xref: /openbmc/linux/drivers/thunderbolt/switch.c (revision f7eeb00845934851b580b188f079545ab176fa5c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 
18 #include "tb.h"
19 
20 /* Switch NVM support */
21 
22 struct nvm_auth_status {
23 	struct list_head list;
24 	uuid_t uuid;
25 	u32 status;
26 };
27 
28 static bool clx_enabled = true;
29 module_param_named(clx, clx_enabled, bool, 0444);
30 MODULE_PARM_DESC(clx, "allow low power states on the high-speed lanes (default: true)");
31 
32 /*
33  * Hold NVM authentication failure status per switch This information
34  * needs to stay around even when the switch gets power cycled so we
35  * keep it separately.
36  */
37 static LIST_HEAD(nvm_auth_status_cache);
38 static DEFINE_MUTEX(nvm_auth_status_lock);
39 
40 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
41 {
42 	struct nvm_auth_status *st;
43 
44 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
45 		if (uuid_equal(&st->uuid, sw->uuid))
46 			return st;
47 	}
48 
49 	return NULL;
50 }
51 
52 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
53 {
54 	struct nvm_auth_status *st;
55 
56 	mutex_lock(&nvm_auth_status_lock);
57 	st = __nvm_get_auth_status(sw);
58 	mutex_unlock(&nvm_auth_status_lock);
59 
60 	*status = st ? st->status : 0;
61 }
62 
63 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
64 {
65 	struct nvm_auth_status *st;
66 
67 	if (WARN_ON(!sw->uuid))
68 		return;
69 
70 	mutex_lock(&nvm_auth_status_lock);
71 	st = __nvm_get_auth_status(sw);
72 
73 	if (!st) {
74 		st = kzalloc(sizeof(*st), GFP_KERNEL);
75 		if (!st)
76 			goto unlock;
77 
78 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
79 		INIT_LIST_HEAD(&st->list);
80 		list_add_tail(&st->list, &nvm_auth_status_cache);
81 	}
82 
83 	st->status = status;
84 unlock:
85 	mutex_unlock(&nvm_auth_status_lock);
86 }
87 
88 static void nvm_clear_auth_status(const struct tb_switch *sw)
89 {
90 	struct nvm_auth_status *st;
91 
92 	mutex_lock(&nvm_auth_status_lock);
93 	st = __nvm_get_auth_status(sw);
94 	if (st) {
95 		list_del(&st->list);
96 		kfree(st);
97 	}
98 	mutex_unlock(&nvm_auth_status_lock);
99 }
100 
101 static int nvm_validate_and_write(struct tb_switch *sw)
102 {
103 	unsigned int image_size;
104 	const u8 *buf;
105 	int ret;
106 
107 	ret = tb_nvm_validate(sw->nvm);
108 	if (ret)
109 		return ret;
110 
111 	ret = tb_nvm_write_headers(sw->nvm);
112 	if (ret)
113 		return ret;
114 
115 	buf = sw->nvm->buf_data_start;
116 	image_size = sw->nvm->buf_data_size;
117 
118 	if (tb_switch_is_usb4(sw))
119 		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
120 	else
121 		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
122 	if (ret)
123 		return ret;
124 
125 	sw->nvm->flushed = true;
126 	return 0;
127 }
128 
129 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
130 {
131 	int ret = 0;
132 
133 	/*
134 	 * Root switch NVM upgrade requires that we disconnect the
135 	 * existing paths first (in case it is not in safe mode
136 	 * already).
137 	 */
138 	if (!sw->safe_mode) {
139 		u32 status;
140 
141 		ret = tb_domain_disconnect_all_paths(sw->tb);
142 		if (ret)
143 			return ret;
144 		/*
145 		 * The host controller goes away pretty soon after this if
146 		 * everything goes well so getting timeout is expected.
147 		 */
148 		ret = dma_port_flash_update_auth(sw->dma_port);
149 		if (!ret || ret == -ETIMEDOUT)
150 			return 0;
151 
152 		/*
153 		 * Any error from update auth operation requires power
154 		 * cycling of the host router.
155 		 */
156 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
157 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
158 			nvm_set_auth_status(sw, status);
159 	}
160 
161 	/*
162 	 * From safe mode we can get out by just power cycling the
163 	 * switch.
164 	 */
165 	dma_port_power_cycle(sw->dma_port);
166 	return ret;
167 }
168 
169 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
170 {
171 	int ret, retries = 10;
172 
173 	ret = dma_port_flash_update_auth(sw->dma_port);
174 	switch (ret) {
175 	case 0:
176 	case -ETIMEDOUT:
177 	case -EACCES:
178 	case -EINVAL:
179 		/* Power cycle is required */
180 		break;
181 	default:
182 		return ret;
183 	}
184 
185 	/*
186 	 * Poll here for the authentication status. It takes some time
187 	 * for the device to respond (we get timeout for a while). Once
188 	 * we get response the device needs to be power cycled in order
189 	 * to the new NVM to be taken into use.
190 	 */
191 	do {
192 		u32 status;
193 
194 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
195 		if (ret < 0 && ret != -ETIMEDOUT)
196 			return ret;
197 		if (ret > 0) {
198 			if (status) {
199 				tb_sw_warn(sw, "failed to authenticate NVM\n");
200 				nvm_set_auth_status(sw, status);
201 			}
202 
203 			tb_sw_info(sw, "power cycling the switch now\n");
204 			dma_port_power_cycle(sw->dma_port);
205 			return 0;
206 		}
207 
208 		msleep(500);
209 	} while (--retries);
210 
211 	return -ETIMEDOUT;
212 }
213 
214 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
215 {
216 	struct pci_dev *root_port;
217 
218 	/*
219 	 * During host router NVM upgrade we should not allow root port to
220 	 * go into D3cold because some root ports cannot trigger PME
221 	 * itself. To be on the safe side keep the root port in D0 during
222 	 * the whole upgrade process.
223 	 */
224 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
225 	if (root_port)
226 		pm_runtime_get_noresume(&root_port->dev);
227 }
228 
229 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
230 {
231 	struct pci_dev *root_port;
232 
233 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
234 	if (root_port)
235 		pm_runtime_put(&root_port->dev);
236 }
237 
238 static inline bool nvm_readable(struct tb_switch *sw)
239 {
240 	if (tb_switch_is_usb4(sw)) {
241 		/*
242 		 * USB4 devices must support NVM operations but it is
243 		 * optional for hosts. Therefore we query the NVM sector
244 		 * size here and if it is supported assume NVM
245 		 * operations are implemented.
246 		 */
247 		return usb4_switch_nvm_sector_size(sw) > 0;
248 	}
249 
250 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
251 	return !!sw->dma_port;
252 }
253 
254 static inline bool nvm_upgradeable(struct tb_switch *sw)
255 {
256 	if (sw->no_nvm_upgrade)
257 		return false;
258 	return nvm_readable(sw);
259 }
260 
261 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
262 {
263 	int ret;
264 
265 	if (tb_switch_is_usb4(sw)) {
266 		if (auth_only) {
267 			ret = usb4_switch_nvm_set_offset(sw, 0);
268 			if (ret)
269 				return ret;
270 		}
271 		sw->nvm->authenticating = true;
272 		return usb4_switch_nvm_authenticate(sw);
273 	} else if (auth_only) {
274 		return -EOPNOTSUPP;
275 	}
276 
277 	sw->nvm->authenticating = true;
278 	if (!tb_route(sw)) {
279 		nvm_authenticate_start_dma_port(sw);
280 		ret = nvm_authenticate_host_dma_port(sw);
281 	} else {
282 		ret = nvm_authenticate_device_dma_port(sw);
283 	}
284 
285 	return ret;
286 }
287 
288 /**
289  * tb_switch_nvm_read() - Read router NVM
290  * @sw: Router whose NVM to read
291  * @address: Start address on the NVM
292  * @buf: Buffer where the read data is copied
293  * @size: Size of the buffer in bytes
294  *
295  * Reads from router NVM and returns the requested data in @buf. Locking
296  * is up to the caller. Returns %0 in success and negative errno in case
297  * of failure.
298  */
299 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
300 		       size_t size)
301 {
302 	if (tb_switch_is_usb4(sw))
303 		return usb4_switch_nvm_read(sw, address, buf, size);
304 	return dma_port_flash_read(sw->dma_port, address, buf, size);
305 }
306 
307 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
308 {
309 	struct tb_nvm *nvm = priv;
310 	struct tb_switch *sw = tb_to_switch(nvm->dev);
311 	int ret;
312 
313 	pm_runtime_get_sync(&sw->dev);
314 
315 	if (!mutex_trylock(&sw->tb->lock)) {
316 		ret = restart_syscall();
317 		goto out;
318 	}
319 
320 	ret = tb_switch_nvm_read(sw, offset, val, bytes);
321 	mutex_unlock(&sw->tb->lock);
322 
323 out:
324 	pm_runtime_mark_last_busy(&sw->dev);
325 	pm_runtime_put_autosuspend(&sw->dev);
326 
327 	return ret;
328 }
329 
330 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
331 {
332 	struct tb_nvm *nvm = priv;
333 	struct tb_switch *sw = tb_to_switch(nvm->dev);
334 	int ret;
335 
336 	if (!mutex_trylock(&sw->tb->lock))
337 		return restart_syscall();
338 
339 	/*
340 	 * Since writing the NVM image might require some special steps,
341 	 * for example when CSS headers are written, we cache the image
342 	 * locally here and handle the special cases when the user asks
343 	 * us to authenticate the image.
