xref: /openbmc/linux/drivers/thunderbolt/tb.c (revision aaa880f8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - bus logic (NHI independent)
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2019, Intel Corporation
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/errno.h>
11 #include <linux/delay.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/platform_data/x86/apple.h>
14 
15 #include "tb.h"
16 #include "tb_regs.h"
17 #include "tunnel.h"
18 
19 #define TB_TIMEOUT		100	/* ms */
20 
21 /*
22  * Minimum bandwidth (in Mb/s) that is needed in the single transmitter/receiver
23  * direction. This is 40G - 10% guard band bandwidth.
24  */
25 #define TB_ASYM_MIN		(40000 * 90 / 100)
26 
27 /*
28  * Threshold bandwidth (in Mb/s) that is used to switch the links to
29  * asymmetric and back. This is selected as 45G which means when the
30  * request is higher than this, we switch the link to asymmetric, and
31  * when it is less than this we switch it back. The 45G is selected so
32  * that we still have 27G (of the total 72G) for bulk PCIe traffic when
33  * switching back to symmetric.
34  */
35 #define TB_ASYM_THRESHOLD	45000
36 
37 #define MAX_GROUPS		7	/* max Group_ID is 7 */
38 
39 static unsigned int asym_threshold = TB_ASYM_THRESHOLD;
40 module_param_named(asym_threshold, asym_threshold, uint, 0444);
41 MODULE_PARM_DESC(asym_threshold,
42 		"threshold (Mb/s) when to Gen 4 switch link symmetry. 0 disables. (default: "
43 		__MODULE_STRING(TB_ASYM_THRESHOLD) ")");
44 
45 /**
46  * struct tb_cm - Simple Thunderbolt connection manager
47  * @tunnel_list: List of active tunnels
48  * @dp_resources: List of available DP resources for DP tunneling
49  * @hotplug_active: tb_handle_hotplug will stop progressing plug
50  *		    events and exit if this is not set (it needs to
51  *		    acquire the lock one more time). Used to drain wq
52  *		    after cfg has been paused.
53  * @remove_work: Work used to remove any unplugged routers after
54  *		 runtime resume
55  * @groups: Bandwidth groups used in this domain.
56  */
57 struct tb_cm {
58 	struct list_head tunnel_list;
59 	struct list_head dp_resources;
60 	bool hotplug_active;
61 	struct delayed_work remove_work;
62 	struct tb_bandwidth_group groups[MAX_GROUPS];
63 };
64 
65 static inline struct tb *tcm_to_tb(struct tb_cm *tcm)
66 {
67 	return ((void *)tcm - sizeof(struct tb));
68 }
69 
70 struct tb_hotplug_event {
71 	struct work_struct work;
72 	struct tb *tb;
73 	u64 route;
74 	u8 port;
75 	bool unplug;
76 };
77 
78 static void tb_init_bandwidth_groups(struct tb_cm *tcm)
79 {
80 	int i;
81 
82 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
83 		struct tb_bandwidth_group *group = &tcm->groups[i];
84 
85 		group->tb = tcm_to_tb(tcm);
86 		group->index = i + 1;
87 		INIT_LIST_HEAD(&group->ports);
88 	}
89 }
90 
91 static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group,
92 					   struct tb_port *in)
93 {
94 	if (!group || WARN_ON(in->group))
95 		return;
96 
97 	in->group = group;
98 	list_add_tail(&in->group_list, &group->ports);
99 
100 	tb_port_dbg(in, "attached to bandwidth group %d\n", group->index);
101 }
102 
103 static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm)
104 {
105 	int i;
106 
107 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
108 		struct tb_bandwidth_group *group = &tcm->groups[i];
109 
110 		if (list_empty(&group->ports))
111 			return group;
112 	}
113 
114 	return NULL;
115 }
116 
117 static struct tb_bandwidth_group *
118 tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
119 			  struct tb_port *out)
120 {
121 	struct tb_bandwidth_group *group;
122 	struct tb_tunnel *tunnel;
123 
124 	/*
125 	 * Find all DP tunnels that go through all the same USB4 links
126 	 * as this one. Because we always setup tunnels the same way we
127 	 * can just check for the routers at both ends of the tunnels
128 	 * and if they are the same we have a match.
129 	 */
130 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
131 		if (!tb_tunnel_is_dp(tunnel))
132 			continue;
133 
134 		if (tunnel->src_port->sw == in->sw &&
135 		    tunnel->dst_port->sw == out->sw) {
136 			group = tunnel->src_port->group;
137 			if (group) {
138 				tb_bandwidth_group_attach_port(group, in);
139 				return group;
140 			}
141 		}
142 	}
143 
144 	/* Pick up next available group then */
145 	group = tb_find_free_bandwidth_group(tcm);
146 	if (group)
147 		tb_bandwidth_group_attach_port(group, in);
148 	else
149 		tb_port_warn(in, "no available bandwidth groups\n");
150 
151 	return group;
152 }
153 
154 static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
155 					struct tb_port *out)
156 {
157 	if (usb4_dp_port_bandwidth_mode_enabled(in)) {
158 		int index, i;
159 
160 		index = usb4_dp_port_group_id(in);
161 		for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
162 			if (tcm->groups[i].index == index) {
163 				tb_bandwidth_group_attach_port(&tcm->groups[i], in);
164 				return;
165 			}
166 		}
167 	}
168 
169 	tb_attach_bandwidth_group(tcm, in, out);
170 }
171 
172 static void tb_detach_bandwidth_group(struct tb_port *in)
173 {
174 	struct tb_bandwidth_group *group = in->group;
175 
176 	if (group) {
177 		in->group = NULL;
178 		list_del_init(&in->group_list);
179 
180 		tb_port_dbg(in, "detached from bandwidth group %d\n", group->index);
181 	}
182 }
183 
184 static void tb_handle_hotplug(struct work_struct *work);
185 
186 static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug)
187 {
188 	struct tb_hotplug_event *ev;
189 
190 	ev = kmalloc(sizeof(*ev), GFP_KERNEL);
191 	if (!ev)
192 		return;
193 
194 	ev->tb = tb;
195 	ev->route = route;
196 	ev->port = port;
197 	ev->unplug = unplug;
198 	INIT_WORK(&ev->work, tb_handle_hotplug);
199 	queue_work(tb->wq, &ev->work);
200 }
201 
202 /* enumeration & hot plug handling */
203 
204 static void tb_add_dp_resources(struct tb_switch *sw)
205 {
206 	struct tb_cm *tcm = tb_priv(sw->tb);
207 	struct tb_port *port;
208 
209 	tb_switch_for_each_port(sw, port) {
210 		if (!tb_port_is_dpin(port))
211 			continue;
212 
213 		if (!tb_switch_query_dp_resource(sw, port))
214 			continue;
215 
216 		list_add_tail(&port->list, &tcm->dp_resources);
217 		tb_port_dbg(port, "DP IN resource available\n");
218 	}
219 }
220 
221 static void tb_remove_dp_resources(struct tb_switch *sw)
222 {
223 	struct tb_cm *tcm = tb_priv(sw->tb);
224 	struct tb_port *port, *tmp;
225 
226 	/* Clear children resources first */
227 	tb_switch_for_each_port(sw, port) {
228 		if (tb_port_has_remote(port))
229 			tb_remove_dp_resources(port->remote->sw);
230 	}
231 
232 	list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) {
233 		if (port->sw == sw) {
234 			tb_port_dbg(port, "DP OUT resource unavailable\n");
235 			list_del_init(&port->list);
236 		}
237 	}
238 }
239 
240 static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port)
241 {
242 	struct tb_cm *tcm = tb_priv(tb);
243 	struct tb_port *p;
244 
245 	list_for_each_entry(p, &tcm->dp_resources, list) {
246 		if (p == port)
247 			return;
248 	}
249 
250 	tb_port_dbg(port, "DP %s resource available discovered\n",
251 		    tb_port_is_dpin(port) ? "IN" : "OUT");
252 	list_add_tail(&port->list, &tcm->dp_resources);
253 }
254 
255 static void tb_discover_dp_resources(struct tb *tb)
256 {
257 	struct tb_cm *tcm = tb_priv(tb);
258 	struct tb_tunnel *tunnel;
259 
260 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
261 		if (tb_tunnel_is_dp(tunnel))
262 			tb_discover_dp_resource(tb, tunnel->dst_port);
263 	}
264 }
265 
266 /* Enables CL states up to host router */
267 static int tb_enable_clx(struct tb_switch *sw)
268 {
269 	struct tb_cm *tcm = tb_priv(sw->tb);
270 	unsigned int clx = TB_CL0S | TB_CL1;
271 	const struct tb_tunnel *tunnel;
272 	int ret;
273 
274 	/*
275 	 * Currently only enable CLx for the first link. This is enough
276 	 * to allow the CPU to save energy at least on Intel hardware
277 	 * and makes it slightly simpler to implement. We may change
278 	 * this in the future to cover the whole topology if it turns
279 	 * out to be beneficial.
280 	 */
281 	while (sw && tb_switch_depth(sw) > 1)
282 		sw = tb_switch_parent(sw);
283 
284 	if (!sw)
285 		return 0;
286 
287 	if (tb_switch_depth(sw) != 1)
288 		return 0;
289 
290 	/*
291 	 * If we are re-enabling then check if there is an active DMA
292 	 * tunnel and in that case bail out.
293 	 */
294 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
295 		if (tb_tunnel_is_dma(tunnel)) {
296 			if (tb_tunnel_port_on_path(tunnel, tb_upstream_port(sw)))
297 				return 0;
298 		}
299 	}
300 
301 	/*
302 	 * Initially try with CL2. If that's not supported by the
303 	 * topology try with CL0s and CL1 and then give up.
304 	 */
305 	ret = tb_switch_clx_enable(sw, clx | TB_CL2);
306 	if (ret == -EOPNOTSUPP)
307 		ret = tb_switch_clx_enable(sw, clx);
308 	return ret == -EOPNOTSUPP ? 0 : ret;
309 }
310 
311 /**
312  * tb_disable_clx() - Disable CL states up to host router
313  * @sw: Router to start
314  *
315  * Disables CL states from @sw up to the host router. Returns true if
316  * any CL state were disabled. This can be used to figure out whether
317  * the link was setup by us or the boot firmware so we don't
318  * accidentally enable them if they were not enabled during discovery.
319  */
320 static bool tb_disable_clx(struct tb_switch *sw)
321 {
322 	bool disabled = false;
323 
324 	do {
325 		int ret;
326 
327 		ret = tb_switch_clx_disable(sw);
328 		if (ret > 0)
329 			disabled = true;
330 		else if (ret < 0)
331 			tb_sw_warn(sw, "failed to disable CL states\n");
332 
333 		sw = tb_switch_parent(sw);
334 	} while (sw);
335 
336 	return disabled;
337 }
338 
339 static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data)
340 {
341 	struct tb_switch *sw;
342 
343 	sw = tb_to_switch(dev);
344 	if (!sw)
345 		return 0;
346 
347 	if (tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_LOWRES)) {
348 		enum tb_switch_tmu_mode mode;
349 		int ret;
350 
351 		if (tb_switch_clx_is_enabled(sw, TB_CL1))
352 			mode = TB_SWITCH_TMU_MODE_HIFI_UNI;
353 		else
354 			mode = TB_SWITCH_TMU_MODE_HIFI_BI;
355 
356 		ret = tb_switch_tmu_configure(sw, mode);
357 		if (ret)
358 			return ret;
359 
360 		return tb_switch_tmu_enable(sw);
361 	}
362 
363 	return 0;
364 }
365 
366 static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel)
367 {
368 	struct tb_switch *sw;
369 
370 	if (!tunnel)
371 		return;
372 
373 	/*
374 	 * Once first DP tunnel is established we change the TMU
375 	 * accuracy of first depth child routers (and the host router)
376 	 * to the highest. This is needed for the DP tunneling to work
377 	 * but also allows CL0s.
378 	 *
379 	 * If both routers are v2 then we don't need to do anything as
380 	 * they are using enhanced TMU mode that allows all CLx.
381 	 */
382 	sw = tunnel->tb->root_switch;
383 	device_for_each_child(&sw->dev, NULL, tb_increase_switch_tmu_accuracy);
384 }
385 
386 static int tb_enable_tmu(struct tb_switch *sw)
387 {
388 	int ret;
389 
390 	/*
391 	 * If both routers at the end of the link are v2 we simply
392 	 * enable the enhanched uni-directional mode. That covers all
393 	 * the CL states. For v1 and before we need to use the normal
394 	 * rate to allow CL1 (when supported). Otherwise we keep the TMU
395 	 * running at the highest accuracy.
