = tb_port_read(out, &val, TB_CFG_PORT, 366 out->cap_adap + DP_STATUS_CTRL, 1); 367 if (ret) 368 return ret; 369 if (!(val & DP_STATUS_CTRL_CMHS)) 370 return 0; 371 usleep_range(10, 100); 372 } while (timeout--); 373 374 return -ETIMEDOUT; 375 } 376 377 static inline u32 tb_dp_cap_get_rate(u32 val) 378 { 379 u32 rate = (val & DP_COMMON_CAP_RATE_MASK) >> DP_COMMON_CAP_RATE_SHIFT; 380 381 switch (rate) { 382 case DP_COMMON_CAP_RATE_RBR: 383 return 1620; 384 case DP_COMMON_CAP_RATE_HBR: 385 return 2700; 386 case DP_COMMON_CAP_RATE_HBR2: 387 return 5400; 388 case DP_COMMON_CAP_RATE_HBR3: 389 return 8100; 390 default: 391 return 0; 392 } 393 } 394 395 static inline u32 tb_dp_cap_set_rate(u32 val, u32 rate) 396 { 397 val &= ~DP_COMMON_CAP_RATE_MASK; 398 switch (rate) { 399 default: 400 WARN(1, "invalid rate %u passed, defaulting to 1620 MB/s\n", rate); 401 fallthrough; 402 case 1620: 403 val |= DP_COMMON_CAP_RATE_RBR << DP_COMMON_CAP_RATE_SHIFT; 404 break; 405 case 2700: 406 val |= DP_COMMON_CAP_RATE_HBR << DP_COMMON_CAP_RATE_SHIFT; 407 break; 408 case 5400: 409 val |= DP_COMMON_CAP_RATE_HBR2 << DP_COMMON_CAP_RATE_SHIFT; 410 break; 411 case 8100: 412 val |= DP_COMMON_CAP_RATE_HBR3 << DP_COMMON_CAP_RATE_SHIFT; 413 break; 414 } 415 return val; 416 } 417 418 static inline u32 tb_dp_cap_get_lanes(u32 val) 419 { 420 u32 lanes = (val & DP_COMMON_CAP_LANES_MASK) >> DP_COMMON_CAP_LANES_SHIFT; 421 422 switch (lanes) { 423 case DP_COMMON_CAP_1_LANE: 424 return 1; 425 case DP_COMMON_CAP_2_LANES: 426 return 2; 427 case DP_COMMON_CAP_4_LANES: 428 return 4; 429 default: 430 return 0; 431 } 432 } 433 434 static inline u32 tb_dp_cap_set_lanes(u32 val, u32 lanes) 435 { 436 val &= ~DP_COMMON_CAP_LANES_MASK; 437 switch (lanes) { 438 default: 439 WARN(1, "invalid number of lanes %u passed, defaulting to 1\n", 440 lanes); 441 fallthrough; 442 case 1: 443 val |= DP_COMMON_CAP_1_LANE << DP_COMMON_CAP_LANES_SHIFT; 444 break; 445 case 2: 446 val |= DP_COMMON_CAP_2_LANES << DP_COMMON_CAP_LANES_SHIFT; 447 break; 448 case 4: 449 val |= DP_COMMON_CAP_4_LANES << DP_COMMON_CAP_LANES_SHIFT; 450 break; 451 } 452 return val; 453 } 454 455 static unsigned int tb_dp_bandwidth(unsigned int rate, unsigned int lanes) 456 { 457 /* Tunneling removes the DP 8b/10b encoding */ 458 return rate * lanes * 8 / 10; 459 } 460 461 static int tb_dp_reduce_bandwidth(int max_bw, u32 in_rate, u32 in_lanes, 462 u32 out_rate, u32 out_lanes, u32 *new_rate, 463 u32 *new_lanes) 464 { 465 static const u32 dp_bw[][2] = { 466 /* Mb/s, lanes */ 467 { 8100, 4 }, /* 25920 Mb/s */ 468 { 5400, 4 }, /* 17280 Mb/s */ 469 { 8100, 2 }, /* 12960 Mb/s */ 470 { 2700, 4 }, /* 8640 Mb/s */ 471 { 5400, 2 }, /* 8640 Mb/s */ 472 { 8100, 1 }, /* 6480 Mb/s */ 473 { 1620, 4 }, /* 5184 Mb/s */ 474 { 5400, 1 }, /* 4320 Mb/s */ 475 { 2700, 2 }, /* 4320 Mb/s */ 476 { 1620, 2 }, /* 2592 Mb/s */ 477 { 2700, 1 }, /* 2160 Mb/s */ 478 { 1620, 1 }, /* 1296 Mb/s */ 479 }; 480 unsigned int i; 481 482 /* 483 * Find a combination that can fit into max_bw and does not 484 * exceed the maximum rate and lanes supported by the DP OUT and 485 * DP IN adapters. 486 */ 487 for (i = 0; i < ARRAY_SIZE(dp_bw); i++) { 488 if (dp_bw[i][0] > out_rate || dp_bw[i][1] > out_lanes) 489 continue; 490 491 if (dp_bw[i][0] > in_rate || dp_bw[i][1] > in_lanes) 492 continue; 493 494 if (tb_dp_bandwidth(dp_bw[i][0], dp_bw[i][1]) <= max_bw) { 495 *new_rate = dp_bw[i][0]; 496 *new_lanes = dp_bw[i][1]; 497 return 0; 498 } 499 } 500 501 return -ENOSR; 502 } 503 504 static int tb_dp_xchg_caps(struct tb_tunnel *tunnel) 505 { 506 u32 out_dp_cap, out_rate, out_lanes, in_dp_cap, in_rate, in_lanes, bw; 507 struct tb_port *out = tunnel->dst_port; 508 struct tb_port *in = tunnel->src_port; 509 int ret, max_bw; 510 511 /* 512 * Copy DP_LOCAL_CAP register to DP_REMOTE_CAP register for 513 * newer generation hardware. 514 */ 515 if (in->sw->generation < 2 || out->sw->generation < 2) 516 return 0; 517 518 /* 519 * Perform connection manager handshake between IN and OUT ports 520 * before capabilities exchange can take place. 521 */ 522 ret = tb_dp_cm_handshake(in, out); 523 if (ret) 524 return ret; 525 526 /* Read both DP_LOCAL_CAP registers */ 527 ret = tb_port_read(in, &in_dp_cap, TB_CFG_PORT, 528 in->cap_adap + DP_LOCAL_CAP, 1); 529 if (ret) 530 return ret; 531 532 ret = tb_port_read(out, &out_dp_cap, TB_CFG_PORT, 533 out->cap_adap + DP_LOCAL_CAP, 1); 534 if (ret) 535 return ret; 536 537 /* Write IN local caps to OUT remote caps */ 538 ret = tb_port_write(out, &in_dp_cap, TB_CFG_PORT, 539 out->cap_adap + DP_REMOTE_CAP, 1); 540 if (ret) 541 return ret; 542 543 in_rate = tb_dp_cap_get_rate(in_dp_cap); 544 in_lanes = tb_dp_cap_get_lanes(in_dp_cap); 545 tb_port_dbg(in, "maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n", 546 in_rate, in_lanes, tb_dp_bandwidth(in_rate, in_lanes)); 547 548 /* 549 * If the tunnel bandwidth is limited (max_bw is set) then see 550 * if we need to reduce bandwidth to fit there. 