1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - bus logic (NHI independent) 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2019, Intel Corporation 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/errno.h> 11 #include <linux/delay.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/platform_data/x86/apple.h> 14 15 #include "tb.h" 16 #include "tb_regs.h" 17 #include "tunnel.h" 18 19 #define TB_TIMEOUT 100 /* ms */ 20 #define MAX_GROUPS 7 /* max Group_ID is 7 */ 21 22 /** 23 * struct tb_cm - Simple Thunderbolt connection manager 24 * @tunnel_list: List of active tunnels 25 * @dp_resources: List of available DP resources for DP tunneling 26 * @hotplug_active: tb_handle_hotplug will stop progressing plug 27 * events and exit if this is not set (it needs to 28 * acquire the lock one more time). Used to drain wq 29 * after cfg has been paused. 30 * @remove_work: Work used to remove any unplugged routers after 31 * runtime resume 32 * @groups: Bandwidth groups used in this domain. 33 */ 34 struct tb_cm { 35 struct list_head tunnel_list; 36 struct list_head dp_resources; 37 bool hotplug_active; 38 struct delayed_work remove_work; 39 struct tb_bandwidth_group groups[MAX_GROUPS]; 40 }; 41 42 static inline struct tb *tcm_to_tb(struct tb_cm *tcm) 43 { 44 return ((void *)tcm - sizeof(struct tb)); 45 } 46 47 struct tb_hotplug_event { 48 struct work_struct work; 49 struct tb *tb; 50 u64 route; 51 u8 port; 52 bool unplug; 53 }; 54 55 static void tb_init_bandwidth_groups(struct tb_cm *tcm) 56 { 57 int i; 58 59 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { 60 struct tb_bandwidth_group *group = &tcm->groups[i]; 61 62 group->tb = tcm_to_tb(tcm); 63 group->index = i + 1; 64 INIT_LIST_HEAD(&group->ports); 65 } 66 } 67 68 static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group, 69 struct tb_port *in) 70 { 71 if (!group || WARN_ON(in->group)) 72 return; 73 74 in->group = group; 75 list_add_tail(&in->group_list, &group->ports); 76 77 tb_port_dbg(in, "attached to bandwidth group %d\n", group->index); 78 } 79 80 static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm) 81 { 82 int i; 83 84 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { 85 struct tb_bandwidth_group *group = &tcm->groups[i]; 86 87 if (list_empty(&group->ports)) 88 return group; 89 } 90 91 return NULL; 92 } 93 94 static struct tb_bandwidth_group * 95 tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in, 96 struct tb_port *out) 97 { 98 struct tb_bandwidth_group *group; 99 struct tb_tunnel *tunnel; 100 101 /* 102 * Find all DP tunnels that go through all the same USB4 links 103 * as this one. Because we always setup tunnels the same way we 104 * can just check for the routers at both ends of the tunnels 105 * and if they are the same we have a match. 106 */ 107 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 108 if (!tb_tunnel_is_dp(tunnel)) 109 continue; 110 111 if (tunnel->src_port->sw == in->sw && 112 tunnel->dst_port->sw == out->sw) { 113 group = tunnel->src_port->group; 114 if (group) { 115 tb_bandwidth_group_attach_port(group, in); 116 return group; 117 } 118 } 119 } 120 121 /* Pick up next available group then */ 122 group = tb_find_free_bandwidth_group(tcm); 123 if (group) 124 tb_bandwidth_group_attach_port(group, in); 125 else 126 tb_port_warn(in, "no available bandwidth groups\n"); 127 128 return group; 129 } 130 131 static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in, 132 struct tb_port *out) 133 { 134 if (usb4_dp_port_bandwidth_mode_enabled(in)) { 135 int index, i; 136 137 index = usb4_dp_port_group_id(in); 138 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { 139 if (tcm->groups[i].index == index) { 140 tb_bandwidth_group_attach_port(&tcm->groups[i], in); 141 return; 142 } 143 } 144 } 145 146 tb_attach_bandwidth_group(tcm, in, out); 147 } 148 149 static void tb_detach_bandwidth_group(struct tb_port *in) 150 { 151 struct tb_bandwidth_group *group = in->group; 152 153 if (group) { 154 in->group = NULL; 155 list_del_init(&in->group_list); 156 157 tb_port_dbg(in, "detached from bandwidth group %d\n", group->index); 158 } 159 } 160 161 static void tb_handle_hotplug(struct work_struct *work); 162 163 static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug) 164 { 165 struct tb_hotplug_event *ev; 166 167 ev = kmalloc(sizeof(*ev), GFP_KERNEL); 168 if (!ev) 169 return; 170 171 ev->tb = tb; 172 ev->route = route; 173 ev->port = port; 174 ev->unplug = unplug; 175 INIT_WORK(&ev->work, tb_handle_hotplug); 176 queue_work(tb->wq, &ev->work); 177 } 178 179 /* enumeration & hot plug handling */ 180 181 static void tb_add_dp_resources(struct tb_switch *sw) 182 { 183 struct tb_cm *tcm = tb_priv(sw->tb); 184 struct tb_port *port; 185 186 tb_switch_for_each_port(sw, port) { 187 if (!tb_port_is_dpin(port)) 188 continue; 189 190 if (!tb_switch_query_dp_resource(sw, port)) 191 continue; 192 193 list_add_tail(&port->list, &tcm->dp_resources); 194 tb_port_dbg(port, "DP IN resource available\n"); 195 } 196 } 197 198 static void tb_remove_dp_resources(struct tb_switch *sw) 199 { 200 struct tb_cm *tcm = tb_priv(sw->tb); 201 struct tb_port *port, *tmp; 202 203 /* Clear children resources first */ 204 tb_switch_for_each_port(sw, port) { 205 if (tb_port_has_remote(port)) 206 tb_remove_dp_resources(port->remote->sw); 207 } 208 209 list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) { 210 if (port->sw == sw) { 211 tb_port_dbg(port, "DP OUT resource unavailable\n"); 212 list_del_init(&port->list); 213 } 214 } 215 } 216 217 static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port) 218 { 219 struct tb_cm *tcm = tb_priv(tb); 220 struct tb_port *p; 221 222 list_for_each_entry(p, &tcm->dp_resources, list) { 223 if (p == port) 224 return; 225 } 226 227 tb_port_dbg(port, "DP %s resource available discovered\n", 228 tb_port_is_dpin(port) ? "IN" : "OUT"); 229 list_add_tail(&port->list, &tcm->dp_resources); 230 } 231 232 static void tb_discover_dp_resources(struct tb *tb) 233 { 234 struct tb_cm *tcm = tb_priv(tb); 235 struct tb_tunnel *tunnel; 236 237 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 238 if (tb_tunnel_is_dp(tunnel)) 239 tb_discover_dp_resource(tb, tunnel->dst_port); 240 } 241 } 242 243 /* Enables CL states up to host router */ 244 static int tb_enable_clx(struct tb_switch *sw) 245 { 246 struct tb_cm *tcm = tb_priv(sw->tb); 247 unsigned int clx = TB_CL0S | TB_CL1; 248 const struct tb_tunnel *tunnel; 249 int ret; 250 251 /* 252 * Currently only enable CLx for the first link. This is enough 253 * to allow the CPU to save energy at least on Intel hardware 254 * and makes it slightly simpler to implement. We may change 255 * this in the future to cover the whole topology if it turns 256 * out to be beneficial. 257 */ 258 while (sw && sw->config.depth > 1) 259 sw = tb_switch_parent(sw); 260 261 if (!sw) 262 return 0; 263 264 if (sw->config.depth != 1) 265 return 0; 266 267 /* 268 * If we are re-enabling then check if there is an active DMA 269 * tunnel and in that case bail out. 270 */ 271 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 272 if (tb_tunnel_is_dma(tunnel)) { 273 if (tb_tunnel_port_on_path(tunnel, tb_upstream_port(sw))) 274 return 0; 275 } 276 } 277 278 /* 279 * Initially try with CL2. If that's not supported by the 280 * topology try with CL0s and CL1 and then give up. 281 */ 282 ret = tb_switch_clx_enable(sw, clx | TB_CL2); 283 if (ret == -EOPNOTSUPP) 284 ret = tb_switch_clx_enable(sw, clx); 285 return ret == -EOPNOTSUPP ? 0 : ret; 286 } 287 288 /* Disables CL states up to the host router */ 289 static void tb_disable_clx(struct tb_switch *sw) 290 { 291 do { 292 if (tb_switch_clx_disable(sw) < 0) 293 tb_sw_warn(sw, "failed to disable CL states\n"); 294 sw = tb_switch_parent(sw); 295 } while (sw); 296 } 297 298 static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data) 299 { 300 struct tb_switch *sw; 301 302 sw = tb_to_switch(dev); 303 if (!sw) 304 return 0; 305 306 if (tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_LOWRES)) { 307 enum tb_switch_tmu_mode mode; 308 int ret; 309 310 if (tb_switch_clx_is_enabled(sw, TB_CL1)) 311 mode = TB_SWITCH_TMU_MODE_HIFI_UNI; 312 else 313 mode = TB_SWITCH_TMU_MODE_HIFI_BI; 314 315 ret = tb_switch_tmu_configure(sw, mode); 316 if (ret) 317 return ret; 318 319 return tb_switch_tmu_enable(sw); 320 } 321 322 return 0; 323 } 324 325 static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel) 326 { 327 struct tb_switch *sw; 328 329 if (!tunnel) 330 return; 331 332 /* 333 * Once first DP tunnel is established we change the TMU 334 * accuracy of first depth child routers (and the host router) 335 * to the highest. This is needed for the DP tunneling to work 336 * but also allows CL0s. 337 * 338 * If both routers are v2 then we don't need to do anything as 339 * they are using enhanced TMU mode that allows all CLx. 340 */ 341 sw = tunnel->tb->root_switch; 342 device_for_each_child(&sw->dev, NULL, tb_increase_switch_tmu_accuracy); 343 } 344 345 static int tb_enable_tmu(struct tb_switch *sw) 346 { 347 int ret; 348 349 /* 350 * If both routers at the end of the link are v2 we simply 351 * enable the enhanched uni-directional mode. That covers all 352 * the CL states. For v1 and before we need to use the normal 353 * rate to allow CL1 (when supported). Otherwise we keep the TMU 354 * running at the highest accuracy. 