xref: /openbmc/linux/drivers/thunderbolt/tb.c (revision e5242c5f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - bus logic (NHI independent)
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2019, Intel Corporation
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/errno.h>
11 #include <linux/delay.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/platform_data/x86/apple.h>
14 
15 #include "tb.h"
16 #include "tb_regs.h"
17 #include "tunnel.h"
18 
19 #define TB_TIMEOUT		100	/* ms */
20 
21 /*
22  * Minimum bandwidth (in Mb/s) that is needed in the single transmitter/receiver
23  * direction. This is 40G - 10% guard band bandwidth.
24  */
25 #define TB_ASYM_MIN		(40000 * 90 / 100)
26 
27 /*
28  * Threshold bandwidth (in Mb/s) that is used to switch the links to
29  * asymmetric and back. This is selected as 45G which means when the
30  * request is higher than this, we switch the link to asymmetric, and
31  * when it is less than this we switch it back. The 45G is selected so
32  * that we still have 27G (of the total 72G) for bulk PCIe traffic when
33  * switching back to symmetric.
34  */
35 #define TB_ASYM_THRESHOLD	45000
36 
37 #define MAX_GROUPS		7	/* max Group_ID is 7 */
38 
39 static unsigned int asym_threshold = TB_ASYM_THRESHOLD;
40 module_param_named(asym_threshold, asym_threshold, uint, 0444);
41 MODULE_PARM_DESC(asym_threshold,
42 		"threshold (Mb/s) when to Gen 4 switch link symmetry. 0 disables. (default: "
43 		__MODULE_STRING(TB_ASYM_THRESHOLD) ")");
44 
45 /**
46  * struct tb_cm - Simple Thunderbolt connection manager
47  * @tunnel_list: List of active tunnels
48  * @dp_resources: List of available DP resources for DP tunneling
49  * @hotplug_active: tb_handle_hotplug will stop progressing plug
50  *		    events and exit if this is not set (it needs to
51  *		    acquire the lock one more time). Used to drain wq
52  *		    after cfg has been paused.
53  * @remove_work: Work used to remove any unplugged routers after
54  *		 runtime resume
55  * @groups: Bandwidth groups used in this domain.
56  */
57 struct tb_cm {
58 	struct list_head tunnel_list;
59 	struct list_head dp_resources;
60 	bool hotplug_active;
61 	struct delayed_work remove_work;
62 	struct tb_bandwidth_group groups[MAX_GROUPS];
63 };
64 
65 static inline struct tb *tcm_to_tb(struct tb_cm *tcm)
66 {
67 	return ((void *)tcm - sizeof(struct tb));
68 }
69 
70 struct tb_hotplug_event {
71 	struct work_struct work;
72 	struct tb *tb;
73 	u64 route;
74 	u8 port;
75 	bool unplug;
76 };
77 
78 static void tb_init_bandwidth_groups(struct tb_cm *tcm)
79 {
80 	int i;
81 
82 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
83 		struct tb_bandwidth_group *group = &tcm->groups[i];
84 
85 		group->tb = tcm_to_tb(tcm);
86 		group->index = i + 1;
87 		INIT_LIST_HEAD(&group->ports);
88 	}
89 }
90 
91 static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group,
92 					   struct tb_port *in)
93 {
94 	if (!group || WARN_ON(in->group))
95 		return;
96 
97 	in->group = group;
98 	list_add_tail(&in->group_list, &group->ports);
99 
100 	tb_port_dbg(in, "attached to bandwidth group %d\n", group->index);
101 }
102 
103 static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm)
104 {
105 	int i;
106 
107 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
108 		struct tb_bandwidth_group *group = &tcm->groups[i];
109 
110 		if (list_empty(&group->ports))
111 			return group;
112 	}
113 
114 	return NULL;
115 }
116 
117 static struct tb_bandwidth_group *
118 tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
119 			  struct tb_port *out)
120 {
121 	struct tb_bandwidth_group *group;
122 	struct tb_tunnel *tunnel;
123 
124 	/*
125 	 * Find all DP tunnels that go through all the same USB4 links
126 	 * as this one. Because we always setup tunnels the same way we
127 	 * can just check for the routers at both ends of the tunnels
128 	 * and if they are the same we have a match.
129 	 */
130 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
131 		if (!tb_tunnel_is_dp(tunnel))
132 			continue;
133 
134 		if (tunnel->src_port->sw == in->sw &&
135 		    tunnel->dst_port->sw == out->sw) {
136 			group = tunnel->src_port->group;
137 			if (group) {
138 				tb_bandwidth_group_attach_port(group, in);
139 				return group;
140 			}
141 		}
142 	}
143 
144 	/* Pick up next available group then */
145 	group = tb_find_free_bandwidth_group(tcm);
146 	if (group)
147 		tb_bandwidth_group_attach_port(group, in);
148 	else
149 		tb_port_warn(in, "no available bandwidth groups\n");
150 
151 	return group;
152 }
153 
154 static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
155 					struct tb_port *out)
156 {
157 	if (usb4_dp_port_bandwidth_mode_enabled(in)) {
158 		int index, i;
159 
160 		index = usb4_dp_port_group_id(in);
161 		for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
162 			if (tcm->groups[i].index == index) {
163 				tb_bandwidth_group_attach_port(&tcm->groups[i], in);
164 				return;
165 			}
166 		}
167 	}
168 
169 	tb_attach_bandwidth_group(tcm, in, out);
170 }
171 
172 static void tb_detach_bandwidth_group(struct tb_port *in)
173 {
174 	struct tb_bandwidth_group *group = in->group;
175 
176 	if (group) {
177 		in->group = NULL;
178 		list_del_init(&in->group_list);
179 
180 		tb_port_dbg(in, "detached from bandwidth group %d\n", group->index);
181 	}
182 }
183 
184 static void tb_handle_hotplug(struct work_struct *work);
185 
186 static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug)
187 {
188 	struct tb_hotplug_event *ev;
189 
190 	ev = kmalloc(sizeof(*ev), GFP_KERNEL);
191 	if (!ev)
192 		return;
193 
194 	ev->tb = tb;
195 	ev->route = route;
196 	ev->port = port;
197 	ev->unplug = unplug;
198 	INIT_WORK(&ev->work, tb_handle_hotplug);
199 	queue_work(tb->wq, &ev->work);
200 }
201 
202 /* enumeration & hot plug handling */
203 
204 static void tb_add_dp_resources(struct tb_switch *sw)
205 {
206 	struct tb_cm *tcm = tb_priv(sw->tb);
207 	struct tb_port *port;
208 
209 	tb_switch_for_each_port(sw, port) {
210 		if (!tb_port_is_dpin(port))
211 			continue;
212 
213 		if (!tb_switch_query_dp_resource(sw, port))
214 			continue;
215 
216 		list_add_tail(&port->list, &tcm->dp_resources);
217 		tb_port_dbg(port, "DP IN resource available\n");
218 	}
219 }
220 
221 static void tb_remove_dp_resources(struct tb_switch *sw)
222 {
223 	struct tb_cm *tcm = tb_priv(sw->tb);
224 	struct tb_port *port, *tmp;
225 
226 	/* Clear children resources first */
227 	tb_switch_for_each_port(sw, port) {
228 		if (tb_port_has_remote(port))
229 			tb_remove_dp_resources(port->remote->sw);
230 	}
231 
232 	list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) {
233 		if (port->sw == sw) {
234 			tb_port_dbg(port, "DP OUT resource unavailable\n");
235 			list_del_init(&port->list);
236 		}
237 	}
238 }
239 
240 static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port)
241 {
242 	struct tb_cm *tcm = tb_priv(tb);
243 	struct tb_port *p;
244 
245 	list_for_each_entry(p, &tcm->dp_resources, list) {
246 		if (p == port)
247 			return;
248 	}
249 
250 	tb_port_dbg(port, "DP %s resource available discovered\n",
251 		    tb_port_is_dpin(port) ? "IN" : "OUT");
252 	list_add_tail(&port->list, &tcm->dp_resources);
253 }
254 
255 static void tb_discover_dp_resources(struct tb *tb)
256 {
257 	struct tb_cm *tcm = tb_priv(tb);
258 	struct tb_tunnel *tunnel;
259 
260 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
261 		if (tb_tunnel_is_dp(tunnel))
262 			tb_discover_dp_resource(tb, tunnel->dst_port);
263 	}
264 }
265 
266 /* Enables CL states up to host router */
267 static int tb_enable_clx(struct tb_switch *sw)
268 {
269 	struct tb_cm *tcm = tb_priv(sw->tb);
270 	unsigned int clx = TB_CL0S | TB_CL1;
271 	const struct tb_tunnel *tunnel;
272 	int ret;
273 
274 	/*
275 	 * Currently only enable CLx for the first link. This is enough
276 	 * to allow the CPU to save energy at least on Intel hardware
277 	 * and makes it slightly simpler to implement. We may change
278 	 * this in the future to cover the whole topology if it turns
279 	 * out to be beneficial.
280 	 */
281 	while (sw && tb_switch_depth(sw) > 1)
282 		sw = tb_switch_parent(sw);
283 
284 	if (!sw)
285 		return 0;
286 
287 	if (tb_switch_depth(sw) != 1)
288 		return 0;
289 
290 	/*
291 	 * If we are re-enabling then check if there is an active DMA
292 	 * tunnel and in that case bail out.
293 	 */
294 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
295 		if (tb_tunnel_is_dma(tunnel)) {
296 			if (tb_tunnel_port_on_path(tunnel, tb_upstream_port(sw)))
297 				return 0;
298 		}
299 	}
300 
301 	/*
302 	 * Initially try with CL2. If that's not supported by the
303 	 * topology try with CL0s and CL1 and then give up.
304 	 */
305 	ret = tb_switch_clx_enable(sw, clx | TB_CL2);
306 	if (ret == -EOPNOTSUPP)
307 		ret = tb_switch_clx_enable(sw, clx);
308 	return ret == -EOPNOTSUPP ? 0 : ret;
309 }
310 
311 /**
312  * tb_disable_clx() - Disable CL states up to host router
313  * @sw: Router to start
314  *
315  * Disables CL states from @sw up to the host router. Returns true if
316  * any CL state were disabled. This can be used to figure out whether
317  * the link was setup by us or the boot firmware so we don't
318  * accidentally enable them if they were not enabled during discovery.
319  */
320 static bool tb_disable_clx(struct tb_switch *sw)
321 {
322 	bool disabled = false;
323 
324 	do {
325 		int ret;
326 
327 		ret = tb_switch_clx_disable(sw);
328 		if (ret > 0)
329 			disabled = true;
330 		else if (ret < 0)
331 			tb_sw_warn(sw, "failed to disable CL states\n");
332 
333 		sw = tb_switch_parent(sw);
334 	} while (sw);
335 
336 	return disabled;
337 }
338 
339 static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data)
340 {
341 	struct tb_switch *sw;
342 
343 	sw = tb_to_switch(dev);
344 	if (!sw)
345 		return 0;
346 
347 	if (tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_LOWRES)) {
348 		enum tb_switch_tmu_mode mode;
349 		int ret;
350 
351 		if (tb_switch_clx_is_enabled(sw, TB_CL1))
352 			mode = TB_SWITCH_TMU_MODE_HIFI_UNI;
353 		else
354 			mode = TB_SWITCH_TMU_MODE_HIFI_BI;
355 
356 		ret = tb_switch_tmu_configure(sw, mode);
357 		if (ret)
358 			return ret;
359 
360 		return tb_switch_tmu_enable(sw);
361 	}
362 
363 	return 0;
364 }
365 
366 static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel)
367 {
368 	struct tb_switch *sw;
369 
370 	if (!tunnel)
371 		return;
372 
373 	/*
374 	 * Once first DP tunnel is established we change the TMU
375 	 * accuracy of first depth child routers (and the host router)
376 	 * to the highest. This is needed for the DP tunneling to work
377 	 * but also allows CL0s.
378 	 *
379 	 * If both routers are v2 then we don't need to do anything as
380 	 * they are using enhanced TMU mode that allows all CLx.
381 	 */
382 	sw = tunnel->tb->root_switch;
383 	device_for_each_child(&sw->dev, NULL, tb_increase_switch_tmu_accuracy);
384 }
385 
386 static int tb_switch_tmu_hifi_uni_required(struct device *dev, void *not_used)
387 {
388 	struct tb_switch *sw = tb_to_switch(dev);
389 
390 	if (sw && tb_switch_tmu_is_enabled(sw) &&
391 	    tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_HIFI_UNI))
392 		return 1;
393 
394 	return device_for_each_child(dev, NULL,
395 				     tb_switch_tmu_hifi_uni_required);
396 }
397 
398 static bool tb_tmu_hifi_uni_required(struct tb *tb)
399 {
400 	return device_for_each_child(&tb->dev, NULL,
401 				     tb_switch_tmu_hifi_uni_required) == 1;
402 }
403 
404 static int tb_enable_tmu(struct tb_switch *sw)
405 {
406 	int ret;
407 
408 	/*
409 	 * If both routers at the end of the link are v2 we simply
410 	 * enable the enhanched uni-directional mode. That covers all
411 	 * the CL states. For v1 and before we need to use the normal
412 	 * rate to allow CL1 (when supported). Otherwise we keep the TMU
413 	 * running at the highest accuracy.