396 	 */
397 	ret = tb_switch_tmu_configure(sw,
398 			TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI);
399 	if (ret == -EOPNOTSUPP) {
400 		if (tb_switch_clx_is_enabled(sw, TB_CL1))
401 			ret = tb_switch_tmu_configure(sw,
402 					TB_SWITCH_TMU_MODE_LOWRES);
403 		else
404 			ret = tb_switch_tmu_configure(sw,
405 					TB_SWITCH_TMU_MODE_HIFI_BI);
406 	}
407 	if (ret)
408 		return ret;
409 
410 	/* If it is already enabled in correct mode, don't touch it */
411 	if (tb_switch_tmu_is_enabled(sw))
412 		return 0;
413 
414 	ret = tb_switch_tmu_disable(sw);
415 	if (ret)
416 		return ret;
417 
418 	ret = tb_switch_tmu_post_time(sw);
419 	if (ret)
420 		return ret;
421 
422 	return tb_switch_tmu_enable(sw);
423 }
424 
425 static void tb_switch_discover_tunnels(struct tb_switch *sw,
426 				       struct list_head *list,
427 				       bool alloc_hopids)
428 {
429 	struct tb *tb = sw->tb;
430 	struct tb_port *port;
431 
432 	tb_switch_for_each_port(sw, port) {
433 		struct tb_tunnel *tunnel = NULL;
434 
435 		switch (port->config.type) {
436 		case TB_TYPE_DP_HDMI_IN:
437 			tunnel = tb_tunnel_discover_dp(tb, port, alloc_hopids);
438 			tb_increase_tmu_accuracy(tunnel);
439 			break;
440 
441 		case TB_TYPE_PCIE_DOWN:
442 			tunnel = tb_tunnel_discover_pci(tb, port, alloc_hopids);
443 			break;
444 
445 		case TB_TYPE_USB3_DOWN:
446 			tunnel = tb_tunnel_discover_usb3(tb, port, alloc_hopids);
447 			break;
448 
449 		default:
450 			break;
451 		}
452 
453 		if (tunnel)
454 			list_add_tail(&tunnel->list, list);
455 	}
456 
457 	tb_switch_for_each_port(sw, port) {
458 		if (tb_port_has_remote(port)) {
459 			tb_switch_discover_tunnels(port->remote->sw, list,
460 						   alloc_hopids);
461 		}
462 	}
463 }
464 
465 static void tb_discover_tunnels(struct tb *tb)
466 {
467 	struct tb_cm *tcm = tb_priv(tb);
468 	struct tb_tunnel *tunnel;
469 
470 	tb_switch_discover_tunnels(tb->root_switch, &tcm->tunnel_list, true);
471 
472 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
473 		if (tb_tunnel_is_pci(tunnel)) {
474 			struct tb_switch *parent = tunnel->dst_port->sw;
475 
476 			while (parent != tunnel->src_port->sw) {
477 				parent->boot = true;
478 				parent = tb_switch_parent(parent);
479 			}
480 		} else if (tb_tunnel_is_dp(tunnel)) {
481 			struct tb_port *in = tunnel->src_port;
482 			struct tb_port *out = tunnel->dst_port;
483 
484 			/* Keep the domain from powering down */
485 			pm_runtime_get_sync(&in->sw->dev);
486 			pm_runtime_get_sync(&out->sw->dev);
487 
488 			tb_discover_bandwidth_group(tcm, in, out);
489 		}
490 	}
491 }
492 
493 static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
494 {
495 	if (tb_switch_is_usb4(port->sw))
496 		return usb4_port_configure_xdomain(port, xd);
497 	return tb_lc_configure_xdomain(port);
498 }
499 
500 static void tb_port_unconfigure_xdomain(struct tb_port *port)
501 {
502 	if (tb_switch_is_usb4(port->sw))
503 		usb4_port_unconfigure_xdomain(port);
504 	else
505 		tb_lc_unconfigure_xdomain(port);
506 
507 	tb_port_enable(port->dual_link_port);
508 }
509 
510 static void tb_scan_xdomain(struct tb_port *port)
511 {
512 	struct tb_switch *sw = port->sw;
513 	struct tb *tb = sw->tb;
514 	struct tb_xdomain *xd;
515 	u64 route;
516 
517 	if (!tb_is_xdomain_enabled())
518 		return;
519 
520 	route = tb_downstream_route(port);
521 	xd = tb_xdomain_find_by_route(tb, route);
522 	if (xd) {
523 		tb_xdomain_put(xd);
524 		return;
525 	}
526 
527 	xd = tb_xdomain_alloc(tb, &sw->dev, route, tb->root_switch->uuid,
528 			      NULL);
529 	if (xd) {
530 		tb_port_at(route, sw)->xdomain = xd;
531 		tb_port_configure_xdomain(port, xd);
532 		tb_xdomain_add(xd);
533 	}
534 }
535 
536 /**
537  * tb_find_unused_port() - return the first inactive port on @sw
538  * @sw: Switch to find the port on
539  * @type: Port type to look for
540  */
541 static struct tb_port *tb_find_unused_port(struct tb_switch *sw,
542 					   enum tb_port_type type)
543 {
544 	struct tb_port *port;
545 
546 	tb_switch_for_each_port(sw, port) {
547 		if (tb_is_upstream_port(port))
548 			continue;
549 		if (port->config.type != type)
550 			continue;
551 		if (!port->cap_adap)
552 			continue;
553 		if (tb_port_is_enabled(port))
554 			continue;
555 		return port;
556 	}
557 	return NULL;
558 }
559 
560 static struct tb_port *tb_find_usb3_down(struct tb_switch *sw,
561 					 const struct tb_port *port)
562 {
563 	struct tb_port *down;
564 
565 	down = usb4_switch_map_usb3_down(sw, port);
566 	if (down && !tb_usb3_port_is_enabled(down))
567 		return down;
568 	return NULL;
569 }
570 
571 static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type,
572 					struct tb_port *src_port,
573 					struct tb_port *dst_port)
574 {
575 	struct tb_cm *tcm = tb_priv(tb);
576 	struct tb_tunnel *tunnel;
577 
578 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
579 		if (tunnel->type == type &&
580 		    ((src_port && src_port == tunnel->src_port) ||
581 		     (dst_port && dst_port == tunnel->dst_port))) {
582 			return tunnel;
583 		}
584 	}
585 
586 	return NULL;
587 }
588 
589 static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb,
590 						   struct tb_port *src_port,
591 						   struct tb_port *dst_port)
592 {
593 	struct tb_port *port, *usb3_down;
594 	struct tb_switch *sw;
595 
596 	/* Pick the router that is deepest in the topology */
597 	if (tb_port_path_direction_downstream(src_port, dst_port))
598 		sw = dst_port->sw;
599 	else
600 		sw = src_port->sw;
601 
602 	/* Can't be the host router */
603 	if (sw == tb->root_switch)
604 		return NULL;
605 
606 	/* Find the downstream USB4 port that leads to this router */
607 	port = tb_port_at(tb_route(sw), tb->root_switch);
608 	/* Find the corresponding host router USB3 downstream port */
609 	usb3_down = usb4_switch_map_usb3_down(tb->root_switch, port);
610 	if (!usb3_down)
611 		return NULL;
612 
613 	return tb_find_tunnel(tb, TB_TUNNEL_USB3, usb3_down, NULL);
614 }
615 
616 /**
617  * tb_consumed_usb3_pcie_bandwidth() - Consumed USB3/PCIe bandwidth over a single link
618  * @tb: Domain structure
619  * @src_port: Source protocol adapter
620  * @dst_port: Destination protocol adapter
621  * @port: USB4 port the consumed bandwidth is calculated
622  * @consumed_up: Consumed upsream bandwidth (Mb/s)
623  * @consumed_down: Consumed downstream bandwidth (Mb/s)
624  *
625  * Calculates consumed USB3 and PCIe bandwidth at @port between path
626  * from @src_port to @dst_port. Does not take tunnel starting from
627  * @src_port and ending from @src_port into account.
628  */
629 static int tb_consumed_usb3_pcie_bandwidth(struct tb *tb,
630 					   struct tb_port *src_port,
631 					   struct tb_port *dst_port,
632 					   struct tb_port *port,
633 					   int *consumed_up,
634 					   int *consumed_down)
635 {
636 	int pci_consumed_up, pci_consumed_down;
637 	struct tb_tunnel *tunnel;
638 
639 	*consumed_up = *consumed_down = 0;
640 
641 	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
642 	if (tunnel && tunnel->src_port != src_port &&
643 	    tunnel->dst_port != dst_port) {
644 		int ret;
645 
646 		ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up,
647 						   consumed_down);
648 		if (ret)
649 			return ret;
650 	}
651 
652 	/*
653 	 * If there is anything reserved for PCIe bulk traffic take it
654 	 * into account here too.
655 	 */
656 	if (tb_tunnel_reserved_pci(port, &pci_consumed_up, &pci_consumed_down)) {
657 		*consumed_up += pci_consumed_up;
658 		*consumed_down += pci_consumed_down;
659 	}
660 
661 	return 0;
662 }
663 
664 /**
665  * tb_consumed_dp_bandwidth() - Consumed DP bandwidth over a single link
666  * @tb: Domain structure
667  * @src_port: Source protocol adapter
668  * @dst_port: Destination protocol adapter
669  * @port: USB4 port the consumed bandwidth is calculated
670  * @consumed_up: Consumed upsream bandwidth (Mb/s)
671  * @consumed_down: Consumed downstream bandwidth (Mb/s)
672  *
673  * Calculates consumed DP bandwidth at @port between path from @src_port
674  * to @dst_port. Does not take tunnel starting from @src_port and ending
675  * from @src_port into account.
676  */
677 static int tb_consumed_dp_bandwidth(struct tb *tb,
678 				    struct tb_port *src_port,
679 				    struct tb_port *dst_port,
680 				    struct tb_port *port,
681 				    int *consumed_up,
682 				    int *consumed_down)
683 {
684 	struct tb_cm *tcm = tb_priv(tb);
685 	struct tb_tunnel *tunnel;
686 	int ret;
687 
688 	*consumed_up = *consumed_down = 0;
689 
690 	/*
691 	 * Find all DP tunnels that cross the port and reduce
692 	 * their consumed bandwidth from the available.
693 	 */
694 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
695 		int dp_consumed_up, dp_consumed_down;
696 
697 		if (tb_tunnel_is_invalid(tunnel))
698 			continue;
699 
700 		if (!tb_tunnel_is_dp(tunnel))
701 			continue;
702 
703 		if (!tb_tunnel_port_on_path(tunnel, port))
704 			continue;
705 
706 		/*
707 		 * Ignore the DP tunnel between src_port and dst_port
708 		 * because it is the same tunnel and we may be
709 		 * re-calculating estimated bandwidth.
710 		 */
711 		if (tunnel->src_port == src_port &&
712 		    tunnel->dst_port == dst_port)
713 			continue;
714 
715 		ret = tb_tunnel_consumed_bandwidth(tunnel, &dp_consumed_up,
716 						   &dp_consumed_down);
717 		if (ret)
718 			return ret;
719 
720 		*consumed_up += dp_consumed_up;
721 		*consumed_down += dp_consumed_down;
722 	}
723 
724 	return 0;
725 }
726 
727 static bool tb_asym_supported(struct tb_port *src_port, struct tb_port *dst_port,
728 			      struct tb_port *port)
729 {
730 	bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
731 	enum tb_link_width width;
732 
733 	if (tb_is_upstream_port(port))
734 		width = downstream ? TB_LINK_WIDTH_ASYM_RX : TB_LINK_WIDTH_ASYM_TX;
735 	else
736 		width = downstream ? TB_LINK_WIDTH_ASYM_TX : TB_LINK_WIDTH_ASYM_RX;
737 
738 	return tb_port_width_supported(port, width);
739 }
740 
741 /**
742  * tb_maximum_banwidth() - Maximum bandwidth over a single link
743  * @tb: Domain structure
744  * @src_port: Source protocol adapter
745  * @dst_port: Destination protocol adapter
746  * @port: USB4 port the total bandwidth is calculated
747  * @max_up: Maximum upstream bandwidth (Mb/s)
748  * @max_down: Maximum downstream bandwidth (Mb/s)
749  * @include_asym: Include bandwidth if the link is switched from
750  *		  symmetric to asymmetric
751  *
752  * Returns maximum possible bandwidth in @max_up and @max_down over a
753  * single link at @port. If @include_asym is set then includes the
754  * additional banwdith if the links are transitioned into asymmetric to
755  * direction from @src_port to @dst_port.
756  */
757 static int tb_maximum_bandwidth(struct tb *tb, struct tb_port *src_port,
758 				struct tb_port *dst_port, struct tb_port *port,
759 				int *max_up, int *max_down, bool include_asym)
760 {
761 	bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
762 	int link_speed, link_width, up_bw, down_bw;
763 
764 	/*
765 	 * Can include asymmetric, only if it is actually supported by
766 	 * the lane adapter.
767 	 */
768 	if (!tb_asym_supported(src_port, dst_port, port))
769 		include_asym = false;
770 
771 	if (tb_is_upstream_port(port)) {
772 		link_speed = port->sw->link_speed;
773 		/*
774 		 * sw->link_width is from upstream perspective so we use
775 		 * the opposite for downstream of the host router.
776 		 */
777 		if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) {
778 			up_bw = link_speed * 3 * 1000;
779 			down_bw = link_speed * 1 * 1000;
780 		} else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
781 			up_bw = link_speed * 1 * 1000;
782 			down_bw = link_speed * 3 * 1000;
783 		} else if (include_asym) {
784 			/*
785 			 * The link is symmetric at the moment but we
786 			 * can switch it to asymmetric as needed. Report
787 			 * this bandwidth as available (even though it
788 			 * is not yet enabled).