551 */ 552 out_rate = tb_dp_cap_get_rate(out_dp_cap); 553 out_lanes = tb_dp_cap_get_lanes(out_dp_cap); 554 bw = tb_dp_bandwidth(out_rate, out_lanes); 555 tb_port_dbg(out, "maximum supported bandwidth %u Mb/s x%u = %u Mb/s\n", 556 out_rate, out_lanes, bw); 557 558 if (in->sw->config.depth < out->sw->config.depth) 559 max_bw = tunnel->max_down; 560 else 561 max_bw = tunnel->max_up; 562 563 if (max_bw && bw > max_bw) { 564 u32 new_rate, new_lanes, new_bw; 565 566 ret = tb_dp_reduce_bandwidth(max_bw, in_rate, in_lanes, 567 out_rate, out_lanes, &new_rate, 568 &new_lanes); 569 if (ret) { 570 tb_port_info(out, "not enough bandwidth for DP tunnel\n"); 571 return ret; 572 } 573 574 new_bw = tb_dp_bandwidth(new_rate, new_lanes); 575 tb_port_dbg(out, "bandwidth reduced to %u Mb/s x%u = %u Mb/s\n", 576 new_rate, new_lanes, new_bw); 577 578 /* 579 * Set new rate and number of lanes before writing it to 580 * the IN port remote caps. 581 */ 582 out_dp_cap = tb_dp_cap_set_rate(out_dp_cap, new_rate); 583 out_dp_cap = tb_dp_cap_set_lanes(out_dp_cap, new_lanes); 584 } 585 586 /* 587 * Titan Ridge does not disable AUX timers when it gets 588 * SET_CONFIG with SET_LTTPR_MODE set. This causes problems with 589 * DP tunneling. 590 */ 591 if (tb_route(out->sw) && tb_switch_is_titan_ridge(out->sw)) { 592 out_dp_cap |= DP_COMMON_CAP_LTTPR_NS; 593 tb_port_dbg(out, "disabling LTTPR\n"); 594 } 595 596 return tb_port_write(in, &out_dp_cap, TB_CFG_PORT, 597 in->cap_adap + DP_REMOTE_CAP, 1); 598 } 599 600 static int tb_dp_activate(struct tb_tunnel *tunnel, bool active) 601 { 602 int ret; 603 604 if (active) { 605 struct tb_path **paths; 606 int last; 607 608 paths = tunnel->paths; 609 last = paths[TB_DP_VIDEO_PATH_OUT]->path_length - 1; 610 611 tb_dp_port_set_hops(tunnel->src_port, 612 paths[TB_DP_VIDEO_PATH_OUT]->hops[0].in_hop_index, 613 paths[TB_DP_AUX_PATH_OUT]->hops[0].in_hop_index, 614 paths[TB_DP_AUX_PATH_IN]->hops[last].next_hop_index); 615 616 tb_dp_port_set_hops(tunnel->dst_port, 617 paths[TB_DP_VIDEO_PATH_OUT]->hops[last].next_hop_index, 618 paths[TB_DP_AUX_PATH_IN]->hops[0].in_hop_index, 619 paths[TB_DP_AUX_PATH_OUT]->hops[last].next_hop_index); 620 } else { 621 tb_dp_port_hpd_clear(tunnel->src_port); 622 tb_dp_port_set_hops(tunnel->src_port, 0, 0, 0); 623 if (tb_port_is_dpout(tunnel->dst_port)) 624 tb_dp_port_set_hops(tunnel->dst_port, 0, 0, 0); 625 } 626 627 ret = tb_dp_port_enable(tunnel->src_port, active); 628 if (ret) 629 return ret; 630 631 if (tb_port_is_dpout(tunnel->dst_port)) 632 return tb_dp_port_enable(tunnel->dst_port, active); 633 634 return 0; 635 } 636 637 static int tb_dp_consumed_bandwidth(struct tb_tunnel *tunnel, int *consumed_up, 638 int *consumed_down) 639 { 640 struct tb_port *in = tunnel->src_port; 641 const struct tb_switch *sw = in->sw; 642 u32 val, rate = 0, lanes = 0; 643 int ret; 644 645 if (tb_dp_is_usb4(sw)) { 646 int timeout = 20; 647 648 /* 649 * Wait for DPRX done. Normally it should be already set 650 * for active tunnel. 651 */ 652 do { 653 ret = tb_port_read(in, &val, TB_CFG_PORT, 654 in->cap_adap + DP_COMMON_CAP, 1); 655 if (ret) 656 return ret; 657 658 if (val & DP_COMMON_CAP_DPRX_DONE) { 659 rate = tb_dp_cap_get_rate(val); 660 lanes = tb_dp_cap_get_lanes(val); 661 break; 662 } 663 msleep(250); 664 } while (timeout--); 665 666 if (!timeout) 667 return -ETIMEDOUT; 668 } else if (sw->generation >= 2) { 669 /* 670 * Read from the copied remote cap so that we take into 671 * account if capabilities were reduced during exchange. 672 */ 673 ret = tb_port_read(in, &val, TB_CFG_PORT, 674 in->cap_adap + DP_REMOTE_CAP, 1); 675 if (ret) 676 return ret; 677 678 rate = tb_dp_cap_get_rate(val); 679 lanes = tb_dp_cap_get_lanes(val); 680 } else { 681 /* No bandwidth management for legacy devices */ 682 *consumed_up = 0; 683 *consumed_down = 0; 684 return 0; 685 } 686 687 if (in->sw->config.depth < tunnel->dst_port->sw->config.depth) { 688 *consumed_up = 0; 689 *consumed_down = tb_dp_bandwidth(rate, lanes); 690 } else { 691 *consumed_up = tb_dp_bandwidth(rate, lanes); 692 *consumed_down = 0; 693 } 694 695 return 0; 696 } 697 698 static void tb_dp_init_aux_credits(struct tb_path_hop *hop) 699 { 700 struct tb_port *port = hop->in_port; 701 struct tb_switch *sw = port->sw; 702 703 if (tb_port_use_credit_allocation(port)) 704 hop->initial_credits = sw->min_dp_aux_credits; 705 else 706 hop->initial_credits = 1; 707 } 708 709 static void tb_dp_init_aux_path(struct tb_path *path) 710 { 711 struct tb_path_hop *hop; 712 713 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 714 path->egress_shared_buffer = TB_PATH_NONE; 715 path->ingress_fc_enable = TB_PATH_ALL; 716 path->ingress_shared_buffer = TB_PATH_NONE; 717 path->priority = 2; 718 path->weight = 1; 719 720 tb_path_for_each_hop(path, hop) 721 tb_dp_init_aux_credits(hop); 722 } 723 724 static int tb_dp_init_video_credits(struct tb_path_hop *hop) 725 { 726 struct tb_port *port = hop->in_port; 727 struct tb_switch *sw = port->sw; 728 729 if (tb_port_use_credit_allocation(port)) { 730 unsigned int nfc_credits; 731 size_t max_dp_streams; 732 733 tb_available_credits(port, &max_dp_streams); 734 /* 735 * Read the number of currently allocated NFC credits 736 * from the lane adapter. Since we only use them for DP 737 * tunneling we can use that to figure out how many DP 738 * tunnels already go through the lane adapter. 