414 	 */
415 	ret = tb_switch_tmu_configure(sw,
416 			TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI);
417 	if (ret == -EOPNOTSUPP) {
418 		if (tb_switch_clx_is_enabled(sw, TB_CL1)) {
419 			/*
420 			 * Figure out uni-directional HiFi TMU requirements
421 			 * currently in the domain. If there are no
422 			 * uni-directional HiFi requirements we can put the TMU
423 			 * into LowRes mode.
424 			 *
425 			 * Deliberately skip bi-directional HiFi links
426 			 * as these work independently of other links
427 			 * (and they do not allow any CL states anyway).
428 			 */
429 			if (tb_tmu_hifi_uni_required(sw->tb))
430 				ret = tb_switch_tmu_configure(sw,
431 						TB_SWITCH_TMU_MODE_HIFI_UNI);
432 			else
433 				ret = tb_switch_tmu_configure(sw,
434 						TB_SWITCH_TMU_MODE_LOWRES);
435 		} else {
436 			ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI);
437 		}
438 
439 		/* If not supported, fallback to bi-directional HiFi */
440 		if (ret == -EOPNOTSUPP)
441 			ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI);
442 	}
443 	if (ret)
444 		return ret;
445 
446 	/* If it is already enabled in correct mode, don't touch it */
447 	if (tb_switch_tmu_is_enabled(sw))
448 		return 0;
449 
450 	ret = tb_switch_tmu_disable(sw);
451 	if (ret)
452 		return ret;
453 
454 	ret = tb_switch_tmu_post_time(sw);
455 	if (ret)
456 		return ret;
457 
458 	return tb_switch_tmu_enable(sw);
459 }
460 
461 static void tb_switch_discover_tunnels(struct tb_switch *sw,
462 				       struct list_head *list,
463 				       bool alloc_hopids)
464 {
465 	struct tb *tb = sw->tb;
466 	struct tb_port *port;
467 
468 	tb_switch_for_each_port(sw, port) {
469 		struct tb_tunnel *tunnel = NULL;
470 
471 		switch (port->config.type) {
472 		case TB_TYPE_DP_HDMI_IN:
473 			tunnel = tb_tunnel_discover_dp(tb, port, alloc_hopids);
474 			tb_increase_tmu_accuracy(tunnel);
475 			break;
476 
477 		case TB_TYPE_PCIE_DOWN:
478 			tunnel = tb_tunnel_discover_pci(tb, port, alloc_hopids);
479 			break;
480 
481 		case TB_TYPE_USB3_DOWN:
482 			tunnel = tb_tunnel_discover_usb3(tb, port, alloc_hopids);
483 			break;
484 
485 		default:
486 			break;
487 		}
488 
489 		if (tunnel)
490 			list_add_tail(&tunnel->list, list);
491 	}
492 
493 	tb_switch_for_each_port(sw, port) {
494 		if (tb_port_has_remote(port)) {
495 			tb_switch_discover_tunnels(port->remote->sw, list,
496 						   alloc_hopids);
497 		}
498 	}
499 }
500 
501 static void tb_discover_tunnels(struct tb *tb)
502 {
503 	struct tb_cm *tcm = tb_priv(tb);
504 	struct tb_tunnel *tunnel;
505 
506 	tb_switch_discover_tunnels(tb->root_switch, &tcm->tunnel_list, true);
507 
508 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
509 		if (tb_tunnel_is_pci(tunnel)) {
510 			struct tb_switch *parent = tunnel->dst_port->sw;
511 
512 			while (parent != tunnel->src_port->sw) {
513 				parent->boot = true;
514 				parent = tb_switch_parent(parent);
515 			}
516 		} else if (tb_tunnel_is_dp(tunnel)) {
517 			struct tb_port *in = tunnel->src_port;
518 			struct tb_port *out = tunnel->dst_port;
519 
520 			/* Keep the domain from powering down */
521 			pm_runtime_get_sync(&in->sw->dev);
522 			pm_runtime_get_sync(&out->sw->dev);
523 
524 			tb_discover_bandwidth_group(tcm, in, out);
525 		}
526 	}
527 }
528 
529 static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
530 {
531 	if (tb_switch_is_usb4(port->sw))
532 		return usb4_port_configure_xdomain(port, xd);
533 	return tb_lc_configure_xdomain(port);
534 }
535 
536 static void tb_port_unconfigure_xdomain(struct tb_port *port)
537 {
538 	if (tb_switch_is_usb4(port->sw))
539 		usb4_port_unconfigure_xdomain(port);
540 	else
541 		tb_lc_unconfigure_xdomain(port);
542 
543 	tb_port_enable(port->dual_link_port);
544 }
545 
546 static void tb_scan_xdomain(struct tb_port *port)
547 {
548 	struct tb_switch *sw = port->sw;
549 	struct tb *tb = sw->tb;
550 	struct tb_xdomain *xd;
551 	u64 route;
552 
553 	if (!tb_is_xdomain_enabled())
554 		return;
555 
556 	route = tb_downstream_route(port);
557 	xd = tb_xdomain_find_by_route(tb, route);
558 	if (xd) {
559 		tb_xdomain_put(xd);
560 		return;
561 	}
562 
563 	xd = tb_xdomain_alloc(tb, &sw->dev, route, tb->root_switch->uuid,
564 			      NULL);
565 	if (xd) {
566 		tb_port_at(route, sw)->xdomain = xd;
567 		tb_port_configure_xdomain(port, xd);
568 		tb_xdomain_add(xd);
569 	}
570 }
571 
572 /**
573  * tb_find_unused_port() - return the first inactive port on @sw
574  * @sw: Switch to find the port on
575  * @type: Port type to look for
576  */
577 static struct tb_port *tb_find_unused_port(struct tb_switch *sw,
578 					   enum tb_port_type type)
579 {
580 	struct tb_port *port;
581 
582 	tb_switch_for_each_port(sw, port) {
583 		if (tb_is_upstream_port(port))
584 			continue;
585 		if (port->config.type != type)
586 			continue;
587 		if (!port->cap_adap)
588 			continue;
589 		if (tb_port_is_enabled(port))
590 			continue;
591 		return port;
592 	}
593 	return NULL;
594 }
595 
596 static struct tb_port *tb_find_usb3_down(struct tb_switch *sw,
597 					 const struct tb_port *port)
598 {
599 	struct tb_port *down;
600 
601 	down = usb4_switch_map_usb3_down(sw, port);
602 	if (down && !tb_usb3_port_is_enabled(down))
603 		return down;
604 	return NULL;
605 }
606 
607 static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type,
608 					struct tb_port *src_port,
609 					struct tb_port *dst_port)
610 {
611 	struct tb_cm *tcm = tb_priv(tb);
612 	struct tb_tunnel *tunnel;
613 
614 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
615 		if (tunnel->type == type &&
616 		    ((src_port && src_port == tunnel->src_port) ||
617 		     (dst_port && dst_port == tunnel->dst_port))) {
618 			return tunnel;
619 		}
620 	}
621 
622 	return NULL;
623 }
624 
625 static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb,
626 						   struct tb_port *src_port,
627 						   struct tb_port *dst_port)
628 {
629 	struct tb_port *port, *usb3_down;
630 	struct tb_switch *sw;
631 
632 	/* Pick the router that is deepest in the topology */
633 	if (tb_port_path_direction_downstream(src_port, dst_port))
634 		sw = dst_port->sw;
635 	else
636 		sw = src_port->sw;
637 
638 	/* Can't be the host router */
639 	if (sw == tb->root_switch)
640 		return NULL;
641 
642 	/* Find the downstream USB4 port that leads to this router */
643 	port = tb_port_at(tb_route(sw), tb->root_switch);
644 	/* Find the corresponding host router USB3 downstream port */
645 	usb3_down = usb4_switch_map_usb3_down(tb->root_switch, port);
646 	if (!usb3_down)
647 		return NULL;
648 
649 	return tb_find_tunnel(tb, TB_TUNNEL_USB3, usb3_down, NULL);
650 }
651 
652 /**
653  * tb_consumed_usb3_pcie_bandwidth() - Consumed USB3/PCIe bandwidth over a single link
654  * @tb: Domain structure
655  * @src_port: Source protocol adapter
656  * @dst_port: Destination protocol adapter
657  * @port: USB4 port the consumed bandwidth is calculated
658  * @consumed_up: Consumed upsream bandwidth (Mb/s)
659  * @consumed_down: Consumed downstream bandwidth (Mb/s)
660  *
661  * Calculates consumed USB3 and PCIe bandwidth at @port between path
662  * from @src_port to @dst_port. Does not take tunnel starting from
663  * @src_port and ending from @src_port into account.
664  */
665 static int tb_consumed_usb3_pcie_bandwidth(struct tb *tb,
666 					   struct tb_port *src_port,
667 					   struct tb_port *dst_port,
668 					   struct tb_port *port,
669 					   int *consumed_up,
670 					   int *consumed_down)
671 {
672 	int pci_consumed_up, pci_consumed_down;
673 	struct tb_tunnel *tunnel;
674 
675 	*consumed_up = *consumed_down = 0;
676 
677 	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
678 	if (tunnel && tunnel->src_port != src_port &&
679 	    tunnel->dst_port != dst_port) {
680 		int ret;
681 
682 		ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up,
683 						   consumed_down);
684 		if (ret)
685 			return ret;
686 	}
687 
688 	/*
689 	 * If there is anything reserved for PCIe bulk traffic take it
690 	 * into account here too.
691 	 */
692 	if (tb_tunnel_reserved_pci(port, &pci_consumed_up, &pci_consumed_down)) {
693 		*consumed_up += pci_consumed_up;
694 		*consumed_down += pci_consumed_down;
695 	}
696 
697 	return 0;
698 }
699 
700 /**
701  * tb_consumed_dp_bandwidth() - Consumed DP bandwidth over a single link
702  * @tb: Domain structure
703  * @src_port: Source protocol adapter
704  * @dst_port: Destination protocol adapter
705  * @port: USB4 port the consumed bandwidth is calculated
706  * @consumed_up: Consumed upsream bandwidth (Mb/s)
707  * @consumed_down: Consumed downstream bandwidth (Mb/s)
708  *
709  * Calculates consumed DP bandwidth at @port between path from @src_port
710  * to @dst_port. Does not take tunnel starting from @src_port and ending
711  * from @src_port into account.
712  */
713 static int tb_consumed_dp_bandwidth(struct tb *tb,
714 				    struct tb_port *src_port,
715 				    struct tb_port *dst_port,
716 				    struct tb_port *port,
717 				    int *consumed_up,
718 				    int *consumed_down)
719 {
720 	struct tb_cm *tcm = tb_priv(tb);
721 	struct tb_tunnel *tunnel;
722 	int ret;
723 
724 	*consumed_up = *consumed_down = 0;
725 
726 	/*
727 	 * Find all DP tunnels that cross the port and reduce
728 	 * their consumed bandwidth from the available.
729 	 */
730 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
731 		int dp_consumed_up, dp_consumed_down;
732 
733 		if (tb_tunnel_is_invalid(tunnel))
734 			continue;
735 
736 		if (!tb_tunnel_is_dp(tunnel))
737 			continue;
738 
739 		if (!tb_tunnel_port_on_path(tunnel, port))
740 			continue;
741 
742 		/*
743 		 * Ignore the DP tunnel between src_port and dst_port
744 		 * because it is the same tunnel and we may be
745 		 * re-calculating estimated bandwidth.
746 		 */
747 		if (tunnel->src_port == src_port &&
748 		    tunnel->dst_port == dst_port)
749 			continue;
750 
751 		ret = tb_tunnel_consumed_bandwidth(tunnel, &dp_consumed_up,
752 						   &dp_consumed_down);
753 		if (ret)
754 			return ret;
755 
756 		*consumed_up += dp_consumed_up;
757 		*consumed_down += dp_consumed_down;
758 	}
759 
760 	return 0;
761 }
762 
763 static bool tb_asym_supported(struct tb_port *src_port, struct tb_port *dst_port,
764 			      struct tb_port *port)
765 {
766 	bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
767 	enum tb_link_width width;
768 
769 	if (tb_is_upstream_port(port))
770 		width = downstream ? TB_LINK_WIDTH_ASYM_RX : TB_LINK_WIDTH_ASYM_TX;
771 	else
772 		width = downstream ? TB_LINK_WIDTH_ASYM_TX : TB_LINK_WIDTH_ASYM_RX;
773 
774 	return tb_port_width_supported(port, width);
775 }
776 
777 /**
778  * tb_maximum_banwidth() - Maximum bandwidth over a single link
779  * @tb: Domain structure
780  * @src_port: Source protocol adapter
781  * @dst_port: Destination protocol adapter
782  * @port: USB4 port the total bandwidth is calculated
783  * @max_up: Maximum upstream bandwidth (Mb/s)
784  * @max_down: Maximum downstream bandwidth (Mb/s)
785  * @include_asym: Include bandwidth if the link is switched from
786  *		  symmetric to asymmetric
787  *
788  * Returns maximum possible bandwidth in @max_up and @max_down over a
789  * single link at @port. If @include_asym is set then includes the
790  * additional banwdith if the links are transitioned into asymmetric to
791  * direction from @src_port to @dst_port.
792  */
793 static int tb_maximum_bandwidth(struct tb *tb, struct tb_port *src_port,
794 				struct tb_port *dst_port, struct tb_port *port,
795 				int *max_up, int *max_down, bool include_asym)
796 {
797 	bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
798 	int link_speed, link_width, up_bw, down_bw;
799 
800 	/*
801 	 * Can include asymmetric, only if it is actually supported by
802 	 * the lane adapter.