789 			 */
790 			if (downstream) {
791 				up_bw = link_speed * 1 * 1000;
792 				down_bw = link_speed * 3 * 1000;
793 			} else {
794 				up_bw = link_speed * 3 * 1000;
795 				down_bw = link_speed * 1 * 1000;
796 			}
797 		} else {
798 			up_bw = link_speed * port->sw->link_width * 1000;
799 			down_bw = up_bw;
800 		}
801 	} else {
802 		link_speed = tb_port_get_link_speed(port);
803 		if (link_speed < 0)
804 			return link_speed;
805 
806 		link_width = tb_port_get_link_width(port);
807 		if (link_width < 0)
808 			return link_width;
809 
810 		if (link_width == TB_LINK_WIDTH_ASYM_TX) {
811 			up_bw = link_speed * 1 * 1000;
812 			down_bw = link_speed * 3 * 1000;
813 		} else if (link_width == TB_LINK_WIDTH_ASYM_RX) {
814 			up_bw = link_speed * 3 * 1000;
815 			down_bw = link_speed * 1 * 1000;
816 		} else if (include_asym) {
817 			/*
818 			 * The link is symmetric at the moment but we
819 			 * can switch it to asymmetric as needed. Report
820 			 * this bandwidth as available (even though it
821 			 * is not yet enabled).
822 			 */
823 			if (downstream) {
824 				up_bw = link_speed * 1 * 1000;
825 				down_bw = link_speed * 3 * 1000;
826 			} else {
827 				up_bw = link_speed * 3 * 1000;
828 				down_bw = link_speed * 1 * 1000;
829 			}
830 		} else {
831 			up_bw = link_speed * link_width * 1000;
832 			down_bw = up_bw;
833 		}
834 	}
835 
836 	/* Leave 10% guard band */
837 	*max_up = up_bw - up_bw / 10;
838 	*max_down = down_bw - down_bw / 10;
839 
840 	tb_port_dbg(port, "link maximum bandwidth %d/%d Mb/s\n", *max_up, *max_down);
841 	return 0;
842 }
843 
844 /**
845  * tb_available_bandwidth() - Available bandwidth for tunneling
846  * @tb: Domain structure
847  * @src_port: Source protocol adapter
848  * @dst_port: Destination protocol adapter
849  * @available_up: Available bandwidth upstream (Mb/s)
850  * @available_down: Available bandwidth downstream (Mb/s)
851  * @include_asym: Include bandwidth if the link is switched from
852  *		  symmetric to asymmetric
853  *
854  * Calculates maximum available bandwidth for protocol tunneling between
855  * @src_port and @dst_port at the moment. This is minimum of maximum
856  * link bandwidth across all links reduced by currently consumed
857  * bandwidth on that link.
858  *
859  * If @include_asym is true then includes also bandwidth that can be
860  * added when the links are transitioned into asymmetric (but does not
861  * transition the links).
862  */
863 static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port,
864 				 struct tb_port *dst_port, int *available_up,
865 				 int *available_down, bool include_asym)
866 {
867 	struct tb_port *port;
868 	int ret;
869 
870 	/* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */
871 	*available_up = *available_down = 120000;
872 
873 	/* Find the minimum available bandwidth over all links */
874 	tb_for_each_port_on_path(src_port, dst_port, port) {
875 		int max_up, max_down, consumed_up, consumed_down;
876 
877 		if (!tb_port_is_null(port))
878 			continue;
879 
880 		ret = tb_maximum_bandwidth(tb, src_port, dst_port, port,
881 					   &max_up, &max_down, include_asym);
882 		if (ret)
883 			return ret;
884 
885 		ret = tb_consumed_usb3_pcie_bandwidth(tb, src_port, dst_port,
886 						      port, &consumed_up,
887 						      &consumed_down);
888 		if (ret)
889 			return ret;
890 		max_up -= consumed_up;
891 		max_down -= consumed_down;
892 
893 		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port,
894 					       &consumed_up, &consumed_down);
895 		if (ret)
896 			return ret;
897 		max_up -= consumed_up;
898 		max_down -= consumed_down;
899 
900 		if (max_up < *available_up)
901 			*available_up = max_up;
902 		if (max_down < *available_down)
903 			*available_down = max_down;
904 	}
905 
906 	if (*available_up < 0)
907 		*available_up = 0;
908 	if (*available_down < 0)
909 		*available_down = 0;
910 
911 	return 0;
912 }
913 
914 static int tb_release_unused_usb3_bandwidth(struct tb *tb,
915 					    struct tb_port *src_port,
916 					    struct tb_port *dst_port)
917 {
918 	struct tb_tunnel *tunnel;
919 
920 	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
921 	return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0;
922 }
923 
924 static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port,
925 				      struct tb_port *dst_port)
926 {
927 	int ret, available_up, available_down;
928 	struct tb_tunnel *tunnel;
929 
930 	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
931 	if (!tunnel)
932 		return;
933 
934 	tb_dbg(tb, "reclaiming unused bandwidth for USB3\n");
935 
936 	/*
937 	 * Calculate available bandwidth for the first hop USB3 tunnel.
938 	 * That determines the whole USB3 bandwidth for this branch.
939 	 */
940 	ret = tb_available_bandwidth(tb, tunnel->src_port, tunnel->dst_port,
941 				     &available_up, &available_down, false);
942 	if (ret) {
943 		tb_warn(tb, "failed to calculate available bandwidth\n");
944 		return;
945 	}
946 
947 	tb_dbg(tb, "available bandwidth for USB3 %d/%d Mb/s\n",
948 	       available_up, available_down);
949 
950 	tb_tunnel_reclaim_available_bandwidth(tunnel, &available_up, &available_down);
951 }
952 
953 static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw)
954 {
955 	struct tb_switch *parent = tb_switch_parent(sw);
956 	int ret, available_up, available_down;
957 	struct tb_port *up, *down, *port;
958 	struct tb_cm *tcm = tb_priv(tb);
959 	struct tb_tunnel *tunnel;
960 
961 	if (!tb_acpi_may_tunnel_usb3()) {
962 		tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n");
963 		return 0;
964 	}
965 
966 	up = tb_switch_find_port(sw, TB_TYPE_USB3_UP);
967 	if (!up)
968 		return 0;
969 
970 	if (!sw->link_usb4)
971 		return 0;
972 
973 	/*
974 	 * Look up available down port. Since we are chaining it should
975 	 * be found right above this switch.
976 	 */
977 	port = tb_switch_downstream_port(sw);
978 	down = tb_find_usb3_down(parent, port);
979 	if (!down)
980 		return 0;
981 
982 	if (tb_route(parent)) {
983 		struct tb_port *parent_up;
984 		/*
985 		 * Check first that the parent switch has its upstream USB3
986 		 * port enabled. Otherwise the chain is not complete and
987 		 * there is no point setting up a new tunnel.
988 		 */
989 		parent_up = tb_switch_find_port(parent, TB_TYPE_USB3_UP);
990 		if (!parent_up || !tb_port_is_enabled(parent_up))
991 			return 0;
992 
993 		/* Make all unused bandwidth available for the new tunnel */
994 		ret = tb_release_unused_usb3_bandwidth(tb, down, up);
995 		if (ret)
996 			return ret;
997 	}
998 
999 	ret = tb_available_bandwidth(tb, down, up, &available_up, &available_down,
1000 				     false);
1001 	if (ret)
1002 		goto err_reclaim;
1003 
1004 	tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n",
1005 		    available_up, available_down);
1006 
1007 	tunnel = tb_tunnel_alloc_usb3(tb, up, down, available_up,
1008 				      available_down);
1009 	if (!tunnel) {
1010 		ret = -ENOMEM;
1011 		goto err_reclaim;
1012 	}
1013 
1014 	if (tb_tunnel_activate(tunnel)) {
1015 		tb_port_info(up,
1016 			     "USB3 tunnel activation failed, aborting\n");
1017 		ret = -EIO;
1018 		goto err_free;
1019 	}
1020 
1021 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
1022 	if (tb_route(parent))
1023 		tb_reclaim_usb3_bandwidth(tb, down, up);
1024 
1025 	return 0;
1026 
1027 err_free:
1028 	tb_tunnel_free(tunnel);
1029 err_reclaim:
1030 	if (tb_route(parent))
1031 		tb_reclaim_usb3_bandwidth(tb, down, up);
1032 
1033 	return ret;
1034 }
1035 
1036 static int tb_create_usb3_tunnels(struct tb_switch *sw)
1037 {
1038 	struct tb_port *port;
1039 	int ret;
1040 
1041 	if (!tb_acpi_may_tunnel_usb3())
1042 		return 0;
1043 
1044 	if (tb_route(sw)) {
1045 		ret = tb_tunnel_usb3(sw->tb, sw);
1046 		if (ret)
1047 			return ret;
1048 	}
1049 
1050 	tb_switch_for_each_port(sw, port) {
1051 		if (!tb_port_has_remote(port))
1052 			continue;
1053 		ret = tb_create_usb3_tunnels(port->remote->sw);
1054 		if (ret)
1055 			return ret;
1056 	}
1057 
1058 	return 0;
1059 }
1060 
1061 /**
1062  * tb_configure_asym() - Transition links to asymmetric if needed
1063  * @tb: Domain structure
1064  * @src_port: Source adapter to start the transition
1065  * @dst_port: Destination adapter
1066  * @requested_up: Additional bandwidth (Mb/s) required upstream
1067  * @requested_down: Additional bandwidth (Mb/s) required downstream
1068  *
1069  * Transition links between @src_port and @dst_port into asymmetric, with
1070  * three lanes in the direction from @src_port towards @dst_port and one lane
1071  * in the opposite direction, if the bandwidth requirements
1072  * (requested + currently consumed) on that link exceed @asym_threshold.
1073  *
1074  * Must be called with available >= requested over all links.
1075  */
1076 static int tb_configure_asym(struct tb *tb, struct tb_port *src_port,
1077 			     struct tb_port *dst_port, int requested_up,
1078 			     int requested_down)
1079 {
1080 	struct tb_switch *sw;
1081 	bool clx, downstream;
1082 	struct tb_port *up;
1083 	int ret = 0;
1084 
1085 	if (!asym_threshold)
1086 		return 0;
1087 
1088 	/* Disable CL states before doing any transitions */
1089 	downstream = tb_port_path_direction_downstream(src_port, dst_port);
1090 	/* Pick up router deepest in the hierarchy */
1091 	if (downstream)
1092 		sw = dst_port->sw;
1093 	else
1094 		sw = src_port->sw;
1095 
1096 	clx = tb_disable_clx(sw);
1097 
1098 	tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1099 		int consumed_up, consumed_down;
1100 		enum tb_link_width width;
1101 
1102 		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1103 					       &consumed_up, &consumed_down);
1104 		if (ret)
1105 			break;
1106 
1107 		if (downstream) {
1108 			/*
1109 			 * Downstream so make sure upstream is within the 36G
1110 			 * (40G - guard band 10%), and the requested is above
1111 			 * what the threshold is.
1112 			 */
1113 			if (consumed_up + requested_up >= TB_ASYM_MIN) {
1114 				ret = -ENOBUFS;
1115 				break;
1116 			}
1117 			/* Does consumed + requested exceed the threshold */
1118 			if (consumed_down + requested_down < asym_threshold)
1119 				continue;
1120 
1121 			width = TB_LINK_WIDTH_ASYM_RX;
1122 		} else {
1123 			/* Upstream, the opposite of above */
1124 			if (consumed_down + requested_down >= TB_ASYM_MIN) {
1125 				ret = -ENOBUFS;
1126 				break;
1127 			}
1128 			if (consumed_up + requested_up < asym_threshold)
1129 				continue;
1130 
1131 			width = TB_LINK_WIDTH_ASYM_TX;
1132 		}
1133 
1134 		if (up->sw->link_width == width)
1135 			continue;
1136 
1137 		if (!tb_port_width_supported(up, width))
1138 			continue;
1139 
1140 		tb_sw_dbg(up->sw, "configuring asymmetric link\n");
1141 
1142 		/*
1143 		 * Here requested + consumed > threshold so we need to
1144 		 * transtion the link into asymmetric now.
1145 		 */
1146 		ret = tb_switch_set_link_width(up->sw, width);
1147 		if (ret) {
1148 			tb_sw_warn(up->sw, "failed to set link width\n");
1149 			break;
1150 		}
1151 	}
1152 
1153 	/* Re-enable CL states if they were previosly enabled */
1154 	if (clx)
1155 		tb_enable_clx(sw);
1156 
1157 	return ret;
1158 }
1159 
1160 /**
1161  * tb_configure_sym() - Transition links to symmetric if possible
1162  * @tb: Domain structure
1163  * @src_port: Source adapter to start the transition
1164  * @dst_port: Destination adapter
1165  * @requested_up: New lower bandwidth request upstream (Mb/s)
1166  * @requested_down: New lower bandwidth request downstream (Mb/s)
1167  *
1168  * Goes over each link from @src_port to @dst_port and tries to
1169  * transition the link to symmetric if the currently consumed bandwidth
1170  * allows.