739 */ 740 nfc_credits = port->config.nfc_credits & 741 ADP_CS_4_NFC_BUFFERS_MASK; 742 if (nfc_credits / sw->min_dp_main_credits > max_dp_streams) 743 return -ENOSPC; 744 745 hop->nfc_credits = sw->min_dp_main_credits; 746 } else { 747 hop->nfc_credits = min(port->total_credits - 2, 12U); 748 } 749 750 return 0; 751 } 752 753 static int tb_dp_init_video_path(struct tb_path *path) 754 { 755 struct tb_path_hop *hop; 756 757 path->egress_fc_enable = TB_PATH_NONE; 758 path->egress_shared_buffer = TB_PATH_NONE; 759 path->ingress_fc_enable = TB_PATH_NONE; 760 path->ingress_shared_buffer = TB_PATH_NONE; 761 path->priority = 1; 762 path->weight = 1; 763 764 tb_path_for_each_hop(path, hop) { 765 int ret; 766 767 ret = tb_dp_init_video_credits(hop); 768 if (ret) 769 return ret; 770 } 771 772 return 0; 773 } 774 775 /** 776 * tb_tunnel_discover_dp() - Discover existing Display Port tunnels 777 * @tb: Pointer to the domain structure 778 * @in: DP in adapter 779 * @alloc_hopid: Allocate HopIDs from visited ports 780 * 781 * If @in adapter is active, follows the tunnel to the DP out adapter 782 * and back. Returns the discovered tunnel or %NULL if there was no 783 * tunnel. 784 * 785 * Return: DP tunnel or %NULL if no tunnel found. 786 */ 787 struct tb_tunnel *tb_tunnel_discover_dp(struct tb *tb, struct tb_port *in, 788 bool alloc_hopid) 789 { 790 struct tb_tunnel *tunnel; 791 struct tb_port *port; 792 struct tb_path *path; 793 794 if (!tb_dp_port_is_enabled(in)) 795 return NULL; 796 797 tunnel = tb_tunnel_alloc(tb, 3, TB_TUNNEL_DP); 798 if (!tunnel) 799 return NULL; 800 801 tunnel->init = tb_dp_xchg_caps; 802 tunnel->activate = tb_dp_activate; 803 tunnel->consumed_bandwidth = tb_dp_consumed_bandwidth; 804 tunnel->src_port = in; 805 806 path = tb_path_discover(in, TB_DP_VIDEO_HOPID, NULL, -1, 807 &tunnel->dst_port, "Video", alloc_hopid); 808 if (!path) { 809 /* Just disable the DP IN port */ 810 tb_dp_port_enable(in, false); 811 goto err_free; 812 } 813 tunnel->paths[TB_DP_VIDEO_PATH_OUT] = path; 814 if (tb_dp_init_video_path(tunnel->paths[TB_DP_VIDEO_PATH_OUT])) 815 goto err_free; 816 817 path = tb_path_discover(in, TB_DP_AUX_TX_HOPID, NULL, -1, NULL, "AUX TX", 818 alloc_hopid); 819 if (!path) 820 goto err_deactivate; 821 tunnel->paths[TB_DP_AUX_PATH_OUT] = path; 822 tb_dp_init_aux_path(tunnel->paths[TB_DP_AUX_PATH_OUT]); 823 824 path = tb_path_discover(tunnel->dst_port, -1, in, TB_DP_AUX_RX_HOPID, 825 &port, "AUX RX", alloc_hopid); 826 if (!path) 827 goto err_deactivate; 828 tunnel->paths[TB_DP_AUX_PATH_IN] = path; 829 tb_dp_init_aux_path(tunnel->paths[TB_DP_AUX_PATH_IN]); 830 831 /* Validate that the tunnel is complete */ 832 if (!tb_port_is_dpout(tunnel->dst_port)) { 833 tb_port_warn(in, "path does not end on a DP adapter, cleaning up\n"); 834 goto err_deactivate; 835 } 836 837 if (!tb_dp_port_is_enabled(tunnel->dst_port)) 838 goto err_deactivate; 839 840 if (!tb_dp_port_hpd_is_active(tunnel->dst_port)) 841 goto err_deactivate; 842 843 if (port != tunnel->src_port) { 844 tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n"); 845 goto err_deactivate; 846 } 847 848 tb_tunnel_dbg(tunnel, "discovered\n"); 849 return tunnel; 850 851 err_deactivate: 852 tb_tunnel_deactivate(tunnel); 853 err_free: 854 tb_tunnel_free(tunnel); 855 856 return NULL; 857 } 858 859 /** 860 * tb_tunnel_alloc_dp() - allocate a Display Port tunnel 861 * @tb: Pointer to the domain structure 862 * @in: DP in adapter port 863 * @out: DP out adapter port 864 * @link_nr: Preferred lane adapter when the link is not bonded 865 * @max_up: Maximum available upstream bandwidth for the DP tunnel (%0 866 * if not limited) 867 * @max_down: Maximum available downstream bandwidth for the DP tunnel 868 * (%0 if not limited) 869 * 870 * Allocates a tunnel between @in and @out that is capable of tunneling 871 * Display Port traffic. 872 * 873 * Return: Returns a tb_tunnel on success or NULL on failure. 874 */ 875 struct tb_tunnel *tb_tunnel_alloc_dp(struct tb *tb, struct tb_port *in, 876 struct tb_port *out, int link_nr, 877 int max_up, int max_down) 878 { 879 struct tb_tunnel *tunnel; 880 struct tb_path **paths; 881 struct tb_path *path; 882 883 if (WARN_ON(!in->cap_adap || !out->cap_adap)) 884 return NULL; 885 886 tunnel = tb_tunnel_alloc(tb, 3, TB_TUNNEL_DP); 887 if (!tunnel) 888 return NULL; 889 890 tunnel->init = tb_dp_xchg_caps; 891 tunnel->activate = tb_dp_activate; 892 tunnel->consumed_bandwidth = tb_dp_consumed_bandwidth; 893 tunnel->src_port = in; 894 tunnel->dst_port = out; 895 tunnel->max_up = max_up; 896 tunnel->max_down = max_down; 897 898 paths = tunnel->paths; 899 900 path = tb_path_alloc(tb, in, TB_DP_VIDEO_HOPID, out, TB_DP_VIDEO_HOPID, 901 link_nr, "Video"); 902 if (!path) 903 goto err_free; 904 tb_dp_init_video_path(path); 905 