355 */ 356 ret = tb_switch_tmu_configure(sw, 357 TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI); 358 if (ret == -EOPNOTSUPP) { 359 if (tb_switch_clx_is_enabled(sw, TB_CL1)) 360 ret = tb_switch_tmu_configure(sw, 361 TB_SWITCH_TMU_MODE_LOWRES); 362 else 363 ret = tb_switch_tmu_configure(sw, 364 TB_SWITCH_TMU_MODE_HIFI_BI); 365 } 366 if (ret) 367 return ret; 368 369 /* If it is already enabled in correct mode, don't touch it */ 370 if (tb_switch_tmu_is_enabled(sw)) 371 return 0; 372 373 ret = tb_switch_tmu_disable(sw); 374 if (ret) 375 return ret; 376 377 ret = tb_switch_tmu_post_time(sw); 378 if (ret) 379 return ret; 380 381 return tb_switch_tmu_enable(sw); 382 } 383 384 static void tb_switch_discover_tunnels(struct tb_switch *sw, 385 struct list_head *list, 386 bool alloc_hopids) 387 { 388 struct tb *tb = sw->tb; 389 struct tb_port *port; 390 391 tb_switch_for_each_port(sw, port) { 392 struct tb_tunnel *tunnel = NULL; 393 394 switch (port->config.type) { 395 case TB_TYPE_DP_HDMI_IN: 396 tunnel = tb_tunnel_discover_dp(tb, port, alloc_hopids); 397 tb_increase_tmu_accuracy(tunnel); 398 break; 399 400 case TB_TYPE_PCIE_DOWN: 401 tunnel = tb_tunnel_discover_pci(tb, port, alloc_hopids); 402 break; 403 404 case TB_TYPE_USB3_DOWN: 405 tunnel = tb_tunnel_discover_usb3(tb, port, alloc_hopids); 406 break; 407 408 default: 409 break; 410 } 411 412 if (tunnel) 413 list_add_tail(&tunnel->list, list); 414 } 415 416 tb_switch_for_each_port(sw, port) { 417 if (tb_port_has_remote(port)) { 418 tb_switch_discover_tunnels(port->remote->sw, list, 419 alloc_hopids); 420 } 421 } 422 } 423 424 static void tb_discover_tunnels(struct tb *tb) 425 { 426 struct tb_cm *tcm = tb_priv(tb); 427 struct tb_tunnel *tunnel; 428 429 tb_switch_discover_tunnels(tb->root_switch, &tcm->tunnel_list, true); 430 431 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 432 if (tb_tunnel_is_pci(tunnel)) { 433 struct tb_switch *parent = tunnel->dst_port->sw; 434 435 while (parent != tunnel->src_port->sw) { 436 parent->boot = true; 437 parent = tb_switch_parent(parent); 438 } 439 } else if (tb_tunnel_is_dp(tunnel)) { 440 struct tb_port *in = tunnel->src_port; 441 struct tb_port *out = tunnel->dst_port; 442 443 /* Keep the domain from powering down */ 444 pm_runtime_get_sync(&in->sw->dev); 445 pm_runtime_get_sync(&out->sw->dev); 446 447 tb_discover_bandwidth_group(tcm, in, out); 448 } 449 } 450 } 451 452 static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd) 453 { 454 if (tb_switch_is_usb4(port->sw)) 455 return usb4_port_configure_xdomain(port, xd); 456 return tb_lc_configure_xdomain(port); 457 } 458 459 static void tb_port_unconfigure_xdomain(struct tb_port *port) 460 { 461 if (tb_switch_is_usb4(port->sw)) 462 usb4_port_unconfigure_xdomain(port); 463 else 464 tb_lc_unconfigure_xdomain(port); 465 466 tb_port_enable(port->dual_link_port); 467 } 468 469 static void tb_scan_xdomain(struct tb_port *port) 470 { 471 struct tb_switch *sw = port->sw; 472 struct tb *tb = sw->tb; 473 struct tb_xdomain *xd; 474 u64 route; 475 476 if (!tb_is_xdomain_enabled()) 477 return; 478 479 route = tb_downstream_route(port); 480 xd = tb_xdomain_find_by_route(tb, route); 481 if (xd) { 482 tb_xdomain_put(xd); 483 return; 484 } 485 486 xd = tb_xdomain_alloc(tb, &sw->dev, route, tb->root_switch->uuid, 487 NULL); 488 if (xd) { 489 tb_port_at(route, sw)->xdomain = xd; 490 tb_port_configure_xdomain(port, xd); 491 tb_xdomain_add(xd); 492 } 493 } 494 495 /** 496 * tb_find_unused_port() - return the first inactive port on @sw 497 * @sw: Switch to find the port on 498 * @type: Port type to look for 499 */ 500 static struct tb_port *tb_find_unused_port(struct tb_switch *sw, 501 enum tb_port_type type) 502 { 503 struct tb_port *port; 504 505 tb_switch_for_each_port(sw, port) { 506 if (tb_is_upstream_port(port)) 507 continue; 508 if (port->config.type != type) 509 continue; 510 if (!port->cap_adap) 511 continue; 512 if (tb_port_is_enabled(port)) 513 continue; 514 return port; 515 } 516 return NULL; 517 } 518 519 static struct tb_port *tb_find_usb3_down(struct tb_switch *sw, 520 const struct tb_port *port) 521 { 522 struct tb_port *down; 523 524 down = usb4_switch_map_usb3_down(sw, port); 525 if (down && !tb_usb3_port_is_enabled(down)) 526 return down; 527 return NULL; 528 } 529 530 static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type, 531 struct tb_port *src_port, 532 struct tb_port *dst_port) 533 { 534 struct tb_cm *tcm = tb_priv(tb); 535 struct tb_tunnel *tunnel; 536 537 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 538 if (tunnel->type == type && 539 ((src_port && src_port == tunnel->src_port) || 540 (dst_port && dst_port == tunnel->dst_port))) { 541 return tunnel; 542 } 543 } 544 545 return NULL; 546 } 547 548 static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb, 549 struct tb_port *src_port, 550 struct tb_port *dst_port) 551 { 552 struct tb_port *port, *usb3_down; 553 struct tb_switch *sw; 554 555 /* Pick the router that is deepest in the topology */ 556 if (dst_port->sw->config.depth > src_port->sw->config.depth) 557 sw = dst_port->sw; 558 else 559 sw = src_port->sw; 560 561 /* Can't be the host router */ 562 if (sw == tb->root_switch) 563 return NULL; 564 565 /* Find the downstream USB4 port that leads to this router */ 566 port = tb_port_at(tb_route(sw), tb->root_switch); 567 /* Find the corresponding host router USB3 downstream port */ 568 usb3_down = usb4_switch_map_usb3_down(tb->root_switch, port); 569 if (!usb3_down) 570 return NULL; 571 572 return tb_find_tunnel(tb, TB_TUNNEL_USB3, usb3_down, NULL); 573 } 574 575 static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port, 576 struct tb_port *dst_port, int *available_up, int *available_down) 577 { 578 int usb3_consumed_up, usb3_consumed_down, ret; 579 struct tb_cm *tcm = tb_priv(tb); 580 struct tb_tunnel *tunnel; 581 struct tb_port *port; 582 583 tb_dbg(tb, "calculating available bandwidth between %llx:%u <-> %llx:%u\n", 584 tb_route(src_port->sw), src_port->port, tb_route(dst_port->sw), 585 dst_port->port); 586 587 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port); 588 if (tunnel && tunnel->src_port != src_port && 589 tunnel->dst_port != dst_port) { 590 ret = tb_tunnel_consumed_bandwidth(tunnel, &usb3_consumed_up, 591 &usb3_consumed_down); 592 if (ret) 593 return ret; 594 } else { 595 usb3_consumed_up = 0; 596 usb3_consumed_down = 0; 597 } 598 599 /* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */ 600 *available_up = *available_down = 120000; 601 602 /* Find the minimum available bandwidth over all links */ 603 tb_for_each_port_on_path(src_port, dst_port, port) { 604 int link_speed, link_width, up_bw, down_bw; 605 606 if (!tb_port_is_null(port)) 607 continue; 608 609 if (tb_is_upstream_port(port)) { 610 link_speed = port->sw->link_speed; 611 /* 612 * sw->link_width is from upstream perspective 613 * so we use the opposite for downstream of the 614 * host router. 615 */ 616 if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) { 617 up_bw = link_speed * 3 * 1000; 618 down_bw = link_speed * 1 * 1000; 619 } else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) { 620 up_bw = link_speed * 1 * 1000; 621 down_bw = link_speed * 3 * 1000; 622 } else { 623 up_bw = link_speed * port->sw->link_width * 1000; 624 down_bw = up_bw; 625 } 626 } else { 627 link_speed = tb_port_get_link_speed(port); 628 if (link_speed < 0) 629 return link_speed; 630 631 link_width = tb_port_get_link_width(port); 632 if (link_width < 0) 633 return link_width; 634 635 if (link_width == TB_LINK_WIDTH_ASYM_TX) { 636 up_bw = link_speed * 1 * 1000; 637 down_bw = link_speed * 3 * 1000; 638 } else if (link_width == TB_LINK_WIDTH_ASYM_RX) { 639 up_bw = link_speed * 3 * 1000; 640 down_bw = link_speed * 1 * 1000; 641 } else { 642 up_bw = link_speed * link_width * 1000; 643 down_bw = up_bw; 644 } 645 } 646 647 /* Leave 10% guard band */ 648 up_bw -= up_bw / 10; 649 down_bw -= down_bw / 10; 650 651 tb_port_dbg(port, "link total bandwidth %d/%d Mb/s\n", up_bw, 652 down_bw); 653 654 /* 655 * Find all DP tunnels that cross the port and reduce 656 * their consumed bandwidth from the available. 