1171  */
1172 static int tb_configure_sym(struct tb *tb, struct tb_port *src_port,
1173 			    struct tb_port *dst_port, int requested_up,
1174 			    int requested_down)
1175 {
1176 	struct tb_switch *sw;
1177 	bool clx, downstream;
1178 	struct tb_port *up;
1179 	int ret = 0;
1180 
1181 	if (!asym_threshold)
1182 		return 0;
1183 
1184 	/* Disable CL states before doing any transitions */
1185 	downstream = tb_port_path_direction_downstream(src_port, dst_port);
1186 	/* Pick up router deepest in the hierarchy */
1187 	if (downstream)
1188 		sw = dst_port->sw;
1189 	else
1190 		sw = src_port->sw;
1191 
1192 	clx = tb_disable_clx(sw);
1193 
1194 	tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1195 		int consumed_up, consumed_down;
1196 
1197 		/* Already symmetric */
1198 		if (up->sw->link_width <= TB_LINK_WIDTH_DUAL)
1199 			continue;
1200 		/* Unplugged, no need to switch */
1201 		if (up->sw->is_unplugged)
1202 			continue;
1203 
1204 		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1205 					       &consumed_up, &consumed_down);
1206 		if (ret)
1207 			break;
1208 
1209 		if (downstream) {
1210 			/*
1211 			 * Downstream so we want the consumed_down < threshold.
1212 			 * Upstream traffic should be less than 36G (40G
1213 			 * guard band 10%) as the link was configured asymmetric
1214 			 * already.
1215 			 */
1216 			if (consumed_down + requested_down >= asym_threshold)
1217 				continue;
1218 		} else {
1219 			if (consumed_up + requested_up >= asym_threshold)
1220 				continue;
1221 		}
1222 
1223 		if (up->sw->link_width == TB_LINK_WIDTH_DUAL)
1224 			continue;
1225 
1226 		tb_sw_dbg(up->sw, "configuring symmetric link\n");
1227 
1228 		ret = tb_switch_set_link_width(up->sw, TB_LINK_WIDTH_DUAL);
1229 		if (ret) {
1230 			tb_sw_warn(up->sw, "failed to set link width\n");
1231 			break;
1232 		}
1233 	}
1234 
1235 	/* Re-enable CL states if they were previosly enabled */
1236 	if (clx)
1237 		tb_enable_clx(sw);
1238 
1239 	return ret;
1240 }
1241 
1242 static void tb_configure_link(struct tb_port *down, struct tb_port *up,
1243 			      struct tb_switch *sw)
1244 {
1245 	struct tb *tb = sw->tb;
1246 
1247 	/* Link the routers using both links if available */
1248 	down->remote = up;
1249 	up->remote = down;
1250 	if (down->dual_link_port && up->dual_link_port) {
1251 		down->dual_link_port->remote = up->dual_link_port;
1252 		up->dual_link_port->remote = down->dual_link_port;
1253 	}
1254 
1255 	/*
1256 	 * Enable lane bonding if the link is currently two single lane
1257 	 * links.
1258 	 */
1259 	if (sw->link_width < TB_LINK_WIDTH_DUAL)
1260 		tb_switch_set_link_width(sw, TB_LINK_WIDTH_DUAL);
1261 
1262 	/*
1263 	 * Device router that comes up as symmetric link is
1264 	 * connected deeper in the hierarchy, we transition the links
1265 	 * above into symmetric if bandwidth allows.
1266 	 */
1267 	if (tb_switch_depth(sw) > 1 &&
1268 	    tb_port_get_link_generation(up) >= 4 &&
1269 	    up->sw->link_width == TB_LINK_WIDTH_DUAL) {
1270 		struct tb_port *host_port;
1271 
1272 		host_port = tb_port_at(tb_route(sw), tb->root_switch);
1273 		tb_configure_sym(tb, host_port, up, 0, 0);
1274 	}
1275 
1276 	/* Set the link configured */
1277 	tb_switch_configure_link(sw);
1278 }
1279 
1280 static void tb_scan_port(struct tb_port *port);
1281 
1282 /*
1283  * tb_scan_switch() - scan for and initialize downstream switches
1284  */
1285 static void tb_scan_switch(struct tb_switch *sw)
1286 {
1287 	struct tb_port *port;
1288 
1289 	pm_runtime_get_sync(&sw->dev);
1290 
1291 	tb_switch_for_each_port(sw, port)
1292 		tb_scan_port(port);
1293 
1294 	pm_runtime_mark_last_busy(&sw->dev);
1295 	pm_runtime_put_autosuspend(&sw->dev);
1296 }
1297 
1298 /*
1299  * tb_scan_port() - check for and initialize switches below port
1300  */
1301 static void tb_scan_port(struct tb_port *port)
1302 {
1303 	struct tb_cm *tcm = tb_priv(port->sw->tb);
1304 	struct tb_port *upstream_port;
1305 	bool discovery = false;
1306 	struct tb_switch *sw;
1307 
1308 	if (tb_is_upstream_port(port))
1309 		return;
1310 
1311 	if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 &&
1312 	    !tb_dp_port_is_enabled(port)) {
1313 		tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n");
1314 		tb_queue_hotplug(port->sw->tb, tb_route(port->sw), port->port,
1315 				 false);
1316 		return;
1317 	}
1318 
1319 	if (port->config.type != TB_TYPE_PORT)
1320 		return;
1321 	if (port->dual_link_port && port->link_nr)
1322 		return; /*
1323 			 * Downstream switch is reachable through two ports.
1324 			 * Only scan on the primary port (link_nr == 0).
1325 			 */
1326 
1327 	if (port->usb4)
1328 		pm_runtime_get_sync(&port->usb4->dev);
1329 
1330 	if (tb_wait_for_port(port, false) <= 0)
1331 		goto out_rpm_put;
1332 	if (port->remote) {
1333 		tb_port_dbg(port, "port already has a remote\n");
1334 		goto out_rpm_put;
1335 	}
1336 
1337 	tb_retimer_scan(port, true);
1338 
1339 	sw = tb_switch_alloc(port->sw->tb, &port->sw->dev,
1340 			     tb_downstream_route(port));
1341 	if (IS_ERR(sw)) {
1342 		/*
1343 		 * If there is an error accessing the connected switch
1344 		 * it may be connected to another domain. Also we allow
1345 		 * the other domain to be connected to a max depth switch.
1346 		 */
1347 		if (PTR_ERR(sw) == -EIO || PTR_ERR(sw) == -EADDRNOTAVAIL)
1348 			tb_scan_xdomain(port);
1349 		goto out_rpm_put;
1350 	}
1351 
1352 	if (tb_switch_configure(sw)) {
1353 		tb_switch_put(sw);
1354 		goto out_rpm_put;
1355 	}
1356 
1357 	/*
1358 	 * If there was previously another domain connected remove it
1359 	 * first.
1360 	 */
1361 	if (port->xdomain) {
1362 		tb_xdomain_remove(port->xdomain);
1363 		tb_port_unconfigure_xdomain(port);
1364 		port->xdomain = NULL;
1365 	}
1366 
1367 	/*
1368 	 * Do not send uevents until we have discovered all existing
1369 	 * tunnels and know which switches were authorized already by
1370 	 * the boot firmware.
1371 	 */
1372 	if (!tcm->hotplug_active) {
1373 		dev_set_uevent_suppress(&sw->dev, true);
1374 		discovery = true;
1375 	}
1376 
1377 	/*
1378 	 * At the moment Thunderbolt 2 and beyond (devices with LC) we
1379 	 * can support runtime PM.
1380 	 */
1381 	sw->rpm = sw->generation > 1;
1382 
1383 	if (tb_switch_add(sw)) {
1384 		tb_switch_put(sw);
1385 		goto out_rpm_put;
1386 	}
1387 
1388 	upstream_port = tb_upstream_port(sw);
1389 	tb_configure_link(port, upstream_port, sw);
1390 
1391 	/*
1392 	 * CL0s and CL1 are enabled and supported together.
1393 	 * Silently ignore CLx enabling in case CLx is not supported.
1394 	 */
1395 	if (discovery)
1396 		tb_sw_dbg(sw, "discovery, not touching CL states\n");
1397 	else if (tb_enable_clx(sw))
1398 		tb_sw_warn(sw, "failed to enable CL states\n");
1399 
1400 	if (tb_enable_tmu(sw))
1401 		tb_sw_warn(sw, "failed to enable TMU\n");
1402 
1403 	/*
1404 	 * Configuration valid needs to be set after the TMU has been
1405 	 * enabled for the upstream port of the router so we do it here.
1406 	 */
1407 	tb_switch_configuration_valid(sw);
1408 
1409 	/* Scan upstream retimers */
1410 	tb_retimer_scan(upstream_port, true);
1411 
1412 	/*
1413 	 * Create USB 3.x tunnels only when the switch is plugged to the
1414 	 * domain. This is because we scan the domain also during discovery
1415 	 * and want to discover existing USB 3.x tunnels before we create
1416 	 * any new.
1417 	 */
1418 	if (tcm->hotplug_active && tb_tunnel_usb3(sw->tb, sw))
1419 		tb_sw_warn(sw, "USB3 tunnel creation failed\n");
1420 
1421 	tb_add_dp_resources(sw);
1422 	tb_scan_switch(sw);
1423 
1424 out_rpm_put:
1425 	if (port->usb4) {
1426 		pm_runtime_mark_last_busy(&port->usb4->dev);
1427 		pm_runtime_put_autosuspend(&port->usb4->dev);
1428 	}
1429 }
1430 
1431 static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel)
1432 {
1433 	struct tb_port *src_port, *dst_port;
1434 	struct tb *tb;
1435 
1436 	if (!tunnel)
1437 		return;
1438 
1439 	tb_tunnel_deactivate(tunnel);
1440 	list_del(&tunnel->list);
1441 
1442 	tb = tunnel->tb;
1443 	src_port = tunnel->src_port;
1444 	dst_port = tunnel->dst_port;
1445 
1446 	switch (tunnel->type) {
1447 	case TB_TUNNEL_DP:
1448 		tb_detach_bandwidth_group(src_port);
1449 		/*
1450 		 * In case of DP tunnel make sure the DP IN resource is
1451 		 * deallocated properly.
1452 		 */
1453 		tb_switch_dealloc_dp_resource(src_port->sw, src_port);
1454 		/*
1455 		 * If bandwidth on a link is < asym_threshold
1456 		 * transition the link to symmetric.
1457 		 */
1458 		tb_configure_sym(tb, src_port, dst_port, 0, 0);
1459 		/* Now we can allow the domain to runtime suspend again */
1460 		pm_runtime_mark_last_busy(&dst_port->sw->dev);
1461 		pm_runtime_put_autosuspend(&dst_port->sw->dev);
1462 		pm_runtime_mark_last_busy(&src_port->sw->dev);
1463 		pm_runtime_put_autosuspend(&src_port->sw->dev);
1464 		fallthrough;
1465 
1466 	case TB_TUNNEL_USB3:
1467 		tb_reclaim_usb3_bandwidth(tb, src_port, dst_port);
1468 		break;
1469 
1470 	default:
1471 		/*
1472 		 * PCIe and DMA tunnels do not consume guaranteed
1473 		 * bandwidth.
1474 		 */
1475 		break;
1476 	}
1477 
1478 	tb_tunnel_free(tunnel);
1479 }
1480 
1481 /*
1482  * tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away
1483  */
1484 static void tb_free_invalid_tunnels(struct tb *tb)
1485 {
1486 	struct tb_cm *tcm = tb_priv(tb);
1487 	struct tb_tunnel *tunnel;
1488 	struct tb_tunnel *n;
1489 
1490 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
1491 		if (tb_tunnel_is_invalid(tunnel))
1492 			tb_deactivate_and_free_tunnel(tunnel);
1493 	}
1494 }
1495 
1496 /*
1497  * tb_free_unplugged_children() - traverse hierarchy and free unplugged switches
1498  */
1499 static void tb_free_unplugged_children(struct tb_switch *sw)
1500 {
1501 	struct tb_port *port;
1502 
1503 	tb_switch_for_each_port(sw, port) {
1504 		if (!tb_port_has_remote(port))
1505 			continue;
1506 
1507 		if (port->remote->sw->is_unplugged) {
1508 			tb_retimer_remove_all(port);
1509 			tb_remove_dp_resources(port->remote->sw);
1510 			tb_switch_unconfigure_link(port->remote->sw);
1511 			tb_switch_set_link_width(port->remote->sw,
1512 						 TB_LINK_WIDTH_SINGLE);
1513 			tb_switch_remove(port->remote->sw);
1514 			port->remote = NULL;
1515 			if (port->dual_link_port)
1516 				port->dual_link_port->remote = NULL;
1517 		} else {
1518 			tb_free_unplugged_children(port->remote->sw);
1519 		}
1520 	}
1521 }
1522 
1523 static struct tb_port *tb_find_pcie_down(struct tb_switch *sw,
1524 					 const struct tb_port *port)
1525 {
1526 	struct tb_port *down = NULL;
1527 
1528 	/*
1529 	 * To keep plugging devices consistently in the same PCIe
1530 	 * hierarchy, do mapping here for switch downstream PCIe ports.
1531 	 */
1532 	if (tb_switch_is_usb4(sw)) {
1533 		down = usb4_switch_map_pcie_down(sw, port);
1534 	} else if (!tb_route(sw)) {
1535 		int phy_port = tb_phy_port_from_link(port->port);
1536 		int index;
1537 
1538 		/*
1539 		 * Hard-coded Thunderbolt port to PCIe down port mapping
1540 		 * per controller.