paths[TB_DP_VIDEO_PATH_OUT] = path; 906 907 path = tb_path_alloc(tb, in, TB_DP_AUX_TX_HOPID, out, 908 TB_DP_AUX_TX_HOPID, link_nr, "AUX TX"); 909 if (!path) 910 goto err_free; 911 tb_dp_init_aux_path(path); 912 paths[TB_DP_AUX_PATH_OUT] = path; 913 914 path = tb_path_alloc(tb, out, TB_DP_AUX_RX_HOPID, in, 915 TB_DP_AUX_RX_HOPID, link_nr, "AUX RX"); 916 if (!path) 917 goto err_free; 918 tb_dp_init_aux_path(path); 919 paths[TB_DP_AUX_PATH_IN] = path; 920 921 return tunnel; 922 923 err_free: 924 tb_tunnel_free(tunnel); 925 return NULL; 926 } 927 928 static unsigned int tb_dma_available_credits(const struct tb_port *port) 929 { 930 const struct tb_switch *sw = port->sw; 931 int credits; 932 933 credits = tb_available_credits(port, NULL); 934 if (tb_acpi_may_tunnel_pcie()) 935 credits -= sw->max_pcie_credits; 936 credits -= port->dma_credits; 937 938 return credits > 0 ? credits : 0; 939 } 940 941 static int tb_dma_reserve_credits(struct tb_path_hop *hop, unsigned int credits) 942 { 943 struct tb_port *port = hop->in_port; 944 945 if (tb_port_use_credit_allocation(port)) { 946 unsigned int available = tb_dma_available_credits(port); 947 948 /* 949 * Need to have at least TB_MIN_DMA_CREDITS, otherwise 950 * DMA path cannot be established. 951 */ 952 if (available < TB_MIN_DMA_CREDITS) 953 return -ENOSPC; 954 955 while (credits > available) 956 credits--; 957 958 tb_port_dbg(port, "reserving %u credits for DMA path\n", 959 credits); 960 961 port->dma_credits += credits; 962 } else { 963 if (tb_port_is_null(port)) 964 credits = port->bonded ? 14 : 6; 965 else 966 credits = min(port->total_credits, credits); 967 } 968 969 hop->initial_credits = credits; 970 return 0; 971 } 972 973 /* Path from lane adapter to NHI */ 974 static int tb_dma_init_rx_path(struct tb_path *path, unsigned int credits) 975 { 976 struct tb_path_hop *hop; 977 unsigned int i, tmp; 978 979 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 980 path->ingress_fc_enable = TB_PATH_ALL; 981 path->egress_shared_buffer = TB_PATH_NONE; 982 path->ingress_shared_buffer = TB_PATH_NONE; 983 path->priority = 5; 984 path->weight = 1; 985 path->clear_fc = true; 986 987 /* 988 * First lane adapter is the one connected to the remote host. 989 * We don't tunnel other traffic over this link so can use all 990 * the credits (except the ones reserved for control traffic). 991 */ 992 hop = &path->hops[0]; 993 tmp = min(tb_usable_credits(hop->in_port), credits); 994 hop->initial_credits = tmp; 995 hop->in_port->dma_credits += tmp; 996 997 for (i = 1; i < path->path_length; i++) { 998 int ret; 999 1000 ret = tb_dma_reserve_credits(&path->hops[i], credits); 1001 if (ret) 1002 return ret; 1003 } 1004 1005 return 0; 1006 } 1007 1008 /* Path from NHI to lane adapter */ 1009 static int tb_dma_init_tx_path(struct tb_path *path, unsigned int credits) 1010 { 1011 struct tb_path_hop *hop; 1012 1013 path->egress_fc_enable = TB_PATH_ALL; 1014 path->ingress_fc_enable = TB_PATH_ALL; 1015 path->egress_shared_buffer = TB_PATH_NONE; 1016 path->ingress_shared_buffer = TB_PATH_NONE; 1017 path->priority = 5; 1018 path->weight = 1; 1019 path->clear_fc = true; 1020 1021 tb_path_for_each_hop(path, hop) { 1022 int ret; 1023 1024 ret = tb_dma_reserve_credits(hop, credits); 1025 if (ret) 1026 return ret; 1027 } 1028 1029 return 0; 1030 } 1031 1032 static void tb_dma_release_credits(struct tb_path_hop *hop) 1033 { 1034 struct tb_port *port = hop->in_port; 1035 1036 if (tb_port_use_credit_allocation(port)) { 1037 port->dma_credits -= hop->initial_credits; 1038 1039 tb_port_dbg(port, "released %u DMA path credits\n", 1040 hop->initial_credits); 1041 } 1042 } 1043 1044 static void tb_dma_deinit_path(struct tb_path *path) 1045 { 1046 struct tb_path_hop *hop; 1047 1048 tb_path_for_each_hop(path, hop) 1049 tb_dma_release_credits(hop); 1050 } 1051 1052 static void tb_dma_deinit(struct tb_tunnel *tunnel) 1053 { 1054 int i; 1055 1056 for (i = 0; i < tunnel->npaths; i++) { 1057 if (!tunnel->paths[i]) 1058 continue; 1059 tb_dma_deinit_path(tunnel->paths[i]); 1060 } 1061 } 1062 1063 /** 1064 * tb_tunnel_alloc_dma() - allocate a DMA tunnel 1065 * @tb: Pointer to the domain structure 1066 * @nhi: Host controller port 1067 * @dst: Destination null port which the other domain is connected to 1068 * @transmit_path: HopID used for transmitting packets 1069 * @transmit_ring: NHI ring number used to send packets towards the 1070 * other domain. Set to %-1 if TX path is not needed. 1071 * @receive_path: HopID used for receiving packets 1072 * @receive_ring: NHI ring number used to receive packets from the 1073 * other domain. Set to %-1 if RX path is not needed. 1074 * 1075 * Return: Returns a tb_tunnel on success or NULL on failure. 