657 */ 658 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 659 int dp_consumed_up, dp_consumed_down; 660 661 if (tb_tunnel_is_invalid(tunnel)) 662 continue; 663 664 if (!tb_tunnel_is_dp(tunnel)) 665 continue; 666 667 if (!tb_tunnel_port_on_path(tunnel, port)) 668 continue; 669 670 /* 671 * Ignore the DP tunnel between src_port and 672 * dst_port because it is the same tunnel and we 673 * may be re-calculating estimated bandwidth. 674 */ 675 if (tunnel->src_port == src_port && 676 tunnel->dst_port == dst_port) 677 continue; 678 679 ret = tb_tunnel_consumed_bandwidth(tunnel, 680 &dp_consumed_up, 681 &dp_consumed_down); 682 if (ret) 683 return ret; 684 685 up_bw -= dp_consumed_up; 686 down_bw -= dp_consumed_down; 687 } 688 689 /* 690 * If USB3 is tunneled from the host router down to the 691 * branch leading to port we need to take USB3 consumed 692 * bandwidth into account regardless whether it actually 693 * crosses the port. 694 */ 695 up_bw -= usb3_consumed_up; 696 down_bw -= usb3_consumed_down; 697 698 if (up_bw < *available_up) 699 *available_up = up_bw; 700 if (down_bw < *available_down) 701 *available_down = down_bw; 702 } 703 704 if (*available_up < 0) 705 *available_up = 0; 706 if (*available_down < 0) 707 *available_down = 0; 708 709 return 0; 710 } 711 712 static int tb_release_unused_usb3_bandwidth(struct tb *tb, 713 struct tb_port *src_port, 714 struct tb_port *dst_port) 715 { 716 struct tb_tunnel *tunnel; 717 718 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port); 719 return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0; 720 } 721 722 static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port, 723 struct tb_port *dst_port) 724 { 725 int ret, available_up, available_down; 726 struct tb_tunnel *tunnel; 727 728 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port); 729 if (!tunnel) 730 return; 731 732 tb_dbg(tb, "reclaiming unused bandwidth for USB3\n"); 733 734 /* 735 * Calculate available bandwidth for the first hop USB3 tunnel. 736 * That determines the whole USB3 bandwidth for this branch. 737 */ 738 ret = tb_available_bandwidth(tb, tunnel->src_port, tunnel->dst_port, 739 &available_up, &available_down); 740 if (ret) { 741 tb_warn(tb, "failed to calculate available bandwidth\n"); 742 return; 743 } 744 745 tb_dbg(tb, "available bandwidth for USB3 %d/%d Mb/s\n", 746 available_up, available_down); 747 748 tb_tunnel_reclaim_available_bandwidth(tunnel, &available_up, &available_down); 749 } 750 751 static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw) 752 { 753 struct tb_switch *parent = tb_switch_parent(sw); 754 int ret, available_up, available_down; 755 struct tb_port *up, *down, *port; 756 struct tb_cm *tcm = tb_priv(tb); 757 struct tb_tunnel *tunnel; 758 759 if (!tb_acpi_may_tunnel_usb3()) { 760 tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n"); 761 return 0; 762 } 763 764 up = tb_switch_find_port(sw, TB_TYPE_USB3_UP); 765 if (!up) 766 return 0; 767 768 if (!sw->link_usb4) 769 return 0; 770 771 /* 772 * Look up available down port. Since we are chaining it should 773 * be found right above this switch. 774 */ 775 port = tb_switch_downstream_port(sw); 776 down = tb_find_usb3_down(parent, port); 777 if (!down) 778 return 0; 779 780 if (tb_route(parent)) { 781 struct tb_port *parent_up; 782 /* 783 * Check first that the parent switch has its upstream USB3 784 * port enabled. Otherwise the chain is not complete and 785 * there is no point setting up a new tunnel. 786 */ 787 parent_up = tb_switch_find_port(parent, TB_TYPE_USB3_UP); 788 if (!parent_up || !tb_port_is_enabled(parent_up)) 789 return 0; 790 791 /* Make all unused bandwidth available for the new tunnel */ 792 ret = tb_release_unused_usb3_bandwidth(tb, down, up); 793 if (ret) 794 return ret; 795 } 796 797 ret = tb_available_bandwidth(tb, down, up, &available_up, 798 &available_down); 799 if (ret) 800 goto err_reclaim; 801 802 tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n", 803 available_up, available_down); 804 805 tunnel = tb_tunnel_alloc_usb3(tb, up, down, available_up, 806 available_down); 807 if (!tunnel) { 808 ret = -ENOMEM; 809 goto err_reclaim; 810 } 811 812 if (tb_tunnel_activate(tunnel)) { 813 tb_port_info(up, 814 "USB3 tunnel activation failed, aborting\n"); 815 ret = -EIO; 816 goto err_free; 817 } 818 819 list_add_tail(&tunnel->list, &tcm->tunnel_list); 820 if (tb_route(parent)) 821 tb_reclaim_usb3_bandwidth(tb, down, up); 822 823 return 0; 824 825 err_free: 826 tb_tunnel_free(tunnel); 827 err_reclaim: 828 if (tb_route(parent)) 829 tb_reclaim_usb3_bandwidth(tb, down, up); 830 831 return ret; 832 } 833 834 static int tb_create_usb3_tunnels(struct tb_switch *sw) 835 { 836 struct tb_port *port; 837 int ret; 838 839 if (!tb_acpi_may_tunnel_usb3()) 840 return 0; 841 842 if (tb_route(sw)) { 843 ret = tb_tunnel_usb3(sw->tb, sw); 844 if (ret) 845 return ret; 846 } 847 848 tb_switch_for_each_port(sw, port) { 849 if (!tb_port_has_remote(port)) 850 continue; 851 ret = tb_create_usb3_tunnels(port->remote->sw); 852 if (ret) 853 return ret; 854 } 855 856 return 0; 857 } 858 859 static void tb_scan_port(struct tb_port *port); 860 861 /* 862 * tb_scan_switch() - scan for and initialize downstream switches 863 */ 864 static void tb_scan_switch(struct tb_switch *sw) 865 { 866 struct tb_port *port; 867 868 pm_runtime_get_sync(&sw->dev); 869 870 tb_switch_for_each_port(sw, port) 871 tb_scan_port(port); 872 873 pm_runtime_mark_last_busy(&sw->dev); 874 pm_runtime_put_autosuspend(&sw->dev); 875 } 876 877 /* 878 * tb_scan_port() - check for and initialize switches below port 879 */ 880 static void tb_scan_port(struct tb_port *port) 881 { 882 struct tb_cm *tcm = tb_priv(port->sw->tb); 883 struct tb_port *upstream_port; 884 bool discovery = false; 885 struct tb_switch *sw; 886 887 if (tb_is_upstream_port(port)) 888 return; 889 890 if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 && 891 !tb_dp_port_is_enabled(port)) { 892 tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n"); 893 tb_queue_hotplug(port->sw->tb, tb_route(port->sw), port->port, 894 false); 895 return; 896 } 897 898 if (port->config.type != TB_TYPE_PORT) 899 return; 900 if (port->dual_link_port && port->link_nr) 901 return; /* 902 * Downstream switch is reachable through two ports. 903 * Only scan on the primary port (link_nr == 0). 904 */ 905 906 if (port->usb4) 907 pm_runtime_get_sync(&port->usb4->dev); 908 909 if (tb_wait_for_port(port, false) <= 0) 910 goto out_rpm_put; 911 if (port->remote) { 912 tb_port_dbg(port, "port already has a remote\n"); 913 goto out_rpm_put; 914 } 915 916 tb_retimer_scan(port, true); 917 918 sw = tb_switch_alloc(port->sw->tb, &port->sw->dev, 919 tb_downstream_route(port)); 920 if (IS_ERR(sw)) { 921 /* 922 * If there is an error accessing the connected switch 923 * it may be connected to another domain. Also we allow 924 * the other domain to be connected to a max depth switch. 925 */ 926 if (PTR_ERR(sw) == -EIO || PTR_ERR(sw) == -EADDRNOTAVAIL) 927 tb_scan_xdomain(port); 928 goto out_rpm_put; 929 } 930 931 if (tb_switch_configure(sw)) { 932 tb_switch_put(sw); 933 goto out_rpm_put; 934 } 935 936 /* 937 * If there was previously another domain connected remove it 938 * first. 939 */ 940 if (port->xdomain) { 941 tb_xdomain_remove(port->xdomain); 942 tb_port_unconfigure_xdomain(port); 943 port->xdomain = NULL; 944 } 945 946 /* 947 * Do not send uevents until we have discovered all existing 948 * tunnels and know which switches were authorized already by 949 * the boot firmware. 950 */ 951 if (!tcm->hotplug_active) { 952 dev_set_uevent_suppress(&sw->dev, true); 953 discovery = true; 954 } 955 956 /* 957 * At the moment Thunderbolt 2 and beyond (devices with LC) we 958 * can support runtime PM. 959 */ 960 sw->rpm = sw->generation > 1; 961 962 if (tb_switch_add(sw)) { 963 tb_switch_put(sw); 964 goto out_rpm_put; 965 } 966 967 /* Link the switches using both links if available */ 968 upstream_port = tb_upstream_port(sw); 969 port->remote = upstream_port; 970 upstream_port->remote = port; 971 if (port->dual_link_port && upstream_port->dual_link_port) { 972 port->dual_link_port->remote = upstream_port->dual_link_port; 973 upstream_port->dual_link_port->remote = port->dual_link_port; 974 } 975 976 /* Enable lane bonding if supported */ 977 tb_switch_lane_bonding_enable(sw); 978 /* Set the link configured */ 979 tb_switch_configure_link(sw); 980 /* 981 * CL0s and CL1 are enabled and supported together. 