344 	 */
345 	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
346 	mutex_unlock(&sw->tb->lock);
347 
348 	return ret;
349 }
350 
351 static int tb_switch_nvm_add(struct tb_switch *sw)
352 {
353 	struct tb_nvm *nvm;
354 	int ret;
355 
356 	if (!nvm_readable(sw))
357 		return 0;
358 
359 	nvm = tb_nvm_alloc(&sw->dev);
360 	if (IS_ERR(nvm)) {
361 		ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
362 		goto err_nvm;
363 	}
364 
365 	ret = tb_nvm_read_version(nvm);
366 	if (ret)
367 		goto err_nvm;
368 
369 	/*
370 	 * If the switch is in safe-mode the only accessible portion of
371 	 * the NVM is the non-active one where userspace is expected to
372 	 * write new functional NVM.
373 	 */
374 	if (!sw->safe_mode) {
375 		ret = tb_nvm_add_active(nvm, nvm_read);
376 		if (ret)
377 			goto err_nvm;
378 	}
379 
380 	if (!sw->no_nvm_upgrade) {
381 		ret = tb_nvm_add_non_active(nvm, nvm_write);
382 		if (ret)
383 			goto err_nvm;
384 	}
385 
386 	sw->nvm = nvm;
387 	return 0;
388 
389 err_nvm:
390 	tb_sw_dbg(sw, "NVM upgrade disabled\n");
391 	sw->no_nvm_upgrade = true;
392 	if (!IS_ERR(nvm))
393 		tb_nvm_free(nvm);
394 
395 	return ret;
396 }
397 
398 static void tb_switch_nvm_remove(struct tb_switch *sw)
399 {
400 	struct tb_nvm *nvm;
401 
402 	nvm = sw->nvm;
403 	sw->nvm = NULL;
404 
405 	if (!nvm)
406 		return;
407 
408 	/* Remove authentication status in case the switch is unplugged */
409 	if (!nvm->authenticating)
410 		nvm_clear_auth_status(sw);
411 
412 	tb_nvm_free(nvm);
413 }
414 
415 /* port utility functions */
416 
417 static const char *tb_port_type(const struct tb_regs_port_header *port)
418 {
419 	switch (port->type >> 16) {
420 	case 0:
421 		switch ((u8) port->type) {
422 		case 0:
423 			return "Inactive";
424 		case 1:
425 			return "Port";
426 		case 2:
427 			return "NHI";
428 		default:
429 			return "unknown";
430 		}
431 	case 0x2:
432 		return "Ethernet";
433 	case 0x8:
434 		return "SATA";
435 	case 0xe:
436 		return "DP/HDMI";
437 	case 0x10:
438 		return "PCIe";
439 	case 0x20:
440 		return "USB";
441 	default:
442 		return "unknown";
443 	}
444 }
445 
446 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
447 {
448 	const struct tb_regs_port_header *regs = &port->config;
449 
450 	tb_dbg(tb,
451 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
452 	       regs->port_number, regs->vendor_id, regs->device_id,
453 	       regs->revision, regs->thunderbolt_version, tb_port_type(regs),
454 	       regs->type);
455 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
456 	       regs->max_in_hop_id, regs->max_out_hop_id);
457 	tb_dbg(tb, "  Max counters: %d\n", regs->max_counters);
458 	tb_dbg(tb, "  NFC Credits: %#x\n", regs->nfc_credits);
459 	tb_dbg(tb, "  Credits (total/control): %u/%u\n", port->total_credits,
460 	       port->ctl_credits);
461 }
462 
463 /**
464  * tb_port_state() - get connectedness state of a port
465  * @port: the port to check
466  *
467  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
468  *
469  * Return: Returns an enum tb_port_state on success or an error code on failure.
470  */
471 int tb_port_state(struct tb_port *port)
472 {
473 	struct tb_cap_phy phy;
474 	int res;
475 	if (port->cap_phy == 0) {
476 		tb_port_WARN(port, "does not have a PHY\n");
477 		return -EINVAL;
478 	}
479 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
480 	if (res)
481 		return res;
482 	return phy.state;
483 }
484 
485 /**
486  * tb_wait_for_port() - wait for a port to become ready
487  * @port: Port to wait
488  * @wait_if_unplugged: Wait also when port is unplugged
489  *
490  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
491  * wait_if_unplugged is set then we also wait if the port is in state
492  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
493  * switch resume). Otherwise we only wait if a device is registered but the link
494  * has not yet been established.
495  *
496  * Return: Returns an error code on failure. Returns 0 if the port is not
497  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
498  * if the port is connected and in state TB_PORT_UP.
499  */
500 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
501 {
502 	int retries = 10;
503 	int state;
504 	if (!port->cap_phy) {
505 		tb_port_WARN(port, "does not have PHY\n");
506 		return -EINVAL;
507 	}
508 	if (tb_is_upstream_port(port)) {
509 		tb_port_WARN(port, "is the upstream port\n");
510 		return -EINVAL;
511 	}
512 
513 	while (retries--) {
514 		state = tb_port_state(port);
515 		if (state < 0)
516 			return state;
517 		if (state == TB_PORT_DISABLED) {
518 			tb_port_dbg(port, "is disabled (state: 0)\n");
519 			return 0;
520 		}
521 		if (state == TB_PORT_UNPLUGGED) {
522 			if (wait_if_unplugged) {
523 				/* used during resume */
524 				tb_port_dbg(port,
525 					    "is unplugged (state: 7), retrying...\n");
526 				msleep(100);
527 				continue;
528 			}
529 			tb_port_dbg(port, "is unplugged (state: 7)\n");
530 			return 0;
531 		}
532 		if (state == TB_PORT_UP) {
533 			tb_port_dbg(port, "is connected, link is up (state: 2)\n");
534 			return 1;
535 		}
536 
537 		/*
538 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
539 		 * time.
540 		 */
541 		tb_port_dbg(port,
542 			    "is connected, link is not up (state: %d), retrying...\n",
543 			    state);
544 		msleep(100);
545 	}
546 	tb_port_warn(port,
547 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
548 	return 0;
549 }
550 
551 /**
552  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
553  * @port: Port to add/remove NFC credits
554  * @credits: Credits to add/remove
555  *
556  * Change the number of NFC credits allocated to @port by @credits. To remove
557  * NFC credits pass a negative amount of credits.
558  *
559  * Return: Returns 0 on success or an error code on failure.
560  */
561 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
562 {
563 	u32 nfc_credits;
564 
565 	if (credits == 0 || port->sw->is_unplugged)
566 		return 0;
567 
568 	/*
569 	 * USB4 restricts programming NFC buffers to lane adapters only
570 	 * so skip other ports.
571 	 */
572 	if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
573 		return 0;
574 
575 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
576 	if (credits < 0)
577 		credits = max_t(int, -nfc_credits, credits);
578 
579 	nfc_credits += credits;
580 
581 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
582 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
583 
584 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
585 	port->config.nfc_credits |= nfc_credits;
586 
587 	return tb_port_write(port, &port->config.nfc_credits,
588 			     TB_CFG_PORT, ADP_CS_4, 1);
589 }
590 
591 /**
592  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
593  * @port: Port whose counters to clear
594  * @counter: Counter index to clear
595  *
596  * Return: Returns 0 on success or an error code on failure.
597  */
598 int tb_port_clear_counter(struct tb_port *port, int counter)
599 {
600 	u32 zero[3] = { 0, 0, 0 };
601 	tb_port_dbg(port, "clearing counter %d\n", counter);
602 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
603 }
604 
605 /**
606  * tb_port_unlock() - Unlock downstream port
607  * @port: Port to unlock
608  *
609  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
610  * downstream router accessible for CM.
611  */
612 int tb_port_unlock(struct tb_port *port)
613 {
614 	if (tb_switch_is_icm(port->sw))
615 		return 0;
616 	if (!tb_port_is_null(port))
617 		return -EINVAL;
618 	if (tb_switch_is_usb4(port->sw))
619 		return usb4_port_unlock(port);
620 	return 0;
621 }
622 
623 static int __tb_port_enable(struct tb_port *port, bool enable)
624 {
625 	int ret;
626 	u32 phy;
627 
628 	if (!tb_port_is_null(port))
629 		return -EINVAL;
630 
631 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
632 			   port->cap_phy + LANE_ADP_CS_1, 1);
633 	if (ret)
634 		return ret;
635 
636 	if (enable)
637 		phy &= ~LANE_ADP_CS_1_LD;
638 	else
639 		phy |= LANE_ADP_CS_1_LD;
640 
641 
642 	ret = tb_port_write(port, &phy, TB_CFG_PORT,
643 			    port->cap_phy + LANE_ADP_CS_1, 1);
644 	if (ret)
645 		return ret;
646 
647 	tb_port_dbg(port, "lane %sabled\n", enable ? "en" : "dis");
648 	return 0;
649 }
650 
651 /**
652  * tb_port_enable() - Enable lane adapter
653  * @port: Port to enable (can be %NULL)
654  *
655  * This is used for lane 0 and 1 adapters to enable it.
656  */
657 int tb_port_enable(struct tb_port *port)
658 {
659 	return __tb_port_enable(port, true);
660 }
661 
662 /**
663  * tb_port_disable() - Disable lane adapter
664  * @port: Port to disable (can be %NULL)
665  *
666  * This is used for lane 0 and 1 adapters to disable it.
667  */
668 int tb_port_disable(struct tb_port *port)
669 {
670 	return __tb_port_enable(port, false);
671 }
672 
673 /*
674  * tb_init_port() - initialize a port
675  *
676  * This is a helper method for tb_switch_alloc. Does not check or initialize
677  * any downstream switches.
678  *
679  * Return: Returns 0 on success or an error code on failure.