1076 */ 1077 struct tb_tunnel *tb_tunnel_alloc_dma(struct tb *tb, struct tb_port *nhi, 1078 struct tb_port *dst, int transmit_path, 1079 int transmit_ring, int receive_path, 1080 int receive_ring) 1081 { 1082 struct tb_tunnel *tunnel; 1083 size_t npaths = 0, i = 0; 1084 struct tb_path *path; 1085 int credits; 1086 1087 if (receive_ring > 0) 1088 npaths++; 1089 if (transmit_ring > 0) 1090 npaths++; 1091 1092 if (WARN_ON(!npaths)) 1093 return NULL; 1094 1095 tunnel = tb_tunnel_alloc(tb, npaths, TB_TUNNEL_DMA); 1096 if (!tunnel) 1097 return NULL; 1098 1099 tunnel->src_port = nhi; 1100 tunnel->dst_port = dst; 1101 tunnel->deinit = tb_dma_deinit; 1102 1103 credits = min_not_zero(TB_DMA_CREDITS, nhi->sw->max_dma_credits); 1104 1105 if (receive_ring > 0) { 1106 path = tb_path_alloc(tb, dst, receive_path, nhi, receive_ring, 0, 1107 "DMA RX"); 1108 if (!path) 1109 goto err_free; 1110 tunnel->paths[i++] = path; 1111 if (tb_dma_init_rx_path(path, credits)) { 1112 tb_tunnel_dbg(tunnel, "not enough buffers for RX path\n"); 1113 goto err_free; 1114 } 1115 } 1116 1117 if (transmit_ring > 0) { 1118 path = tb_path_alloc(tb, nhi, transmit_ring, dst, transmit_path, 0, 1119 "DMA TX"); 1120 if (!path) 1121 goto err_free; 1122 tunnel->paths[i++] = path; 1123 if (tb_dma_init_tx_path(path, credits)) { 1124 tb_tunnel_dbg(tunnel, "not enough buffers for TX path\n"); 1125 goto err_free; 1126 } 1127 } 1128 1129 return tunnel; 1130 1131 err_free: 1132 tb_tunnel_free(tunnel); 1133 return NULL; 1134 } 1135 1136 /** 1137 * tb_tunnel_match_dma() - Match DMA tunnel 1138 * @tunnel: Tunnel to match 1139 * @transmit_path: HopID used for transmitting packets. Pass %-1 to ignore. 1140 * @transmit_ring: NHI ring number used to send packets towards the 1141 * other domain. Pass %-1 to ignore. 1142 * @receive_path: HopID used for receiving packets. Pass %-1 to ignore. 1143 * @receive_ring: NHI ring number used to receive packets from the 1144 * other domain. Pass %-1 to ignore. 1145 * 1146 * This function can be used to match specific DMA tunnel, if there are 1147 * multiple DMA tunnels going through the same XDomain connection. 1148 * Returns true if there is match and false otherwise. 1149 */ 1150 bool tb_tunnel_match_dma(const struct tb_tunnel *tunnel, int transmit_path, 1151 int transmit_ring, int receive_path, int receive_ring) 1152 { 1153 const struct tb_path *tx_path = NULL, *rx_path = NULL; 1154 int i; 1155 1156 if (!receive_ring || !transmit_ring) 1157 return false; 1158 1159 for (i = 0; i < tunnel->npaths; i++) { 1160 const struct tb_path *path = tunnel->paths[i]; 1161 1162 if (!path) 1163 continue; 1164 1165 if (tb_port_is_nhi(path->hops[0].in_port)) 1166 tx_path = path; 1167 else if (tb_port_is_nhi(path->hops[path->path_length - 1].out_port)) 1168 rx_path = path; 1169 } 1170 1171 if (transmit_ring > 0 || transmit_path > 0) { 1172 if (!tx_path) 1173 return false; 1174 if (transmit_ring > 0 && 1175 (tx_path->hops[0].in_hop_index != transmit_ring)) 1176 return false; 1177 if (transmit_path > 0 && 1178 (tx_path->hops[tx_path->path_length - 1].next_hop_index != transmit_path)) 1179 return false; 1180 } 1181 1182 if (receive_ring > 0 || receive_path > 0) { 1183 if (!rx_path) 1184 return false; 1185 if (receive_path > 0 && 1186 (rx_path->hops[0].in_hop_index != receive_path)) 1187 return false; 1188 if (receive_ring > 0 && 1189 (rx_path->hops[rx_path->path_length - 1].next_hop_index != receive_ring)) 1190 return false; 1191 } 1192 1193 return true; 1194 } 1195 1196 static int tb_usb3_max_link_rate(struct tb_port *up, struct tb_port *down) 1197 { 1198 int ret, up_max_rate, down_max_rate; 1199 1200 ret = usb4_usb3_port_max_link_rate(up); 1201 if (ret < 0) 1202 return ret; 1203 up_max_rate = ret; 1204 1205 ret = usb4_usb3_port_max_link_rate(down); 1206 if (ret < 0) 1207 return ret; 1208 down_max_rate = ret; 1209 1210 return min(up_max_rate, down_max_rate); 1211 } 1212 1213 static int tb_usb3_init(struct tb_tunnel *tunnel) 1214 { 1215 tb_tunnel_dbg(tunnel, "allocating initial bandwidth %d/%d Mb/s\n", 1216 tunnel->allocated_up, tunnel->allocated_down); 1217 1218 return usb4_usb3_port_allocate_bandwidth(tunnel->src_port, 1219 &tunnel->allocated_up, 1220 &tunnel->allocated_down); 1221 } 1222 1223 static int tb_usb3_activate(struct tb_tunnel *tunnel, bool activate) 1224 { 1225 int res; 1226 1227 res = tb_usb3_port_enable(tunnel->src_port, activate); 1228 if (res) 1229 return res; 1230 1231 if (tb_port_is_usb3_up(tunnel->dst_port)) 1232 return tb_usb3_port_enable(tunnel->dst_port, activate); 1233 1234 return 0; 1235 } 1236 1237 static int tb_usb3_consumed_bandwidth(struct tb_tunnel *tunnel, 1238 int *consumed_up, int *consumed_down) 1239 { 1240 int pcie_enabled = tb_acpi_may_tunnel_pcie(); 1241 1242 /* 1243 * PCIe tunneling, if enabled, affects the USB3 bandwidth so 1244 * take that it into account here. 1245 */ 1246 *consumed_up = tunnel->allocated_up * (3 + pcie_enabled) / 3; 1247 *consumed_down = tunnel->allocated_down * (3 + pcie_enabled) / 3; 1248 return 0; 1249 } 1250 1251 static int tb_usb3_release_unused_bandwidth(struct tb_tunnel *tunnel) 1252 { 1253 int ret; 1254 1255 ret = usb4_usb3_port_release_bandwidth(tunnel->src_port, 1256 &tunnel->allocated_up, 1257 &tunnel->allocated_down); 1258 if (ret) 1259 return ret; 1260 1261 tb_tunnel_dbg(tunnel, "decreased bandwidth allocation to %d/%d Mb/s\n", 1262 