982 * Silently ignore CLx enabling in case CLx is not supported. 983 */ 984 if (discovery) 985 tb_sw_dbg(sw, "discovery, not touching CL states\n"); 986 else if (tb_enable_clx(sw)) 987 tb_sw_warn(sw, "failed to enable CL states\n"); 988 989 if (tb_enable_tmu(sw)) 990 tb_sw_warn(sw, "failed to enable TMU\n"); 991 992 /* 993 * Configuration valid needs to be set after the TMU has been 994 * enabled for the upstream port of the router so we do it here. 995 */ 996 tb_switch_configuration_valid(sw); 997 998 /* Scan upstream retimers */ 999 tb_retimer_scan(upstream_port, true); 1000 1001 /* 1002 * Create USB 3.x tunnels only when the switch is plugged to the 1003 * domain. This is because we scan the domain also during discovery 1004 * and want to discover existing USB 3.x tunnels before we create 1005 * any new. 1006 */ 1007 if (tcm->hotplug_active && tb_tunnel_usb3(sw->tb, sw)) 1008 tb_sw_warn(sw, "USB3 tunnel creation failed\n"); 1009 1010 tb_add_dp_resources(sw); 1011 tb_scan_switch(sw); 1012 1013 out_rpm_put: 1014 if (port->usb4) { 1015 pm_runtime_mark_last_busy(&port->usb4->dev); 1016 pm_runtime_put_autosuspend(&port->usb4->dev); 1017 } 1018 } 1019 1020 static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel) 1021 { 1022 struct tb_port *src_port, *dst_port; 1023 struct tb *tb; 1024 1025 if (!tunnel) 1026 return; 1027 1028 tb_tunnel_deactivate(tunnel); 1029 list_del(&tunnel->list); 1030 1031 tb = tunnel->tb; 1032 src_port = tunnel->src_port; 1033 dst_port = tunnel->dst_port; 1034 1035 switch (tunnel->type) { 1036 case TB_TUNNEL_DP: 1037 tb_detach_bandwidth_group(src_port); 1038 /* 1039 * In case of DP tunnel make sure the DP IN resource is 1040 * deallocated properly. 1041 */ 1042 tb_switch_dealloc_dp_resource(src_port->sw, src_port); 1043 /* Now we can allow the domain to runtime suspend again */ 1044 pm_runtime_mark_last_busy(&dst_port->sw->dev); 1045 pm_runtime_put_autosuspend(&dst_port->sw->dev); 1046 pm_runtime_mark_last_busy(&src_port->sw->dev); 1047 pm_runtime_put_autosuspend(&src_port->sw->dev); 1048 fallthrough; 1049 1050 case TB_TUNNEL_USB3: 1051 tb_reclaim_usb3_bandwidth(tb, src_port, dst_port); 1052 break; 1053 1054 default: 1055 /* 1056 * PCIe and DMA tunnels do not consume guaranteed 1057 * bandwidth. 1058 */ 1059 break; 1060 } 1061 1062 tb_tunnel_free(tunnel); 1063 } 1064 1065 /* 1066 * tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away 1067 */ 1068 static void tb_free_invalid_tunnels(struct tb *tb) 1069 { 1070 struct tb_cm *tcm = tb_priv(tb); 1071 struct tb_tunnel *tunnel; 1072 struct tb_tunnel *n; 1073 1074 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { 1075 if (tb_tunnel_is_invalid(tunnel)) 1076 tb_deactivate_and_free_tunnel(tunnel); 1077 } 1078 } 1079 1080 /* 1081 * tb_free_unplugged_children() - traverse hierarchy and free unplugged switches 1082 */ 1083 static void tb_free_unplugged_children(struct tb_switch *sw) 1084 { 1085 struct tb_port *port; 1086 1087 tb_switch_for_each_port(sw, port) { 1088 if (!tb_port_has_remote(port)) 1089 continue; 1090 1091 if (port->remote->sw->is_unplugged) { 1092 tb_retimer_remove_all(port); 1093 tb_remove_dp_resources(port->remote->sw); 1094 tb_switch_unconfigure_link(port->remote->sw); 1095 tb_switch_lane_bonding_disable(port->remote->sw); 1096 tb_switch_remove(port->remote->sw); 1097 port->remote = NULL; 1098 if (port->dual_link_port) 1099 port->dual_link_port->remote = NULL; 1100 } else { 1101 tb_free_unplugged_children(port->remote->sw); 1102 } 1103 } 1104 } 1105 1106 static struct tb_port *tb_find_pcie_down(struct tb_switch *sw, 1107 const struct tb_port *port) 1108 { 1109 struct tb_port *down = NULL; 1110 1111 /* 1112 * To keep plugging devices consistently in the same PCIe 1113 * hierarchy, do mapping here for switch downstream PCIe ports. 1114 */ 1115 if (tb_switch_is_usb4(sw)) { 1116 down = usb4_switch_map_pcie_down(sw, port); 1117 } else if (!tb_route(sw)) { 1118 int phy_port = tb_phy_port_from_link(port->port); 1119 int index; 1120 1121 /* 1122 * Hard-coded Thunderbolt port to PCIe down port mapping 1123 * per controller. 1124 */ 1125 if (tb_switch_is_cactus_ridge(sw) || 1126 tb_switch_is_alpine_ridge(sw)) 1127 index = !phy_port ? 6 : 7; 1128 else if (tb_switch_is_falcon_ridge(sw)) 1129 index = !phy_port ? 6 : 8; 1130 else if (tb_switch_is_titan_ridge(sw)) 1131 index = !phy_port ? 8 : 9; 1132 else 1133 goto out; 1134 1135 /* Validate the hard-coding */ 1136 if (WARN_ON(index > sw->config.max_port_number)) 1137 goto out; 1138 1139 down = &sw->ports[index]; 1140 } 1141 1142 if (down) { 1143 if (WARN_ON(!tb_port_is_pcie_down(down))) 1144 goto out; 1145 if (tb_pci_port_is_enabled(down)) 1146 goto out; 1147 1148 return down; 1149 } 1150 1151 out: 1152 return tb_find_unused_port(sw, TB_TYPE_PCIE_DOWN); 1153 } 1154 1155 static void 1156 tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group) 1157 { 1158 struct tb_tunnel *first_tunnel; 1159 struct tb *tb = group->tb; 1160 struct tb_port *in; 1161 int ret; 1162 1163 tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n", 1164 group->index); 1165 1166 first_tunnel = NULL; 1167 list_for_each_entry(in, &group->ports, group_list) { 1168 int estimated_bw, estimated_up, estimated_down; 1169 struct tb_tunnel *tunnel; 1170 struct tb_port *out; 1171 1172 if (!usb4_dp_port_bandwidth_mode_enabled(in)) 1173 continue; 1174 1175 tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL); 1176 if (WARN_ON(!tunnel)) 1177 break; 1178 1179 if (!first_tunnel) { 1180 /* 1181 * Since USB3 bandwidth is shared by all DP 1182 * tunnels under the host router USB4 port, even 1183 * if they do not begin from the host router, we 1184 * can release USB3 bandwidth just once and not 1185 * for each tunnel separately. 1186 */ 1187 first_tunnel = tunnel; 1188 ret = tb_release_unused_usb3_bandwidth(tb, 1189 first_tunnel->src_port, first_tunnel->dst_port); 1190 if (ret) { 1191 tb_port_warn(in, 1192 "failed to release unused bandwidth\n"); 1193 break; 1194 } 1195 } 1196 1197 out = tunnel->dst_port; 1198 ret = tb_available_bandwidth(tb, in, out, &estimated_up, 1199 &estimated_down); 1200 if (ret) { 1201 tb_port_warn(in, 1202 "failed to re-calculate estimated bandwidth\n"); 1203 break; 1204 } 1205 1206 /* 1207 * Estimated bandwidth includes: 1208 * - already allocated bandwidth for the DP tunnel 1209 * - available bandwidth along the path 1210 * - bandwidth allocated for USB 3.x but not used. 1211 */ 1212 tb_port_dbg(in, "re-calculated estimated bandwidth %u/%u Mb/s\n", 1213 estimated_up, estimated_down); 1214 1215 if (in->sw->config.depth < out->sw->config.depth) 1216 estimated_bw = estimated_down; 1217 else 1218 estimated_bw = estimated_up; 1219 1220 if (usb4_dp_port_set_estimated_bandwidth(in, estimated_bw)) 1221 tb_port_warn(in, "failed to update estimated bandwidth\n"); 1222 } 1223 1224 if (first_tunnel) 1225 tb_reclaim_usb3_bandwidth(tb, first_tunnel->src_port, 1226 first_tunnel->dst_port); 1227 1228 tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index); 1229 } 1230 1231 static void tb_recalc_estimated_bandwidth(struct tb *tb) 1232 { 1233 struct tb_cm *tcm = tb_priv(tb); 1234 int i; 1235 1236 tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n"); 1237 1238 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { 1239 struct tb_bandwidth_group *group = &tcm->groups[i]; 1240 1241 if (!list_empty(&group->ports)) 1242 tb_recalc_estimated_bandwidth_for_group(group); 1243 } 1244 1245 tb_dbg(tb, "bandwidth re-calculation done\n"); 1246 } 1247 1248 static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in) 1249 { 1250 struct tb_port *host_port, *port; 1251 struct tb_cm *tcm = tb_priv(tb); 1252 1253 host_port = tb_route(in->sw) ? 