803 	 */
804 	if (!tb_asym_supported(src_port, dst_port, port))
805 		include_asym = false;
806 
807 	if (tb_is_upstream_port(port)) {
808 		link_speed = port->sw->link_speed;
809 		/*
810 		 * sw->link_width is from upstream perspective so we use
811 		 * the opposite for downstream of the host router.
812 		 */
813 		if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) {
814 			up_bw = link_speed * 3 * 1000;
815 			down_bw = link_speed * 1 * 1000;
816 		} else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
817 			up_bw = link_speed * 1 * 1000;
818 			down_bw = link_speed * 3 * 1000;
819 		} else if (include_asym) {
820 			/*
821 			 * The link is symmetric at the moment but we
822 			 * can switch it to asymmetric as needed. Report
823 			 * this bandwidth as available (even though it
824 			 * is not yet enabled).
825 			 */
826 			if (downstream) {
827 				up_bw = link_speed * 1 * 1000;
828 				down_bw = link_speed * 3 * 1000;
829 			} else {
830 				up_bw = link_speed * 3 * 1000;
831 				down_bw = link_speed * 1 * 1000;
832 			}
833 		} else {
834 			up_bw = link_speed * port->sw->link_width * 1000;
835 			down_bw = up_bw;
836 		}
837 	} else {
838 		link_speed = tb_port_get_link_speed(port);
839 		if (link_speed < 0)
840 			return link_speed;
841 
842 		link_width = tb_port_get_link_width(port);
843 		if (link_width < 0)
844 			return link_width;
845 
846 		if (link_width == TB_LINK_WIDTH_ASYM_TX) {
847 			up_bw = link_speed * 1 * 1000;
848 			down_bw = link_speed * 3 * 1000;
849 		} else if (link_width == TB_LINK_WIDTH_ASYM_RX) {
850 			up_bw = link_speed * 3 * 1000;
851 			down_bw = link_speed * 1 * 1000;
852 		} else if (include_asym) {
853 			/*
854 			 * The link is symmetric at the moment but we
855 			 * can switch it to asymmetric as needed. Report
856 			 * this bandwidth as available (even though it
857 			 * is not yet enabled).
858 			 */
859 			if (downstream) {
860 				up_bw = link_speed * 1 * 1000;
861 				down_bw = link_speed * 3 * 1000;
862 			} else {
863 				up_bw = link_speed * 3 * 1000;
864 				down_bw = link_speed * 1 * 1000;
865 			}
866 		} else {
867 			up_bw = link_speed * link_width * 1000;
868 			down_bw = up_bw;
869 		}
870 	}
871 
872 	/* Leave 10% guard band */
873 	*max_up = up_bw - up_bw / 10;
874 	*max_down = down_bw - down_bw / 10;
875 
876 	tb_port_dbg(port, "link maximum bandwidth %d/%d Mb/s\n", *max_up, *max_down);
877 	return 0;
878 }
879 
880 /**
881  * tb_available_bandwidth() - Available bandwidth for tunneling
882  * @tb: Domain structure
883  * @src_port: Source protocol adapter
884  * @dst_port: Destination protocol adapter
885  * @available_up: Available bandwidth upstream (Mb/s)
886  * @available_down: Available bandwidth downstream (Mb/s)
887  * @include_asym: Include bandwidth if the link is switched from
888  *		  symmetric to asymmetric
889  *
890  * Calculates maximum available bandwidth for protocol tunneling between
891  * @src_port and @dst_port at the moment. This is minimum of maximum
892  * link bandwidth across all links reduced by currently consumed
893  * bandwidth on that link.
894  *
895  * If @include_asym is true then includes also bandwidth that can be
896  * added when the links are transitioned into asymmetric (but does not
897  * transition the links).
898  */
899 static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port,
900 				 struct tb_port *dst_port, int *available_up,
901 				 int *available_down, bool include_asym)
902 {
903 	struct tb_port *port;
904 	int ret;
905 
906 	/* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */
907 	*available_up = *available_down = 120000;
908 
909 	/* Find the minimum available bandwidth over all links */
910 	tb_for_each_port_on_path(src_port, dst_port, port) {
911 		int max_up, max_down, consumed_up, consumed_down;
912 
913 		if (!tb_port_is_null(port))
914 			continue;
915 
916 		ret = tb_maximum_bandwidth(tb, src_port, dst_port, port,
917 					   &max_up, &max_down, include_asym);
918 		if (ret)
919 			return ret;
920 
921 		ret = tb_consumed_usb3_pcie_bandwidth(tb, src_port, dst_port,
922 						      port, &consumed_up,
923 						      &consumed_down);
924 		if (ret)
925 			return ret;
926 		max_up -= consumed_up;
927 		max_down -= consumed_down;
928 
929 		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port,
930 					       &consumed_up, &consumed_down);
931 		if (ret)
932 			return ret;
933 		max_up -= consumed_up;
934 		max_down -= consumed_down;
935 
936 		if (max_up < *available_up)
937 			*available_up = max_up;
938 		if (max_down < *available_down)
939 			*available_down = max_down;
940 	}
941 
942 	if (*available_up < 0)
943 		*available_up = 0;
944 	if (*available_down < 0)
945 		*available_down = 0;
946 
947 	return 0;
948 }
949 
950 static int tb_release_unused_usb3_bandwidth(struct tb *tb,
951 					    struct tb_port *src_port,
952 					    struct tb_port *dst_port)
953 {
954 	struct tb_tunnel *tunnel;
955 
956 	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
957 	return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0;
958 }
959 
960 static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port,
961 				      struct tb_port *dst_port)
962 {
963 	int ret, available_up, available_down;
964 	struct tb_tunnel *tunnel;
965 
966 	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
967 	if (!tunnel)
968 		return;
969 
970 	tb_dbg(tb, "reclaiming unused bandwidth for USB3\n");
971 
972 	/*
973 	 * Calculate available bandwidth for the first hop USB3 tunnel.
974 	 * That determines the whole USB3 bandwidth for this branch.
975 	 */
976 	ret = tb_available_bandwidth(tb, tunnel->src_port, tunnel->dst_port,
977 				     &available_up, &available_down, false);
978 	if (ret) {
979 		tb_warn(tb, "failed to calculate available bandwidth\n");
980 		return;
981 	}
982 
983 	tb_dbg(tb, "available bandwidth for USB3 %d/%d Mb/s\n",
984 	       available_up, available_down);
985 
986 	tb_tunnel_reclaim_available_bandwidth(tunnel, &available_up, &available_down);
987 }
988 
989 static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw)
990 {
991 	struct tb_switch *parent = tb_switch_parent(sw);
992 	int ret, available_up, available_down;
993 	struct tb_port *up, *down, *port;
994 	struct tb_cm *tcm = tb_priv(tb);
995 	struct tb_tunnel *tunnel;
996 
997 	if (!tb_acpi_may_tunnel_usb3()) {
998 		tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n");
999 		return 0;
1000 	}
1001 
1002 	up = tb_switch_find_port(sw, TB_TYPE_USB3_UP);
1003 	if (!up)
1004 		return 0;
1005 
1006 	if (!sw->link_usb4)
1007 		return 0;
1008 
1009 	/*
1010 	 * Look up available down port. Since we are chaining it should
1011 	 * be found right above this switch.
1012 	 */
1013 	port = tb_switch_downstream_port(sw);
1014 	down = tb_find_usb3_down(parent, port);
1015 	if (!down)
1016 		return 0;
1017 
1018 	if (tb_route(parent)) {
1019 		struct tb_port *parent_up;
1020 		/*
1021 		 * Check first that the parent switch has its upstream USB3
1022 		 * port enabled. Otherwise the chain is not complete and
1023 		 * there is no point setting up a new tunnel.
1024 		 */
1025 		parent_up = tb_switch_find_port(parent, TB_TYPE_USB3_UP);
1026 		if (!parent_up || !tb_port_is_enabled(parent_up))
1027 			return 0;
1028 
1029 		/* Make all unused bandwidth available for the new tunnel */
1030 		ret = tb_release_unused_usb3_bandwidth(tb, down, up);
1031 		if (ret)
1032 			return ret;
1033 	}
1034 
1035 	ret = tb_available_bandwidth(tb, down, up, &available_up, &available_down,
1036 				     false);
1037 	if (ret)
1038 		goto err_reclaim;
1039 
1040 	tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n",
1041 		    available_up, available_down);
1042 
1043 	tunnel = tb_tunnel_alloc_usb3(tb, up, down, available_up,
1044 				      available_down);
1045 	if (!tunnel) {
1046 		ret = -ENOMEM;
1047 		goto err_reclaim;
1048 	}
1049 
1050 	if (tb_tunnel_activate(tunnel)) {
1051 		tb_port_info(up,
1052 			     "USB3 tunnel activation failed, aborting\n");
1053 		ret = -EIO;
1054 		goto err_free;
1055 	}
1056 
1057 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
1058 	if (tb_route(parent))
1059 		tb_reclaim_usb3_bandwidth(tb, down, up);
1060 
1061 	return 0;
1062 
1063 err_free:
1064 	tb_tunnel_free(tunnel);
1065 err_reclaim:
1066 	if (tb_route(parent))
1067 		tb_reclaim_usb3_bandwidth(tb, down, up);
1068 
1069 	return ret;
1070 }
1071 
1072 static int tb_create_usb3_tunnels(struct tb_switch *sw)
1073 {
1074 	struct tb_port *port;
1075 	int ret;
1076 
1077 	if (!tb_acpi_may_tunnel_usb3())
1078 		return 0;
1079 
1080 	if (tb_route(sw)) {
1081 		ret = tb_tunnel_usb3(sw->tb, sw);
1082 		if (ret)
1083 			return ret;
1084 	}
1085 
1086 	tb_switch_for_each_port(sw, port) {
1087 		if (!tb_port_has_remote(port))
1088 			continue;
1089 		ret = tb_create_usb3_tunnels(port->remote->sw);
1090 		if (ret)
1091 			return ret;
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 /**
1098  * tb_configure_asym() - Transition links to asymmetric if needed
1099  * @tb: Domain structure
1100  * @src_port: Source adapter to start the transition
1101  * @dst_port: Destination adapter
1102  * @requested_up: Additional bandwidth (Mb/s) required upstream
1103  * @requested_down: Additional bandwidth (Mb/s) required downstream
1104  *
1105  * Transition links between @src_port and @dst_port into asymmetric, with
1106  * three lanes in the direction from @src_port towards @dst_port and one lane
1107  * in the opposite direction, if the bandwidth requirements
1108  * (requested + currently consumed) on that link exceed @asym_threshold.
1109  *
1110  * Must be called with available >= requested over all links.
1111  */
1112 static int tb_configure_asym(struct tb *tb, struct tb_port *src_port,
1113 			     struct tb_port *dst_port, int requested_up,
1114 			     int requested_down)
1115 {
1116 	struct tb_switch *sw;
1117 	bool clx, downstream;
1118 	struct tb_port *up;
1119 	int ret = 0;
1120 
1121 	if (!asym_threshold)
1122 		return 0;
1123 
1124 	/* Disable CL states before doing any transitions */
1125 	downstream = tb_port_path_direction_downstream(src_port, dst_port);
1126 	/* Pick up router deepest in the hierarchy */
1127 	if (downstream)
1128 		sw = dst_port->sw;
1129 	else
1130 		sw = src_port->sw;
1131 
1132 	clx = tb_disable_clx(sw);
1133 
1134 	tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1135 		int consumed_up, consumed_down;
1136 		enum tb_link_width width;
1137 
1138 		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1139 					       &consumed_up, &consumed_down);
1140 		if (ret)
1141 			break;
1142 
1143 		if (downstream) {
1144 			/*
1145 			 * Downstream so make sure upstream is within the 36G
1146 			 * (40G - guard band 10%), and the requested is above
1147 			 * what the threshold is.
1148 			 */
1149 			if (consumed_up + requested_up >= TB_ASYM_MIN) {
1150 				ret = -ENOBUFS;
1151 				break;
1152 			}
1153 			/* Does consumed + requested exceed the threshold */
1154 			if (consumed_down + requested_down < asym_threshold)
1155 				continue;
1156 
1157 			width = TB_LINK_WIDTH_ASYM_RX;
1158 		} else {
1159 			/* Upstream, the opposite of above */
1160 			if (consumed_down + requested_down >= TB_ASYM_MIN) {
1161 				ret = -ENOBUFS;
1162 				break;
1163 			}
1164 			if (consumed_up + requested_up < asym_threshold)
1165 				continue;
1166 
1167 			width = TB_LINK_WIDTH_ASYM_TX;
1168 		}
1169 
1170 		if (up->sw->link_width == width)
1171 			continue;
1172 
1173 		if (!tb_port_width_supported(up, width))
1174 			continue;
1175 
1176 		tb_sw_dbg(up->sw, "configuring asymmetric link\n");
1177 
1178 		/*
1179 		 * Here requested + consumed > threshold so we need to
1180 		 * transtion the link into asymmetric now.
1181 		 */
1182 		ret = tb_switch_set_link_width(up->sw, width);
1183 		if (ret) {
1184 			tb_sw_warn(up->sw, "failed to set link width\n");
1185 			break;
1186 		}
1187 	}
1188 
1189 	/* Re-enable CL states if they were previosly enabled */
1190 	if (clx)
1191 		tb_enable_clx(sw);
1192 
1193 	return ret;
1194 }
1195 
1196 /**
1197  * tb_configure_sym() - Transition links to symmetric if possible
1198  * @tb: Domain structure
1199  * @src_port: Source adapter to start the transition
1200  * @dst_port: Destination adapter
1201  * @requested_up: New lower bandwidth request upstream (Mb/s)
1202  * @requested_down: New lower bandwidth request downstream (Mb/s)
1203  *
1204  * Goes over each link from @src_port to @dst_port and tries to
1205  * transition the link to symmetric if the currently consumed bandwidth
1206  * allows.