tunnel->allocated_up, tunnel->allocated_down); 1263 return 0; 1264 } 1265 1266 static void tb_usb3_reclaim_available_bandwidth(struct tb_tunnel *tunnel, 1267 int *available_up, 1268 int *available_down) 1269 { 1270 int ret, max_rate, allocate_up, allocate_down; 1271 1272 ret = usb4_usb3_port_actual_link_rate(tunnel->src_port); 1273 if (ret < 0) { 1274 tb_tunnel_warn(tunnel, "failed to read actual link rate\n"); 1275 return; 1276 } else if (!ret) { 1277 /* Use maximum link rate if the link valid is not set */ 1278 ret = tb_usb3_max_link_rate(tunnel->dst_port, tunnel->src_port); 1279 if (ret < 0) { 1280 tb_tunnel_warn(tunnel, "failed to read maximum link rate\n"); 1281 return; 1282 } 1283 } 1284 1285 /* 1286 * 90% of the max rate can be allocated for isochronous 1287 * transfers. 1288 */ 1289 max_rate = ret * 90 / 100; 1290 1291 /* No need to reclaim if already at maximum */ 1292 if (tunnel->allocated_up >= max_rate && 1293 tunnel->allocated_down >= max_rate) 1294 return; 1295 1296 /* Don't go lower than what is already allocated */ 1297 allocate_up = min(max_rate, *available_up); 1298 if (allocate_up < tunnel->allocated_up) 1299 allocate_up = tunnel->allocated_up; 1300 1301 allocate_down = min(max_rate, *available_down); 1302 if (allocate_down < tunnel->allocated_down) 1303 allocate_down = tunnel->allocated_down; 1304 1305 /* If no changes no need to do more */ 1306 if (allocate_up == tunnel->allocated_up && 1307 allocate_down == tunnel->allocated_down) 1308 return; 1309 1310 ret = usb4_usb3_port_allocate_bandwidth(tunnel->src_port, &allocate_up, 1311 &allocate_down); 1312 if (ret) { 1313 tb_tunnel_info(tunnel, "failed to allocate bandwidth\n"); 1314 return; 1315 } 1316 1317 tunnel->allocated_up = allocate_up; 1318 *available_up -= tunnel->allocated_up; 1319 1320 tunnel->allocated_down = allocate_down; 1321 *available_down -= tunnel->allocated_down; 1322 1323 tb_tunnel_dbg(tunnel, "increased bandwidth allocation to %d/%d Mb/s\n", 1324 tunnel->allocated_up, tunnel->allocated_down); 1325 } 1326 1327 static void tb_usb3_init_credits(struct tb_path_hop *hop) 1328 { 1329 struct tb_port *port = hop->in_port; 1330 struct tb_switch *sw = port->sw; 1331 unsigned int credits; 1332 1333 if (tb_port_use_credit_allocation(port)) { 1334 credits = sw->max_usb3_credits; 1335 } else { 1336 if (tb_port_is_null(port)) 1337 credits = port->bonded ? 32 : 16; 1338 else 1339 credits = 7; 1340 } 1341 1342 hop->initial_credits = credits; 1343 } 1344 1345 static void tb_usb3_init_path(struct tb_path *path) 1346 { 1347 struct tb_path_hop *hop; 1348 1349 path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL; 1350 path->egress_shared_buffer = TB_PATH_NONE; 1351 path->ingress_fc_enable = TB_PATH_ALL; 1352 path->ingress_shared_buffer = TB_PATH_NONE; 1353 path->priority = 3; 1354 path->weight = 3; 1355 path->drop_packages = 0; 1356 1357 tb_path_for_each_hop(path, hop) 1358 tb_usb3_init_credits(hop); 1359 } 1360 1361 /** 1362 * tb_tunnel_discover_usb3() - Discover existing USB3 tunnels 1363 * @tb: Pointer to the domain structure 1364 * @down: USB3 downstream adapter 1365 * @alloc_hopid: Allocate HopIDs from visited ports 1366 * 1367 * If @down adapter is active, follows the tunnel to the USB3 upstream 1368 * adapter and back. Returns the discovered tunnel or %NULL if there was 1369 * no tunnel. 1370 */ 1371 struct tb_tunnel *tb_tunnel_discover_usb3(struct tb *tb, struct tb_port *down, 1372 bool alloc_hopid) 1373 { 1374 struct tb_tunnel *tunnel; 1375 struct tb_path *path; 1376 1377 if (!tb_usb3_port_is_enabled(down)) 1378 return NULL; 1379 1380 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_USB3); 1381 if (!tunnel) 1382 return NULL; 1383 1384 tunnel->activate = tb_usb3_activate; 1385 tunnel->src_port = down; 1386 1387 /* 1388 * Discover both paths even if they are not complete. We will 1389 * clean them up by calling tb_tunnel_deactivate() below in that 1390 * case. 1391 */ 1392 path = tb_path_discover(down, TB_USB3_HOPID, NULL, -1, 1393 &tunnel->dst_port, "USB3 Down", alloc_hopid); 1394 if (!path) { 1395 /* Just disable the downstream port */ 1396 tb_usb3_port_enable(down, false); 1397 goto err_free; 1398 } 1399 tunnel->paths[TB_USB3_PATH_DOWN] = path; 1400 tb_usb3_init_path(tunnel->paths[TB_USB3_PATH_DOWN]); 1401 1402 path = tb_path_discover(tunnel->dst_port, -1, down, TB_USB3_HOPID, NULL, 1403 "USB3 Up", alloc_hopid); 1404 if (!path) 1405 goto err_deactivate; 1406 tunnel->paths[TB_USB3_PATH_UP] = path; 1407 tb_usb3_init_path(tunnel->paths[TB_USB3_PATH_UP]); 1408 1409 /* Validate that the tunnel is complete */ 1410 if (!tb_port_is_usb3_up(tunnel->dst_port)) { 1411 tb_port_warn(tunnel->dst_port, 1412 "path does not end on an USB3 adapter, cleaning up\n"); 1413 goto err_deactivate; 1414 } 1415 1416 if (down != tunnel->src_port) { 1417 tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n"); 1418 goto err_deactivate; 1419 } 1420 1421 if (!tb_usb3_port_is_enabled(tunnel->dst_port)) { 1422 tb_tunnel_warn(tunnel, 1423 "tunnel is not fully activated, cleaning up\n"); 1424 goto err_deactivate; 1425 } 1426 1427 if (!tb_route(down->sw)) { 1428 int ret; 1429 1430 /* 1431 * Read the initial bandwidth allocation for the first 1432 * hop tunnel. 