1254 tb_port_at(tb_route(in->sw), tb->root_switch) : NULL; 1255 1256 list_for_each_entry(port, &tcm->dp_resources, list) { 1257 if (!tb_port_is_dpout(port)) 1258 continue; 1259 1260 if (tb_port_is_enabled(port)) { 1261 tb_port_dbg(port, "DP OUT in use\n"); 1262 continue; 1263 } 1264 1265 tb_port_dbg(port, "DP OUT available\n"); 1266 1267 /* 1268 * Keep the DP tunnel under the topology starting from 1269 * the same host router downstream port. 1270 */ 1271 if (host_port && tb_route(port->sw)) { 1272 struct tb_port *p; 1273 1274 p = tb_port_at(tb_route(port->sw), tb->root_switch); 1275 if (p != host_port) 1276 continue; 1277 } 1278 1279 return port; 1280 } 1281 1282 return NULL; 1283 } 1284 1285 static void tb_tunnel_dp(struct tb *tb) 1286 { 1287 int available_up, available_down, ret, link_nr; 1288 struct tb_cm *tcm = tb_priv(tb); 1289 struct tb_port *port, *in, *out; 1290 struct tb_tunnel *tunnel; 1291 1292 if (!tb_acpi_may_tunnel_dp()) { 1293 tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n"); 1294 return; 1295 } 1296 1297 /* 1298 * Find pair of inactive DP IN and DP OUT adapters and then 1299 * establish a DP tunnel between them. 1300 */ 1301 tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n"); 1302 1303 in = NULL; 1304 out = NULL; 1305 list_for_each_entry(port, &tcm->dp_resources, list) { 1306 if (!tb_port_is_dpin(port)) 1307 continue; 1308 1309 if (tb_port_is_enabled(port)) { 1310 tb_port_dbg(port, "DP IN in use\n"); 1311 continue; 1312 } 1313 1314 tb_port_dbg(port, "DP IN available\n"); 1315 1316 out = tb_find_dp_out(tb, port); 1317 if (out) { 1318 in = port; 1319 break; 1320 } 1321 } 1322 1323 if (!in) { 1324 tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n"); 1325 return; 1326 } 1327 if (!out) { 1328 tb_dbg(tb, "no suitable DP OUT adapter available, not tunneling\n"); 1329 return; 1330 } 1331 1332 /* 1333 * This is only applicable to links that are not bonded (so 1334 * when Thunderbolt 1 hardware is involved somewhere in the 1335 * topology). For these try to share the DP bandwidth between 1336 * the two lanes. 1337 */ 1338 link_nr = 1; 1339 list_for_each_entry(tunnel, &tcm->tunnel_list, list) { 1340 if (tb_tunnel_is_dp(tunnel)) { 1341 link_nr = 0; 1342 break; 1343 } 1344 } 1345 1346 /* 1347 * DP stream needs the domain to be active so runtime resume 1348 * both ends of the tunnel. 1349 * 1350 * This should bring the routers in the middle active as well 1351 * and keeps the domain from runtime suspending while the DP 1352 * tunnel is active. 1353 */ 1354 pm_runtime_get_sync(&in->sw->dev); 1355 pm_runtime_get_sync(&out->sw->dev); 1356 1357 if (tb_switch_alloc_dp_resource(in->sw, in)) { 1358 tb_port_dbg(in, "no resource available for DP IN, not tunneling\n"); 1359 goto err_rpm_put; 1360 } 1361 1362 if (!tb_attach_bandwidth_group(tcm, in, out)) 1363 goto err_dealloc_dp; 1364 1365 /* Make all unused USB3 bandwidth available for the new DP tunnel */ 1366 ret = tb_release_unused_usb3_bandwidth(tb, in, out); 1367 if (ret) { 1368 tb_warn(tb, "failed to release unused bandwidth\n"); 1369 goto err_detach_group; 1370 } 1371 1372 ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down); 1373 if (ret) 1374 goto err_reclaim_usb; 1375 1376 tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n", 1377 available_up, available_down); 1378 1379 tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, available_up, 1380 available_down); 1381 if (!tunnel) { 1382 tb_port_dbg(out, "could not allocate DP tunnel\n"); 1383 goto err_reclaim_usb; 1384 } 1385 1386 if (tb_tunnel_activate(tunnel)) { 1387 tb_port_info(out, "DP tunnel activation failed, aborting\n"); 1388 goto err_free; 1389 } 1390 1391 list_add_tail(&tunnel->list, &tcm->tunnel_list); 1392 tb_reclaim_usb3_bandwidth(tb, in, out); 1393 1394 /* Update the domain with the new bandwidth estimation */ 1395 tb_recalc_estimated_bandwidth(tb); 1396 1397 /* 1398 * In case of DP tunnel exists, change host router's 1st children 1399 * TMU mode to HiFi for CL0s to work. 1400 */ 1401 tb_increase_tmu_accuracy(tunnel); 1402 return; 1403 1404 err_free: 1405 tb_tunnel_free(tunnel); 1406 err_reclaim_usb: 1407 tb_reclaim_usb3_bandwidth(tb, in, out); 1408 err_detach_group: 1409 tb_detach_bandwidth_group(in); 1410 err_dealloc_dp: 1411 tb_switch_dealloc_dp_resource(in->sw, in); 1412 err_rpm_put: 1413 pm_runtime_mark_last_busy(&out->sw->dev); 1414 pm_runtime_put_autosuspend(&out->sw->dev); 1415 pm_runtime_mark_last_busy(&in->sw->dev); 1416 pm_runtime_put_autosuspend(&in->sw->dev); 1417 } 1418 1419 static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port) 1420 { 1421 struct tb_port *in, *out; 1422 struct tb_tunnel *tunnel; 1423 1424 if (tb_port_is_dpin(port)) { 1425 tb_port_dbg(port, "DP IN resource unavailable\n"); 1426 in = port; 1427 out = NULL; 1428 } else { 1429 tb_port_dbg(port, "DP OUT resource unavailable\n"); 1430 in = NULL; 1431 out = port; 1432 } 1433 1434 tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, out); 1435 tb_deactivate_and_free_tunnel(tunnel); 1436 list_del_init(&port->list); 1437 1438 /* 1439 * See if there is another DP OUT port that can be used for 1440 * to create another tunnel. 1441 */ 1442 tb_recalc_estimated_bandwidth(tb); 1443 tb_tunnel_dp(tb); 1444 } 1445 1446 static void tb_dp_resource_available(struct tb *tb, struct tb_port *port) 1447 { 1448 struct tb_cm *tcm = tb_priv(tb); 1449 struct tb_port *p; 1450 1451 if (tb_port_is_enabled(port)) 1452 return; 1453 1454 list_for_each_entry(p, &tcm->dp_resources, list) { 1455 if (p == port) 1456 return; 1457 } 1458 1459 tb_port_dbg(port, "DP %s resource available\n", 1460 tb_port_is_dpin(port) ? "IN" : "OUT"); 1461 list_add_tail(&port->list, &tcm->dp_resources); 1462 1463 /* Look for suitable DP IN <-> DP OUT pairs now */ 1464 tb_tunnel_dp(tb); 1465 } 1466 1467 static void tb_disconnect_and_release_dp(struct tb *tb) 1468 { 1469 struct tb_cm *tcm = tb_priv(tb); 1470 struct tb_tunnel *tunnel, *n; 1471 1472 /* 1473 * Tear down all DP tunnels and release their resources. They 1474 * will be re-established after resume based on plug events. 1475 */ 1476 list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) { 1477 if (tb_tunnel_is_dp(tunnel)) 1478 tb_deactivate_and_free_tunnel(tunnel); 1479 } 1480 1481 while (!list_empty(&tcm->dp_resources)) { 1482 struct tb_port *port; 1483 1484 port = list_first_entry(&tcm->dp_resources, 1485 struct tb_port, list); 1486 list_del_init(&port->list); 1487 } 1488 } 1489 1490 static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw) 1491 { 1492 struct tb_tunnel *tunnel; 1493 struct tb_port *up; 1494 1495 up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP); 1496 if (WARN_ON(!up)) 1497 return -ENODEV; 1498 1499 tunnel = tb_find_tunnel(tb, TB_TUNNEL_PCI, NULL, up); 1500 if (WARN_ON(!tunnel)) 1501 return -ENODEV; 1502 1503 tb_switch_xhci_disconnect(sw); 1504 1505 tb_tunnel_deactivate(tunnel); 1506 list_del(&tunnel->list); 1507 tb_tunnel_free(tunnel); 1508 return 0; 1509 } 1510 1511 static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw) 1512 { 1513 struct tb_port *up, *down, *port; 1514 struct tb_cm *tcm = tb_priv(tb); 1515 struct tb_tunnel *tunnel; 1516 1517 up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP); 1518 if (!up) 1519 return 0; 1520 1521 /* 1522 * Look up available down port. Since we are chaining it should 1523 * be found right above this switch. 1524 */ 1525 port = tb_switch_downstream_port(sw); 1526 down = tb_find_pcie_down(tb_switch_parent(sw), port); 1527 if (!down) 1528 return 0; 1529 1530 tunnel = tb_tunnel_alloc_pci(tb, up, down); 1531 if (!tunnel) 1532 return -ENOMEM; 1533 1534 if (tb_tunnel_activate(tunnel)) { 1535 tb_port_info(up, 1536 "PCIe tunnel activation failed, aborting\n"); 1537 tb_tunnel_free(tunnel); 1538 return -EIO; 1539 } 1540 1541 /* 1542 * PCIe L1 is needed to enable CL0s for Titan Ridge so enable it 1543 * here. 1544 */ 1545 if (tb_switch_pcie_l1_enable(sw)) 1546 tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n"); 1547 1548 if (tb_switch_xhci_connect(sw)) 1549 tb_sw_warn(sw, "failed to connect xHCI\n"); 1550 1551 list_add_tail(&tunnel->list, &tcm->tunnel_list); 1552 return 0; 1553 } 1554 1555 static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, 1556 int transmit_path, int transmit_ring, 1557 int receive_path, int receive_ring) 1558 { 1559 struct tb_cm *tcm = tb_priv(tb); 1560 struct tb_port *nhi_port, *dst_port; 1561 struct tb_tunnel *tunnel; 1562 struct tb_switch *sw; 1563 int ret; 1564 1565 sw = tb_to_switch(xd->dev.parent); 1566 dst_port = tb_port_at(xd->route, sw); 1567 nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI); 1568 1569 mutex_lock(&tb->lock); 1570 1571 /* 1572 * When tunneling DMA paths the link should not enter CL states 1573 * so disable them now. 1574 */ 1575 tb_disable_clx(sw); 1576 1577 tunnel = tb_tunnel_alloc_dma(tb, nhi_port, dst_port, transmit_path, 1578 transmit_ring, receive_path, receive_ring); 1579 if (!tunnel) { 1580 ret = -ENOMEM; 1581 goto err_clx; 1582 } 1583 1584 if (tb_tunnel_activate(tunnel)) { 1585 tb_port_info(nhi_port, 1586 "DMA tunnel activation failed, aborting\n"); 1587 ret = -EIO; 1588 goto err_free; 1589 } 1590 1591 list_add_tail(&tunnel->list, &tcm->tunnel_list); 1592 mutex_unlock(&tb->lock); 1593 return 0; 1594 1595 err_free: 1596 tb_tunnel_free(tunnel); 1597 err_clx: 1598 tb_enable_clx(sw); 1599 mutex_unlock(&tb->lock); 1600 1601 return ret; 1602 } 1603 1604 static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, 1605 int