680  */
681 static int tb_init_port(struct tb_port *port)
682 {
683 	int res;
684 	int cap;
685 
686 	INIT_LIST_HEAD(&port->list);
687 
688 	/* Control adapter does not have configuration space */
689 	if (!port->port)
690 		return 0;
691 
692 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
693 	if (res) {
694 		if (res == -ENODEV) {
695 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
696 			       port->port);
697 			port->disabled = true;
698 			return 0;
699 		}
700 		return res;
701 	}
702 
703 	/* Port 0 is the switch itself and has no PHY. */
704 	if (port->config.type == TB_TYPE_PORT) {
705 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
706 
707 		if (cap > 0)
708 			port->cap_phy = cap;
709 		else
710 			tb_port_WARN(port, "non switch port without a PHY\n");
711 
712 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
713 		if (cap > 0)
714 			port->cap_usb4 = cap;
715 
716 		/*
717 		 * USB4 ports the buffers allocated for the control path
718 		 * can be read from the path config space. Legacy
719 		 * devices we use hard-coded value.
720 		 */
721 		if (tb_switch_is_usb4(port->sw)) {
722 			struct tb_regs_hop hop;
723 
724 			if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
725 				port->ctl_credits = hop.initial_credits;
726 		}
727 		if (!port->ctl_credits)
728 			port->ctl_credits = 2;
729 
730 	} else {
731 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
732 		if (cap > 0)
733 			port->cap_adap = cap;
734 	}
735 
736 	port->total_credits =
737 		(port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
738 		ADP_CS_4_TOTAL_BUFFERS_SHIFT;
739 
740 	tb_dump_port(port->sw->tb, port);
741 	return 0;
742 }
743 
744 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
745 			       int max_hopid)
746 {
747 	int port_max_hopid;
748 	struct ida *ida;
749 
750 	if (in) {
751 		port_max_hopid = port->config.max_in_hop_id;
752 		ida = &port->in_hopids;
753 	} else {
754 		port_max_hopid = port->config.max_out_hop_id;
755 		ida = &port->out_hopids;
756 	}
757 
758 	/*
759 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
760 	 * reserved.
761 	 */
762 	if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
763 		min_hopid = TB_PATH_MIN_HOPID;
764 
765 	if (max_hopid < 0 || max_hopid > port_max_hopid)
766 		max_hopid = port_max_hopid;
767 
768 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
769 }
770 
771 /**
772  * tb_port_alloc_in_hopid() - Allocate input HopID from port
773  * @port: Port to allocate HopID for
774  * @min_hopid: Minimum acceptable input HopID
775  * @max_hopid: Maximum acceptable input HopID
776  *
777  * Return: HopID between @min_hopid and @max_hopid or negative errno in
778  * case of error.
779  */
780 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
781 {
782 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
783 }
784 
785 /**
786  * tb_port_alloc_out_hopid() - Allocate output HopID from port
787  * @port: Port to allocate HopID for
788  * @min_hopid: Minimum acceptable output HopID
789  * @max_hopid: Maximum acceptable output HopID
790  *
791  * Return: HopID between @min_hopid and @max_hopid or negative errno in
792  * case of error.
793  */
794 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
795 {
796 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
797 }
798 
799 /**
800  * tb_port_release_in_hopid() - Release allocated input HopID from port
801  * @port: Port whose HopID to release
802  * @hopid: HopID to release
803  */
804 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
805 {
806 	ida_simple_remove(&port->in_hopids, hopid);
807 }
808 
809 /**
810  * tb_port_release_out_hopid() - Release allocated output HopID from port
811  * @port: Port whose HopID to release
812  * @hopid: HopID to release
813  */
814 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
815 {
816 	ida_simple_remove(&port->out_hopids, hopid);
817 }
818 
819 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
820 					  const struct tb_switch *sw)
821 {
822 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
823 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
824 }
825 
826 /**
827  * tb_next_port_on_path() - Return next port for given port on a path
828  * @start: Start port of the walk
829  * @end: End port of the walk
830  * @prev: Previous port (%NULL if this is the first)
831  *
832  * This function can be used to walk from one port to another if they
833  * are connected through zero or more switches. If the @prev is dual
834  * link port, the function follows that link and returns another end on
835  * that same link.
836  *
837  * If the @end port has been reached, return %NULL.
838  *
839  * Domain tb->lock must be held when this function is called.
840  */
841 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
842 				     struct tb_port *prev)
843 {
844 	struct tb_port *next;
845 
846 	if (!prev)
847 		return start;
848 
849 	if (prev->sw == end->sw) {
850 		if (prev == end)
851 			return NULL;
852 		return end;
853 	}
854 
855 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
856 		next = tb_port_at(tb_route(end->sw), prev->sw);
857 		/* Walk down the topology if next == prev */
858 		if (prev->remote &&
859 		    (next == prev || next->dual_link_port == prev))
860 			next = prev->remote;
861 	} else {
862 		if (tb_is_upstream_port(prev)) {
863 			next = prev->remote;
864 		} else {
865 			next = tb_upstream_port(prev->sw);
866 			/*
867 			 * Keep the same link if prev and next are both
868 			 * dual link ports.
869 			 */
870 			if (next->dual_link_port &&
871 			    next->link_nr != prev->link_nr) {
872 				next = next->dual_link_port;
873 			}
874 		}
875 	}
876 
877 	return next != prev ? next : NULL;
878 }
879 
880 /**
881  * tb_port_get_link_speed() - Get current link speed
882  * @port: Port to check (USB4 or CIO)
883  *
884  * Returns link speed in Gb/s or negative errno in case of failure.
885  */
886 int tb_port_get_link_speed(struct tb_port *port)
887 {
888 	u32 val, speed;
889 	int ret;
890 
891 	if (!port->cap_phy)
892 		return -EINVAL;
893 
894 	ret = tb_port_read(port, &val, TB_CFG_PORT,
895 			   port->cap_phy + LANE_ADP_CS_1, 1);
896 	if (ret)
897 		return ret;
898 
899 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
900 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
901 	return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
902 }
903 
904 /**
905  * tb_port_get_link_width() - Get current link width
906  * @port: Port to check (USB4 or CIO)
907  *
908  * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane)
909  * or negative errno in case of failure.
910  */
911 int tb_port_get_link_width(struct tb_port *port)
912 {
913 	u32 val;
914 	int ret;
915 
916 	if (!port->cap_phy)
917 		return -EINVAL;
918 
919 	ret = tb_port_read(port, &val, TB_CFG_PORT,
920 			   port->cap_phy + LANE_ADP_CS_1, 1);
921 	if (ret)
922 		return ret;
923 
924 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
925 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
926 }
927 
928 static bool tb_port_is_width_supported(struct tb_port *port, int width)
929 {
930 	u32 phy, widths;
931 	int ret;
932 
933 	if (!port->cap_phy)
934 		return false;
935 
936 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
937 			   port->cap_phy + LANE_ADP_CS_0, 1);
938 	if (ret)
939 		return false;
940 
941 	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
942 		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
943 
944 	return !!(widths & width);
945 }
946 
947 /**
948  * tb_port_set_link_width() - Set target link width of the lane adapter
949  * @port: Lane adapter
950  * @width: Target link width (%1 or %2)
951  *
952  * Sets the target link width of the lane adapter to @width. Does not
953  * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
954  *
955  * Return: %0 in case of success and negative errno in case of error
956  */
957 int tb_port_set_link_width(struct tb_port *port, unsigned int width)
958 {
959 	u32 val;
960 	int ret;
961 
962 	if (!port->cap_phy)
963 		return -EINVAL;
964 
965 	ret = tb_port_read(port, &val, TB_CFG_PORT,
966 			   port->cap_phy + LANE_ADP_CS_1, 1);
967 	if (ret)
968 		return ret;
969 
970 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
971 	switch (width) {
972 	case 1:
973 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
974 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
975 		break;
976 	case 2:
977 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
978 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
979 		break;
980 	default:
981 		return -EINVAL;
982 	}
983 
984 	return tb_port_write(port, &val, TB_CFG_PORT,
985 			     port->cap_phy + LANE_ADP_CS_1, 1);
986 }
987 
988 /**
989  * tb_port_set_lane_bonding() - Enable/disable lane bonding
990  * @port: Lane adapter
991  * @bonding: enable/disable bonding
992  *
993  * Enables or disables lane bonding. This should be called after target
994  * link width has been set (tb_port_set_link_width()). Note in most
995  * cases one should use tb_port_lane_bonding_enable() instead to enable
996  * lane bonding.
997  *
998  * As a side effect sets @port->bonding accordingly (and does the same
999  * for lane 1 too).
1000  *
1001  * Return: %0 in case of success and negative errno in case of error
1002  */
1003 int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1004 {
1005 	u32 val;
1006 	int ret;
1007 
1008 	if (!port->cap_phy)
1009 		return -EINVAL;
1010 
1011 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1012 			   port->cap_phy + LANE_ADP_CS_1, 1);
1013 	if (ret)
1014 		return ret;
1015 
1016 	if (bonding)
1017 		val |= LANE_ADP_CS_1_LB;
1018 	else
1019 		val &= ~LANE_ADP_CS_1_LB;
1020 
1021 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1022 			    port->cap_phy + LANE_ADP_CS_1, 1);
1023 	if (ret)
1024 		return ret;
1025 
1026 	/*
1027 	 * When lane 0 bonding is set it will affect lane 1 too so
1028 	 * update both.
1029 	 */
1030 	port->bonded = bonding;
1031 	port->dual_link_port->bonded = bonding;
1032 
1033 	return 0;
1034 }
1035 
1036 /**
1037  * tb_port_lane_bonding_enable() - Enable bonding on port
1038  * @port: port to enable
1039  *
1040  * Enable bonding by setting the link width of the port and the other
1041  * port in case of dual link port. Does not wait for the link to
1042  * actually reach the bonded state so caller needs to call
1043  * tb_port_wait_for_link_width() before enabling any paths through the
1044  * link to make sure the link is in expected state.
1045  *
1046  * Return: %0 in case of success and negative errno in case of error
1047  */
1048 int tb_port_lane_bonding_enable(struct tb_port *port)
1049 {
1050 	int ret;
1051 
1052 	/*
1053 	 * Enable lane bonding for both links if not already enabled by
1054 	 * for example the boot firmware.