1541 		 */
1542 		if (tb_switch_is_cactus_ridge(sw) ||
1543 		    tb_switch_is_alpine_ridge(sw))
1544 			index = !phy_port ? 6 : 7;
1545 		else if (tb_switch_is_falcon_ridge(sw))
1546 			index = !phy_port ? 6 : 8;
1547 		else if (tb_switch_is_titan_ridge(sw))
1548 			index = !phy_port ? 8 : 9;
1549 		else
1550 			goto out;
1551 
1552 		/* Validate the hard-coding */
1553 		if (WARN_ON(index > sw->config.max_port_number))
1554 			goto out;
1555 
1556 		down = &sw->ports[index];
1557 	}
1558 
1559 	if (down) {
1560 		if (WARN_ON(!tb_port_is_pcie_down(down)))
1561 			goto out;
1562 		if (tb_pci_port_is_enabled(down))
1563 			goto out;
1564 
1565 		return down;
1566 	}
1567 
1568 out:
1569 	return tb_find_unused_port(sw, TB_TYPE_PCIE_DOWN);
1570 }
1571 
1572 static void
1573 tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group)
1574 {
1575 	struct tb_tunnel *first_tunnel;
1576 	struct tb *tb = group->tb;
1577 	struct tb_port *in;
1578 	int ret;
1579 
1580 	tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n",
1581 	       group->index);
1582 
1583 	first_tunnel = NULL;
1584 	list_for_each_entry(in, &group->ports, group_list) {
1585 		int estimated_bw, estimated_up, estimated_down;
1586 		struct tb_tunnel *tunnel;
1587 		struct tb_port *out;
1588 
1589 		if (!usb4_dp_port_bandwidth_mode_enabled(in))
1590 			continue;
1591 
1592 		tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
1593 		if (WARN_ON(!tunnel))
1594 			break;
1595 
1596 		if (!first_tunnel) {
1597 			/*
1598 			 * Since USB3 bandwidth is shared by all DP
1599 			 * tunnels under the host router USB4 port, even
1600 			 * if they do not begin from the host router, we
1601 			 * can release USB3 bandwidth just once and not
1602 			 * for each tunnel separately.
1603 			 */
1604 			first_tunnel = tunnel;
1605 			ret = tb_release_unused_usb3_bandwidth(tb,
1606 				first_tunnel->src_port, first_tunnel->dst_port);
1607 			if (ret) {
1608 				tb_port_warn(in,
1609 					"failed to release unused bandwidth\n");
1610 				break;
1611 			}
1612 		}
1613 
1614 		out = tunnel->dst_port;
1615 		ret = tb_available_bandwidth(tb, in, out, &estimated_up,
1616 					     &estimated_down, true);
1617 		if (ret) {
1618 			tb_port_warn(in,
1619 				"failed to re-calculate estimated bandwidth\n");
1620 			break;
1621 		}
1622 
1623 		/*
1624 		 * Estimated bandwidth includes:
1625 		 *  - already allocated bandwidth for the DP tunnel
1626 		 *  - available bandwidth along the path
1627 		 *  - bandwidth allocated for USB 3.x but not used.
1628 		 */
1629 		tb_port_dbg(in, "re-calculated estimated bandwidth %u/%u Mb/s\n",
1630 			    estimated_up, estimated_down);
1631 
1632 		if (tb_port_path_direction_downstream(in, out))
1633 			estimated_bw = estimated_down;
1634 		else
1635 			estimated_bw = estimated_up;
1636 
1637 		if (usb4_dp_port_set_estimated_bandwidth(in, estimated_bw))
1638 			tb_port_warn(in, "failed to update estimated bandwidth\n");
1639 	}
1640 
1641 	if (first_tunnel)
1642 		tb_reclaim_usb3_bandwidth(tb, first_tunnel->src_port,
1643 					  first_tunnel->dst_port);
1644 
1645 	tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index);
1646 }
1647 
1648 static void tb_recalc_estimated_bandwidth(struct tb *tb)
1649 {
1650 	struct tb_cm *tcm = tb_priv(tb);
1651 	int i;
1652 
1653 	tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n");
1654 
1655 	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1656 		struct tb_bandwidth_group *group = &tcm->groups[i];
1657 
1658 		if (!list_empty(&group->ports))
1659 			tb_recalc_estimated_bandwidth_for_group(group);
1660 	}
1661 
1662 	tb_dbg(tb, "bandwidth re-calculation done\n");
1663 }
1664 
1665 static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in)
1666 {
1667 	struct tb_port *host_port, *port;
1668 	struct tb_cm *tcm = tb_priv(tb);
1669 
1670 	host_port = tb_route(in->sw) ?
1671 		tb_port_at(tb_route(in->sw), tb->root_switch) : NULL;
1672 
1673 	list_for_each_entry(port, &tcm->dp_resources, list) {
1674 		if (!tb_port_is_dpout(port))
1675 			continue;
1676 
1677 		if (tb_port_is_enabled(port)) {
1678 			tb_port_dbg(port, "DP OUT in use\n");
1679 			continue;
1680 		}
1681 
1682 		tb_port_dbg(port, "DP OUT available\n");
1683 
1684 		/*
1685 		 * Keep the DP tunnel under the topology starting from
1686 		 * the same host router downstream port.
1687 		 */
1688 		if (host_port && tb_route(port->sw)) {
1689 			struct tb_port *p;
1690 
1691 			p = tb_port_at(tb_route(port->sw), tb->root_switch);
1692 			if (p != host_port)
1693 				continue;
1694 		}
1695 
1696 		return port;
1697 	}
1698 
1699 	return NULL;
1700 }
1701 
1702 static bool tb_tunnel_one_dp(struct tb *tb, struct tb_port *in,
1703 			     struct tb_port *out)
1704 {
1705 	int available_up, available_down, ret, link_nr;
1706 	struct tb_cm *tcm = tb_priv(tb);
1707 	int consumed_up, consumed_down;
1708 	struct tb_tunnel *tunnel;
1709 
1710 	/*
1711 	 * This is only applicable to links that are not bonded (so
1712 	 * when Thunderbolt 1 hardware is involved somewhere in the
1713 	 * topology). For these try to share the DP bandwidth between
1714 	 * the two lanes.
1715 	 */
1716 	link_nr = 1;
1717 	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1718 		if (tb_tunnel_is_dp(tunnel)) {
1719 			link_nr = 0;
1720 			break;
1721 		}
1722 	}
1723 
1724 	/*
1725 	 * DP stream needs the domain to be active so runtime resume
1726 	 * both ends of the tunnel.
1727 	 *
1728 	 * This should bring the routers in the middle active as well
1729 	 * and keeps the domain from runtime suspending while the DP
1730 	 * tunnel is active.
1731 	 */
1732 	pm_runtime_get_sync(&in->sw->dev);
1733 	pm_runtime_get_sync(&out->sw->dev);
1734 
1735 	if (tb_switch_alloc_dp_resource(in->sw, in)) {
1736 		tb_port_dbg(in, "no resource available for DP IN, not tunneling\n");
1737 		goto err_rpm_put;
1738 	}
1739 
1740 	if (!tb_attach_bandwidth_group(tcm, in, out))
1741 		goto err_dealloc_dp;
1742 
1743 	/* Make all unused USB3 bandwidth available for the new DP tunnel */
1744 	ret = tb_release_unused_usb3_bandwidth(tb, in, out);
1745 	if (ret) {
1746 		tb_warn(tb, "failed to release unused bandwidth\n");
1747 		goto err_detach_group;
1748 	}
1749 
1750 	ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
1751 				     true);
1752 	if (ret)
1753 		goto err_reclaim_usb;
1754 
1755 	tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n",
1756 	       available_up, available_down);
1757 
1758 	tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, available_up,
1759 				    available_down);
1760 	if (!tunnel) {
1761 		tb_port_dbg(out, "could not allocate DP tunnel\n");
1762 		goto err_reclaim_usb;
1763 	}
1764 
1765 	if (tb_tunnel_activate(tunnel)) {
1766 		tb_port_info(out, "DP tunnel activation failed, aborting\n");
1767 		goto err_free;
1768 	}
1769 
1770 	/* If fail reading tunnel's consumed bandwidth, tear it down */
1771 	ret = tb_tunnel_consumed_bandwidth(tunnel, &consumed_up, &consumed_down);
1772 	if (ret)
1773 		goto err_deactivate;
1774 
1775 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
1776 
1777 	tb_reclaim_usb3_bandwidth(tb, in, out);
1778 	/*
1779 	 * Transition the links to asymmetric if the consumption exceeds
1780 	 * the threshold.
1781 	 */
1782 	tb_configure_asym(tb, in, out, consumed_up, consumed_down);
1783 
1784 	/* Update the domain with the new bandwidth estimation */
1785 	tb_recalc_estimated_bandwidth(tb);
1786 
1787 	/*
1788 	 * In case of DP tunnel exists, change host router's 1st children
1789 	 * TMU mode to HiFi for CL0s to work.
1790 	 */
1791 	tb_increase_tmu_accuracy(tunnel);
1792 	return true;
1793 
1794 err_deactivate:
1795 	tb_tunnel_deactivate(tunnel);
1796 err_free:
1797 	tb_tunnel_free(tunnel);
1798 err_reclaim_usb:
1799 	tb_reclaim_usb3_bandwidth(tb, in, out);
1800 err_detach_group:
1801 	tb_detach_bandwidth_group(in);
1802 err_dealloc_dp:
1803 	tb_switch_dealloc_dp_resource(in->sw, in);
1804 err_rpm_put:
1805 	pm_runtime_mark_last_busy(&out->sw->dev);
1806 	pm_runtime_put_autosuspend(&out->sw->dev);
1807 	pm_runtime_mark_last_busy(&in->sw->dev);
1808 	pm_runtime_put_autosuspend(&in->sw->dev);
1809 
1810 	return false;
1811 }
1812 
1813 static void tb_tunnel_dp(struct tb *tb)
1814 {
1815 	struct tb_cm *tcm = tb_priv(tb);
1816 	struct tb_port *port, *in, *out;
1817 
1818 	if (!tb_acpi_may_tunnel_dp()) {
1819 		tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n");
1820 		return;
1821 	}
1822 
1823 	/*
1824 	 * Find pair of inactive DP IN and DP OUT adapters and then
1825 	 * establish a DP tunnel between them.
1826 	 */
1827 	tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n");
1828 
1829 	in = NULL;
1830 	out = NULL;
1831 	list_for_each_entry(port, &tcm->dp_resources, list) {
1832 		if (!tb_port_is_dpin(port))
1833 			continue;
1834 
1835 		if (tb_port_is_enabled(port)) {
1836 			tb_port_dbg(port, "DP IN in use\n");
1837 			continue;
1838 		}
1839 
1840 		in = port;
1841 		tb_port_dbg(in, "DP IN available\n");
1842 
1843 		out = tb_find_dp_out(tb, port);
1844 		if (out)
1845 			tb_tunnel_one_dp(tb, in, out);
1846 		else
1847 			tb_port_dbg(in, "no suitable DP OUT adapter available, not tunneling\n");
1848 	}
1849 
1850 	if (!in)
1851 		tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n");
1852 }
1853 
1854 static void tb_enter_redrive(struct tb_port *port)
1855 {
1856 	struct tb_switch *sw = port->sw;
1857 
1858 	if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
1859 		return;
1860 
1861 	/*
1862 	 * If we get hot-unplug for the DP IN port of the host router
1863 	 * and the DP resource is not available anymore it means there
1864 	 * is a monitor connected directly to the Type-C port and we are
1865 	 * in "redrive" mode. For this to work we cannot enter RTD3 so
1866 	 * we bump up the runtime PM reference count here.
1867 	 */
1868 	if (!tb_port_is_dpin(port))
1869 		return;
1870 	if (tb_route(sw))
1871 		return;
1872 	if (!tb_switch_query_dp_resource(sw, port)) {
1873 		port->redrive = true;
1874 		pm_runtime_get(&sw->dev);
1875 		tb_port_dbg(port, "enter redrive mode, keeping powered\n");
1876 	}
1877 }
1878 
1879 static void tb_exit_redrive(struct tb_port *port)
1880 {
1881 	struct tb_switch *sw = port->sw;
1882 
1883 	if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
1884 		return;
1885 
1886 	if (!tb_port_is_dpin(port))
1887 		return;
1888 	if (tb_route(sw))
1889 		return;
1890 	if (port->redrive && tb_switch_query_dp_resource(sw, port)) {
1891 		port->redrive = false;
1892 		pm_runtime_put(&sw->dev);
1893 		tb_port_dbg(port, "exit redrive mode\n");
1894 	}
1895 }
1896 
1897 static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port)
1898 {
1899 	struct tb_port *in, *out;
1900 	struct tb_tunnel *tunnel;
1901 
1902 	if (tb_port_is_dpin(port)) {
1903 		tb_port_dbg(port, "DP IN resource unavailable\n");
1904 		in = port;
1905 		out = NULL;
1906 	} else {
1907 		tb_port_dbg(port, "DP OUT resource unavailable\n");
1908 		in = NULL;
1909 		out = port;
1910 	}
1911 
1912 	tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, out);
1913 	if (tunnel)
1914 		tb_deactivate_and_free_tunnel(tunnel);
1915 	else
1916 		tb_enter_redrive(port);
1917 	list_del_init(&port->list);
1918 
1919 	/*
1920 	 * See if there is another DP OUT port that can be used for
1921 	 * to create another tunnel.