transmit_path, int transmit_ring, 1606 int receive_path, int receive_ring) 1607 { 1608 struct tb_cm *tcm = tb_priv(tb); 1609 struct tb_port *nhi_port, *dst_port; 1610 struct tb_tunnel *tunnel, *n; 1611 struct tb_switch *sw; 1612 1613 sw = tb_to_switch(xd->dev.parent); 1614 dst_port = tb_port_at(xd->route, sw); 1615 nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI); 1616 1617 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { 1618 if (!tb_tunnel_is_dma(tunnel)) 1619 continue; 1620 if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port) 1621 continue; 1622 1623 if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring, 1624 receive_path, receive_ring)) 1625 tb_deactivate_and_free_tunnel(tunnel); 1626 } 1627 1628 /* 1629 * Try to re-enable CL states now, it is OK if this fails 1630 * because we may still have another DMA tunnel active through 1631 * the same host router USB4 downstream port. 1632 */ 1633 tb_enable_clx(sw); 1634 } 1635 1636 static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, 1637 int transmit_path, int transmit_ring, 1638 int receive_path, int receive_ring) 1639 { 1640 if (!xd->is_unplugged) { 1641 mutex_lock(&tb->lock); 1642 __tb_disconnect_xdomain_paths(tb, xd, transmit_path, 1643 transmit_ring, receive_path, 1644 receive_ring); 1645 mutex_unlock(&tb->lock); 1646 } 1647 return 0; 1648 } 1649 1650 /* hotplug handling */ 1651 1652 /* 1653 * tb_handle_hotplug() - handle hotplug event 1654 * 1655 * Executes on tb->wq. 1656 */ 1657 static void tb_handle_hotplug(struct work_struct *work) 1658 { 1659 struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work); 1660 struct tb *tb = ev->tb; 1661 struct tb_cm *tcm = tb_priv(tb); 1662 struct tb_switch *sw; 1663 struct tb_port *port; 1664 1665 /* Bring the domain back from sleep if it was suspended */ 1666 pm_runtime_get_sync(&tb->dev); 1667 1668 mutex_lock(&tb->lock); 1669 if (!tcm->hotplug_active) 1670 goto out; /* during init, suspend or shutdown */ 1671 1672 sw = tb_switch_find_by_route(tb, ev->route); 1673 if (!sw) { 1674 tb_warn(tb, 1675 "hotplug event from non existent switch %llx:%x (unplug: %d)\n", 1676 ev->route, ev->port, ev->unplug); 1677 goto out; 1678 } 1679 if (ev->port > sw->config.max_port_number) { 1680 tb_warn(tb, 1681 "hotplug event from non existent port %llx:%x (unplug: %d)\n", 1682 ev->route, ev->port, ev->unplug); 1683 goto put_sw; 1684 } 1685 port = &sw->ports[ev->port]; 1686 if (tb_is_upstream_port(port)) { 1687 tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n", 1688 ev->route, ev->port, ev->unplug); 1689 goto put_sw; 1690 } 1691 1692 pm_runtime_get_sync(&sw->dev); 1693 1694 if (ev->unplug) { 1695 tb_retimer_remove_all(port); 1696 1697 if (tb_port_has_remote(port)) { 1698 tb_port_dbg(port, "switch unplugged\n"); 1699 tb_sw_set_unplugged(port->remote->sw); 1700 tb_free_invalid_tunnels(tb); 1701 tb_remove_dp_resources(port->remote->sw); 1702 tb_switch_tmu_disable(port->remote->sw); 1703 tb_switch_unconfigure_link(port->remote->sw); 1704 tb_switch_lane_bonding_disable(port->remote->sw); 1705 tb_switch_remove(port->remote->sw); 1706 port->remote = NULL; 1707 if (port->dual_link_port) 1708 port->dual_link_port->remote = NULL; 1709 /* Maybe we can create another DP tunnel */ 1710 tb_recalc_estimated_bandwidth(tb); 1711 tb_tunnel_dp(tb); 1712 } else if (port->xdomain) { 1713 struct tb_xdomain *xd = tb_xdomain_get(port->xdomain); 1714 1715 tb_port_dbg(port, "xdomain unplugged\n"); 1716 /* 1717 * Service drivers are unbound during 1718 * tb_xdomain_remove() so setting XDomain as 1719 * unplugged here prevents deadlock if they call 1720 * tb_xdomain_disable_paths(). We will tear down 1721 * all the tunnels below. 1722 */ 1723 xd->is_unplugged = true; 1724 tb_xdomain_remove(xd); 1725 port->xdomain = NULL; 1726 __tb_disconnect_xdomain_paths(tb, xd, -1, -1, -1, -1); 1727 tb_xdomain_put(xd); 1728 tb_port_unconfigure_xdomain(port); 1729 } else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) { 1730 tb_dp_resource_unavailable(tb, port); 1731 } else if (!port->port) { 1732 tb_sw_dbg(sw, "xHCI disconnect request\n"); 1733 tb_switch_xhci_disconnect(sw); 1734 } else { 1735 tb_port_dbg(port, 1736 "got unplug event for disconnected port, ignoring\n"); 1737 } 1738 } else if (port->remote) { 1739 tb_port_dbg(port, "got plug event for connected port, ignoring\n"); 1740 } else if (!port->port && sw->authorized) { 1741 tb_sw_dbg(sw, "xHCI connect request\n"); 1742 tb_switch_xhci_connect(sw); 1743 } else { 1744 if (tb_port_is_null(port)) { 1745 tb_port_dbg(port, "hotplug: scanning\n"); 1746 tb_scan_port(port); 1747 if (!port->remote) 1748 tb_port_dbg(port, "hotplug: no switch found\n"); 1749 } else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) { 1750 tb_dp_resource_available(tb, port); 1751 } 1752 } 1753 1754 pm_runtime_mark_last_busy(&sw->dev); 1755 pm_runtime_put_autosuspend(&sw->dev); 1756 1757 put_sw: 1758 tb_switch_put(sw); 1759 out: 1760 mutex_unlock(&tb->lock); 1761 1762 pm_runtime_mark_last_busy(&tb->dev); 1763 pm_runtime_put_autosuspend(&tb->dev); 1764 1765 kfree(ev); 1766 } 1767 1768 static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up, 1769 int *requested_down) 1770 { 1771 int allocated_up, allocated_down, available_up, available_down, ret; 1772 int requested_up_corrected, requested_down_corrected, granularity; 1773 int max_up, max_down, max_up_rounded, max_down_rounded; 1774 struct tb *tb = tunnel->tb; 1775 struct tb_port *in, *out; 1776 1777 ret = tb_tunnel_allocated_bandwidth(tunnel, &allocated_up, &allocated_down); 1778 if (ret) 1779 return ret; 1780 1781 in = tunnel->src_port; 1782 out = tunnel->dst_port; 1783 1784 tb_port_dbg(in, "bandwidth allocated currently %d/%d Mb/s\n", 1785 allocated_up, allocated_down); 1786 1787 /* 1788 * If we get rounded up request from graphics side, say HBR2 x 4 1789 * that is 17500 instead of 17280 (this is because of the 1790 * granularity), we allow it too. Here the graphics has already 1791 * negotiated with the DPRX the maximum possible rates (which is 1792 * 17280 in this case). 1793 * 1794 * Since the link cannot go higher than 17280 we use that in our 1795 * calculations but the DP IN adapter Allocated BW write must be 1796 * the same value (17500) otherwise the adapter will mark it as 1797 * failed for graphics. 1798 */ 1799 ret = tb_tunnel_maximum_bandwidth(tunnel, &max_up, &max_down); 1800 if (ret) 1801 return ret; 1802 1803 ret = usb4_dp_port_granularity(in); 1804 if (ret < 0) 1805 return ret; 1806 granularity = ret; 1807 1808 max_up_rounded = roundup(max_up, granularity); 1809 max_down_rounded = roundup(max_down, granularity); 1810 1811 /* 1812 * This will "fix" the request down to the maximum supported 1813 * rate * lanes if it is at the maximum rounded up level. 1814 */ 1815 requested_up_corrected = *requested_up; 1816 if (requested_up_corrected == max_up_rounded) 1817 requested_up_corrected = max_up; 1818 else if (requested_up_corrected < 0) 1819 requested_up_corrected = 0; 1820 requested_down_corrected = *requested_down; 1821 if (requested_down_corrected == max_down_rounded) 1822 requested_down_corrected = max_down; 1823 else if (requested_down_corrected < 0) 1824 requested_down_corrected = 0; 1825 1826 tb_port_dbg(in, "corrected bandwidth request %d/%d Mb/s\n", 1827 requested_up_corrected, requested_down_corrected); 1828 1829 if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) || 1830 (*requested_down >= 0 && requested_down_corrected > max_down_rounded)) { 1831 tb_port_dbg(in, "bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n", 1832 requested_up_corrected, requested_down_corrected, 1833 max_up_rounded, max_down_rounded); 1834 return -ENOBUFS; 1835 } 1836 1837 if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) || 1838 (*requested_down >= 0 && requested_down_corrected <= allocated_down)) { 1839 /* 1840 * If requested bandwidth is less or equal than what is 1841 * currently allocated to that tunnel we simply change 1842 * the reservation of the tunnel. Since all the tunnels 1843 * going out from the same USB4 port are in the same 1844 * group the released bandwidth will be taken into 1845 * account for the other tunnels automatically below. 1846 */ 1847 return tb_tunnel_alloc_bandwidth(tunnel, requested_up, 1848 requested_down); 1849 } 1850 1851 /* 1852 * More bandwidth is requested. Release all the potential 1853 * bandwidth from USB3 first. 1854 */ 1855 ret = tb_release_unused_usb3_bandwidth(tb, in, out); 1856 if (ret) 1857 return ret; 1858 1859 /* 1860 * Then go over all tunnels that cross the same USB4 ports (they 1861 * are also in the same group but we use the same function here 1862 * that we use with the normal bandwidth allocation). 