1207  */
1208 static int tb_configure_sym(struct tb *tb, struct tb_port *src_port,
1209 			    struct tb_port *dst_port, int requested_up,
1210 			    int requested_down)
1211 {
1212 	struct tb_switch *sw;
1213 	bool clx, downstream;
1214 	struct tb_port *up;
1215 	int ret = 0;
1216 
1217 	if (!asym_threshold)
1218 		return 0;
1219 
1220 	/* Disable CL states before doing any transitions */
1221 	downstream = tb_port_path_direction_downstream(src_port, dst_port);
1222 	/* Pick up router deepest in the hierarchy */
1223 	if (downstream)
1224 		sw = dst_port->sw;
1225 	else
1226 		sw = src_port->sw;
1227 
1228 	clx = tb_disable_clx(sw);
1229 
1230 	tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1231 		int consumed_up, consumed_down;
1232 
1233 		/* Already symmetric */
1234 		if (up->sw->link_width <= TB_LINK_WIDTH_DUAL)
1235 			continue;
1236 		/* Unplugged, no need to switch */
1237 		if (up->sw->is_unplugged)
1238 			continue;
1239 
1240 		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1241 					       &consumed_up, &consumed_down);
1242 		if (ret)
1243 			break;
1244 
1245 		if (downstream) {
1246 			/*
1247 			 * Downstream so we want the consumed_down < threshold.
1248 			 * Upstream traffic should be less than 36G (40G
1249 			 * guard band 10%) as the link was configured asymmetric
1250 			 * already.
1251 			 */
1252 			if (consumed_down + requested_down >= asym_threshold)
1253 				continue;
1254 		} else {
1255 			if (consumed_up + requested_up >= asym_threshold)
1256 				continue;
1257 		}
1258 
1259 		if (up->sw->link_width == TB_LINK_WIDTH_DUAL)
1260 			continue;
1261 
1262 		tb_sw_dbg(up->sw, "configuring symmetric link\n");
1263 
1264 		ret = tb_switch_set_link_width(up->sw, TB_LINK_WIDTH_DUAL);
1265 		if (ret) {
1266 			tb_sw_warn(up->sw, "failed to set link width\n");
1267 			break;
1268 		}
1269 	}
1270 
1271 	/* Re-enable CL states if they were previosly enabled */
1272 	if (clx)
1273 		tb_enable_clx(sw);
1274 
1275 	return ret;
1276 }
1277 
1278 static void tb_configure_link(struct tb_port *down, struct tb_port *up,
1279 			      struct tb_switch *sw)
1280 {
1281 	struct tb *tb = sw->tb;
1282 
1283 	/* Link the routers using both links if available */
1284 	down->remote = up;
1285 	up->remote = down;
1286 	if (down->dual_link_port && up->dual_link_port) {
1287 		down->dual_link_port->remote = up->dual_link_port;
1288 		up->dual_link_port->remote = down->dual_link_port;
1289 	}
1290 
1291 	/*
1292 	 * Enable lane bonding if the link is currently two single lane
1293 	 * links.
1294 	 */
1295 	if (sw->link_width < TB_LINK_WIDTH_DUAL)
1296 		tb_switch_set_link_width(sw, TB_LINK_WIDTH_DUAL);
1297 
1298 	/*
1299 	 * Device router that comes up as symmetric link is
1300 	 * connected deeper in the hierarchy, we transition the links
1301 	 * above into symmetric if bandwidth allows.
1302 	 */
1303 	if (tb_switch_depth(sw) > 1 &&
1304 	    tb_port_get_link_generation(up) >= 4 &&
1305 	    up->sw->link_width == TB_LINK_WIDTH_DUAL) {
1306 		struct tb_port *host_port;
1307 
1308 		host_port = tb_port_at(tb_route(sw), tb->root_switch);
1309 		tb_configure_sym(tb, host_port, up, 0, 0);
1310 	}
1311 
1312 	/* Set the link configured */
1313 	tb_switch_configure_link(sw);
1314 }
1315 
1316 static void tb_scan_port(struct tb_port *port);
1317 
1318 /*
1319  * tb_scan_switch() - scan for and initialize downstream switches
1320  */
1321 static void tb_scan_switch(struct tb_switch *sw)
1322 {
1323 	struct tb_port *port;
1324 
1325 	pm_runtime_get_sync(&sw->dev);
1326 
1327 	tb_switch_for_each_port(sw, port)
1328 		tb_scan_port(port);
1329 
1330 	pm_runtime_mark_last_busy(&sw->dev);
1331 	pm_runtime_put_autosuspend(&sw->dev);
1332 }
1333 
1334 /*
1335  * tb_scan_port() - check for and initialize switches below port
1336  */
1337 static void tb_scan_port(struct tb_port *port)
1338 {
1339 	struct tb_cm *tcm = tb_priv(port->sw->tb);
1340 	struct tb_port *upstream_port;
1341 	bool discovery = false;
1342 	struct tb_switch *sw;
1343 
1344 	if (tb_is_upstream_port(port))
1345 		return;
1346 
1347 	if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 &&
1348 	    !tb_dp_port_is_enabled(port)) {
1349 		tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n");
1350 		tb_queue_hotplug(port->sw->tb, tb_route(port->sw), port->port,
1351 				 false);
1352 		return;
1353 	}
1354 
1355 	if (port->config.type != TB_TYPE_PORT)
1356 		return;
1357 	if (port->dual_link_port && port->link_nr)
1358 		return; /*
1359 			 * Downstream switch is reachable through two ports.
1360 			 * Only scan on the primary port (link_nr == 0).
1361 			 */
1362 
1363 	if (port->usb4)
1364 		pm_runtime_get_sync(&port->usb4->dev);
1365 
1366 	if (tb_wait_for_port(port, false) <= 0)
1367 		goto out_rpm_put;
1368 	if (port->remote) {
1369 		tb_port_dbg(port, "port already has a remote\n");
1370 		goto out_rpm_put;
1371 	}
1372 
1373 	tb_retimer_scan(port, true);
1374 
1375 	sw = tb_switch_alloc(port->sw->tb, &port->sw->dev,
1376 			     tb_downstream_route(port));
1377 	if (IS_ERR(sw)) {
1378 		/*
1379 		 * If there is an error accessing the connected switch
1380 		 * it may be connected to another domain. Also we allow
1381 		 * the other domain to be connected to a max depth switch.
1382 		 */
1383 		if (PTR_ERR(sw) == -EIO || PTR_ERR(sw) == -EADDRNOTAVAIL)
1384 			tb_scan_xdomain(port);
1385 		goto out_rpm_put;
1386 	}
1387 
1388 	if (tb_switch_configure(sw)) {
1389 		tb_switch_put(sw);
1390 		goto out_rpm_put;
1391 	}
1392 
1393 	/*
1394 	 * If there was previously another domain connected remove it
1395 	 * first.
1396 	 */
1397 	if (port->xdomain) {
1398 		tb_xdomain_remove(port->xdomain);
1399 		tb_port_unconfigure_xdomain(port);
1400 		port->xdomain = NULL;
1401 	}
1402 
1403 	/*
1404 	 * Do not send uevents until we have discovered all existing
1405 	 * tunnels and know which switches were authorized already by
1406 	 * the boot firmware.
1407 	 */
1408 	if (!tcm->hotplug_active) {
1409 		dev_set_uevent_suppress(&sw->dev, true);
1410 		discovery = true;
1411 	}
1412 
1413 	/*
1414 	 * At the moment Thunderbolt 2 and beyond (devices with LC) we
1415 	 * can support runtime PM.
1416 	 */
1417 	sw->rpm = sw->generation > 1;
1418 
1419 	if (tb_switch_add(sw)) {
1420 		tb_switch_put(sw);
1421 		goto out_rpm_put;
1422 	}
1423 
1424 	upstream_port = tb_upstream_port(sw);
1425 	tb_configure_link(port, upstream_port, sw);
1426 
1427 	/*
1428 	 * CL0s and CL1 are enabled and supported together.
1429 	 * Silently ignore CLx enabling in case CLx is not supported.
1430 	 */
1431 	if (discovery)
1432 		tb_sw_dbg(sw, "discovery, not touching CL states\n");
1433 	else if (tb_enable_clx(sw))
1434 		tb_sw_warn(sw, "failed to enable CL states\n");
1435 
1436 	if (tb_enable_tmu(sw))
1437 		tb_sw_warn(sw, "failed to enable TMU\n");
1438 
1439 	/*
1440 	 * Configuration valid needs to be set after the TMU has been
1441 	 * enabled for the upstream port of the router so we do it here.
1442 	 */
1443 	tb_switch_configuration_valid(sw);
1444 
1445 	/* Scan upstream retimers */
1446 	tb_retimer_scan(upstream_port, true);
1447 
1448 	/*
1449 	 * Create USB 3.x tunnels only when the switch is plugged to the
1450 	 * domain. This is because we scan the domain also during discovery
1451 	 * and want to discover existing USB 3.x tunnels before we create
1452 	 * any new.
1453 	 */
1454 	if (tcm->hotplug_active && tb_tunnel_usb3(sw->tb, sw))
1455 		tb_sw_warn(sw, "USB3 tunnel creation failed\n");
1456 
1457 	tb_add_dp_resources(sw);
1458 	tb_scan_switch(sw);
1459 
1460 out_rpm_put:
1461 	if (port->usb4) {
1462 		pm_runtime_mark_last_busy(&port->usb4->dev);
1463 		pm_runtime_put_autosuspend(&port->usb4->dev);
1464 	}
1465 }
1466 
1467 static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel)
1468 {
1469 	struct tb_port *src_port, *dst_port;
1470 	struct tb *tb;
1471 
1472 	if (!tunnel)
1473 		return;
1474 
1475 	tb_tunnel_deactivate(tunnel);
1476 	list_del(&tunnel->list);
1477 
1478 	tb = tunnel->tb;
1479 	src_port = tunnel->src_port;
1480 	dst_port = tunnel->dst_port;
1481 
1482 	switch (tunnel->type) {
1483 	case TB_TUNNEL_DP:
1484 		tb_detach_bandwidth_group(src_port);
1485 		/*
1486 		 * In case of DP tunnel make sure the DP IN resource is
1487 		 * deallocated properly.
1488 		 */
1489 		tb_switch_dealloc_dp_resource(src_port->sw, src_port);
1490 		/*
1491 		 * If bandwidth on a link is < asym_threshold
1492 		 * transition the link to symmetric.
1493 		 */
1494 		tb_configure_sym(tb, src_port, dst_port, 0, 0);
1495 		/* Now we can allow the domain to runtime suspend again */
1496 		pm_runtime_mark_last_busy(&dst_port->sw->dev);
1497 		pm_runtime_put_autosuspend(&dst_port->sw->dev);
1498 		pm_runtime_mark_last_busy(&src_port->sw->dev);
1499 		pm_runtime_put_autosuspend(&src_port->sw->dev);
1500 		fallthrough;
1501 
1502 	case TB_TUNNEL_USB3:
1503 		tb_reclaim_usb3_bandwidth(tb, src_port, dst_port);
1504 		break;
1505 
1506 	default:
1507 		/*
1508 		 * PCIe and DMA tunnels do not consume guaranteed
1509 		 * bandwidth.
1510 		 */
1511 		break;
1512 	}
1513 
1514 	tb_tunnel_free(tunnel);
1515 }
1516 
1517 /*
1518  * tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away
1519  */
1520 static void tb_free_invalid_tunnels(struct tb *tb)
1521 {
1522 	struct tb_cm *tcm = tb_priv(tb);
1523 	struct tb_tunnel *tunnel;
1524 	struct tb_tunnel *n;
1525 
1526 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
1527 		if (tb_tunnel_is_invalid(tunnel))
1528 			tb_deactivate_and_free_tunnel(tunnel);
1529 	}
1530 }
1531 
1532 /*
1533  * tb_free_unplugged_children() - traverse hierarchy and free unplugged switches
1534  */
1535 static void tb_free_unplugged_children(struct tb_switch *sw)
1536 {
1537 	struct tb_port *port;
1538 
1539 	tb_switch_for_each_port(sw, port) {
1540 		if (!tb_port_has_remote(port))
1541 			continue;
1542 
1543 		if (port->remote->sw->is_unplugged) {
1544 			tb_retimer_remove_all(port);
1545 			tb_remove_dp_resources(port->remote->sw);
1546 			tb_switch_unconfigure_link(port->remote->sw);
1547 			tb_switch_set_link_width(port->remote->sw,
1548 						 TB_LINK_WIDTH_SINGLE);
1549 			tb_switch_remove(port->remote->sw);
1550 			port->remote = NULL;
1551 			if (port->dual_link_port)
1552 				port->dual_link_port->remote = NULL;
1553 		} else {
1554 			tb_free_unplugged_children(port->remote->sw);
1555 		}
1556 	}
1557 }
1558 
1559 static struct tb_port *tb_find_pcie_down(struct tb_switch *sw,
1560 					 const struct tb_port *port)
1561 {
1562 	struct tb_port *down = NULL;
1563 
1564 	/*
1565 	 * To keep plugging devices consistently in the same PCIe
1566 	 * hierarchy, do mapping here for switch downstream PCIe ports.