1055 	 */
1056 	ret = tb_port_get_link_width(port);
1057 	if (ret == 1) {
1058 		ret = tb_port_set_link_width(port, 2);
1059 		if (ret)
1060 			goto err_lane0;
1061 	}
1062 
1063 	ret = tb_port_get_link_width(port->dual_link_port);
1064 	if (ret == 1) {
1065 		ret = tb_port_set_link_width(port->dual_link_port, 2);
1066 		if (ret)
1067 			goto err_lane0;
1068 	}
1069 
1070 	ret = tb_port_set_lane_bonding(port, true);
1071 	if (ret)
1072 		goto err_lane1;
1073 
1074 	return 0;
1075 
1076 err_lane1:
1077 	tb_port_set_link_width(port->dual_link_port, 1);
1078 err_lane0:
1079 	tb_port_set_link_width(port, 1);
1080 	return ret;
1081 }
1082 
1083 /**
1084  * tb_port_lane_bonding_disable() - Disable bonding on port
1085  * @port: port to disable
1086  *
1087  * Disable bonding by setting the link width of the port and the
1088  * other port in case of dual link port.
1089  */
1090 void tb_port_lane_bonding_disable(struct tb_port *port)
1091 {
1092 	tb_port_set_lane_bonding(port, false);
1093 	tb_port_set_link_width(port->dual_link_port, 1);
1094 	tb_port_set_link_width(port, 1);
1095 }
1096 
1097 /**
1098  * tb_port_wait_for_link_width() - Wait until link reaches specific width
1099  * @port: Port to wait for
1100  * @width: Expected link width (%1 or %2)
1101  * @timeout_msec: Timeout in ms how long to wait
1102  *
1103  * Should be used after both ends of the link have been bonded (or
1104  * bonding has been disabled) to wait until the link actually reaches
1105  * the expected state. Returns %-ETIMEDOUT if the @width was not reached
1106  * within the given timeout, %0 if it did.
1107  */
1108 int tb_port_wait_for_link_width(struct tb_port *port, int width,
1109 				int timeout_msec)
1110 {
1111 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1112 	int ret;
1113 
1114 	do {
1115 		ret = tb_port_get_link_width(port);
1116 		if (ret < 0) {
1117 			/*
1118 			 * Sometimes we get port locked error when
1119 			 * polling the lanes so we can ignore it and
1120 			 * retry.
1121 			 */
1122 			if (ret != -EACCES)
1123 				return ret;
1124 		} else if (ret == width) {
1125 			return 0;
1126 		}
1127 
1128 		usleep_range(1000, 2000);
1129 	} while (ktime_before(ktime_get(), timeout));
1130 
1131 	return -ETIMEDOUT;
1132 }
1133 
1134 static int tb_port_do_update_credits(struct tb_port *port)
1135 {
1136 	u32 nfc_credits;
1137 	int ret;
1138 
1139 	ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1140 	if (ret)
1141 		return ret;
1142 
1143 	if (nfc_credits != port->config.nfc_credits) {
1144 		u32 total;
1145 
1146 		total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1147 			ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1148 
1149 		tb_port_dbg(port, "total credits changed %u -> %u\n",
1150 			    port->total_credits, total);
1151 
1152 		port->config.nfc_credits = nfc_credits;
1153 		port->total_credits = total;
1154 	}
1155 
1156 	return 0;
1157 }
1158 
1159 /**
1160  * tb_port_update_credits() - Re-read port total credits
1161  * @port: Port to update
1162  *
1163  * After the link is bonded (or bonding was disabled) the port total
1164  * credits may change, so this function needs to be called to re-read
1165  * the credits. Updates also the second lane adapter.
1166  */
1167 int tb_port_update_credits(struct tb_port *port)
1168 {
1169 	int ret;
1170 
1171 	ret = tb_port_do_update_credits(port);
1172 	if (ret)
1173 		return ret;
1174 	return tb_port_do_update_credits(port->dual_link_port);
1175 }
1176 
1177 static int __tb_port_pm_secondary_set(struct tb_port *port, bool secondary)
1178 {
1179 	u32 phy;
1180 	int ret;
1181 
1182 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
1183 			   port->cap_phy + LANE_ADP_CS_1, 1);
1184 	if (ret)
1185 		return ret;
1186 
1187 	if (secondary)
1188 		phy |= LANE_ADP_CS_1_PMS;
1189 	else
1190 		phy &= ~LANE_ADP_CS_1_PMS;
1191 
1192 	return tb_port_write(port, &phy, TB_CFG_PORT,
1193 			     port->cap_phy + LANE_ADP_CS_1, 1);
1194 }
1195 
1196 static int tb_port_pm_secondary_enable(struct tb_port *port)
1197 {
1198 	return __tb_port_pm_secondary_set(port, true);
1199 }
1200 
1201 static int tb_port_pm_secondary_disable(struct tb_port *port)
1202 {
1203 	return __tb_port_pm_secondary_set(port, false);
1204 }
1205 
1206 /* Called for USB4 or Titan Ridge routers only */
1207 static bool tb_port_clx_supported(struct tb_port *port, unsigned int clx_mask)
1208 {
1209 	u32 val, mask = 0;
1210 	bool ret;
1211 
1212 	/* Don't enable CLx in case of two single-lane links */
1213 	if (!port->bonded && port->dual_link_port)
1214 		return false;
1215 
1216 	/* Don't enable CLx in case of inter-domain link */
1217 	if (port->xdomain)
1218 		return false;
1219 
1220 	if (tb_switch_is_usb4(port->sw)) {
1221 		if (!usb4_port_clx_supported(port))
1222 			return false;
1223 	} else if (!tb_lc_is_clx_supported(port)) {
1224 		return false;
1225 	}
1226 
1227 	if (clx_mask & TB_CL1) {
1228 		/* CL0s and CL1 are enabled and supported together */
1229 		mask |= LANE_ADP_CS_0_CL0S_SUPPORT | LANE_ADP_CS_0_CL1_SUPPORT;
1230 	}
1231 	if (clx_mask & TB_CL2)
1232 		mask |= LANE_ADP_CS_0_CL2_SUPPORT;
1233 
1234 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1235 			   port->cap_phy + LANE_ADP_CS_0, 1);
1236 	if (ret)
1237 		return false;
1238 
1239 	return !!(val & mask);
1240 }
1241 
1242 static int __tb_port_clx_set(struct tb_port *port, enum tb_clx clx, bool enable)
1243 {
1244 	u32 phy, mask;
1245 	int ret;
1246 
1247 	/* CL0s and CL1 are enabled and supported together */
1248 	if (clx == TB_CL1)
1249 		mask = LANE_ADP_CS_1_CL0S_ENABLE | LANE_ADP_CS_1_CL1_ENABLE;
1250 	else
1251 		/* For now we support only CL0s and CL1. Not CL2 */
1252 		return -EOPNOTSUPP;
1253 
1254 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
1255 			   port->cap_phy + LANE_ADP_CS_1, 1);
1256 	if (ret)
1257 		return ret;
1258 
1259 	if (enable)
1260 		phy |= mask;
1261 	else
1262 		phy &= ~mask;
1263 
1264 	return tb_port_write(port, &phy, TB_CFG_PORT,
1265 			     port->cap_phy + LANE_ADP_CS_1, 1);
1266 }
1267 
1268 static int tb_port_clx_disable(struct tb_port *port, enum tb_clx clx)
1269 {
1270 	return __tb_port_clx_set(port, clx, false);
1271 }
1272 
1273 static int tb_port_clx_enable(struct tb_port *port, enum tb_clx clx)
1274 {
1275 	return __tb_port_clx_set(port, clx, true);
1276 }
1277 
1278 /**
1279  * tb_port_is_clx_enabled() - Is given CL state enabled
1280  * @port: USB4 port to check
1281  * @clx_mask: Mask of CL states to check
1282  *
1283  * Returns true if any of the given CL states is enabled for @port.
1284  */
1285 bool tb_port_is_clx_enabled(struct tb_port *port, unsigned int clx_mask)
1286 {
1287 	u32 val, mask = 0;
1288 	int ret;
1289 
1290 	if (!tb_port_clx_supported(port, clx_mask))
1291 		return false;
1292 
1293 	if (clx_mask & TB_CL1)
1294 		mask |= LANE_ADP_CS_1_CL0S_ENABLE | LANE_ADP_CS_1_CL1_ENABLE;
1295 	if (clx_mask & TB_CL2)
1296 		mask |= LANE_ADP_CS_1_CL2_ENABLE;
1297 
1298 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1299 			   port->cap_phy + LANE_ADP_CS_1, 1);
1300 	if (ret)
1301 		return false;
1302 
1303 	return !!(val & mask);
1304 }
1305 
1306 static int tb_port_start_lane_initialization(struct tb_port *port)
1307 {
1308 	int ret;
1309 
1310 	if (tb_switch_is_usb4(port->sw))
1311 		return 0;
1312 
1313 	ret = tb_lc_start_lane_initialization(port);
1314 	return ret == -EINVAL ? 0 : ret;
1315 }
1316 
1317 /*
1318  * Returns true if the port had something (router, XDomain) connected
1319  * before suspend.
1320  */
1321 static bool tb_port_resume(struct tb_port *port)
1322 {
1323 	bool has_remote = tb_port_has_remote(port);
1324 
1325 	if (port->usb4) {
1326 		usb4_port_device_resume(port->usb4);
1327 	} else if (!has_remote) {
1328 		/*
1329 		 * For disconnected downstream lane adapters start lane
1330 		 * initialization now so we detect future connects.
1331 		 *
1332 		 * For XDomain start the lane initialzation now so the
1333 		 * link gets re-established.
1334 		 *
1335 		 * This is only needed for non-USB4 ports.