1863 */ 1864 ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down); 1865 if (ret) 1866 goto reclaim; 1867 1868 tb_port_dbg(in, "bandwidth available for allocation %d/%d Mb/s\n", 1869 available_up, available_down); 1870 1871 if ((*requested_up >= 0 && available_up >= requested_up_corrected) || 1872 (*requested_down >= 0 && available_down >= requested_down_corrected)) { 1873 ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up, 1874 requested_down); 1875 } else { 1876 ret = -ENOBUFS; 1877 } 1878 1879 reclaim: 1880 tb_reclaim_usb3_bandwidth(tb, in, out); 1881 return ret; 1882 } 1883 1884 static void tb_handle_dp_bandwidth_request(struct work_struct *work) 1885 { 1886 struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work); 1887 int requested_bw, requested_up, requested_down, ret; 1888 struct tb_port *in, *out; 1889 struct tb_tunnel *tunnel; 1890 struct tb *tb = ev->tb; 1891 struct tb_cm *tcm = tb_priv(tb); 1892 struct tb_switch *sw; 1893 1894 pm_runtime_get_sync(&tb->dev); 1895 1896 mutex_lock(&tb->lock); 1897 if (!tcm->hotplug_active) 1898 goto unlock; 1899 1900 sw = tb_switch_find_by_route(tb, ev->route); 1901 if (!sw) { 1902 tb_warn(tb, "bandwidth request from non-existent router %llx\n", 1903 ev->route); 1904 goto unlock; 1905 } 1906 1907 in = &sw->ports[ev->port]; 1908 if (!tb_port_is_dpin(in)) { 1909 tb_port_warn(in, "bandwidth request to non-DP IN adapter\n"); 1910 goto unlock; 1911 } 1912 1913 tb_port_dbg(in, "handling bandwidth allocation request\n"); 1914 1915 if (!usb4_dp_port_bandwidth_mode_enabled(in)) { 1916 tb_port_warn(in, "bandwidth allocation mode not enabled\n"); 1917 goto unlock; 1918 } 1919 1920 ret = usb4_dp_port_requested_bandwidth(in); 1921 if (ret < 0) { 1922 if (ret == -ENODATA) 1923 tb_port_dbg(in, "no bandwidth request active\n"); 1924 else 1925 tb_port_warn(in, "failed to read requested bandwidth\n"); 1926 goto unlock; 1927 } 1928 requested_bw = ret; 1929 1930 tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw); 1931 1932 tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL); 1933 if (!tunnel) { 1934 tb_port_warn(in, "failed to find tunnel\n"); 1935 goto unlock; 1936 } 1937 1938 out = tunnel->dst_port; 1939 1940 if (in->sw->config.depth < out->sw->config.depth) { 1941 requested_up = -1; 1942 requested_down = requested_bw; 1943 } else { 1944 requested_up = requested_bw; 1945 requested_down = -1; 1946 } 1947 1948 ret = tb_alloc_dp_bandwidth(tunnel, &requested_up, &requested_down); 1949 if (ret) { 1950 if (ret == -ENOBUFS) 1951 tb_port_warn(in, "not enough bandwidth available\n"); 1952 else 1953 tb_port_warn(in, "failed to change bandwidth allocation\n"); 1954 } else { 1955 tb_port_dbg(in, "bandwidth allocation changed to %d/%d Mb/s\n", 1956 requested_up, requested_down); 1957 1958 /* Update other clients about the allocation change */ 1959 tb_recalc_estimated_bandwidth(tb); 1960 } 1961 1962 unlock: 1963 mutex_unlock(&tb->lock); 1964 1965 pm_runtime_mark_last_busy(&tb->dev); 1966 pm_runtime_put_autosuspend(&tb->dev); 1967 1968 kfree(ev); 1969 } 1970 1971 static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port) 1972 { 1973 struct tb_hotplug_event *ev; 1974 1975 ev = kmalloc(sizeof(*ev), GFP_KERNEL); 1976 if (!ev) 1977 return; 1978 1979 ev->tb = tb; 1980 ev->route = route; 1981 ev->port = port; 1982 INIT_WORK(&ev->work, tb_handle_dp_bandwidth_request); 1983 queue_work(tb->wq, &ev->work); 1984 } 1985 1986 static void tb_handle_notification(struct tb *tb, u64 route, 1987 const struct cfg_error_pkg *error) 1988 { 1989 1990 switch (error->error) { 1991 case TB_CFG_ERROR_PCIE_WAKE: 1992 case TB_CFG_ERROR_DP_CON_CHANGE: 1993 case TB_CFG_ERROR_DPTX_DISCOVERY: 1994 if (tb_cfg_ack_notification(tb->ctl, route, error)) 1995 tb_warn(tb, "could not ack notification on %llx\n", 1996 route); 1997 break; 1998 1999 case TB_CFG_ERROR_DP_BW: 2000 if (tb_cfg_ack_notification(tb->ctl, route, error)) 2001 tb_warn(tb, "could not ack notification on %llx\n", 2002 route); 2003 tb_queue_dp_bandwidth_request(tb, route, error->port); 2004 break; 2005 2006 default: 2007 /* Ignore for now */ 2008 break; 2009 } 2010 } 2011 2012 /* 2013 * tb_schedule_hotplug_handler() - callback function for the control channel 2014 * 2015 * Delegates to tb_handle_hotplug. 2016 */ 2017 static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type, 2018 const void *buf, size_t size) 2019 { 2020 const struct cfg_event_pkg *pkg = buf; 2021 u64 route = tb_cfg_get_route(&pkg->header); 2022 2023 switch (type) { 2024 case TB_CFG_PKG_ERROR: 2025 tb_handle_notification(tb, route, (const struct cfg_error_pkg *)buf); 2026 return; 2027 case TB_CFG_PKG_EVENT: 2028 break; 2029 default: 2030 tb_warn(tb, "unexpected event %#x, ignoring\n", type); 2031 return; 2032 } 2033 2034 if (tb_cfg_ack_plug(tb->ctl, route, pkg->port, pkg->unplug)) { 2035 tb_warn(tb, "could not ack plug event on %llx:%x\n", route, 2036 pkg->port); 2037 } 2038 2039 tb_queue_hotplug(tb, route, pkg->port, pkg->unplug); 2040 } 2041 2042 static void tb_stop(struct tb *tb) 2043 { 2044 struct tb_cm *tcm = tb_priv(tb); 2045 struct tb_tunnel *tunnel; 2046 struct tb_tunnel *n; 2047 2048 cancel_delayed_work(&tcm->remove_work); 2049 /* tunnels are only present after everything has been initialized */ 2050 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { 2051 /* 2052 * DMA tunnels require the driver to be functional so we 2053 * tear them down. Other protocol tunnels can be left 2054 * intact. 2055 */ 2056 if (tb_tunnel_is_dma(tunnel)) 2057 tb_tunnel_deactivate(tunnel); 2058 tb_tunnel_free(tunnel); 2059 } 2060 tb_switch_remove(tb->root_switch); 2061 tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */ 2062 } 2063 2064 static int tb_scan_finalize_switch(struct device *dev, void *data) 2065 { 2066 if (tb_is_switch(dev)) { 2067 struct tb_switch *sw = tb_to_switch(dev); 2068 2069 /* 2070 * If we found that the switch was already setup by the 2071 * boot firmware, mark it as authorized now before we 2072 * send uevent to userspace. 2073 */ 2074 if (sw->boot) 2075 sw->authorized = 1; 2076 2077 dev_set_uevent_suppress(dev, false); 2078 kobject_uevent(&dev->kobj, KOBJ_ADD); 2079 device_for_each_child(dev, NULL, tb_scan_finalize_switch); 2080 } 2081 2082 return 0; 2083 } 2084 2085 static int tb_start(struct tb *tb) 2086 { 2087 struct tb_cm *tcm = tb_priv(tb); 2088 int ret; 2089 2090 tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0); 2091 if (IS_ERR(tb->root_switch)) 2092 return PTR_ERR(tb->root_switch); 2093 2094 /* 2095 * ICM firmware upgrade needs running firmware and in native 2096 * mode that is not available so disable firmware upgrade of the 2097 * root switch. 2098 * 2099 * However, USB4 routers support NVM firmware upgrade if they 2100 * implement the necessary router operations. 2101 */ 2102 tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(tb->root_switch); 2103 /* All USB4 routers support runtime PM */ 2104 tb->root_switch->rpm = tb_switch_is_usb4(tb->root_switch); 2105 2106 ret = tb_switch_configure(tb->root_switch); 2107 if (ret) { 2108 tb_switch_put(tb->root_switch); 2109 return ret; 2110 } 2111 2112 /* Announce the switch to the world */ 2113 ret = tb_switch_add(tb->root_switch); 2114 if (ret) { 2115 tb_switch_put(tb->root_switch); 2116 return ret; 2117 } 2118 2119 /* 2120 * To support highest CLx state, we set host router's TMU to 2121 * Normal mode. 2122 */ 2123 tb_switch_tmu_configure(tb->root_switch, TB_SWITCH_TMU_MODE_LOWRES); 2124 /* Enable TMU if it is off */ 2125 tb_switch_tmu_enable(tb->root_switch); 2126 /* Full scan to discover devices added before the driver was loaded. */ 2127 tb_scan_switch(tb->root_switch); 2128 /* Find out tunnels created by the boot firmware */ 2129 tb_discover_tunnels(tb); 2130 /* Add DP resources from the DP tunnels created by the boot firmware */ 2131 tb_discover_dp_resources(tb); 2132 /* 2133 * If the boot firmware did not create USB 3.x tunnels create them 2134 * now for the whole topology. 2135 */ 2136 tb_create_usb3_tunnels(tb->root_switch); 2137 /* Add DP IN resources for the root switch */ 2138 tb_add_dp_resources(tb->root_switch); 2139 /* Make the discovered switches available to the userspace */ 2140 device_for_each_child(&tb->root_switch->dev, NULL, 2141 tb_scan_finalize_switch); 2142 2143 /* Allow tb_handle_hotplug to progress events */ 2144 tcm->hotplug_active = true; 2145 return 0; 2146 } 2147 2148 static int tb_suspend_noirq(struct tb *tb) 2149 { 2150 struct tb_cm *tcm = tb_priv(tb); 2151 2152 tb_dbg(tb, "suspending...