1567 	 */
1568 	if (tb_switch_is_usb4(sw)) {
1569 		down = usb4_switch_map_pcie_down(sw, port);
1570 	} else if (!tb_route(sw)) {
1571 		int phy_port = tb_phy_port_from_link(port->port);
1572 		int index;
1573 
1574 		/*
1575 		 * Hard-coded Thunderbolt port to PCIe down port mapping
1576 		 * per controller.
1577 		 */
1578 		if (tb_switch_is_cactus_ridge(sw) ||
1579 		    tb_switch_is_alpine_ridge(sw))
1580 			index = !phy_port ? 6 : 7;
1581 		else if (tb_switch_is_falcon_ridge(sw))
1582 			index = !phy_port ? 6 : 8;
1583 		else if (tb_switch_is_titan_ridge(sw))
1584 			index = !phy_port ? 8 : 9;
1585 		else
1586 			goto out;
1587 
1588 		/* Validate the hard-coding */
1589 		if (WARN_ON(index > sw->config.max_port_number))
1590 			goto out;
1591 
1592 		down = &sw->ports[index];
1593 	}
1594 
1595 	if (down) {
1596 		if (WARN_ON(!tb_port_is_pcie_down(down)))
1597 			goto out;
1598 		if (tb_pci_port_is_enabled(down))
1599 			goto out;
1600 
1601 		return down;
1602 	}
1603 
1604 out:
1605 	return tb_find_unused_port(sw, TB_TYPE_PCIE_DOWN);
1606 }
1607 
1608 static void
1609 tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group)
1610 {
1611 	struct tb_tunnel *first_tunnel;
1612 	struct tb *tb = group->tb;
1613 	struct tb_port *in;
1614 	int ret;
1615 
1616 	tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n",
1617 	       group->index);
1618 
1619 	first_tunnel = NULL;
1620 	list_for_each_entry(in, &group->ports, group_list) {
1621 		int estimated_bw, estimated_up, estimated_down;
1622 		struct tb_tunnel *tunnel;
1623 		struct tb_port *out;
1624 
1625 		if (!usb4_dp_port_bandwidth_mode_enabled(in))
1626 			continue;
1627 
1628 		tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
1629 		if (WARN_ON(!tunnel))
1630 			break;
1631 
1632 		if (!first_tunnel) {
1633 			/*
1634 			 * Since USB3 bandwidth is shared by all DP
1635 			 * tunnels under the host router USB4 port, even
1636 			 * if they do not begin from the host router, we
1637 			 * can release USB3 bandwidth just once and not
1638 			 * for each tunnel separately.
1639 			 */
1640 			first_tunnel = tunnel;
1641 			ret = tb_release_unused_usb3_bandwidth(tb,
1642 				first_tunnel->src_port, first_tunnel->dst_port);
1643 			if (ret) {
1644 				tb_port_warn(in,
1645 					"failed to release unused bandwidth\n");
1646 				break;
1647 			}
1648 		}
1649 
1650 		out = tunnel->dst_port;
1651 		ret = tb_available_bandwidth(tb, in, out, &estimated_up,
1652 					     &estimated_down, true);
1653 		if (ret) {
1654 			tb_port_warn(in,
1655 				"failed to re-calculate estimated bandwidth\n");
1656 			break;
1657 		}
1658 
1659 		/*
1660 		 * Estimated bandwidth includes:
1661 		 *  - already allocated bandwidth for the DP tunnel
1662 		 *  - available bandwidth along the path
1663 		 *  - bandwidth allocated for USB 3.x but not used.
1664 		 */
1665 		tb_port_dbg(in, "re-calculated estimated bandwidth %u/%u Mb/s\n",
1666 			    estimated_up, estimated_down);
1667 
1668 		if (tb_port_path_direction_downstream(in, out))
1669 			estimated_bw = estimated_down;
1670 		else
1671 			estimated_bw = estimated_up;
1672 
1673 		if (usb4_dp_port_set_estimated_bandwidth(in, estimated_bw))
1674 			tb_port_warn(in, "failed to update estimated bandwidth\n");
1675 	}
1676 
1677 	if (first_tunnel)
1678 		tb_reclaim_usb3_bandwidth(tb, first_tunnel->src_port,
1679 					  first_tunnel->dst_port);
1680 
1681 	tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index);
1682 }
1683 
1684 static void tb_recalc_estimated_bandwidth(struct tb *tb)
1685 {
1686 	struct tb_cm *tcm = tb_priv(tb);
1687 	int i;
1688 
1689 	tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n");
1690 
1691 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1692 		struct tb_bandwidth_group *group = &tcm->groups[i];
1693 
1694 		if (!list_empty(&group->ports))
1695 			tb_recalc_estimated_bandwidth_for_group(group);
1696 	}
1697 
1698 	tb_dbg(tb, "bandwidth re-calculation done\n");
1699 }
1700 
1701 static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in)
1702 {
1703 	struct tb_port *host_port, *port;
1704 	struct tb_cm *tcm = tb_priv(tb);
1705 
1706 	host_port = tb_route(in->sw) ?
1707 		tb_port_at(tb_route(in->sw), tb->root_switch) : NULL;
1708 
1709 	list_for_each_entry(port, &tcm->dp_resources, list) {
1710 		if (!tb_port_is_dpout(port))
1711 			continue;
1712 
1713 		if (tb_port_is_enabled(port)) {
1714 			tb_port_dbg(port, "DP OUT in use\n");
1715 			continue;
1716 		}
1717 
1718 		tb_port_dbg(port, "DP OUT available\n");
1719 
1720 		/*
1721 		 * Keep the DP tunnel under the topology starting from
1722 		 * the same host router downstream port.
1723 		 */
1724 		if (host_port && tb_route(port->sw)) {
1725 			struct tb_port *p;
1726 
1727 			p = tb_port_at(tb_route(port->sw), tb->root_switch);
1728 			if (p != host_port)
1729 				continue;
1730 		}
1731 
1732 		return port;
1733 	}
1734 
1735 	return NULL;
1736 }
1737 
1738 static bool tb_tunnel_one_dp(struct tb *tb, struct tb_port *in,
1739 			     struct tb_port *out)
1740 {
1741 	int available_up, available_down, ret, link_nr;
1742 	struct tb_cm *tcm = tb_priv(tb);
1743 	int consumed_up, consumed_down;
1744 	struct tb_tunnel *tunnel;
1745 
1746 	/*
1747 	 * This is only applicable to links that are not bonded (so
1748 	 * when Thunderbolt 1 hardware is involved somewhere in the
1749 	 * topology). For these try to share the DP bandwidth between
1750 	 * the two lanes.
1751 	 */
1752 	link_nr = 1;
1753 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1754 		if (tb_tunnel_is_dp(tunnel)) {
1755 			link_nr = 0;
1756 			break;
1757 		}
1758 	}
1759 
1760 	/*
1761 	 * DP stream needs the domain to be active so runtime resume
1762 	 * both ends of the tunnel.
1763 	 *
1764 	 * This should bring the routers in the middle active as well
1765 	 * and keeps the domain from runtime suspending while the DP
1766 	 * tunnel is active.
1767 	 */
1768 	pm_runtime_get_sync(&in->sw->dev);
1769 	pm_runtime_get_sync(&out->sw->dev);
1770 
1771 	if (tb_switch_alloc_dp_resource(in->sw, in)) {
1772 		tb_port_dbg(in, "no resource available for DP IN, not tunneling\n");
1773 		goto err_rpm_put;
1774 	}
1775 
1776 	if (!tb_attach_bandwidth_group(tcm, in, out))
1777 		goto err_dealloc_dp;
1778 
1779 	/* Make all unused USB3 bandwidth available for the new DP tunnel */
1780 	ret = tb_release_unused_usb3_bandwidth(tb, in, out);
1781 	if (ret) {
1782 		tb_warn(tb, "failed to release unused bandwidth\n");
1783 		goto err_detach_group;
1784 	}
1785 
1786 	ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
1787 				     true);
1788 	if (ret)
1789 		goto err_reclaim_usb;
1790 
1791 	tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n",
1792 	       available_up, available_down);
1793 
1794 	tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, available_up,
1795 				    available_down);
1796 	if (!tunnel) {
1797 		tb_port_dbg(out, "could not allocate DP tunnel\n");
1798 		goto err_reclaim_usb;
1799 	}
1800 
1801 	if (tb_tunnel_activate(tunnel)) {
1802 		tb_port_info(out, "DP tunnel activation failed, aborting\n");
1803 		goto err_free;
1804 	}
1805 
1806 	/* If fail reading tunnel's consumed bandwidth, tear it down */
1807 	ret = tb_tunnel_consumed_bandwidth(tunnel, &consumed_up, &consumed_down);
1808 	if (ret)
1809 		goto err_deactivate;
1810 
1811 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
1812 
1813 	tb_reclaim_usb3_bandwidth(tb, in, out);
1814 	/*
1815 	 * Transition the links to asymmetric if the consumption exceeds
1816 	 * the threshold.
1817 	 */
1818 	tb_configure_asym(tb, in, out, consumed_up, consumed_down);
1819 
1820 	/* Update the domain with the new bandwidth estimation */
1821 	tb_recalc_estimated_bandwidth(tb);
1822 
1823 	/*
1824 	 * In case of DP tunnel exists, change host router's 1st children
1825 	 * TMU mode to HiFi for CL0s to work.
1826 	 */
1827 	tb_increase_tmu_accuracy(tunnel);
1828 	return true;
1829 
1830 err_deactivate:
1831 	tb_tunnel_deactivate(tunnel);
1832 err_free:
1833 	tb_tunnel_free(tunnel);
1834 err_reclaim_usb:
1835 	tb_reclaim_usb3_bandwidth(tb, in, out);
1836 err_detach_group:
1837 	tb_detach_bandwidth_group(in);
1838 err_dealloc_dp:
1839 	tb_switch_dealloc_dp_resource(in->sw, in);
1840 err_rpm_put:
1841 	pm_runtime_mark_last_busy(&out->sw->dev);
1842 	pm_runtime_put_autosuspend(&out->sw->dev);
1843 	pm_runtime_mark_last_busy(&in->sw->dev);
1844 	pm_runtime_put_autosuspend(&in->sw->dev);
1845 
1846 	return false;
1847 }
1848 
1849 static void tb_tunnel_dp(struct tb *tb)
1850 {
1851 	struct tb_cm *tcm = tb_priv(tb);
1852 	struct tb_port *port, *in, *out;
1853 
1854 	if (!tb_acpi_may_tunnel_dp()) {
1855 		tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n");
1856 		return;
1857 	}
1858 
1859 	/*
1860 	 * Find pair of inactive DP IN and DP OUT adapters and then
1861 	 * establish a DP tunnel between them.
1862 	 */
1863 	tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n");
1864 
1865 	in = NULL;
1866 	out = NULL;
1867 	list_for_each_entry(port, &tcm->dp_resources, list) {
1868 		if (!tb_port_is_dpin(port))
1869 			continue;
1870 
1871 		if (tb_port_is_enabled(port)) {
1872 			tb_port_dbg(port, "DP IN in use\n");
1873 			continue;
1874 		}
1875 
1876 		in = port;
1877 		tb_port_dbg(in, "DP IN available\n");
1878 
1879 		out = tb_find_dp_out(tb, port);
1880 		if (out)
1881 			tb_tunnel_one_dp(tb, in, out);
1882 		else
1883 			tb_port_dbg(in, "no suitable DP OUT adapter available, not tunneling\n");
1884 	}
1885 
1886 	if (!in)
1887 		tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n");
1888 }
1889 
1890 static void tb_enter_redrive(struct tb_port *port)
1891 {
1892 	struct tb_switch *sw = port->sw;
1893 
1894 	if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
1895 		return;
1896 
1897 	/*
1898 	 * If we get hot-unplug for the DP IN port of the host router
1899 	 * and the DP resource is not available anymore it means there
1900 	 * is a monitor connected directly to the Type-C port and we are
1901 	 * in "redrive" mode. For this to work we cannot enter RTD3 so
1902 	 * we bump up the runtime PM reference count here.
1903 	 */
1904 	if (!tb_port_is_dpin(port))
1905 		return;
1906 	if (tb_route(sw))
1907 		return;
1908 	if (!tb_switch_query_dp_resource(sw, port)) {
1909 		port->redrive = true;
1910 		pm_runtime_get(&sw->dev);
1911 		tb_port_dbg(port, "enter redrive mode, keeping powered\n");
1912 	}
1913 }
1914 
1915 static void tb_exit_redrive(struct tb_port *port)
1916 {
1917 	struct tb_switch *sw = port->sw;
1918 
1919 	if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
1920 		return;
1921 
1922 	if (!tb_port_is_dpin(port))
1923 		return;
1924 	if (tb_route(sw))
1925 		return;
1926 	if (port->redrive && tb_switch_query_dp_resource(sw, port)) {
1927 		port->redrive = false;
1928 		pm_runtime_put(&sw->dev);
1929 		tb_port_dbg(port, "exit redrive mode\n");
1930 	}
1931 }
1932 
1933 static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port)
1934 {
1935 	struct tb_port *in, *out;
1936 	struct tb_tunnel *tunnel;
1937 
1938 	if (tb_port_is_dpin(port)) {
1939 		tb_port_dbg(port, "DP IN resource unavailable\n");
1940 		in = port;
1941 		out = NULL;
1942 	} else {
1943 		tb_port_dbg(port, "DP OUT resource unavailable\n");
1944 		in = NULL;
1945 		out = port;
1946 	}
1947 
1948 	tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, out);
1949 	if (tunnel)
1950 		tb_deactivate_and_free_tunnel(tunnel);
1951 	else
1952 		tb_enter_redrive(port);
1953 	list_del_init(&port->list);
1954 
1955 	/*
1956 	 * See if there is another DP OUT port that can be used for
1957 	 * to create another tunnel.