1336 		 */
1337 		if (!tb_is_upstream_port(port) || port->xdomain)
1338 			tb_port_start_lane_initialization(port);
1339 	}
1340 
1341 	return has_remote || port->xdomain;
1342 }
1343 
1344 /**
1345  * tb_port_is_enabled() - Is the adapter port enabled
1346  * @port: Port to check
1347  */
1348 bool tb_port_is_enabled(struct tb_port *port)
1349 {
1350 	switch (port->config.type) {
1351 	case TB_TYPE_PCIE_UP:
1352 	case TB_TYPE_PCIE_DOWN:
1353 		return tb_pci_port_is_enabled(port);
1354 
1355 	case TB_TYPE_DP_HDMI_IN:
1356 	case TB_TYPE_DP_HDMI_OUT:
1357 		return tb_dp_port_is_enabled(port);
1358 
1359 	case TB_TYPE_USB3_UP:
1360 	case TB_TYPE_USB3_DOWN:
1361 		return tb_usb3_port_is_enabled(port);
1362 
1363 	default:
1364 		return false;
1365 	}
1366 }
1367 
1368 /**
1369  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1370  * @port: USB3 adapter port to check
1371  */
1372 bool tb_usb3_port_is_enabled(struct tb_port *port)
1373 {
1374 	u32 data;
1375 
1376 	if (tb_port_read(port, &data, TB_CFG_PORT,
1377 			 port->cap_adap + ADP_USB3_CS_0, 1))
1378 		return false;
1379 
1380 	return !!(data & ADP_USB3_CS_0_PE);
1381 }
1382 
1383 /**
1384  * tb_usb3_port_enable() - Enable USB3 adapter port
1385  * @port: USB3 adapter port to enable
1386  * @enable: Enable/disable the USB3 adapter
1387  */
1388 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1389 {
1390 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1391 			  : ADP_USB3_CS_0_V;
1392 
1393 	if (!port->cap_adap)
1394 		return -ENXIO;
1395 	return tb_port_write(port, &word, TB_CFG_PORT,
1396 			     port->cap_adap + ADP_USB3_CS_0, 1);
1397 }
1398 
1399 /**
1400  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1401  * @port: PCIe port to check
1402  */
1403 bool tb_pci_port_is_enabled(struct tb_port *port)
1404 {
1405 	u32 data;
1406 
1407 	if (tb_port_read(port, &data, TB_CFG_PORT,
1408 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1409 		return false;
1410 
1411 	return !!(data & ADP_PCIE_CS_0_PE);
1412 }
1413 
1414 /**
1415  * tb_pci_port_enable() - Enable PCIe adapter port
1416  * @port: PCIe port to enable
1417  * @enable: Enable/disable the PCIe adapter
1418  */
1419 int tb_pci_port_enable(struct tb_port *port, bool enable)
1420 {
1421 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1422 	if (!port->cap_adap)
1423 		return -ENXIO;
1424 	return tb_port_write(port, &word, TB_CFG_PORT,
1425 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1426 }
1427 
1428 /**
1429  * tb_dp_port_hpd_is_active() - Is HPD already active
1430  * @port: DP out port to check
1431  *
1432  * Checks if the DP OUT adapter port has HDP bit already set.
1433  */
1434 int tb_dp_port_hpd_is_active(struct tb_port *port)
1435 {
1436 	u32 data;
1437 	int ret;
1438 
1439 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1440 			   port->cap_adap + ADP_DP_CS_2, 1);
1441 	if (ret)
1442 		return ret;
1443 
1444 	return !!(data & ADP_DP_CS_2_HDP);
1445 }
1446 
1447 /**
1448  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1449  * @port: Port to clear HPD
1450  *
1451  * If the DP IN port has HDP set, this function can be used to clear it.
1452  */
1453 int tb_dp_port_hpd_clear(struct tb_port *port)
1454 {
1455 	u32 data;
1456 	int ret;
1457 
1458 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1459 			   port->cap_adap + ADP_DP_CS_3, 1);
1460 	if (ret)
1461 		return ret;
1462 
1463 	data |= ADP_DP_CS_3_HDPC;
1464 	return tb_port_write(port, &data, TB_CFG_PORT,
1465 			     port->cap_adap + ADP_DP_CS_3, 1);
1466 }
1467 
1468 /**
1469  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1470  * @port: DP IN/OUT port to set hops
1471  * @video: Video Hop ID
1472  * @aux_tx: AUX TX Hop ID
1473  * @aux_rx: AUX RX Hop ID
1474  *
1475  * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1476  * router DP adapters too but does not program the values as the fields
1477  * are read-only.
1478  */
1479 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1480 			unsigned int aux_tx, unsigned int aux_rx)
1481 {
1482 	u32 data[2];
1483 	int ret;
1484 
1485 	if (tb_switch_is_usb4(port->sw))
1486 		return 0;
1487 
1488 	ret = tb_port_read(port, data, TB_CFG_PORT,
1489 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1490 	if (ret)
1491 		return ret;
1492 
1493 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1494 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1495 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1496 
1497 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1498 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1499 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1500 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1501 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1502 
1503 	return tb_port_write(port, data, TB_CFG_PORT,
1504 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1505 }
1506 
1507 /**
1508  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1509  * @port: DP adapter port to check
1510  */
1511 bool tb_dp_port_is_enabled(struct tb_port *port)
1512 {
1513 	u32 data[2];
1514 
1515 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1516 			 ARRAY_SIZE(data)))
1517 		return false;
1518 
1519 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1520 }
1521 
1522 /**
1523  * tb_dp_port_enable() - Enables/disables DP paths of a port
1524  * @port: DP IN/OUT port
1525  * @enable: Enable/disable DP path
1526  *
1527  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1528  * calling this function.
1529  */
1530 int tb_dp_port_enable(struct tb_port *port, bool enable)
1531 {
1532 	u32 data[2];
1533 	int ret;
1534 
1535 	ret = tb_port_read(port, data, TB_CFG_PORT,
1536 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1537 	if (ret)
1538 		return ret;
1539 
1540 	if (enable)
1541 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1542 	else
1543 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1544 
1545 	return tb_port_write(port, data, TB_CFG_PORT,
1546 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1547 }
1548 
1549 /* switch utility functions */
1550 
1551 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1552 {
1553 	switch (sw->generation) {
1554 	case 1:
1555 		return "Thunderbolt 1";
1556 	case 2:
1557 		return "Thunderbolt 2";
1558 	case 3:
1559 		return "Thunderbolt 3";
1560 	case 4:
1561 		return "USB4";
1562 	default:
1563 		return "Unknown";
1564 	}
1565 }
1566 
1567 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1568 {
1569 	const struct tb_regs_switch_header *regs = &sw->config;
1570 
1571 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1572 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1573 	       regs->revision, regs->thunderbolt_version);
1574 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1575 	tb_dbg(tb, "  Config:\n");
1576 	tb_dbg(tb,
1577 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1578 	       regs->upstream_port_number, regs->depth,
1579 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1580 	       regs->enabled, regs->plug_events_delay);
1581 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1582 	       regs->__unknown1, regs->__unknown4);
1583 }
1584 
1585 /**
1586  * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1587  * @sw: Switch to reset
1588  *
1589  * Return: Returns 0 on success or an error code on failure.
1590  */
1591 int tb_switch_reset(struct tb_switch *sw)
1592 {
1593 	struct tb_cfg_result res;
1594 
1595 	if (sw->generation > 1)
1596 		return 0;
1597 
1598 	tb_sw_dbg(sw, "resetting switch\n");
1599 
1600 	res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1601 			      TB_CFG_SWITCH, 2, 2);
1602 	if (res.err)
1603 		return res.err;
1604 	res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1605 	if (res.err > 0)
1606 		return -EIO;
1607 	return res.err;
1608 }
1609 
1610 /**
1611  * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1612  * @sw: Router to read the offset value from
1613  * @offset: Offset in the router config space to read from
1614  * @bit: Bit mask in the offset to wait for
1615  * @value: Value of the bits to wait for
1616  * @timeout_msec: Timeout in ms how long to wait
1617  *
1618  * Wait till the specified bits in specified offset reach specified value.
1619  * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1620  * within the given timeout or a negative errno in case of failure.
1621  */
1622 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1623 			   u32 value, int timeout_msec)
1624 {
1625 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1626 
1627 	do {
1628 		u32 val;
1629 		int ret;
1630 
1631 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1632 		if (ret)
1633 			return ret;
1634 
1635 		if ((val & bit) == value)
1636 			return 0;
1637 
1638 		usleep_range(50, 100);
1639 	} while (ktime_before(ktime_get(), timeout));
1640 
1641 	return -ETIMEDOUT;
1642 }
1643 
1644 /*
1645  * tb_plug_events_active() - enable/disable plug events on a switch
1646  *
1647  * Also configures a sane plug_events_delay of 255ms.
1648  *
1649  * Return: Returns 0 on success or an error code on failure.
1650  */
1651 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1652 {
1653 	u32 data;
1654 	int res;
1655 
1656 	if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1657 		return 0;
1658 
1659 	sw->config.plug_events_delay = 0xff;
1660 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1661 	if (res)
1662 		return res;
1663 
1664 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1665 	if (res)
1666 		return res;
1667 
1668 	if (active) {
1669 		data = data & 0xFFFFFF83;
1670 		switch (sw->config.device_id) {
1671 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1672 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1673 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1674 			break;
1675 		default:
1676 			/*
1677 			 * Skip Alpine Ridge, it needs to have vendor
1678 			 * specific USB hotplug event enabled for the
1679 			 * internal xHCI to work.