\n"); 2153 tb_disconnect_and_release_dp(tb); 2154 tb_switch_suspend(tb->root_switch, false); 2155 tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */ 2156 tb_dbg(tb, "suspend finished\n"); 2157 2158 return 0; 2159 } 2160 2161 static void tb_restore_children(struct tb_switch *sw) 2162 { 2163 struct tb_port *port; 2164 2165 /* No need to restore if the router is already unplugged */ 2166 if (sw->is_unplugged) 2167 return; 2168 2169 if (tb_enable_clx(sw)) 2170 tb_sw_warn(sw, "failed to re-enable CL states\n"); 2171 2172 if (tb_enable_tmu(sw)) 2173 tb_sw_warn(sw, "failed to restore TMU configuration\n"); 2174 2175 tb_switch_configuration_valid(sw); 2176 2177 tb_switch_for_each_port(sw, port) { 2178 if (!tb_port_has_remote(port) && !port->xdomain) 2179 continue; 2180 2181 if (port->remote) { 2182 tb_switch_lane_bonding_enable(port->remote->sw); 2183 tb_switch_configure_link(port->remote->sw); 2184 2185 tb_restore_children(port->remote->sw); 2186 } else if (port->xdomain) { 2187 tb_port_configure_xdomain(port, port->xdomain); 2188 } 2189 } 2190 } 2191 2192 static int tb_resume_noirq(struct tb *tb) 2193 { 2194 struct tb_cm *tcm = tb_priv(tb); 2195 struct tb_tunnel *tunnel, *n; 2196 unsigned int usb3_delay = 0; 2197 LIST_HEAD(tunnels); 2198 2199 tb_dbg(tb, "resuming...\n"); 2200 2201 /* remove any pci devices the firmware might have setup */ 2202 tb_switch_reset(tb->root_switch); 2203 2204 tb_switch_resume(tb->root_switch); 2205 tb_free_invalid_tunnels(tb); 2206 tb_free_unplugged_children(tb->root_switch); 2207 tb_restore_children(tb->root_switch); 2208 2209 /* 2210 * If we get here from suspend to disk the boot firmware or the 2211 * restore kernel might have created tunnels of its own. Since 2212 * we cannot be sure they are usable for us we find and tear 2213 * them down. 2214 */ 2215 tb_switch_discover_tunnels(tb->root_switch, &tunnels, false); 2216 list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) { 2217 if (tb_tunnel_is_usb3(tunnel)) 2218 usb3_delay = 500; 2219 tb_tunnel_deactivate(tunnel); 2220 tb_tunnel_free(tunnel); 2221 } 2222 2223 /* Re-create our tunnels now */ 2224 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { 2225 /* USB3 requires delay before it can be re-activated */ 2226 if (tb_tunnel_is_usb3(tunnel)) { 2227 msleep(usb3_delay); 2228 /* Only need to do it once */ 2229 usb3_delay = 0; 2230 } 2231 tb_tunnel_restart(tunnel); 2232 } 2233 if (!list_empty(&tcm->tunnel_list)) { 2234 /* 2235 * the pcie links need some time to get going. 2236 * 100ms works for me... 2237 */ 2238 tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n"); 2239 msleep(100); 2240 } 2241 /* Allow tb_handle_hotplug to progress events */ 2242 tcm->hotplug_active = true; 2243 tb_dbg(tb, "resume finished\n"); 2244 2245 return 0; 2246 } 2247 2248 static int tb_free_unplugged_xdomains(struct tb_switch *sw) 2249 { 2250 struct tb_port *port; 2251 int ret = 0; 2252 2253 tb_switch_for_each_port(sw, port) { 2254 if (tb_is_upstream_port(port)) 2255 continue; 2256 if (port->xdomain && port->xdomain->is_unplugged) { 2257 tb_retimer_remove_all(port); 2258 tb_xdomain_remove(port->xdomain); 2259 tb_port_unconfigure_xdomain(port); 2260 port->xdomain = NULL; 2261 ret++; 2262 } else if (port->remote) { 2263 ret += tb_free_unplugged_xdomains(port->remote->sw); 2264 } 2265 } 2266 2267 return ret; 2268 } 2269 2270 static int tb_freeze_noirq(struct tb *tb) 2271 { 2272 struct tb_cm *tcm = tb_priv(tb); 2273 2274 tcm->hotplug_active = false; 2275 return 0; 2276 } 2277 2278 static int tb_thaw_noirq(struct tb *tb) 2279 { 2280 struct tb_cm *tcm = tb_priv(tb); 2281 2282 tcm->hotplug_active = true; 2283 return 0; 2284 } 2285 2286 static void tb_complete(struct tb *tb) 2287 { 2288 /* 2289 * Release any unplugged XDomains and if there is a case where 2290 * another domain is swapped in place of unplugged XDomain we 2291 * need to run another rescan. 2292 */ 2293 mutex_lock(&tb->lock); 2294 if (tb_free_unplugged_xdomains(tb->root_switch)) 2295 tb_scan_switch(tb->root_switch); 2296 mutex_unlock(&tb->lock); 2297 } 2298 2299 static int tb_runtime_suspend(struct tb *tb) 2300 { 2301 struct tb_cm *tcm = tb_priv(tb); 2302 2303 mutex_lock(&tb->lock); 2304 tb_switch_suspend(tb->root_switch, true); 2305 tcm->hotplug_active = false; 2306 mutex_unlock(&tb->lock); 2307 2308 return 0; 2309 } 2310 2311 static void tb_remove_work(struct work_struct *work) 2312 { 2313 struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work); 2314 struct tb *tb = tcm_to_tb(tcm); 2315 2316 mutex_lock(&tb->lock); 2317 if (tb->root_switch) { 2318 tb_free_unplugged_children(tb->root_switch); 2319 tb_free_unplugged_xdomains(tb->root_switch); 2320 } 2321 mutex_unlock(&tb->lock); 2322 } 2323 2324 static int tb_runtime_resume(struct tb *tb) 2325 { 2326 struct tb_cm *tcm = tb_priv(tb); 2327 struct tb_tunnel *tunnel, *n; 2328 2329 mutex_lock(&tb->lock); 2330 tb_switch_resume(tb->root_switch); 2331 tb_free_invalid_tunnels(tb); 2332 tb_restore_children(tb->root_switch); 2333 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) 2334 tb_tunnel_restart(tunnel); 2335 tcm->hotplug_active = true; 2336 mutex_unlock(&tb->lock); 2337 2338 /* 2339 * Schedule cleanup of any unplugged devices. Run this in a 2340 * separate thread to avoid possible deadlock if the device 2341 * removal runtime resumes the unplugged device. 2342 */ 2343 queue_delayed_work(tb->wq, &tcm->remove_work, msecs_to_jiffies(50)); 2344 return 0; 2345 } 2346 2347 static const struct tb_cm_ops tb_cm_ops = { 2348 .start = tb_start, 2349 .stop = tb_stop, 2350 .suspend_noirq = tb_suspend_noirq, 2351 .resume_noirq = tb_resume_noirq, 2352 .freeze_noirq = tb_freeze_noirq, 2353 .thaw_noirq = tb_thaw_noirq, 2354 .complete = tb_complete, 2355 .runtime_suspend = tb_runtime_suspend, 2356 .runtime_resume = tb_runtime_resume, 2357 .handle_event = tb_handle_event, 2358 .disapprove_switch = tb_disconnect_pci, 2359 .approve_switch = tb_tunnel_pci, 2360 .approve_xdomain_paths = tb_approve_xdomain_paths, 2361 .disconnect_xdomain_paths = tb_disconnect_xdomain_paths, 2362 }; 2363 2364 /* 2365 * During suspend the Thunderbolt controller is reset and all PCIe 2366 * tunnels are lost. The NHI driver will try to reestablish all tunnels 2367 * during resume. This adds device links between the tunneled PCIe 2368 * downstream ports and the NHI so that the device core will make sure 2369 * NHI is resumed first before the rest. 2370 */ 2371 static void tb_apple_add_links(struct tb_nhi *nhi) 2372 { 2373 struct pci_dev *upstream, *pdev; 2374 2375 if (!x86_apple_machine) 2376 return; 2377 2378 switch (nhi->pdev->device) { 2379 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 2380 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 2381 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI: 2382 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI: 2383 break; 2384 default: 2385 return; 2386 } 2387 2388 upstream = pci_upstream_bridge(nhi->pdev); 2389 while (upstream) { 2390 if (!pci_is_pcie(upstream)) 2391 return; 2392 if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM) 2393 break; 2394 upstream = pci_upstream_bridge(upstream); 2395 } 2396 2397 if (!upstream) 2398 return; 2399 2400 /* 2401 * For each hotplug downstream port, create add device link 2402 * back to NHI so that PCIe tunnels can be re-established after 2403 * sleep. 2404 */ 2405 for_each_pci_bridge(pdev, upstream->subordinate) { 2406 const struct device_link *link; 2407 2408 if (!pci_is_pcie(pdev)) 2409 continue; 2410 if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM || 2411 !pdev->is_hotplug_bridge) 2412 continue; 2413 2414 link = device_link_add(&pdev->dev, &nhi->pdev->dev, 2415 DL_FLAG_AUTOREMOVE_SUPPLIER | 2416 DL_FLAG_PM_RUNTIME); 2417 if (link) { 2418 dev_dbg(&nhi->pdev->dev, "created link from %s\n", 2419 dev_name(&pdev->dev)); 2420 } else { 2421 dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n", 2422 dev_name(&pdev->dev)); 2423 } 2424 } 2425 } 2426 2427 struct tb *tb_probe(struct tb_nhi *nhi) 2428 { 2429 struct tb_cm *tcm; 2430 struct tb *tb; 2431 2432 tb = tb_domain_alloc(nhi, TB_TIMEOUT, sizeof(*tcm)); 2433 if (!tb) 2434 return NULL; 2435 2436 if (tb_acpi_may_tunnel_pcie()) 2437 tb->security_level = TB_SECURITY_USER; 2438 else 2439 tb->security_level = TB_SECURITY_NOPCIE; 2440 2441 tb->cm_ops = &tb_cm_ops; 2442 2443 tcm = tb_priv(tb); 2444 INIT_LIST_HEAD(&tcm->tunnel_list); 2445 INIT_LIST_HEAD(&tcm->dp_resources); 2446 INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work); 2447 tb_init_bandwidth_groups(tcm); 2448 2449 tb_dbg(tb, "using software connection manager\n"); 2450 2451 tb_apple_add_links(nhi); 2452 tb_acpi_add_links(nhi); 2453 2454 return tb; 2455 } 2456