1922 	 */
1923 	tb_recalc_estimated_bandwidth(tb);
1924 	tb_tunnel_dp(tb);
1925 }
1926 
1927 static void tb_dp_resource_available(struct tb *tb, struct tb_port *port)
1928 {
1929 	struct tb_cm *tcm = tb_priv(tb);
1930 	struct tb_port *p;
1931 
1932 	if (tb_port_is_enabled(port))
1933 		return;
1934 
1935 	list_for_each_entry(p, &tcm->dp_resources, list) {
1936 		if (p == port)
1937 			return;
1938 	}
1939 
1940 	tb_port_dbg(port, "DP %s resource available\n",
1941 		    tb_port_is_dpin(port) ? "IN" : "OUT");
1942 	list_add_tail(&port->list, &tcm->dp_resources);
1943 	tb_exit_redrive(port);
1944 
1945 	/* Look for suitable DP IN <-> DP OUT pairs now */
1946 	tb_tunnel_dp(tb);
1947 }
1948 
1949 static void tb_disconnect_and_release_dp(struct tb *tb)
1950 {
1951 	struct tb_cm *tcm = tb_priv(tb);
1952 	struct tb_tunnel *tunnel, *n;
1953 
1954 	/*
1955 	 * Tear down all DP tunnels and release their resources. They
1956 	 * will be re-established after resume based on plug events.
1957 	 */
1958 	list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) {
1959 		if (tb_tunnel_is_dp(tunnel))
1960 			tb_deactivate_and_free_tunnel(tunnel);
1961 	}
1962 
1963 	while (!list_empty(&tcm->dp_resources)) {
1964 		struct tb_port *port;
1965 
1966 		port = list_first_entry(&tcm->dp_resources,
1967 					struct tb_port, list);
1968 		list_del_init(&port->list);
1969 	}
1970 }
1971 
1972 static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw)
1973 {
1974 	struct tb_tunnel *tunnel;
1975 	struct tb_port *up;
1976 
1977 	up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
1978 	if (WARN_ON(!up))
1979 		return -ENODEV;
1980 
1981 	tunnel = tb_find_tunnel(tb, TB_TUNNEL_PCI, NULL, up);
1982 	if (WARN_ON(!tunnel))
1983 		return -ENODEV;
1984 
1985 	tb_switch_xhci_disconnect(sw);
1986 
1987 	tb_tunnel_deactivate(tunnel);
1988 	list_del(&tunnel->list);
1989 	tb_tunnel_free(tunnel);
1990 	return 0;
1991 }
1992 
1993 static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw)
1994 {
1995 	struct tb_port *up, *down, *port;
1996 	struct tb_cm *tcm = tb_priv(tb);
1997 	struct tb_tunnel *tunnel;
1998 
1999 	up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
2000 	if (!up)
2001 		return 0;
2002 
2003 	/*
2004 	 * Look up available down port. Since we are chaining it should
2005 	 * be found right above this switch.
2006 	 */
2007 	port = tb_switch_downstream_port(sw);
2008 	down = tb_find_pcie_down(tb_switch_parent(sw), port);
2009 	if (!down)
2010 		return 0;
2011 
2012 	tunnel = tb_tunnel_alloc_pci(tb, up, down);
2013 	if (!tunnel)
2014 		return -ENOMEM;
2015 
2016 	if (tb_tunnel_activate(tunnel)) {
2017 		tb_port_info(up,
2018 			     "PCIe tunnel activation failed, aborting\n");
2019 		tb_tunnel_free(tunnel);
2020 		return -EIO;
2021 	}
2022 
2023 	/*
2024 	 * PCIe L1 is needed to enable CL0s for Titan Ridge so enable it
2025 	 * here.
2026 	 */
2027 	if (tb_switch_pcie_l1_enable(sw))
2028 		tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n");
2029 
2030 	if (tb_switch_xhci_connect(sw))
2031 		tb_sw_warn(sw, "failed to connect xHCI\n");
2032 
2033 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2034 	return 0;
2035 }
2036 
2037 static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2038 				    int transmit_path, int transmit_ring,
2039 				    int receive_path, int receive_ring)
2040 {
2041 	struct tb_cm *tcm = tb_priv(tb);
2042 	struct tb_port *nhi_port, *dst_port;
2043 	struct tb_tunnel *tunnel;
2044 	struct tb_switch *sw;
2045 	int ret;
2046 
2047 	sw = tb_to_switch(xd->dev.parent);
2048 	dst_port = tb_port_at(xd->route, sw);
2049 	nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2050 
2051 	mutex_lock(&tb->lock);
2052 
2053 	/*
2054 	 * When tunneling DMA paths the link should not enter CL states
2055 	 * so disable them now.
2056 	 */
2057 	tb_disable_clx(sw);
2058 
2059 	tunnel = tb_tunnel_alloc_dma(tb, nhi_port, dst_port, transmit_path,
2060 				     transmit_ring, receive_path, receive_ring);
2061 	if (!tunnel) {
2062 		ret = -ENOMEM;
2063 		goto err_clx;
2064 	}
2065 
2066 	if (tb_tunnel_activate(tunnel)) {
2067 		tb_port_info(nhi_port,
2068 			     "DMA tunnel activation failed, aborting\n");
2069 		ret = -EIO;
2070 		goto err_free;
2071 	}
2072 
2073 	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2074 	mutex_unlock(&tb->lock);
2075 	return 0;
2076 
2077 err_free:
2078 	tb_tunnel_free(tunnel);
2079 err_clx:
2080 	tb_enable_clx(sw);
2081 	mutex_unlock(&tb->lock);
2082 
2083 	return ret;
2084 }
2085 
2086 static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2087 					  int transmit_path, int transmit_ring,
2088 					  int receive_path, int receive_ring)
2089 {
2090 	struct tb_cm *tcm = tb_priv(tb);
2091 	struct tb_port *nhi_port, *dst_port;
2092 	struct tb_tunnel *tunnel, *n;
2093 	struct tb_switch *sw;
2094 
2095 	sw = tb_to_switch(xd->dev.parent);
2096 	dst_port = tb_port_at(xd->route, sw);
2097 	nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2098 
2099 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2100 		if (!tb_tunnel_is_dma(tunnel))
2101 			continue;
2102 		if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port)
2103 			continue;
2104 
2105 		if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring,
2106 					receive_path, receive_ring))
2107 			tb_deactivate_and_free_tunnel(tunnel);
2108 	}
2109 
2110 	/*
2111 	 * Try to re-enable CL states now, it is OK if this fails
2112 	 * because we may still have another DMA tunnel active through
2113 	 * the same host router USB4 downstream port.
2114 	 */
2115 	tb_enable_clx(sw);
2116 }
2117 
2118 static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2119 				       int transmit_path, int transmit_ring,
2120 				       int receive_path, int receive_ring)
2121 {
2122 	if (!xd->is_unplugged) {
2123 		mutex_lock(&tb->lock);
2124 		__tb_disconnect_xdomain_paths(tb, xd, transmit_path,
2125 					      transmit_ring, receive_path,
2126 					      receive_ring);
2127 		mutex_unlock(&tb->lock);
2128 	}
2129 	return 0;
2130 }
2131 
2132 /* hotplug handling */
2133 
2134 /*
2135  * tb_handle_hotplug() - handle hotplug event
2136  *
2137  * Executes on tb->wq.
2138  */
2139 static void tb_handle_hotplug(struct work_struct *work)
2140 {
2141 	struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
2142 	struct tb *tb = ev->tb;
2143 	struct tb_cm *tcm = tb_priv(tb);
2144 	struct tb_switch *sw;
2145 	struct tb_port *port;
2146 
2147 	/* Bring the domain back from sleep if it was suspended */
2148 	pm_runtime_get_sync(&tb->dev);
2149 
2150 	mutex_lock(&tb->lock);
2151 	if (!tcm->hotplug_active)
2152 		goto out; /* during init, suspend or shutdown */
2153 
2154 	sw = tb_switch_find_by_route(tb, ev->route);
2155 	if (!sw) {
2156 		tb_warn(tb,
2157 			"hotplug event from non existent switch %llx:%x (unplug: %d)\n",
2158 			ev->route, ev->port, ev->unplug);
2159 		goto out;
2160 	}
2161 	if (ev->port > sw->config.max_port_number) {
2162 		tb_warn(tb,
2163 			"hotplug event from non existent port %llx:%x (unplug: %d)\n",
2164 			ev->route, ev->port, ev->unplug);
2165 		goto put_sw;
2166 	}
2167 	port = &sw->ports[ev->port];
2168 	if (tb_is_upstream_port(port)) {
2169 		tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n",
2170 		       ev->route, ev->port, ev->unplug);
2171 		goto put_sw;
2172 	}
2173 
2174 	pm_runtime_get_sync(&sw->dev);
2175 
2176 	if (ev->unplug) {
2177 		tb_retimer_remove_all(port);
2178 
2179 		if (tb_port_has_remote(port)) {
2180 			tb_port_dbg(port, "switch unplugged\n");
2181 			tb_sw_set_unplugged(port->remote->sw);
2182 			tb_free_invalid_tunnels(tb);
2183 			tb_remove_dp_resources(port->remote->sw);
2184 			tb_switch_tmu_disable(port->remote->sw);
2185 			tb_switch_unconfigure_link(port->remote->sw);
2186 			tb_switch_set_link_width(port->remote->sw,
2187 						 TB_LINK_WIDTH_SINGLE);
2188 			tb_switch_remove(port->remote->sw);
2189 			port->remote = NULL;
2190 			if (port->dual_link_port)
2191 				port->dual_link_port->remote = NULL;
2192 			/* Maybe we can create another DP tunnel */
2193 			tb_recalc_estimated_bandwidth(tb);
2194 			tb_tunnel_dp(tb);
2195 		} else if (port->xdomain) {
2196 			struct tb_xdomain *xd = tb_xdomain_get(port->xdomain);
2197 
2198 			tb_port_dbg(port, "xdomain unplugged\n");
2199 			/*
2200 			 * Service drivers are unbound during
2201 			 * tb_xdomain_remove() so setting XDomain as
2202 			 * unplugged here prevents deadlock if they call
2203 			 * tb_xdomain_disable_paths(). We will tear down
2204 			 * all the tunnels below.
2205 			 */
2206 			xd->is_unplugged = true;
2207 			tb_xdomain_remove(xd);
2208 			port->xdomain = NULL;
2209 			__tb_disconnect_xdomain_paths(tb, xd, -1, -1, -1, -1);
2210 			tb_xdomain_put(xd);
2211 			tb_port_unconfigure_xdomain(port);
2212 		} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2213 			tb_dp_resource_unavailable(tb, port);
2214 		} else if (!port->port) {
2215 			tb_sw_dbg(sw, "xHCI disconnect request\n");
2216 			tb_switch_xhci_disconnect(sw);
2217 		} else {
2218 			tb_port_dbg(port,
2219 				   "got unplug event for disconnected port, ignoring\n");
2220 		}
2221 	} else if (port->remote) {
2222 		tb_port_dbg(port, "got plug event for connected port, ignoring\n");
2223 	} else if (!port->port && sw->authorized) {
2224 		tb_sw_dbg(sw, "xHCI connect request\n");
2225 		tb_switch_xhci_connect(sw);
2226 	} else {
2227 		if (tb_port_is_null(port)) {
2228 			tb_port_dbg(port, "hotplug: scanning\n");
2229 			tb_scan_port(port);
2230 			if (!port->remote)
2231 				tb_port_dbg(port, "hotplug: no switch found\n");
2232 		} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2233 			tb_dp_resource_available(tb, port);
2234 		}
2235 	}
2236 
2237 	pm_runtime_mark_last_busy(&sw->dev);
2238 	pm_runtime_put_autosuspend(&sw->dev);
2239 
2240 put_sw:
2241 	tb_switch_put(sw);
2242 out:
2243 	mutex_unlock(&tb->lock);
2244 
2245 	pm_runtime_mark_last_busy(&tb->dev);
2246 	pm_runtime_put_autosuspend(&tb->dev);
2247 
2248 	kfree(ev);
2249 }
2250 
2251 static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up,
2252 				 int *requested_down)
2253 {
2254 	int allocated_up, allocated_down, available_up, available_down, ret;
2255 	int requested_up_corrected, requested_down_corrected, granularity;
2256 	int max_up, max_down, max_up_rounded, max_down_rounded;
2257 	struct tb *tb = tunnel->tb;
2258 	struct tb_port *in, *out;
2259 
2260 	ret = tb_tunnel_allocated_bandwidth(tunnel, &allocated_up, &allocated_down);
2261 	if (ret)
2262 		return ret;
2263 
2264 	in = tunnel->src_port;
2265 	out = tunnel->dst_port;
2266 
2267 	tb_port_dbg(in, "bandwidth allocated currently %d/%d Mb/s\n",
2268 		    allocated_up, allocated_down);
2269 
2270 	/*
2271 	 * If we get rounded up request from graphics side, say HBR2 x 4
2272 	 * that is 17500 instead of 17280 (this is because of the
2273 	 * granularity), we allow it too. Here the graphics has already
2274 	 * negotiated with the DPRX the maximum possible rates (which is
2275 	 * 17280 in this case).
2276 	 *
2277 	 * Since the link cannot go higher than 17280 we use that in our
2278 	 * calculations but the DP IN adapter Allocated BW write must be
2279 	 * the same value (17500) otherwise the adapter will mark it as
2280 	 * failed for graphics.