1680 			 */
1681 			if (!tb_switch_is_alpine_ridge(sw))
1682 				data |= TB_PLUG_EVENTS_USB_DISABLE;
1683 		}
1684 	} else {
1685 		data = data | 0x7c;
1686 	}
1687 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1688 			   sw->cap_plug_events + 1, 1);
1689 }
1690 
1691 static ssize_t authorized_show(struct device *dev,
1692 			       struct device_attribute *attr,
1693 			       char *buf)
1694 {
1695 	struct tb_switch *sw = tb_to_switch(dev);
1696 
1697 	return sysfs_emit(buf, "%u\n", sw->authorized);
1698 }
1699 
1700 static int disapprove_switch(struct device *dev, void *not_used)
1701 {
1702 	char *envp[] = { "AUTHORIZED=0", NULL };
1703 	struct tb_switch *sw;
1704 
1705 	sw = tb_to_switch(dev);
1706 	if (sw && sw->authorized) {
1707 		int ret;
1708 
1709 		/* First children */
1710 		ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1711 		if (ret)
1712 			return ret;
1713 
1714 		ret = tb_domain_disapprove_switch(sw->tb, sw);
1715 		if (ret)
1716 			return ret;
1717 
1718 		sw->authorized = 0;
1719 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1720 	}
1721 
1722 	return 0;
1723 }
1724 
1725 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1726 {
1727 	char envp_string[13];
1728 	int ret = -EINVAL;
1729 	char *envp[] = { envp_string, NULL };
1730 
1731 	if (!mutex_trylock(&sw->tb->lock))
1732 		return restart_syscall();
1733 
1734 	if (!!sw->authorized == !!val)
1735 		goto unlock;
1736 
1737 	switch (val) {
1738 	/* Disapprove switch */
1739 	case 0:
1740 		if (tb_route(sw)) {
1741 			ret = disapprove_switch(&sw->dev, NULL);
1742 			goto unlock;
1743 		}
1744 		break;
1745 
1746 	/* Approve switch */
1747 	case 1:
1748 		if (sw->key)
1749 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1750 		else
1751 			ret = tb_domain_approve_switch(sw->tb, sw);
1752 		break;
1753 
1754 	/* Challenge switch */
1755 	case 2:
1756 		if (sw->key)
1757 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1758 		break;
1759 
1760 	default:
1761 		break;
1762 	}
1763 
1764 	if (!ret) {
1765 		sw->authorized = val;
1766 		/*
1767 		 * Notify status change to the userspace, informing the new
1768 		 * value of /sys/bus/thunderbolt/devices/.../authorized.
1769 		 */
1770 		sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1771 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1772 	}
1773 
1774 unlock:
1775 	mutex_unlock(&sw->tb->lock);
1776 	return ret;
1777 }
1778 
1779 static ssize_t authorized_store(struct device *dev,
1780 				struct device_attribute *attr,
1781 				const char *buf, size_t count)
1782 {
1783 	struct tb_switch *sw = tb_to_switch(dev);
1784 	unsigned int val;
1785 	ssize_t ret;
1786 
1787 	ret = kstrtouint(buf, 0, &val);
1788 	if (ret)
1789 		return ret;
1790 	if (val > 2)
1791 		return -EINVAL;
1792 
1793 	pm_runtime_get_sync(&sw->dev);
1794 	ret = tb_switch_set_authorized(sw, val);
1795 	pm_runtime_mark_last_busy(&sw->dev);
1796 	pm_runtime_put_autosuspend(&sw->dev);
1797 
1798 	return ret ? ret : count;
1799 }
1800 static DEVICE_ATTR_RW(authorized);
1801 
1802 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1803 			 char *buf)
1804 {
1805 	struct tb_switch *sw = tb_to_switch(dev);
1806 
1807 	return sysfs_emit(buf, "%u\n", sw->boot);
1808 }
1809 static DEVICE_ATTR_RO(boot);
1810 
1811 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1812 			   char *buf)
1813 {
1814 	struct tb_switch *sw = tb_to_switch(dev);
1815 
1816 	return sysfs_emit(buf, "%#x\n", sw->device);
1817 }
1818 static DEVICE_ATTR_RO(device);
1819 
1820 static ssize_t
1821 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1822 {
1823 	struct tb_switch *sw = tb_to_switch(dev);
1824 
1825 	return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1826 }
1827 static DEVICE_ATTR_RO(device_name);
1828 
1829 static ssize_t
1830 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1831 {
1832 	struct tb_switch *sw = tb_to_switch(dev);
1833 
1834 	return sysfs_emit(buf, "%u\n", sw->generation);
1835 }
1836 static DEVICE_ATTR_RO(generation);
1837 
1838 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1839 			char *buf)
1840 {
1841 	struct tb_switch *sw = tb_to_switch(dev);
1842 	ssize_t ret;
1843 
1844 	if (!mutex_trylock(&sw->tb->lock))
1845 		return restart_syscall();
1846 
1847 	if (sw->key)
1848 		ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1849 	else
1850 		ret = sysfs_emit(buf, "\n");
1851 
1852 	mutex_unlock(&sw->tb->lock);
1853 	return ret;
1854 }
1855 
1856 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1857 			 const char *buf, size_t count)
1858 {
1859 	struct tb_switch *sw = tb_to_switch(dev);
1860 	u8 key[TB_SWITCH_KEY_SIZE];
1861 	ssize_t ret = count;
1862 	bool clear = false;
1863 
1864 	if (!strcmp(buf, "\n"))
1865 		clear = true;
1866 	else if (hex2bin(key, buf, sizeof(key)))
1867 		return -EINVAL;
1868 
1869 	if (!mutex_trylock(&sw->tb->lock))
1870 		return restart_syscall();
1871 
1872 	if (sw->authorized) {
1873 		ret = -EBUSY;
1874 	} else {
1875 		kfree(sw->key);
1876 		if (clear) {
1877 			sw->key = NULL;
1878 		} else {
1879 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1880 			if (!sw->key)
1881 				ret = -ENOMEM;
1882 		}
1883 	}
1884 
1885 	mutex_unlock(&sw->tb->lock);
1886 	return ret;
1887 }
1888 static DEVICE_ATTR(key, 0600, key_show, key_store);
1889 
1890 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1891 			  char *buf)
1892 {
1893 	struct tb_switch *sw = tb_to_switch(dev);
1894 
1895 	return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1896 }
1897 
1898 /*
1899  * Currently all lanes must run at the same speed but we expose here
1900  * both directions to allow possible asymmetric links in the future.
1901  */
1902 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1903 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1904 
1905 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1906 			  char *buf)
1907 {
1908 	struct tb_switch *sw = tb_to_switch(dev);
1909 
1910 	return sysfs_emit(buf, "%u\n", sw->link_width);
1911 }
1912 
1913 /*
1914  * Currently link has same amount of lanes both directions (1 or 2) but
1915  * expose them separately to allow possible asymmetric links in the future.
1916  */
1917 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1918 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1919 
1920 static ssize_t nvm_authenticate_show(struct device *dev,
1921 	struct device_attribute *attr, char *buf)
1922 {
1923 	struct tb_switch *sw = tb_to_switch(dev);
1924 	u32 status;
1925 
1926 	nvm_get_auth_status(sw, &status);
1927 	return sysfs_emit(buf, "%#x\n", status);
1928 }
1929 
1930 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1931 				      bool disconnect)
1932 {
1933 	struct tb_switch *sw = tb_to_switch(dev);
1934 	int val, ret;
1935 
1936 	pm_runtime_get_sync(&sw->dev);
1937 
1938 	if (!mutex_trylock(&sw->tb->lock)) {
1939 		ret = restart_syscall();
1940 		goto exit_rpm;
1941 	}
1942 
1943 	if (sw->no_nvm_upgrade) {
1944 		ret = -EOPNOTSUPP;
1945 		goto exit_unlock;
1946 	}
1947 
1948 	/* If NVMem devices are not yet added */
1949 	if (!sw->nvm) {
1950 		ret = -EAGAIN;
1951 		goto exit_unlock;
1952 	}
1953 
1954 	ret = kstrtoint(buf, 10, &val);
1955 	if (ret)
1956 		goto exit_unlock;
1957 
1958 	/* Always clear the authentication status */
1959 	nvm_clear_auth_status(sw);
1960 
1961 	if (val > 0) {
1962 		if (val == AUTHENTICATE_ONLY) {
1963 			if (disconnect)
1964 				ret = -EINVAL;
1965 			else
1966 				ret = nvm_authenticate(sw, true);
1967 		} else {
1968 			if (!sw->nvm->flushed) {
1969 				if (!sw->nvm->buf) {
1970 					ret = -EINVAL;
1971 					goto exit_unlock;
1972 				}
1973 
1974 				ret = nvm_validate_and_write(sw);
1975 				if (ret || val == WRITE_ONLY)
1976 					goto exit_unlock;
1977 			}
1978 			if (val == WRITE_AND_AUTHENTICATE) {
1979 				if (disconnect)
1980 					ret = tb_lc_force_power(sw);
1981 				else
1982 					ret = nvm_authenticate(sw, false);
1983 			}
1984 		}
1985 	}
1986 
1987 exit_unlock:
1988 	mutex_unlock(&sw->tb->lock);
1989 exit_rpm:
1990 	pm_runtime_mark_last_busy(&sw->dev);
1991 	pm_runtime_put_autosuspend(&sw->dev);
1992 
1993 	return ret;
1994 }
1995 
1996 static ssize_t nvm_authenticate_store(struct device *dev,
1997 	struct device_attribute *attr, const char *buf, size_t count)
1998 {
1999 	int ret = nvm_authenticate_sysfs(dev, buf, false);
2000 	if (ret)
2001 		return ret;
2002 	return count;
2003 }
2004 static DEVICE_ATTR_RW(nvm_authenticate);
2005 
2006 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
2007 	struct device_attribute *attr, char *buf)
2008 {
2009 	return nvm_authenticate_show(dev, attr, buf);
2010 }
2011 
2012 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
2013 	struct device_attribute *attr, const char *buf, size_t count)
2014 {
2015 	int ret;
2016 
2017 	ret = nvm_authenticate_sysfs(dev, buf, true);
2018 	return ret ? ret : count;
2019 }
2020 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
2021 
2022 static ssize_t nvm_version_show(struct device *dev,