1433 */ 1434 ret = usb4_usb3_port_allocated_bandwidth(down, 1435 &tunnel->allocated_up, &tunnel->allocated_down); 1436 if (ret) 1437 goto err_deactivate; 1438 1439 tb_tunnel_dbg(tunnel, "currently allocated bandwidth %d/%d Mb/s\n", 1440 tunnel->allocated_up, tunnel->allocated_down); 1441 1442 tunnel->init = tb_usb3_init; 1443 tunnel->consumed_bandwidth = tb_usb3_consumed_bandwidth; 1444 tunnel->release_unused_bandwidth = 1445 tb_usb3_release_unused_bandwidth; 1446 tunnel->reclaim_available_bandwidth = 1447 tb_usb3_reclaim_available_bandwidth; 1448 } 1449 1450 tb_tunnel_dbg(tunnel, "discovered\n"); 1451 return tunnel; 1452 1453 err_deactivate: 1454 tb_tunnel_deactivate(tunnel); 1455 err_free: 1456 tb_tunnel_free(tunnel); 1457 1458 return NULL; 1459 } 1460 1461 /** 1462 * tb_tunnel_alloc_usb3() - allocate a USB3 tunnel 1463 * @tb: Pointer to the domain structure 1464 * @up: USB3 upstream adapter port 1465 * @down: USB3 downstream adapter port 1466 * @max_up: Maximum available upstream bandwidth for the USB3 tunnel (%0 1467 * if not limited). 1468 * @max_down: Maximum available downstream bandwidth for the USB3 tunnel 1469 * (%0 if not limited). 1470 * 1471 * Allocate an USB3 tunnel. The ports must be of type @TB_TYPE_USB3_UP and 1472 * @TB_TYPE_USB3_DOWN. 1473 * 1474 * Return: Returns a tb_tunnel on success or %NULL on failure. 1475 */ 1476 struct tb_tunnel *tb_tunnel_alloc_usb3(struct tb *tb, struct tb_port *up, 1477 struct tb_port *down, int max_up, 1478 int max_down) 1479 { 1480 struct tb_tunnel *tunnel; 1481 struct tb_path *path; 1482 int max_rate = 0; 1483 1484 /* 1485 * Check that we have enough bandwidth available for the new 1486 * USB3 tunnel. 1487 */ 1488 if (max_up > 0 || max_down > 0) { 1489 max_rate = tb_usb3_max_link_rate(down, up); 1490 if (max_rate < 0) 1491 return NULL; 1492 1493 /* Only 90% can be allocated for USB3 isochronous transfers */ 1494 max_rate = max_rate * 90 / 100; 1495 tb_port_dbg(up, "required bandwidth for USB3 tunnel %d Mb/s\n", 1496 max_rate); 1497 1498 if (max_rate > max_up || max_rate > max_down) { 1499 tb_port_warn(up, "not enough bandwidth for USB3 tunnel\n"); 1500 return NULL; 1501 } 1502 } 1503 1504 tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_USB3); 1505 if (!tunnel) 1506 return NULL; 1507 1508 tunnel->activate = tb_usb3_activate; 1509 tunnel->src_port = down; 1510 tunnel->dst_port = up; 1511 tunnel->max_up = max_up; 1512 tunnel->max_down = max_down; 1513 1514 path = tb_path_alloc(tb, down, TB_USB3_HOPID, up, TB_USB3_HOPID, 0, 1515 "USB3 Down"); 1516 if (!path) { 1517 tb_tunnel_free(tunnel); 1518 return NULL; 1519 } 1520 tb_usb3_init_path(path); 1521 tunnel->paths[TB_USB3_PATH_DOWN] = path; 1522 1523 path = tb_path_alloc(tb, up, TB_USB3_HOPID, down, TB_USB3_HOPID, 0, 1524 "USB3 Up"); 1525 if (!path) { 1526 tb_tunnel_free(tunnel); 1527 return NULL; 1528 } 1529 tb_usb3_init_path(path); 1530 tunnel->paths[TB_USB3_PATH_UP] = path; 1531 1532 if (!tb_route(down->sw)) { 1533 tunnel->allocated_up = max_rate; 1534 tunnel->allocated_down = max_rate; 1535 1536 tunnel->init = tb_usb3_init; 1537 tunnel->consumed_bandwidth = tb_usb3_consumed_bandwidth; 1538 tunnel->release_unused_bandwidth = 1539 tb_usb3_release_unused_bandwidth; 1540 tunnel->reclaim_available_bandwidth = 1541 tb_usb3_reclaim_available_bandwidth; 1542 } 1543 1544 return tunnel; 1545 } 1546 1547 /** 1548 * tb_tunnel_free() - free a tunnel 1549 * @tunnel: Tunnel to be freed 1550 * 1551 * Frees a tunnel. The tunnel does not need to be deactivated. 1552 */ 1553 void tb_tunnel_free(struct tb_tunnel *tunnel) 1554 { 1555 int i; 1556 1557 if (!tunnel) 1558 return; 1559 1560 if (tunnel->deinit) 1561 tunnel->deinit(tunnel); 1562 1563 for (i = 0; i < tunnel->npaths; i++) { 1564 if (tunnel->paths[i]) 1565 tb_path_free(tunnel->paths[i]); 1566 } 1567 1568 kfree(tunnel->paths); 1569 kfree(tunnel); 1570 } 1571 1572 /** 1573 * tb_tunnel_is_invalid - check whether an activated path is still valid 1574 * @tunnel: Tunnel to check 1575 */ 1576 bool tb_tunnel_is_invalid(struct tb_tunnel *tunnel) 1577 { 1578 int i; 1579 1580 for (i = 0; i < tunnel->npaths; i++) { 1581 WARN_ON(!tunnel->paths[i]->activated); 1582 if (tb_path_is_invalid(tunnel->paths[i])) 1583 return true; 1584 } 1585 1586 return false; 1587 } 1588 1589 /** 1590 * tb_tunnel_restart() - activate a tunnel after a hardware reset 1591 * @tunnel: Tunnel to restart 1592 * 1593 * Return: 0 on success and negative errno in case if failure 1594 */ 1595 int tb_tunnel_restart(struct tb_tunnel *tunnel) 1596 { 1597 int res, i; 1598 1599 tb_tunnel_dbg(tunnel, "activating\n"); 1600 1601 /* 1602 * Make sure all paths are properly disabled before enabling 1603 * them again. 