1958 	 */
1959 	tb_recalc_estimated_bandwidth(tb);
1960 	tb_tunnel_dp(tb);
1961 }
1962 
1963 static void tb_dp_resource_available(struct tb *tb, struct tb_port *port)
1964 {
1965 	struct tb_cm *tcm = tb_priv(tb);
1966 	struct tb_port *p;
1967 
1968 	if (tb_port_is_enabled(port))
1969 		return;
1970 
1971 	list_for_each_entry(p, &tcm->dp_resources, list) {
1972 		if (p == port)
1973 			return;
1974 	}
1975 
1976 	tb_port_dbg(port, "DP %s resource available\n",
1977 		    tb_port_is_dpin(port) ? "IN" : "OUT");
1978 	list_add_tail(&port->list, &tcm->dp_resources);
1979 	tb_exit_redrive(port);
1980 
1981 	/* Look for suitable DP IN <-> DP OUT pairs now */
1982 	tb_tunnel_dp(tb);
1983 }
1984 
1985 static void tb_disconnect_and_release_dp(struct tb *tb)
1986 {
1987 	struct tb_cm *tcm = tb_priv(tb);
1988 	struct tb_tunnel *tunnel, *n;
1989 
1990 	/*
1991 	 * Tear down all DP tunnels and release their resources. They
1992 	 * will be re-established after resume based on plug events.
1993 	 */
1994 	list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) {
1995 		if (tb_tunnel_is_dp(tunnel))
1996 			tb_deactivate_and_free_tunnel(tunnel);
1997 	}
1998 
1999 	while (!list_empty(&tcm->dp_resources)) {
2000 		struct tb_port *port;
2001 
2002 		port = list_first_entry(&tcm->dp_resources,
2003 					struct tb_port, list);
2004 		list_del_init(&port->list);
2005 	}
2006 }
2007 
2008 static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw)
2009 {
2010 	struct tb_tunnel *tunnel;
2011 	struct tb_port *up;
2012 
2013 	up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
2014 	if (WARN_ON(!up))
2015 		return -ENODEV;
2016 
2017 	tunnel = tb_find_tunnel(tb, TB_TUNNEL_PCI, NULL, up);
2018 	if (WARN_ON(!tunnel))
2019 		return -ENODEV;
2020 
2021 	tb_switch_xhci_disconnect(sw);
2022 
2023 	tb_tunnel_deactivate(tunnel);
2024 	list_del(&tunnel->list);
2025 	tb_tunnel_free(tunnel);
2026 	return 0;
2027 }
2028 
2029 static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw)
2030 {
2031 	struct tb_port *up, *down, *port;
2032 	struct tb_cm *tcm = tb_priv(tb);
2033 	struct tb_tunnel *tunnel;
2034 
2035 	up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
2036 	if (!up)
2037 		return 0;
2038 
2039 	/*
2040 	 * Look up available down port. Since we are chaining it should
2041 	 * be found right above this switch.
2042 	 */
2043 	port = tb_switch_downstream_port(sw);
2044 	down = tb_find_pcie_down(tb_switch_parent(sw), port);
2045 	if (!down)
2046 		return 0;
2047 
2048 	tunnel = tb_tunnel_alloc_pci(tb, up, down);
2049 	if (!tunnel)
2050 		return -ENOMEM;
2051 
2052 	if (tb_tunnel_activate(tunnel)) {
2053 		tb_port_info(up,
2054 			     "PCIe tunnel activation failed, aborting\n");
2055 		tb_tunnel_free(tunnel);
2056 		return -EIO;
2057 	}
2058 
2059 	/*
2060 	 * PCIe L1 is needed to enable CL0s for Titan Ridge so enable it
2061 	 * here.
2062 	 */
2063 	if (tb_switch_pcie_l1_enable(sw))
2064 		tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n");
2065 
2066 	if (tb_switch_xhci_connect(sw))
2067 		tb_sw_warn(sw, "failed to connect xHCI\n");
2068 
2069 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2070 	return 0;
2071 }
2072 
2073 static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2074 				    int transmit_path, int transmit_ring,
2075 				    int receive_path, int receive_ring)
2076 {
2077 	struct tb_cm *tcm = tb_priv(tb);
2078 	struct tb_port *nhi_port, *dst_port;
2079 	struct tb_tunnel *tunnel;
2080 	struct tb_switch *sw;
2081 	int ret;
2082 
2083 	sw = tb_to_switch(xd->dev.parent);
2084 	dst_port = tb_port_at(xd->route, sw);
2085 	nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2086 
2087 	mutex_lock(&tb->lock);
2088 
2089 	/*
2090 	 * When tunneling DMA paths the link should not enter CL states
2091 	 * so disable them now.
2092 	 */
2093 	tb_disable_clx(sw);
2094 
2095 	tunnel = tb_tunnel_alloc_dma(tb, nhi_port, dst_port, transmit_path,
2096 				     transmit_ring, receive_path, receive_ring);
2097 	if (!tunnel) {
2098 		ret = -ENOMEM;
2099 		goto err_clx;
2100 	}
2101 
2102 	if (tb_tunnel_activate(tunnel)) {
2103 		tb_port_info(nhi_port,
2104 			     "DMA tunnel activation failed, aborting\n");
2105 		ret = -EIO;
2106 		goto err_free;
2107 	}
2108 
2109 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2110 	mutex_unlock(&tb->lock);
2111 	return 0;
2112 
2113 err_free:
2114 	tb_tunnel_free(tunnel);
2115 err_clx:
2116 	tb_enable_clx(sw);
2117 	mutex_unlock(&tb->lock);
2118 
2119 	return ret;
2120 }
2121 
2122 static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2123 					  int transmit_path, int transmit_ring,
2124 					  int receive_path, int receive_ring)
2125 {
2126 	struct tb_cm *tcm = tb_priv(tb);
2127 	struct tb_port *nhi_port, *dst_port;
2128 	struct tb_tunnel *tunnel, *n;
2129 	struct tb_switch *sw;
2130 
2131 	sw = tb_to_switch(xd->dev.parent);
2132 	dst_port = tb_port_at(xd->route, sw);
2133 	nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2134 
2135 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2136 		if (!tb_tunnel_is_dma(tunnel))
2137 			continue;
2138 		if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port)
2139 			continue;
2140 
2141 		if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring,
2142 					receive_path, receive_ring))
2143 			tb_deactivate_and_free_tunnel(tunnel);
2144 	}
2145 
2146 	/*
2147 	 * Try to re-enable CL states now, it is OK if this fails
2148 	 * because we may still have another DMA tunnel active through
2149 	 * the same host router USB4 downstream port.
2150 	 */
2151 	tb_enable_clx(sw);
2152 }
2153 
2154 static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2155 				       int transmit_path, int transmit_ring,
2156 				       int receive_path, int receive_ring)
2157 {
2158 	if (!xd->is_unplugged) {
2159 		mutex_lock(&tb->lock);
2160 		__tb_disconnect_xdomain_paths(tb, xd, transmit_path,
2161 					      transmit_ring, receive_path,
2162 					      receive_ring);
2163 		mutex_unlock(&tb->lock);
2164 	}
2165 	return 0;
2166 }
2167 
2168 /* hotplug handling */
2169 
2170 /*
2171  * tb_handle_hotplug() - handle hotplug event
2172  *
2173  * Executes on tb->wq.
2174  */
2175 static void tb_handle_hotplug(struct work_struct *work)
2176 {
2177 	struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
2178 	struct tb *tb = ev->tb;
2179 	struct tb_cm *tcm = tb_priv(tb);
2180 	struct tb_switch *sw;
2181 	struct tb_port *port;
2182 
2183 	/* Bring the domain back from sleep if it was suspended */
2184 	pm_runtime_get_sync(&tb->dev);
2185 
2186 	mutex_lock(&tb->lock);
2187 	if (!tcm->hotplug_active)
2188 		goto out; /* during init, suspend or shutdown */
2189 
2190 	sw = tb_switch_find_by_route(tb, ev->route);
2191 	if (!sw) {
2192 		tb_warn(tb,
2193 			"hotplug event from non existent switch %llx:%x (unplug: %d)\n",
2194 			ev->route, ev->port, ev->unplug);
2195 		goto out;
2196 	}
2197 	if (ev->port > sw->config.max_port_number) {
2198 		tb_warn(tb,
2199 			"hotplug event from non existent port %llx:%x (unplug: %d)\n",
2200 			ev->route, ev->port, ev->unplug);
2201 		goto put_sw;
2202 	}
2203 	port = &sw->ports[ev->port];
2204 	if (tb_is_upstream_port(port)) {
2205 		tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n",
2206 		       ev->route, ev->port, ev->unplug);
2207 		goto put_sw;
2208 	}
2209 
2210 	pm_runtime_get_sync(&sw->dev);
2211 
2212 	if (ev->unplug) {
2213 		tb_retimer_remove_all(port);
2214 
2215 		if (tb_port_has_remote(port)) {
2216 			tb_port_dbg(port, "switch unplugged\n");
2217 			tb_sw_set_unplugged(port->remote->sw);
2218 			tb_free_invalid_tunnels(tb);
2219 			tb_remove_dp_resources(port->remote->sw);
2220 			tb_switch_tmu_disable(port->remote->sw);
2221 			tb_switch_unconfigure_link(port->remote->sw);
2222 			tb_switch_set_link_width(port->remote->sw,
2223 						 TB_LINK_WIDTH_SINGLE);
2224 			tb_switch_remove(port->remote->sw);
2225 			port->remote = NULL;
2226 			if (port->dual_link_port)
2227 				port->dual_link_port->remote = NULL;
2228 			/* Maybe we can create another DP tunnel */
2229 			tb_recalc_estimated_bandwidth(tb);
2230 			tb_tunnel_dp(tb);
2231 		} else if (port->xdomain) {
2232 			struct tb_xdomain *xd = tb_xdomain_get(port->xdomain);
2233 
2234 			tb_port_dbg(port, "xdomain unplugged\n");
2235 			/*
2236 			 * Service drivers are unbound during
2237 			 * tb_xdomain_remove() so setting XDomain as
2238 			 * unplugged here prevents deadlock if they call
2239 			 * tb_xdomain_disable_paths(). We will tear down
2240 			 * all the tunnels below.
2241 			 */
2242 			xd->is_unplugged = true;
2243 			tb_xdomain_remove(xd);
2244 			port->xdomain = NULL;
2245 			__tb_disconnect_xdomain_paths(tb, xd, -1, -1, -1, -1);
2246 			tb_xdomain_put(xd);
2247 			tb_port_unconfigure_xdomain(port);
2248 		} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2249 			tb_dp_resource_unavailable(tb, port);
2250 		} else if (!port->port) {
2251 			tb_sw_dbg(sw, "xHCI disconnect request\n");
2252 			tb_switch_xhci_disconnect(sw);
2253 		} else {
2254 			tb_port_dbg(port,
2255 				   "got unplug event for disconnected port, ignoring\n");
2256 		}
2257 	} else if (port->remote) {
2258 		tb_port_dbg(port, "got plug event for connected port, ignoring\n");
2259 	} else if (!port->port && sw->authorized) {
2260 		tb_sw_dbg(sw, "xHCI connect request\n");
2261 		tb_switch_xhci_connect(sw);
2262 	} else {
2263 		if (tb_port_is_null(port)) {
2264 			tb_port_dbg(port, "hotplug: scanning\n");
2265 			tb_scan_port(port);
2266 			if (!port->remote)
2267 				tb_port_dbg(port, "hotplug: no switch found\n");
2268 		} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2269 			tb_dp_resource_available(tb, port);
2270 		}
2271 	}
2272 
2273 	pm_runtime_mark_last_busy(&sw->dev);
2274 	pm_runtime_put_autosuspend(&sw->dev);
2275 
2276 put_sw:
2277 	tb_switch_put(sw);
2278 out:
2279 	mutex_unlock(&tb->lock);
2280 
2281 	pm_runtime_mark_last_busy(&tb->dev);
2282 	pm_runtime_put_autosuspend(&tb->dev);
2283 
2284 	kfree(ev);
2285 }
2286 
2287 static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up,
2288 				 int *requested_down)
2289 {
2290 	int allocated_up, allocated_down, available_up, available_down, ret;
2291 	int requested_up_corrected, requested_down_corrected, granularity;
2292 	int max_up, max_down, max_up_rounded, max_down_rounded;
2293 	struct tb *tb = tunnel->tb;
2294 	struct tb_port *in, *out;
2295 
2296 	ret = tb_tunnel_allocated_bandwidth(tunnel, &allocated_up, &allocated_down);
2297 	if (ret)
2298 		return ret;
2299 
2300 	in = tunnel->src_port;
2301 	out = tunnel->dst_port;
2302 
2303 	tb_port_dbg(in, "bandwidth allocated currently %d/%d Mb/s\n",
2304 		    allocated_up, allocated_down);
2305 
2306 	/*
2307 	 * If we get rounded up request from graphics side, say HBR2 x 4
2308 	 * that is 17500 instead of 17280 (this is because of the
2309 	 * granularity), we allow it too. Here the graphics has already
2310 	 * negotiated with the DPRX the maximum possible rates (which is
2311 	 * 17280 in this case).