2023 				struct device_attribute *attr, char *buf)
2024 {
2025 	struct tb_switch *sw = tb_to_switch(dev);
2026 	int ret;
2027 
2028 	if (!mutex_trylock(&sw->tb->lock))
2029 		return restart_syscall();
2030 
2031 	if (sw->safe_mode)
2032 		ret = -ENODATA;
2033 	else if (!sw->nvm)
2034 		ret = -EAGAIN;
2035 	else
2036 		ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
2037 
2038 	mutex_unlock(&sw->tb->lock);
2039 
2040 	return ret;
2041 }
2042 static DEVICE_ATTR_RO(nvm_version);
2043 
2044 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
2045 			   char *buf)
2046 {
2047 	struct tb_switch *sw = tb_to_switch(dev);
2048 
2049 	return sysfs_emit(buf, "%#x\n", sw->vendor);
2050 }
2051 static DEVICE_ATTR_RO(vendor);
2052 
2053 static ssize_t
2054 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
2055 {
2056 	struct tb_switch *sw = tb_to_switch(dev);
2057 
2058 	return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
2059 }
2060 static DEVICE_ATTR_RO(vendor_name);
2061 
2062 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2063 			      char *buf)
2064 {
2065 	struct tb_switch *sw = tb_to_switch(dev);
2066 
2067 	return sysfs_emit(buf, "%pUb\n", sw->uuid);
2068 }
2069 static DEVICE_ATTR_RO(unique_id);
2070 
2071 static struct attribute *switch_attrs[] = {
2072 	&dev_attr_authorized.attr,
2073 	&dev_attr_boot.attr,
2074 	&dev_attr_device.attr,
2075 	&dev_attr_device_name.attr,
2076 	&dev_attr_generation.attr,
2077 	&dev_attr_key.attr,
2078 	&dev_attr_nvm_authenticate.attr,
2079 	&dev_attr_nvm_authenticate_on_disconnect.attr,
2080 	&dev_attr_nvm_version.attr,
2081 	&dev_attr_rx_speed.attr,
2082 	&dev_attr_rx_lanes.attr,
2083 	&dev_attr_tx_speed.attr,
2084 	&dev_attr_tx_lanes.attr,
2085 	&dev_attr_vendor.attr,
2086 	&dev_attr_vendor_name.attr,
2087 	&dev_attr_unique_id.attr,
2088 	NULL,
2089 };
2090 
2091 static umode_t switch_attr_is_visible(struct kobject *kobj,
2092 				      struct attribute *attr, int n)
2093 {
2094 	struct device *dev = kobj_to_dev(kobj);
2095 	struct tb_switch *sw = tb_to_switch(dev);
2096 
2097 	if (attr == &dev_attr_authorized.attr) {
2098 		if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2099 		    sw->tb->security_level == TB_SECURITY_DPONLY)
2100 			return 0;
2101 	} else if (attr == &dev_attr_device.attr) {
2102 		if (!sw->device)
2103 			return 0;
2104 	} else if (attr == &dev_attr_device_name.attr) {
2105 		if (!sw->device_name)
2106 			return 0;
2107 	} else if (attr == &dev_attr_vendor.attr)  {
2108 		if (!sw->vendor)
2109 			return 0;
2110 	} else if (attr == &dev_attr_vendor_name.attr)  {
2111 		if (!sw->vendor_name)
2112 			return 0;
2113 	} else if (attr == &dev_attr_key.attr) {
2114 		if (tb_route(sw) &&
2115 		    sw->tb->security_level == TB_SECURITY_SECURE &&
2116 		    sw->security_level == TB_SECURITY_SECURE)
2117 			return attr->mode;
2118 		return 0;
2119 	} else if (attr == &dev_attr_rx_speed.attr ||
2120 		   attr == &dev_attr_rx_lanes.attr ||
2121 		   attr == &dev_attr_tx_speed.attr ||
2122 		   attr == &dev_attr_tx_lanes.attr) {
2123 		if (tb_route(sw))
2124 			return attr->mode;
2125 		return 0;
2126 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
2127 		if (nvm_upgradeable(sw))
2128 			return attr->mode;
2129 		return 0;
2130 	} else if (attr == &dev_attr_nvm_version.attr) {
2131 		if (nvm_readable(sw))
2132 			return attr->mode;
2133 		return 0;
2134 	} else if (attr == &dev_attr_boot.attr) {
2135 		if (tb_route(sw))
2136 			return attr->mode;
2137 		return 0;
2138 	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2139 		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2140 			return attr->mode;
2141 		return 0;
2142 	}
2143 
2144 	return sw->safe_mode ? 0 : attr->mode;
2145 }
2146 
2147 static const struct attribute_group switch_group = {
2148 	.is_visible = switch_attr_is_visible,
2149 	.attrs = switch_attrs,
2150 };
2151 
2152 static const struct attribute_group *switch_groups[] = {
2153 	&switch_group,
2154 	NULL,
2155 };
2156 
2157 static void tb_switch_release(struct device *dev)
2158 {
2159 	struct tb_switch *sw = tb_to_switch(dev);
2160 	struct tb_port *port;
2161 
2162 	dma_port_free(sw->dma_port);
2163 
2164 	tb_switch_for_each_port(sw, port) {
2165 		ida_destroy(&port->in_hopids);
2166 		ida_destroy(&port->out_hopids);
2167 	}
2168 
2169 	kfree(sw->uuid);
2170 	kfree(sw->device_name);
2171 	kfree(sw->vendor_name);
2172 	kfree(sw->ports);
2173 	kfree(sw->drom);
2174 	kfree(sw->key);
2175 	kfree(sw);
2176 }
2177 
2178 static int tb_switch_uevent(struct device *dev, struct kobj_uevent_env *env)
2179 {
2180 	struct tb_switch *sw = tb_to_switch(dev);
2181 	const char *type;
2182 
2183 	if (sw->config.thunderbolt_version == USB4_VERSION_1_0) {
2184 		if (add_uevent_var(env, "USB4_VERSION=1.0"))
2185 			return -ENOMEM;
2186 	}
2187 
2188 	if (!tb_route(sw)) {
2189 		type = "host";
2190 	} else {
2191 		const struct tb_port *port;
2192 		bool hub = false;
2193 
2194 		/* Device is hub if it has any downstream ports */
2195 		tb_switch_for_each_port(sw, port) {
2196 			if (!port->disabled && !tb_is_upstream_port(port) &&
2197 			     tb_port_is_null(port)) {
2198 				hub = true;
2199 				break;
2200 			}
2201 		}
2202 
2203 		type = hub ? "hub" : "device";
2204 	}
2205 
2206 	if (add_uevent_var(env, "USB4_TYPE=%s", type))
2207 		return -ENOMEM;
2208 	return 0;
2209 }
2210 
2211 /*
2212  * Currently only need to provide the callbacks. Everything else is handled
2213  * in the connection manager.
2214  */
2215 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2216 {
2217 	struct tb_switch *sw = tb_to_switch(dev);
2218 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2219 
2220 	if (cm_ops->runtime_suspend_switch)
2221 		return cm_ops->runtime_suspend_switch(sw);
2222 
2223 	return 0;
2224 }
2225 
2226 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2227 {
2228 	struct tb_switch *sw = tb_to_switch(dev);
2229 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2230 
2231 	if (cm_ops->runtime_resume_switch)
2232 		return cm_ops->runtime_resume_switch(sw);
2233 	return 0;
2234 }
2235 
2236 static const struct dev_pm_ops tb_switch_pm_ops = {
2237 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2238 			   NULL)
2239 };
2240 
2241 struct device_type tb_switch_type = {
2242 	.name = "thunderbolt_device",
2243 	.release = tb_switch_release,
2244 	.uevent = tb_switch_uevent,
2245 	.pm = &tb_switch_pm_ops,
2246 };
2247 
2248 static int tb_switch_get_generation(struct tb_switch *sw)
2249 {
2250 	switch (sw->config.device_id) {
2251 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2252 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2253 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2254 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2255 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2256 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2257 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2258 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2259 		return 1;
2260 
2261 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2262 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2263 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2264 		return 2;
2265 
2266 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2267 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2268 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2269 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2270 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2271 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2272 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2273 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2274 	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2275 	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2276 		return 3;
2277 
2278 	default:
2279 		if (tb_switch_is_usb4(sw))
2280 			return 4;
2281 
2282 		/*
2283 		 * For unknown switches assume generation to be 1 to be
2284 		 * on the safe side.
2285 		 */
2286 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
2287 			   sw->config.device_id);
2288 		return 1;
2289 	}
2290 }
2291 
2292 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2293 {
2294 	int max_depth;
2295 
2296 	if (tb_switch_is_usb4(sw) ||
2297 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2298 		max_depth = USB4_SWITCH_MAX_DEPTH;
2299 	else
2300 		max_depth = TB_SWITCH_MAX_DEPTH;
2301 
2302 	return depth > max_depth;
2303 }
2304 
2305 /**
2306  * tb_switch_alloc() - allocate a switch
2307  * @tb: Pointer to the owning domain
2308  * @parent: Parent device for this switch
2309  * @route: Route string for this switch
2310  *
2311  * Allocates and initializes a switch. Will not upload configuration to
2312  * the switch. For that you need to call tb_switch_configure()
2313  * separately. The returned switch should be released by calling
2314  * tb_switch_put().
2315  *
2316  * Return: Pointer to the allocated switch or ERR_PTR() in case of
2317  * failure.