1604 */ 1605 for (i = 0; i < tunnel->npaths; i++) { 1606 if (tunnel->paths[i]->activated) { 1607 tb_path_deactivate(tunnel->paths[i]); 1608 tunnel->paths[i]->activated = false; 1609 } 1610 } 1611 1612 if (tunnel->init) { 1613 res = tunnel->init(tunnel); 1614 if (res) 1615 return res; 1616 } 1617 1618 for (i = 0; i < tunnel->npaths; i++) { 1619 res = tb_path_activate(tunnel->paths[i]); 1620 if (res) 1621 goto err; 1622 } 1623 1624 if (tunnel->activate) { 1625 res = tunnel->activate(tunnel, true); 1626 if (res) 1627 goto err; 1628 } 1629 1630 return 0; 1631 1632 err: 1633 tb_tunnel_warn(tunnel, "activation failed\n"); 1634 tb_tunnel_deactivate(tunnel); 1635 return res; 1636 } 1637 1638 /** 1639 * tb_tunnel_activate() - activate a tunnel 1640 * @tunnel: Tunnel to activate 1641 * 1642 * Return: Returns 0 on success or an error code on failure. 1643 */ 1644 int tb_tunnel_activate(struct tb_tunnel *tunnel) 1645 { 1646 int i; 1647 1648 for (i = 0; i < tunnel->npaths; i++) { 1649 if (tunnel->paths[i]->activated) { 1650 tb_tunnel_WARN(tunnel, 1651 "trying to activate an already activated tunnel\n"); 1652 return -EINVAL; 1653 } 1654 } 1655 1656 return tb_tunnel_restart(tunnel); 1657 } 1658 1659 /** 1660 * tb_tunnel_deactivate() - deactivate a tunnel 1661 * @tunnel: Tunnel to deactivate 1662 */ 1663 void tb_tunnel_deactivate(struct tb_tunnel *tunnel) 1664 { 1665 int i; 1666 1667 tb_tunnel_dbg(tunnel, "deactivating\n"); 1668 1669 if (tunnel->activate) 1670 tunnel->activate(tunnel, false); 1671 1672 for (i = 0; i < tunnel->npaths; i++) { 1673 if (tunnel->paths[i] && tunnel->paths[i]->activated) 1674 tb_path_deactivate(tunnel->paths[i]); 1675 } 1676 } 1677 1678 /** 1679 * tb_tunnel_port_on_path() - Does the tunnel go through port 1680 * @tunnel: Tunnel to check 1681 * @port: Port to check 1682 * 1683 * Returns true if @tunnel goes through @port (direction does not matter), 1684 * false otherwise. 1685 */ 1686 bool tb_tunnel_port_on_path(const struct tb_tunnel *tunnel, 1687 const struct tb_port *port) 1688 { 1689 int i; 1690 1691 for (i = 0; i < tunnel->npaths; i++) { 1692 if (!tunnel->paths[i]) 1693 continue; 1694 1695 if (tb_path_port_on_path(tunnel->paths[i], port)) 1696 return true; 1697 } 1698 1699 return false; 1700 } 1701 1702 static bool tb_tunnel_is_active(const struct tb_tunnel *tunnel) 1703 { 1704 int i; 1705 1706 for (i = 0; i < tunnel->npaths; i++) { 1707 if (!tunnel->paths[i]) 1708 return false; 1709 if (!tunnel->paths[i]->activated) 1710 return false; 1711 } 1712 1713 return true; 1714 } 1715 1716 /** 1717 * tb_tunnel_consumed_bandwidth() - Return bandwidth consumed by the tunnel 1718 * @tunnel: Tunnel to check 1719 * @consumed_up: Consumed bandwidth in Mb/s from @dst_port to @src_port. 1720 * Can be %NULL. 1721 * @consumed_down: Consumed bandwidth in Mb/s from @src_port to @dst_port. 1722 * Can be %NULL. 1723 * 1724 * Stores the amount of isochronous bandwidth @tunnel consumes in 1725 * @consumed_up and @consumed_down. In case of success returns %0, 1726 * negative errno otherwise. 1727 */ 1728 int tb_tunnel_consumed_bandwidth(struct tb_tunnel *tunnel, int *consumed_up, 1729 int *consumed_down) 1730 { 1731 int up_bw = 0, down_bw = 0; 1732 1733 if (!tb_tunnel_is_active(tunnel)) 1734 goto out; 1735 1736 if (tunnel->consumed_bandwidth) { 1737 int ret; 1738 1739 ret = tunnel->consumed_bandwidth(tunnel, &up_bw, &down_bw); 1740 if (ret) 1741 return ret; 1742 1743 tb_tunnel_dbg(tunnel, "consumed bandwidth %d/%d Mb/s\n", up_bw, 1744 down_bw); 1745 } 1746 1747 out: 1748 if (consumed_up) 1749 *consumed_up = up_bw; 1750 if (consumed_down) 1751 *consumed_down = down_bw; 1752 1753 return 0; 1754 } 1755 1756 /** 1757 * tb_tunnel_release_unused_bandwidth() - Release unused bandwidth 1758 * @tunnel: Tunnel whose unused bandwidth to release 1759 * 1760 * If tunnel supports dynamic bandwidth management (USB3 tunnels at the 1761 * moment) this function makes it to release all the unused bandwidth. 1762 * 1763 * Returns %0 in case of success and negative errno otherwise. 1764 */ 1765 int tb_tunnel_release_unused_bandwidth(struct tb_tunnel *tunnel) 1766 { 1767 if (!tb_tunnel_is_active(tunnel)) 1768 return 0; 1769 1770 if (tunnel->release_unused_bandwidth) { 1771 int ret; 1772 1773 ret = tunnel->release_unused_bandwidth(tunnel); 1774 if (ret) 1775 return ret; 1776 } 1777 1778 return 0; 1779 } 1780 1781 /** 1782 * tb_tunnel_reclaim_available_bandwidth() - Reclaim available bandwidth 1783 * @tunnel: Tunnel reclaiming available bandwidth 1784 * @available_up: Available upstream bandwidth (in Mb/s) 1785 * @available_down: Available downstream bandwidth (in Mb/s) 1786 * 1787 * Reclaims bandwidth from @available_up and @available_down and updates 1788 * the variables accordingly (e.g decreases both according to what was 1789 * reclaimed by the tunnel). If nothing was reclaimed the values are 1790 * kept as is. 1791 */ 1792 void tb_tunnel_reclaim_available_bandwidth(struct tb_tunnel *tunnel, 1793 int *available_up, 1794 int *available_down) 1795 { 1796 if (!tb_tunnel_is_active(tunnel)) 1797 return; 1798 1799 if (tunnel->reclaim_available_bandwidth) 1800 tunnel->reclaim_available_bandwidth(tunnel, available_up, 1801 available_down); 1802 } 1803