2312 	 *
2313 	 * Since the link cannot go higher than 17280 we use that in our
2314 	 * calculations but the DP IN adapter Allocated BW write must be
2315 	 * the same value (17500) otherwise the adapter will mark it as
2316 	 * failed for graphics.
2317 	 */
2318 	ret = tb_tunnel_maximum_bandwidth(tunnel, &max_up, &max_down);
2319 	if (ret)
2320 		return ret;
2321 
2322 	ret = usb4_dp_port_granularity(in);
2323 	if (ret < 0)
2324 		return ret;
2325 	granularity = ret;
2326 
2327 	max_up_rounded = roundup(max_up, granularity);
2328 	max_down_rounded = roundup(max_down, granularity);
2329 
2330 	/*
2331 	 * This will "fix" the request down to the maximum supported
2332 	 * rate * lanes if it is at the maximum rounded up level.
2333 	 */
2334 	requested_up_corrected = *requested_up;
2335 	if (requested_up_corrected == max_up_rounded)
2336 		requested_up_corrected = max_up;
2337 	else if (requested_up_corrected < 0)
2338 		requested_up_corrected = 0;
2339 	requested_down_corrected = *requested_down;
2340 	if (requested_down_corrected == max_down_rounded)
2341 		requested_down_corrected = max_down;
2342 	else if (requested_down_corrected < 0)
2343 		requested_down_corrected = 0;
2344 
2345 	tb_port_dbg(in, "corrected bandwidth request %d/%d Mb/s\n",
2346 		    requested_up_corrected, requested_down_corrected);
2347 
2348 	if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) ||
2349 	    (*requested_down >= 0 && requested_down_corrected > max_down_rounded)) {
2350 		tb_port_dbg(in, "bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n",
2351 			    requested_up_corrected, requested_down_corrected,
2352 			    max_up_rounded, max_down_rounded);
2353 		return -ENOBUFS;
2354 	}
2355 
2356 	if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) ||
2357 	    (*requested_down >= 0 && requested_down_corrected <= allocated_down)) {
2358 		/*
2359 		 * If bandwidth on a link is < asym_threshold transition
2360 		 * the link to symmetric.
2361 		 */
2362 		tb_configure_sym(tb, in, out, *requested_up, *requested_down);
2363 		/*
2364 		 * If requested bandwidth is less or equal than what is
2365 		 * currently allocated to that tunnel we simply change
2366 		 * the reservation of the tunnel. Since all the tunnels
2367 		 * going out from the same USB4 port are in the same
2368 		 * group the released bandwidth will be taken into
2369 		 * account for the other tunnels automatically below.
2370 		 */
2371 		return tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2372 						 requested_down);
2373 	}
2374 
2375 	/*
2376 	 * More bandwidth is requested. Release all the potential
2377 	 * bandwidth from USB3 first.
2378 	 */
2379 	ret = tb_release_unused_usb3_bandwidth(tb, in, out);
2380 	if (ret)
2381 		return ret;
2382 
2383 	/*
2384 	 * Then go over all tunnels that cross the same USB4 ports (they
2385 	 * are also in the same group but we use the same function here
2386 	 * that we use with the normal bandwidth allocation).
2387 	 */
2388 	ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
2389 				     true);
2390 	if (ret)
2391 		goto reclaim;
2392 
2393 	tb_port_dbg(in, "bandwidth available for allocation %d/%d Mb/s\n",
2394 		    available_up, available_down);
2395 
2396 	if ((*requested_up >= 0 && available_up >= requested_up_corrected) ||
2397 	    (*requested_down >= 0 && available_down >= requested_down_corrected)) {
2398 		/*
2399 		 * If bandwidth on a link is >= asym_threshold
2400 		 * transition the link to asymmetric.
2401 		 */
2402 		ret = tb_configure_asym(tb, in, out, *requested_up,
2403 					*requested_down);
2404 		if (ret) {
2405 			tb_configure_sym(tb, in, out, 0, 0);
2406 			return ret;
2407 		}
2408 
2409 		ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2410 						requested_down);
2411 		if (ret) {
2412 			tb_tunnel_warn(tunnel, "failed to allocate bandwidth\n");
2413 			tb_configure_sym(tb, in, out, 0, 0);
2414 		}
2415 	} else {
2416 		ret = -ENOBUFS;
2417 	}
2418 
2419 reclaim:
2420 	tb_reclaim_usb3_bandwidth(tb, in, out);
2421 	return ret;
2422 }
2423 
2424 static void tb_handle_dp_bandwidth_request(struct work_struct *work)
2425 {
2426 	struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
2427 	int requested_bw, requested_up, requested_down, ret;
2428 	struct tb_port *in, *out;
2429 	struct tb_tunnel *tunnel;
2430 	struct tb *tb = ev->tb;
2431 	struct tb_cm *tcm = tb_priv(tb);
2432 	struct tb_switch *sw;
2433 
2434 	pm_runtime_get_sync(&tb->dev);
2435 
2436 	mutex_lock(&tb->lock);
2437 	if (!tcm->hotplug_active)
2438 		goto unlock;
2439 
2440 	sw = tb_switch_find_by_route(tb, ev->route);
2441 	if (!sw) {
2442 		tb_warn(tb, "bandwidth request from non-existent router %llx\n",
2443 			ev->route);
2444 		goto unlock;
2445 	}
2446 
2447 	in = &sw->ports[ev->port];
2448 	if (!tb_port_is_dpin(in)) {
2449 		tb_port_warn(in, "bandwidth request to non-DP IN adapter\n");
2450 		goto put_sw;
2451 	}
2452 
2453 	tb_port_dbg(in, "handling bandwidth allocation request\n");
2454 
2455 	if (!usb4_dp_port_bandwidth_mode_enabled(in)) {
2456 		tb_port_warn(in, "bandwidth allocation mode not enabled\n");
2457 		goto put_sw;
2458 	}
2459 
2460 	ret = usb4_dp_port_requested_bandwidth(in);
2461 	if (ret < 0) {
2462 		if (ret == -ENODATA)
2463 			tb_port_dbg(in, "no bandwidth request active\n");
2464 		else
2465 			tb_port_warn(in, "failed to read requested bandwidth\n");
2466 		goto put_sw;
2467 	}
2468 	requested_bw = ret;
2469 
2470 	tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw);
2471 
2472 	tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
2473 	if (!tunnel) {
2474 		tb_port_warn(in, "failed to find tunnel\n");
2475 		goto put_sw;
2476 	}
2477 
2478 	out = tunnel->dst_port;
2479 
2480 	if (tb_port_path_direction_downstream(in, out)) {
2481 		requested_up = -1;
2482 		requested_down = requested_bw;
2483 	} else {
2484 		requested_up = requested_bw;
2485 		requested_down = -1;
2486 	}
2487 
2488 	ret = tb_alloc_dp_bandwidth(tunnel, &requested_up, &requested_down);
2489 	if (ret) {
2490 		if (ret == -ENOBUFS)
2491 			tb_port_warn(in, "not enough bandwidth available\n");
2492 		else
2493 			tb_port_warn(in, "failed to change bandwidth allocation\n");
2494 	} else {
2495 		tb_port_dbg(in, "bandwidth allocation changed to %d/%d Mb/s\n",
2496 			    requested_up, requested_down);
2497 
2498 		/* Update other clients about the allocation change */
2499 		tb_recalc_estimated_bandwidth(tb);
2500 	}
2501 
2502 put_sw:
2503 	tb_switch_put(sw);
2504 unlock:
2505 	mutex_unlock(&tb->lock);
2506 
2507 	pm_runtime_mark_last_busy(&tb->dev);
2508 	pm_runtime_put_autosuspend(&tb->dev);
2509 
2510 	kfree(ev);
2511 }
2512 
2513 static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port)
2514 {
2515 	struct tb_hotplug_event *ev;
2516 
2517 	ev = kmalloc(sizeof(*ev), GFP_KERNEL);
2518 	if (!ev)
2519 		return;
2520 
2521 	ev->tb = tb;
2522 	ev->route = route;
2523 	ev->port = port;
2524 	INIT_WORK(&ev->work, tb_handle_dp_bandwidth_request);
2525 	queue_work(tb->wq, &ev->work);
2526 }
2527 
2528 static void tb_handle_notification(struct tb *tb, u64 route,
2529 				   const struct cfg_error_pkg *error)
2530 {
2531 
2532 	switch (error->error) {
2533 	case TB_CFG_ERROR_PCIE_WAKE:
2534 	case TB_CFG_ERROR_DP_CON_CHANGE:
2535 	case TB_CFG_ERROR_DPTX_DISCOVERY:
2536 		if (tb_cfg_ack_notification(tb->ctl, route, error))
2537 			tb_warn(tb, "could not ack notification on %llx\n",
2538 				route);
2539 		break;
2540 
2541 	case TB_CFG_ERROR_DP_BW:
2542 		if (tb_cfg_ack_notification(tb->ctl, route, error))
2543 			tb_warn(tb, "could not ack notification on %llx\n",
2544 				route);
2545 		tb_queue_dp_bandwidth_request(tb, route, error->port);
2546 		break;
2547 
2548 	default:
2549 		/* Ignore for now */
2550 		break;
2551 	}
2552 }
2553 
2554 /*
2555  * tb_schedule_hotplug_handler() - callback function for the control channel
2556  *
2557  * Delegates to tb_handle_hotplug.
2558  */
2559 static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type,
2560 			    const void *buf, size_t size)
2561 {
2562 	const struct cfg_event_pkg *pkg = buf;
2563 	u64 route = tb_cfg_get_route(&pkg->header);
2564 
2565 	switch (type) {
2566 	case TB_CFG_PKG_ERROR:
2567 		tb_handle_notification(tb, route, (const struct cfg_error_pkg *)buf);
2568 		return;
2569 	case TB_CFG_PKG_EVENT:
2570 		break;
2571 	default:
2572 		tb_warn(tb, "unexpected event %#x, ignoring\n", type);
2573 		return;
2574 	}
2575 
2576 	if (tb_cfg_ack_plug(tb->ctl, route, pkg->port, pkg->unplug)) {
2577 		tb_warn(tb, "could not ack plug event on %llx:%x\n", route,
2578 			pkg->port);
2579 	}
2580 
2581 	tb_queue_hotplug(tb, route, pkg->port, pkg->unplug);
2582 }
2583 
2584 static void tb_stop(struct tb *tb)
2585 {
2586 	struct tb_cm *tcm = tb_priv(tb);
2587 	struct tb_tunnel *tunnel;
2588 	struct tb_tunnel *n;
2589 
2590 	cancel_delayed_work(&tcm->remove_work);
2591 	/* tunnels are only present after everything has been initialized */
2592 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2593 		/*
2594 		 * DMA tunnels require the driver to be functional so we
2595 		 * tear them down. Other protocol tunnels can be left
2596 		 * intact.
2597 		 */
2598 		if (tb_tunnel_is_dma(tunnel))
2599 			tb_tunnel_deactivate(tunnel);
2600 		tb_tunnel_free(tunnel);
2601 	}
2602 	tb_switch_remove(tb->root_switch);
2603 	tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2604 }
2605 
2606 static int tb_scan_finalize_switch(struct device *dev, void *data)
2607 {
2608 	if (tb_is_switch(dev)) {
2609 		struct tb_switch *sw = tb_to_switch(dev);
2610 
2611 		/*
2612 		 * If we found that the switch was already setup by the
2613 		 * boot firmware, mark it as authorized now before we
2614 		 * send uevent to userspace.
2615 		 */
2616 		if (sw->boot)
2617 			sw->authorized = 1;
2618 
2619 		dev_set_uevent_suppress(dev, false);
2620 		kobject_uevent(&dev->kobj, KOBJ_ADD);
2621 		device_for_each_child(dev, NULL, tb_scan_finalize_switch);
2622 	}
2623 
2624 	return 0;
2625 }
2626 
2627 static int tb_start(struct tb *tb, bool reset)
2628 {
2629 	struct tb_cm *tcm = tb_priv(tb);
2630 	int ret;
2631 
2632 	tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0);
2633 	if (IS_ERR(tb->root_switch))
2634 		return PTR_ERR(tb->root_switch);
2635 
2636 	/*
2637 	 * ICM firmware upgrade needs running firmware and in native
2638 	 * mode that is not available so disable firmware upgrade of the
2639 	 * root switch.
2640 	 *
2641 	 * However, USB4 routers support NVM firmware upgrade if they
2642 	 * implement the necessary router operations.
2643 	 */
2644 	tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(tb->root_switch);
2645 	/* All USB4 routers support runtime PM */
2646 	tb->root_switch->rpm = tb_switch_is_usb4(tb->root_switch);
2647 
2648 	ret = tb_switch_configure(tb->root_switch);
2649 	if (ret) {
2650 		tb_switch_put(tb->root_switch);
2651 		return ret;
2652 	}
2653 
2654 	/* Announce the switch to the world */
2655 	ret = tb_switch_add(tb->root_switch);
2656 	if (ret) {
2657 		tb_switch_put(tb->root_switch);
2658 		return ret;
2659 	}
2660 
2661 	/*
2662 	 * To support highest CLx state, we set host router's TMU to
2663 	 * Normal mode.