2281 	 */
2282 	ret = tb_tunnel_maximum_bandwidth(tunnel, &max_up, &max_down);
2283 	if (ret)
2284 		return ret;
2285 
2286 	ret = usb4_dp_port_granularity(in);
2287 	if (ret < 0)
2288 		return ret;
2289 	granularity = ret;
2290 
2291 	max_up_rounded = roundup(max_up, granularity);
2292 	max_down_rounded = roundup(max_down, granularity);
2293 
2294 	/*
2295 	 * This will "fix" the request down to the maximum supported
2296 	 * rate * lanes if it is at the maximum rounded up level.
2297 	 */
2298 	requested_up_corrected = *requested_up;
2299 	if (requested_up_corrected == max_up_rounded)
2300 		requested_up_corrected = max_up;
2301 	else if (requested_up_corrected < 0)
2302 		requested_up_corrected = 0;
2303 	requested_down_corrected = *requested_down;
2304 	if (requested_down_corrected == max_down_rounded)
2305 		requested_down_corrected = max_down;
2306 	else if (requested_down_corrected < 0)
2307 		requested_down_corrected = 0;
2308 
2309 	tb_port_dbg(in, "corrected bandwidth request %d/%d Mb/s\n",
2310 		    requested_up_corrected, requested_down_corrected);
2311 
2312 	if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) ||
2313 	    (*requested_down >= 0 && requested_down_corrected > max_down_rounded)) {
2314 		tb_port_dbg(in, "bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n",
2315 			    requested_up_corrected, requested_down_corrected,
2316 			    max_up_rounded, max_down_rounded);
2317 		return -ENOBUFS;
2318 	}
2319 
2320 	if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) ||
2321 	    (*requested_down >= 0 && requested_down_corrected <= allocated_down)) {
2322 		/*
2323 		 * If bandwidth on a link is < asym_threshold transition
2324 		 * the link to symmetric.
2325 		 */
2326 		tb_configure_sym(tb, in, out, *requested_up, *requested_down);
2327 		/*
2328 		 * If requested bandwidth is less or equal than what is
2329 		 * currently allocated to that tunnel we simply change
2330 		 * the reservation of the tunnel. Since all the tunnels
2331 		 * going out from the same USB4 port are in the same
2332 		 * group the released bandwidth will be taken into
2333 		 * account for the other tunnels automatically below.
2334 		 */
2335 		return tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2336 						 requested_down);
2337 	}
2338 
2339 	/*
2340 	 * More bandwidth is requested. Release all the potential
2341 	 * bandwidth from USB3 first.
2342 	 */
2343 	ret = tb_release_unused_usb3_bandwidth(tb, in, out);
2344 	if (ret)
2345 		return ret;
2346 
2347 	/*
2348 	 * Then go over all tunnels that cross the same USB4 ports (they
2349 	 * are also in the same group but we use the same function here
2350 	 * that we use with the normal bandwidth allocation).
2351 	 */
2352 	ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
2353 				     true);
2354 	if (ret)
2355 		goto reclaim;
2356 
2357 	tb_port_dbg(in, "bandwidth available for allocation %d/%d Mb/s\n",
2358 		    available_up, available_down);
2359 
2360 	if ((*requested_up >= 0 && available_up >= requested_up_corrected) ||
2361 	    (*requested_down >= 0 && available_down >= requested_down_corrected)) {
2362 		/*
2363 		 * If bandwidth on a link is >= asym_threshold
2364 		 * transition the link to asymmetric.
2365 		 */
2366 		ret = tb_configure_asym(tb, in, out, *requested_up,
2367 					*requested_down);
2368 		if (ret) {
2369 			tb_configure_sym(tb, in, out, 0, 0);
2370 			return ret;
2371 		}
2372 
2373 		ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2374 						requested_down);
2375 		if (ret) {
2376 			tb_tunnel_warn(tunnel, "failed to allocate bandwidth\n");
2377 			tb_configure_sym(tb, in, out, 0, 0);
2378 		}
2379 	} else {
2380 		ret = -ENOBUFS;
2381 	}
2382 
2383 reclaim:
2384 	tb_reclaim_usb3_bandwidth(tb, in, out);
2385 	return ret;
2386 }
2387 
2388 static void tb_handle_dp_bandwidth_request(struct work_struct *work)
2389 {
2390 	struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
2391 	int requested_bw, requested_up, requested_down, ret;
2392 	struct tb_port *in, *out;
2393 	struct tb_tunnel *tunnel;
2394 	struct tb *tb = ev->tb;
2395 	struct tb_cm *tcm = tb_priv(tb);
2396 	struct tb_switch *sw;
2397 
2398 	pm_runtime_get_sync(&tb->dev);
2399 
2400 	mutex_lock(&tb->lock);
2401 	if (!tcm->hotplug_active)
2402 		goto unlock;
2403 
2404 	sw = tb_switch_find_by_route(tb, ev->route);
2405 	if (!sw) {
2406 		tb_warn(tb, "bandwidth request from non-existent router %llx\n",
2407 			ev->route);
2408 		goto unlock;
2409 	}
2410 
2411 	in = &sw->ports[ev->port];
2412 	if (!tb_port_is_dpin(in)) {
2413 		tb_port_warn(in, "bandwidth request to non-DP IN adapter\n");
2414 		goto put_sw;
2415 	}
2416 
2417 	tb_port_dbg(in, "handling bandwidth allocation request\n");
2418 
2419 	if (!usb4_dp_port_bandwidth_mode_enabled(in)) {
2420 		tb_port_warn(in, "bandwidth allocation mode not enabled\n");
2421 		goto put_sw;
2422 	}
2423 
2424 	ret = usb4_dp_port_requested_bandwidth(in);
2425 	if (ret < 0) {
2426 		if (ret == -ENODATA)
2427 			tb_port_dbg(in, "no bandwidth request active\n");
2428 		else
2429 			tb_port_warn(in, "failed to read requested bandwidth\n");
2430 		goto put_sw;
2431 	}
2432 	requested_bw = ret;
2433 
2434 	tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw);
2435 
2436 	tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
2437 	if (!tunnel) {
2438 		tb_port_warn(in, "failed to find tunnel\n");
2439 		goto put_sw;
2440 	}
2441 
2442 	out = tunnel->dst_port;
2443 
2444 	if (tb_port_path_direction_downstream(in, out)) {
2445 		requested_up = -1;
2446 		requested_down = requested_bw;
2447 	} else {
2448 		requested_up = requested_bw;
2449 		requested_down = -1;
2450 	}
2451 
2452 	ret = tb_alloc_dp_bandwidth(tunnel, &requested_up, &requested_down);
2453 	if (ret) {
2454 		if (ret == -ENOBUFS)
2455 			tb_port_warn(in, "not enough bandwidth available\n");
2456 		else
2457 			tb_port_warn(in, "failed to change bandwidth allocation\n");
2458 	} else {
2459 		tb_port_dbg(in, "bandwidth allocation changed to %d/%d Mb/s\n",
2460 			    requested_up, requested_down);
2461 
2462 		/* Update other clients about the allocation change */
2463 		tb_recalc_estimated_bandwidth(tb);
2464 	}
2465 
2466 put_sw:
2467 	tb_switch_put(sw);
2468 unlock:
2469 	mutex_unlock(&tb->lock);
2470 
2471 	pm_runtime_mark_last_busy(&tb->dev);
2472 	pm_runtime_put_autosuspend(&tb->dev);
2473 
2474 	kfree(ev);
2475 }
2476 
2477 static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port)
2478 {
2479 	struct tb_hotplug_event *ev;
2480 
2481 	ev = kmalloc(sizeof(*ev), GFP_KERNEL);
2482 	if (!ev)
2483 		return;
2484 
2485 	ev->tb = tb;
2486 	ev->route = route;
2487 	ev->port = port;
2488 	INIT_WORK(&ev->work, tb_handle_dp_bandwidth_request);
2489 	queue_work(tb->wq, &ev->work);
2490 }
2491 
2492 static void tb_handle_notification(struct tb *tb, u64 route,
2493 				   const struct cfg_error_pkg *error)
2494 {
2495 
2496 	switch (error->error) {
2497 	case TB_CFG_ERROR_PCIE_WAKE:
2498 	case TB_CFG_ERROR_DP_CON_CHANGE:
2499 	case TB_CFG_ERROR_DPTX_DISCOVERY:
2500 		if (tb_cfg_ack_notification(tb->ctl, route, error))
2501 			tb_warn(tb, "could not ack notification on %llx\n",
2502 				route);
2503 		break;
2504 
2505 	case TB_CFG_ERROR_DP_BW:
2506 		if (tb_cfg_ack_notification(tb->ctl, route, error))
2507 			tb_warn(tb, "could not ack notification on %llx\n",
2508 				route);
2509 		tb_queue_dp_bandwidth_request(tb, route, error->port);
2510 		break;
2511 
2512 	default:
2513 		/* Ignore for now */
2514 		break;
2515 	}
2516 }
2517 
2518 /*
2519  * tb_schedule_hotplug_handler() - callback function for the control channel
2520  *
2521  * Delegates to tb_handle_hotplug.
2522  */
2523 static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type,
2524 			    const void *buf, size_t size)
2525 {
2526 	const struct cfg_event_pkg *pkg = buf;
2527 	u64 route = tb_cfg_get_route(&pkg->header);
2528 
2529 	switch (type) {
2530 	case TB_CFG_PKG_ERROR:
2531 		tb_handle_notification(tb, route, (const struct cfg_error_pkg *)buf);
2532 		return;
2533 	case TB_CFG_PKG_EVENT:
2534 		break;
2535 	default:
2536 		tb_warn(tb, "unexpected event %#x, ignoring\n", type);
2537 		return;
2538 	}
2539 
2540 	if (tb_cfg_ack_plug(tb->ctl, route, pkg->port, pkg->unplug)) {
2541 		tb_warn(tb, "could not ack plug event on %llx:%x\n", route,
2542 			pkg->port);
2543 	}
2544 
2545 	tb_queue_hotplug(tb, route, pkg->port, pkg->unplug);
2546 }
2547 
2548 static void tb_stop(struct tb *tb)
2549 {
2550 	struct tb_cm *tcm = tb_priv(tb);
2551 	struct tb_tunnel *tunnel;
2552 	struct tb_tunnel *n;
2553 
2554 	cancel_delayed_work(&tcm->remove_work);
2555 	/* tunnels are only present after everything has been initialized */
2556 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2557 		/*
2558 		 * DMA tunnels require the driver to be functional so we
2559 		 * tear them down. Other protocol tunnels can be left
2560 		 * intact.
2561 		 */
2562 		if (tb_tunnel_is_dma(tunnel))
2563 			tb_tunnel_deactivate(tunnel);
2564 		tb_tunnel_free(tunnel);
2565 	}
2566 	tb_switch_remove(tb->root_switch);
2567 	tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2568 }
2569 
2570 static int tb_scan_finalize_switch(struct device *dev, void *data)
2571 {
2572 	if (tb_is_switch(dev)) {
2573 		struct tb_switch *sw = tb_to_switch(dev);
2574 
2575 		/*
2576 		 * If we found that the switch was already setup by the
2577 		 * boot firmware, mark it as authorized now before we
2578 		 * send uevent to userspace.
2579 		 */
2580 		if (sw->boot)
2581 			sw->authorized = 1;
2582 
2583 		dev_set_uevent_suppress(dev, false);
2584 		kobject_uevent(&dev->kobj, KOBJ_ADD);
2585 		device_for_each_child(dev, NULL, tb_scan_finalize_switch);
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 static int tb_start(struct tb *tb, bool reset)
2592 {
2593 	struct tb_cm *tcm = tb_priv(tb);
2594 	int ret;
2595 
2596 	tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0);
2597 	if (IS_ERR(tb->root_switch))
2598 		return PTR_ERR(tb->root_switch);
2599 
2600 	/*
2601 	 * ICM firmware upgrade needs running firmware and in native
2602 	 * mode that is not available so disable firmware upgrade of the
2603 	 * root switch.
2604 	 *
2605 	 * However, USB4 routers support NVM firmware upgrade if they
2606 	 * implement the necessary router operations.
2607 	 */
2608 	tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(tb->root_switch);
2609 	/* All USB4 routers support runtime PM */
2610 	tb->root_switch->rpm = tb_switch_is_usb4(tb->root_switch);
2611 
2612 	ret = tb_switch_configure(tb->root_switch);
2613 	if (ret) {
2614 		tb_switch_put(tb->root_switch);
2615 		return ret;
2616 	}
2617 
2618 	/* Announce the switch to the world */
2619 	ret = tb_switch_add(tb->root_switch);
2620 	if (ret) {
2621 		tb_switch_put(tb->root_switch);
2622 		return ret;
2623 	}
2624 
2625 	/*
2626 	 * To support highest CLx state, we set host router's TMU to
2627 	 * Normal mode.
2628 	 */
2629 	tb_switch_tmu_configure(tb->root_switch, TB_SWITCH_TMU_MODE_LOWRES);
2630 	/* Enable TMU if it is off */
2631 	tb_switch_tmu_enable(tb->root_switch);
2632 
2633 	/*
2634 	 * Boot firmware might have created tunnels of its own. Since we
2635 	 * cannot be sure they are usable for us, tear them down and
2636 	 * reset the ports to handle it as new hotplug for USB4 v1
2637 	 * routers (for USB4 v2 and beyond we already do host reset).