2664 	 */
2665 	tb_switch_tmu_configure(tb->root_switch, TB_SWITCH_TMU_MODE_LOWRES);
2666 	/* Enable TMU if it is off */
2667 	tb_switch_tmu_enable(tb->root_switch);
2668 
2669 	/*
2670 	 * Boot firmware might have created tunnels of its own. Since we
2671 	 * cannot be sure they are usable for us, tear them down and
2672 	 * reset the ports to handle it as new hotplug for USB4 v1
2673 	 * routers (for USB4 v2 and beyond we already do host reset).
2674 	 */
2675 	if (reset && usb4_switch_version(tb->root_switch) == 1) {
2676 		tb_switch_reset(tb->root_switch);
2677 	} else {
2678 		/* Full scan to discover devices added before the driver was loaded. */
2679 		tb_scan_switch(tb->root_switch);
2680 		/* Find out tunnels created by the boot firmware */
2681 		tb_discover_tunnels(tb);
2682 		/* Add DP resources from the DP tunnels created by the boot firmware */
2683 		tb_discover_dp_resources(tb);
2684 	}
2685 
2686 	/*
2687 	 * If the boot firmware did not create USB 3.x tunnels create them
2688 	 * now for the whole topology.
2689 	 */
2690 	tb_create_usb3_tunnels(tb->root_switch);
2691 	/* Add DP IN resources for the root switch */
2692 	tb_add_dp_resources(tb->root_switch);
2693 	/* Make the discovered switches available to the userspace */
2694 	device_for_each_child(&tb->root_switch->dev, NULL,
2695 			      tb_scan_finalize_switch);
2696 
2697 	/* Allow tb_handle_hotplug to progress events */
2698 	tcm->hotplug_active = true;
2699 	return 0;
2700 }
2701 
2702 static int tb_suspend_noirq(struct tb *tb)
2703 {
2704 	struct tb_cm *tcm = tb_priv(tb);
2705 
2706 	tb_dbg(tb, "suspending...\n");
2707 	tb_disconnect_and_release_dp(tb);
2708 	tb_switch_suspend(tb->root_switch, false);
2709 	tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2710 	tb_dbg(tb, "suspend finished\n");
2711 
2712 	return 0;
2713 }
2714 
2715 static void tb_restore_children(struct tb_switch *sw)
2716 {
2717 	struct tb_port *port;
2718 
2719 	/* No need to restore if the router is already unplugged */
2720 	if (sw->is_unplugged)
2721 		return;
2722 
2723 	if (tb_enable_clx(sw))
2724 		tb_sw_warn(sw, "failed to re-enable CL states\n");
2725 
2726 	if (tb_enable_tmu(sw))
2727 		tb_sw_warn(sw, "failed to restore TMU configuration\n");
2728 
2729 	tb_switch_configuration_valid(sw);
2730 
2731 	tb_switch_for_each_port(sw, port) {
2732 		if (!tb_port_has_remote(port) && !port->xdomain)
2733 			continue;
2734 
2735 		if (port->remote) {
2736 			tb_switch_set_link_width(port->remote->sw,
2737 						 port->remote->sw->link_width);
2738 			tb_switch_configure_link(port->remote->sw);
2739 
2740 			tb_restore_children(port->remote->sw);
2741 		} else if (port->xdomain) {
2742 			tb_port_configure_xdomain(port, port->xdomain);
2743 		}
2744 	}
2745 }
2746 
2747 static int tb_resume_noirq(struct tb *tb)
2748 {
2749 	struct tb_cm *tcm = tb_priv(tb);
2750 	struct tb_tunnel *tunnel, *n;
2751 	unsigned int usb3_delay = 0;
2752 	LIST_HEAD(tunnels);
2753 
2754 	tb_dbg(tb, "resuming...\n");
2755 
2756 	/*
2757 	 * For non-USB4 hosts (Apple systems) remove any PCIe devices
2758 	 * the firmware might have setup.
2759 	 */
2760 	if (!tb_switch_is_usb4(tb->root_switch))
2761 		tb_switch_reset(tb->root_switch);
2762 
2763 	tb_switch_resume(tb->root_switch, false);
2764 	tb_free_invalid_tunnels(tb);
2765 	tb_free_unplugged_children(tb->root_switch);
2766 	tb_restore_children(tb->root_switch);
2767 
2768 	/*
2769 	 * If we get here from suspend to disk the boot firmware or the
2770 	 * restore kernel might have created tunnels of its own. Since
2771 	 * we cannot be sure they are usable for us we find and tear
2772 	 * them down.
2773 	 */
2774 	tb_switch_discover_tunnels(tb->root_switch, &tunnels, false);
2775 	list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) {
2776 		if (tb_tunnel_is_usb3(tunnel))
2777 			usb3_delay = 500;
2778 		tb_tunnel_deactivate(tunnel);
2779 		tb_tunnel_free(tunnel);
2780 	}
2781 
2782 	/* Re-create our tunnels now */
2783 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2784 		/* USB3 requires delay before it can be re-activated */
2785 		if (tb_tunnel_is_usb3(tunnel)) {
2786 			msleep(usb3_delay);
2787 			/* Only need to do it once */
2788 			usb3_delay = 0;
2789 		}
2790 		tb_tunnel_restart(tunnel);
2791 	}
2792 	if (!list_empty(&tcm->tunnel_list)) {
2793 		/*
2794 		 * the pcie links need some time to get going.
2795 		 * 100ms works for me...
2796 		 */
2797 		tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n");
2798 		msleep(100);
2799 	}
2800 	 /* Allow tb_handle_hotplug to progress events */
2801 	tcm->hotplug_active = true;
2802 	tb_dbg(tb, "resume finished\n");
2803 
2804 	return 0;
2805 }
2806 
2807 static int tb_free_unplugged_xdomains(struct tb_switch *sw)
2808 {
2809 	struct tb_port *port;
2810 	int ret = 0;
2811 
2812 	tb_switch_for_each_port(sw, port) {
2813 		if (tb_is_upstream_port(port))
2814 			continue;
2815 		if (port->xdomain && port->xdomain->is_unplugged) {
2816 			tb_retimer_remove_all(port);
2817 			tb_xdomain_remove(port->xdomain);
2818 			tb_port_unconfigure_xdomain(port);
2819 			port->xdomain = NULL;
2820 			ret++;
2821 		} else if (port->remote) {
2822 			ret += tb_free_unplugged_xdomains(port->remote->sw);
2823 		}
2824 	}
2825 
2826 	return ret;
2827 }
2828 
2829 static int tb_freeze_noirq(struct tb *tb)
2830 {
2831 	struct tb_cm *tcm = tb_priv(tb);
2832 
2833 	tcm->hotplug_active = false;
2834 	return 0;
2835 }
2836 
2837 static int tb_thaw_noirq(struct tb *tb)
2838 {
2839 	struct tb_cm *tcm = tb_priv(tb);
2840 
2841 	tcm->hotplug_active = true;
2842 	return 0;
2843 }
2844 
2845 static void tb_complete(struct tb *tb)
2846 {
2847 	/*
2848 	 * Release any unplugged XDomains and if there is a case where
2849 	 * another domain is swapped in place of unplugged XDomain we
2850 	 * need to run another rescan.
2851 	 */
2852 	mutex_lock(&tb->lock);
2853 	if (tb_free_unplugged_xdomains(tb->root_switch))
2854 		tb_scan_switch(tb->root_switch);
2855 	mutex_unlock(&tb->lock);
2856 }
2857 
2858 static int tb_runtime_suspend(struct tb *tb)
2859 {
2860 	struct tb_cm *tcm = tb_priv(tb);
2861 
2862 	mutex_lock(&tb->lock);
2863 	tb_switch_suspend(tb->root_switch, true);
2864 	tcm->hotplug_active = false;
2865 	mutex_unlock(&tb->lock);
2866 
2867 	return 0;
2868 }
2869 
2870 static void tb_remove_work(struct work_struct *work)
2871 {
2872 	struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work);
2873 	struct tb *tb = tcm_to_tb(tcm);
2874 
2875 	mutex_lock(&tb->lock);
2876 	if (tb->root_switch) {
2877 		tb_free_unplugged_children(tb->root_switch);
2878 		tb_free_unplugged_xdomains(tb->root_switch);
2879 	}
2880 	mutex_unlock(&tb->lock);
2881 }
2882 
2883 static int tb_runtime_resume(struct tb *tb)
2884 {
2885 	struct tb_cm *tcm = tb_priv(tb);
2886 	struct tb_tunnel *tunnel, *n;
2887 
2888 	mutex_lock(&tb->lock);
2889 	tb_switch_resume(tb->root_switch, true);
2890 	tb_free_invalid_tunnels(tb);
2891 	tb_restore_children(tb->root_switch);
2892 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list)
2893 		tb_tunnel_restart(tunnel);
2894 	tcm->hotplug_active = true;
2895 	mutex_unlock(&tb->lock);
2896 
2897 	/*
2898 	 * Schedule cleanup of any unplugged devices. Run this in a
2899 	 * separate thread to avoid possible deadlock if the device
2900 	 * removal runtime resumes the unplugged device.
2901 	 */
2902 	queue_delayed_work(tb->wq, &tcm->remove_work, msecs_to_jiffies(50));
2903 	return 0;
2904 }
2905 
2906 static const struct tb_cm_ops tb_cm_ops = {
2907 	.start = tb_start,
2908 	.stop = tb_stop,
2909 	.suspend_noirq = tb_suspend_noirq,
2910 	.resume_noirq = tb_resume_noirq,
2911 	.freeze_noirq = tb_freeze_noirq,
2912 	.thaw_noirq = tb_thaw_noirq,
2913 	.complete = tb_complete,
2914 	.runtime_suspend = tb_runtime_suspend,
2915 	.runtime_resume = tb_runtime_resume,
2916 	.handle_event = tb_handle_event,
2917 	.disapprove_switch = tb_disconnect_pci,
2918 	.approve_switch = tb_tunnel_pci,
2919 	.approve_xdomain_paths = tb_approve_xdomain_paths,
2920 	.disconnect_xdomain_paths = tb_disconnect_xdomain_paths,
2921 };
2922 
2923 /*
2924  * During suspend the Thunderbolt controller is reset and all PCIe
2925  * tunnels are lost. The NHI driver will try to reestablish all tunnels
2926  * during resume. This adds device links between the tunneled PCIe
2927  * downstream ports and the NHI so that the device core will make sure
2928  * NHI is resumed first before the rest.
2929  */
2930 static bool tb_apple_add_links(struct tb_nhi *nhi)
2931 {
2932 	struct pci_dev *upstream, *pdev;
2933 	bool ret;
2934 
2935 	if (!x86_apple_machine)
2936 		return false;
2937 
2938 	switch (nhi->pdev->device) {
2939 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2940 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2941 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
2942 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
2943 		break;
2944 	default:
2945 		return false;
2946 	}
2947 
2948 	upstream = pci_upstream_bridge(nhi->pdev);
2949 	while (upstream) {
2950 		if (!pci_is_pcie(upstream))
2951 			return false;
2952 		if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
2953 			break;
2954 		upstream = pci_upstream_bridge(upstream);
2955 	}
2956 
2957 	if (!upstream)
2958 		return false;
2959 
2960 	/*
2961 	 * For each hotplug downstream port, create add device link
2962 	 * back to NHI so that PCIe tunnels can be re-established after
2963 	 * sleep.
2964 	 */
2965 	ret = false;
2966 	for_each_pci_bridge(pdev, upstream->subordinate) {
2967 		const struct device_link *link;
2968 
2969 		if (!pci_is_pcie(pdev))
2970 			continue;
2971 		if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
2972 		    !pdev->is_hotplug_bridge)
2973 			continue;
2974 
2975 		link = device_link_add(&pdev->dev, &nhi->pdev->dev,
2976 				       DL_FLAG_AUTOREMOVE_SUPPLIER |
2977 				       DL_FLAG_PM_RUNTIME);
2978 		if (link) {
2979 			dev_dbg(&nhi->pdev->dev, "created link from %s\n",
2980 				dev_name(&pdev->dev));
2981 			ret = true;
2982 		} else {
2983 			dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
2984 				 dev_name(&pdev->dev));
2985 		}
2986 	}
2987 
2988 	return ret;
2989 }
2990 
2991 struct tb *tb_probe(struct tb_nhi *nhi)
2992 {
2993 	struct tb_cm *tcm;
2994 	struct tb *tb;
2995 
2996 	tb = tb_domain_alloc(nhi, TB_TIMEOUT, sizeof(*tcm));
2997 	if (!tb)
2998 		return NULL;
2999 
3000 	if (tb_acpi_may_tunnel_pcie())
3001 		tb->security_level = TB_SECURITY_USER;
3002 	else
3003 		tb->security_level = TB_SECURITY_NOPCIE;
3004 
3005 	tb->cm_ops = &tb_cm_ops;
3006 
3007 	tcm = tb_priv(tb);
3008 	INIT_LIST_HEAD(&tcm->tunnel_list);
3009 	INIT_LIST_HEAD(&tcm->dp_resources);
3010 	INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work);
3011 	tb_init_bandwidth_groups(tcm);
3012 
3013 	tb_dbg(tb, "using software connection manager\n");
3014 
3015 	/*
3016 	 * Device links are needed to make sure we establish tunnels
3017 	 * before the PCIe/USB stack is resumed so complain here if we
3018 	 * found them missing.
3019 	 */
3020 	if (!tb_apple_add_links(nhi) && !tb_acpi_add_links(nhi))
3021 		tb_warn(tb, "device links to tunneled native ports are missing!\n");
3022 
3023 	return tb;
3024 }
3025