2638 	 */
2639 	if (reset && usb4_switch_version(tb->root_switch) == 1) {
2640 		tb_switch_reset(tb->root_switch);
2641 	} else {
2642 		/* Full scan to discover devices added before the driver was loaded. */
2643 		tb_scan_switch(tb->root_switch);
2644 		/* Find out tunnels created by the boot firmware */
2645 		tb_discover_tunnels(tb);
2646 		/* Add DP resources from the DP tunnels created by the boot firmware */
2647 		tb_discover_dp_resources(tb);
2648 	}
2649 
2650 	/*
2651 	 * If the boot firmware did not create USB 3.x tunnels create them
2652 	 * now for the whole topology.
2653 	 */
2654 	tb_create_usb3_tunnels(tb->root_switch);
2655 	/* Add DP IN resources for the root switch */
2656 	tb_add_dp_resources(tb->root_switch);
2657 	/* Make the discovered switches available to the userspace */
2658 	device_for_each_child(&tb->root_switch->dev, NULL,
2659 			      tb_scan_finalize_switch);
2660 
2661 	/* Allow tb_handle_hotplug to progress events */
2662 	tcm->hotplug_active = true;
2663 	return 0;
2664 }
2665 
2666 static int tb_suspend_noirq(struct tb *tb)
2667 {
2668 	struct tb_cm *tcm = tb_priv(tb);
2669 
2670 	tb_dbg(tb, "suspending...\n");
2671 	tb_disconnect_and_release_dp(tb);
2672 	tb_switch_suspend(tb->root_switch, false);
2673 	tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2674 	tb_dbg(tb, "suspend finished\n");
2675 
2676 	return 0;
2677 }
2678 
2679 static void tb_restore_children(struct tb_switch *sw)
2680 {
2681 	struct tb_port *port;
2682 
2683 	/* No need to restore if the router is already unplugged */
2684 	if (sw->is_unplugged)
2685 		return;
2686 
2687 	if (tb_enable_clx(sw))
2688 		tb_sw_warn(sw, "failed to re-enable CL states\n");
2689 
2690 	if (tb_enable_tmu(sw))
2691 		tb_sw_warn(sw, "failed to restore TMU configuration\n");
2692 
2693 	tb_switch_configuration_valid(sw);
2694 
2695 	tb_switch_for_each_port(sw, port) {
2696 		if (!tb_port_has_remote(port) && !port->xdomain)
2697 			continue;
2698 
2699 		if (port->remote) {
2700 			tb_switch_set_link_width(port->remote->sw,
2701 						 port->remote->sw->link_width);
2702 			tb_switch_configure_link(port->remote->sw);
2703 
2704 			tb_restore_children(port->remote->sw);
2705 		} else if (port->xdomain) {
2706 			tb_port_configure_xdomain(port, port->xdomain);
2707 		}
2708 	}
2709 }
2710 
2711 static int tb_resume_noirq(struct tb *tb)
2712 {
2713 	struct tb_cm *tcm = tb_priv(tb);
2714 	struct tb_tunnel *tunnel, *n;
2715 	unsigned int usb3_delay = 0;
2716 	LIST_HEAD(tunnels);
2717 
2718 	tb_dbg(tb, "resuming...\n");
2719 
2720 	/*
2721 	 * For non-USB4 hosts (Apple systems) remove any PCIe devices
2722 	 * the firmware might have setup.
2723 	 */
2724 	if (!tb_switch_is_usb4(tb->root_switch))
2725 		tb_switch_reset(tb->root_switch);
2726 
2727 	tb_switch_resume(tb->root_switch, false);
2728 	tb_free_invalid_tunnels(tb);
2729 	tb_free_unplugged_children(tb->root_switch);
2730 	tb_restore_children(tb->root_switch);
2731 
2732 	/*
2733 	 * If we get here from suspend to disk the boot firmware or the
2734 	 * restore kernel might have created tunnels of its own. Since
2735 	 * we cannot be sure they are usable for us we find and tear
2736 	 * them down.
2737 	 */
2738 	tb_switch_discover_tunnels(tb->root_switch, &tunnels, false);
2739 	list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) {
2740 		if (tb_tunnel_is_usb3(tunnel))
2741 			usb3_delay = 500;
2742 		tb_tunnel_deactivate(tunnel);
2743 		tb_tunnel_free(tunnel);
2744 	}
2745 
2746 	/* Re-create our tunnels now */
2747 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2748 		/* USB3 requires delay before it can be re-activated */
2749 		if (tb_tunnel_is_usb3(tunnel)) {
2750 			msleep(usb3_delay);
2751 			/* Only need to do it once */
2752 			usb3_delay = 0;
2753 		}
2754 		tb_tunnel_restart(tunnel);
2755 	}
2756 	if (!list_empty(&tcm->tunnel_list)) {
2757 		/*
2758 		 * the pcie links need some time to get going.
2759 		 * 100ms works for me...
2760 		 */
2761 		tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n");
2762 		msleep(100);
2763 	}
2764 	 /* Allow tb_handle_hotplug to progress events */
2765 	tcm->hotplug_active = true;
2766 	tb_dbg(tb, "resume finished\n");
2767 
2768 	return 0;
2769 }
2770 
2771 static int tb_free_unplugged_xdomains(struct tb_switch *sw)
2772 {
2773 	struct tb_port *port;
2774 	int ret = 0;
2775 
2776 	tb_switch_for_each_port(sw, port) {
2777 		if (tb_is_upstream_port(port))
2778 			continue;
2779 		if (port->xdomain && port->xdomain->is_unplugged) {
2780 			tb_retimer_remove_all(port);
2781 			tb_xdomain_remove(port->xdomain);
2782 			tb_port_unconfigure_xdomain(port);
2783 			port->xdomain = NULL;
2784 			ret++;
2785 		} else if (port->remote) {
2786 			ret += tb_free_unplugged_xdomains(port->remote->sw);
2787 		}
2788 	}
2789 
2790 	return ret;
2791 }
2792 
2793 static int tb_freeze_noirq(struct tb *tb)
2794 {
2795 	struct tb_cm *tcm = tb_priv(tb);
2796 
2797 	tcm->hotplug_active = false;
2798 	return 0;
2799 }
2800 
2801 static int tb_thaw_noirq(struct tb *tb)
2802 {
2803 	struct tb_cm *tcm = tb_priv(tb);
2804 
2805 	tcm->hotplug_active = true;
2806 	return 0;
2807 }
2808 
2809 static void tb_complete(struct tb *tb)
2810 {
2811 	/*
2812 	 * Release any unplugged XDomains and if there is a case where
2813 	 * another domain is swapped in place of unplugged XDomain we
2814 	 * need to run another rescan.
2815 	 */
2816 	mutex_lock(&tb->lock);
2817 	if (tb_free_unplugged_xdomains(tb->root_switch))
2818 		tb_scan_switch(tb->root_switch);
2819 	mutex_unlock(&tb->lock);
2820 }
2821 
2822 static int tb_runtime_suspend(struct tb *tb)
2823 {
2824 	struct tb_cm *tcm = tb_priv(tb);
2825 
2826 	mutex_lock(&tb->lock);
2827 	tb_switch_suspend(tb->root_switch, true);
2828 	tcm->hotplug_active = false;
2829 	mutex_unlock(&tb->lock);
2830 
2831 	return 0;
2832 }
2833 
2834 static void tb_remove_work(struct work_struct *work)
2835 {
2836 	struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work);
2837 	struct tb *tb = tcm_to_tb(tcm);
2838 
2839 	mutex_lock(&tb->lock);
2840 	if (tb->root_switch) {
2841 		tb_free_unplugged_children(tb->root_switch);
2842 		tb_free_unplugged_xdomains(tb->root_switch);
2843 	}
2844 	mutex_unlock(&tb->lock);
2845 }
2846 
2847 static int tb_runtime_resume(struct tb *tb)
2848 {
2849 	struct tb_cm *tcm = tb_priv(tb);
2850 	struct tb_tunnel *tunnel, *n;
2851 
2852 	mutex_lock(&tb->lock);
2853 	tb_switch_resume(tb->root_switch, true);
2854 	tb_free_invalid_tunnels(tb);
2855 	tb_restore_children(tb->root_switch);
2856 	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list)
2857 		tb_tunnel_restart(tunnel);
2858 	tcm->hotplug_active = true;
2859 	mutex_unlock(&tb->lock);
2860 
2861 	/*
2862 	 * Schedule cleanup of any unplugged devices. Run this in a
2863 	 * separate thread to avoid possible deadlock if the device
2864 	 * removal runtime resumes the unplugged device.
2865 	 */
2866 	queue_delayed_work(tb->wq, &tcm->remove_work, msecs_to_jiffies(50));
2867 	return 0;
2868 }
2869 
2870 static const struct tb_cm_ops tb_cm_ops = {
2871 	.start = tb_start,
2872 	.stop = tb_stop,
2873 	.suspend_noirq = tb_suspend_noirq,
2874 	.resume_noirq = tb_resume_noirq,
2875 	.freeze_noirq = tb_freeze_noirq,
2876 	.thaw_noirq = tb_thaw_noirq,
2877 	.complete = tb_complete,
2878 	.runtime_suspend = tb_runtime_suspend,
2879 	.runtime_resume = tb_runtime_resume,
2880 	.handle_event = tb_handle_event,
2881 	.disapprove_switch = tb_disconnect_pci,
2882 	.approve_switch = tb_tunnel_pci,
2883 	.approve_xdomain_paths = tb_approve_xdomain_paths,
2884 	.disconnect_xdomain_paths = tb_disconnect_xdomain_paths,
2885 };
2886 
2887 /*
2888  * During suspend the Thunderbolt controller is reset and all PCIe
2889  * tunnels are lost. The NHI driver will try to reestablish all tunnels
2890  * during resume. This adds device links between the tunneled PCIe
2891  * downstream ports and the NHI so that the device core will make sure
2892  * NHI is resumed first before the rest.
2893  */
2894 static bool tb_apple_add_links(struct tb_nhi *nhi)
2895 {
2896 	struct pci_dev *upstream, *pdev;
2897 	bool ret;
2898 
2899 	if (!x86_apple_machine)
2900 		return false;
2901 
2902 	switch (nhi->pdev->device) {
2903 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2904 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2905 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
2906 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
2907 		break;
2908 	default:
2909 		return false;
2910 	}
2911 
2912 	upstream = pci_upstream_bridge(nhi->pdev);
2913 	while (upstream) {
2914 		if (!pci_is_pcie(upstream))
2915 			return false;
2916 		if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
2917 			break;
2918 		upstream = pci_upstream_bridge(upstream);
2919 	}
2920 
2921 	if (!upstream)
2922 		return false;
2923 
2924 	/*
2925 	 * For each hotplug downstream port, create add device link
2926 	 * back to NHI so that PCIe tunnels can be re-established after
2927 	 * sleep.
2928 	 */
2929 	ret = false;
2930 	for_each_pci_bridge(pdev, upstream->subordinate) {
2931 		const struct device_link *link;
2932 
2933 		if (!pci_is_pcie(pdev))
2934 			continue;
2935 		if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
2936 		    !pdev->is_hotplug_bridge)
2937 			continue;
2938 
2939 		link = device_link_add(&pdev->dev, &nhi->pdev->dev,
2940 				       DL_FLAG_AUTOREMOVE_SUPPLIER |
2941 				       DL_FLAG_PM_RUNTIME);
2942 		if (link) {
2943 			dev_dbg(&nhi->pdev->dev, "created link from %s\n",
2944 				dev_name(&pdev->dev));
2945 			ret = true;
2946 		} else {
2947 			dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
2948 				 dev_name(&pdev->dev));
2949 		}
2950 	}
2951 
2952 	return ret;
2953 }
2954 
2955 struct tb *tb_probe(struct tb_nhi *nhi)
2956 {
2957 	struct tb_cm *tcm;
2958 	struct tb *tb;
2959 
2960 	tb = tb_domain_alloc(nhi, TB_TIMEOUT, sizeof(*tcm));
2961 	if (!tb)
2962 		return NULL;
2963 
2964 	if (tb_acpi_may_tunnel_pcie())
2965 		tb->security_level = TB_SECURITY_USER;
2966 	else
2967 		tb->security_level = TB_SECURITY_NOPCIE;
2968 
2969 	tb->cm_ops = &tb_cm_ops;
2970 
2971 	tcm = tb_priv(tb);
2972 	INIT_LIST_HEAD(&tcm->tunnel_list);
2973 	INIT_LIST_HEAD(&tcm->dp_resources);
2974 	INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work);
2975 	tb_init_bandwidth_groups(tcm);
2976 
2977 	tb_dbg(tb, "using software connection manager\n");
2978 
2979 	/*
2980 	 * Device links are needed to make sure we establish tunnels
2981 	 * before the PCIe/USB stack is resumed so complain here if we
2982 	 * found them missing.
2983 	 */
2984 	if (!tb_apple_add_links(nhi) && !tb_acpi_add_links(nhi))
2985 		tb_warn(tb, "device links to tunneled native ports are missing!\n");
2986 
2987 	return tb;
2988 }
2989