2318  */
2319 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2320 				  u64 route)
2321 {
2322 	struct tb_switch *sw;
2323 	int upstream_port;
2324 	int i, ret, depth;
2325 
2326 	/* Unlock the downstream port so we can access the switch below */
2327 	if (route) {
2328 		struct tb_switch *parent_sw = tb_to_switch(parent);
2329 		struct tb_port *down;
2330 
2331 		down = tb_port_at(route, parent_sw);
2332 		tb_port_unlock(down);
2333 	}
2334 
2335 	depth = tb_route_length(route);
2336 
2337 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2338 	if (upstream_port < 0)
2339 		return ERR_PTR(upstream_port);
2340 
2341 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2342 	if (!sw)
2343 		return ERR_PTR(-ENOMEM);
2344 
2345 	sw->tb = tb;
2346 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2347 	if (ret)
2348 		goto err_free_sw_ports;
2349 
2350 	sw->generation = tb_switch_get_generation(sw);
2351 
2352 	tb_dbg(tb, "current switch config:\n");
2353 	tb_dump_switch(tb, sw);
2354 
2355 	/* configure switch */
2356 	sw->config.upstream_port_number = upstream_port;
2357 	sw->config.depth = depth;
2358 	sw->config.route_hi = upper_32_bits(route);
2359 	sw->config.route_lo = lower_32_bits(route);
2360 	sw->config.enabled = 0;
2361 
2362 	/* Make sure we do not exceed maximum topology limit */
2363 	if (tb_switch_exceeds_max_depth(sw, depth)) {
2364 		ret = -EADDRNOTAVAIL;
2365 		goto err_free_sw_ports;
2366 	}
2367 
2368 	/* initialize ports */
2369 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2370 				GFP_KERNEL);
2371 	if (!sw->ports) {
2372 		ret = -ENOMEM;
2373 		goto err_free_sw_ports;
2374 	}
2375 
2376 	for (i = 0; i <= sw->config.max_port_number; i++) {
2377 		/* minimum setup for tb_find_cap and tb_drom_read to work */
2378 		sw->ports[i].sw = sw;
2379 		sw->ports[i].port = i;
2380 
2381 		/* Control port does not need HopID allocation */
2382 		if (i) {
2383 			ida_init(&sw->ports[i].in_hopids);
2384 			ida_init(&sw->ports[i].out_hopids);
2385 		}
2386 	}
2387 
2388 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2389 	if (ret > 0)
2390 		sw->cap_plug_events = ret;
2391 
2392 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2393 	if (ret > 0)
2394 		sw->cap_vsec_tmu = ret;
2395 
2396 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2397 	if (ret > 0)
2398 		sw->cap_lc = ret;
2399 
2400 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2401 	if (ret > 0)
2402 		sw->cap_lp = ret;
2403 
2404 	/* Root switch is always authorized */
2405 	if (!route)
2406 		sw->authorized = true;
2407 
2408 	device_initialize(&sw->dev);
2409 	sw->dev.parent = parent;
2410 	sw->dev.bus = &tb_bus_type;
2411 	sw->dev.type = &tb_switch_type;
2412 	sw->dev.groups = switch_groups;
2413 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2414 
2415 	return sw;
2416 
2417 err_free_sw_ports:
2418 	kfree(sw->ports);
2419 	kfree(sw);
2420 
2421 	return ERR_PTR(ret);
2422 }
2423 
2424 /**
2425  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2426  * @tb: Pointer to the owning domain
2427  * @parent: Parent device for this switch
2428  * @route: Route string for this switch
2429  *
2430  * This creates a switch in safe mode. This means the switch pretty much
2431  * lacks all capabilities except DMA configuration port before it is
2432  * flashed with a valid NVM firmware.
2433  *
2434  * The returned switch must be released by calling tb_switch_put().
2435  *
2436  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2437  */
2438 struct tb_switch *
2439 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2440 {
2441 	struct tb_switch *sw;
2442 
2443 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2444 	if (!sw)
2445 		return ERR_PTR(-ENOMEM);
2446 
2447 	sw->tb = tb;
2448 	sw->config.depth = tb_route_length(route);
2449 	sw->config.route_hi = upper_32_bits(route);
2450 	sw->config.route_lo = lower_32_bits(route);
2451 	sw->safe_mode = true;
2452 
2453 	device_initialize(&sw->dev);
2454 	sw->dev.parent = parent;
2455 	sw->dev.bus = &tb_bus_type;
2456 	sw->dev.type = &tb_switch_type;
2457 	sw->dev.groups = switch_groups;
2458 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2459 
2460 	return sw;
2461 }
2462 
2463 /**
2464  * tb_switch_configure() - Uploads configuration to the switch
2465  * @sw: Switch to configure
2466  *
2467  * Call this function before the switch is added to the system. It will
2468  * upload configuration to the switch and makes it available for the
2469  * connection manager to use. Can be called to the switch again after
2470  * resume from low power states to re-initialize it.
2471  *
2472  * Return: %0 in case of success and negative errno in case of failure
2473  */
2474 int tb_switch_configure(struct tb_switch *sw)
2475 {
2476 	struct tb *tb = sw->tb;
2477 	u64 route;
2478 	int ret;
2479 
2480 	route = tb_route(sw);
2481 
2482 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2483 	       sw->config.enabled ? "restoring" : "initializing", route,
2484 	       tb_route_length(route), sw->config.upstream_port_number);
2485 
2486 	sw->config.enabled = 1;
2487 
2488 	if (tb_switch_is_usb4(sw)) {
2489 		/*
2490 		 * For USB4 devices, we need to program the CM version
2491 		 * accordingly so that it knows to expose all the
2492 		 * additional capabilities.
2493 		 */
2494 		sw->config.cmuv = USB4_VERSION_1_0;
2495 		sw->config.plug_events_delay = 0xa;
2496 
2497 		/* Enumerate the switch */
2498 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2499 				  ROUTER_CS_1, 4);
2500 		if (ret)
2501 			return ret;
2502 
2503 		ret = usb4_switch_setup(sw);
2504 	} else {
2505 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2506 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2507 				   sw->config.vendor_id);
2508 
2509 		if (!sw->cap_plug_events) {
2510 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2511 			return -ENODEV;
2512 		}
2513 
2514 		/* Enumerate the switch */
2515 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2516 				  ROUTER_CS_1, 3);
2517 	}
2518 	if (ret)
2519 		return ret;
2520 
2521 	return tb_plug_events_active(sw, true);
2522 }
2523 
2524 static int tb_switch_set_uuid(struct tb_switch *sw)
2525 {
2526 	bool uid = false;
2527 	u32 uuid[4];
2528 	int ret;
2529 
2530 	if (sw->uuid)
2531 		return 0;
2532 
2533 	if (tb_switch_is_usb4(sw)) {
2534 		ret = usb4_switch_read_uid(sw, &sw->uid);
2535 		if (ret)
2536 			return ret;
2537 		uid = true;
2538 	} else {
2539 		/*
2540 		 * The newer controllers include fused UUID as part of
2541 		 * link controller specific registers
2542 		 */
2543 		ret = tb_lc_read_uuid(sw, uuid);
2544 		if (ret) {
2545 			if (ret != -EINVAL)
2546 				return ret;
2547 			uid = true;
2548 		}
2549 	}
2550 
2551 	if (uid) {
2552 		/*
2553 		 * ICM generates UUID based on UID and fills the upper
2554 		 * two words with ones. This is not strictly following
2555 		 * UUID format but we want to be compatible with it so
2556 		 * we do the same here.
2557 		 */
2558 		uuid[0] = sw->uid & 0xffffffff;
2559 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2560 		uuid[2] = 0xffffffff;
2561 		uuid[3] = 0xffffffff;
2562 	}
2563 
2564 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2565 	if (!sw->uuid)
2566 		return -ENOMEM;
2567 	return 0;
2568 }
2569 
2570 static int tb_switch_add_dma_port(struct tb_switch *sw)
2571 {
2572 	u32 status;
2573 	int ret;
2574 
2575 	switch (sw->generation) {
2576 	case 2:
2577 		/* Only root switch can be upgraded */
2578 		if (tb_route(sw))
2579 			return 0;
2580 
2581 		fallthrough;
2582 	case 3:
2583 	case 4:
2584 		ret = tb_switch_set_uuid(sw);
2585 		if (ret)
2586 			return ret;
2587 		break;
2588 
2589 	default:
2590 		/*
2591 		 * DMA port is the only thing available when the switch
2592 		 * is in safe mode.
2593 		 */
2594 		if (!sw->safe_mode)
2595 			return 0;
2596 		break;
2597 	}
2598 
2599 	if (sw->no_nvm_upgrade)
2600 		return 0;
2601 
2602 	if (tb_switch_is_usb4(sw)) {
2603 		ret = usb4_switch_nvm_authenticate_status(sw, &status);
2604 		if (ret)
2605 			return ret;
2606 
2607 		if (status) {
2608 			tb_sw_info(sw, "switch flash authentication failed\n");
2609 			nvm_set_auth_status(sw, status);
2610 		}
2611 
2612 		return 0;
2613 	}
2614 
2615 	/* Root switch DMA port requires running firmware */
2616 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2617 		return 0;
2618 
2619 	sw->dma_port = dma_port_alloc(sw);
2620 	if (!sw->dma_port)
2621 		return 0;
2622 
2623 	/*
2624 	 * If there is status already set then authentication failed
2625 	 * when the dma_port_flash_update_auth() returned. Power cycling
2626 	 * is not needed (it was done already) so only thing we do here
2627 	 * is to unblock runtime PM of the root port.
2628 	 */
2629 	nvm_get_auth_status(sw, &status);
2630 	if (status) {
2631 		if (!tb_route(sw))
2632 			nvm_authenticate_complete_dma_port(sw);
2633 		return 0;
2634 	}
2635 
2636 	/*
2637 	 * Check status of the previous flash authentication. If there
2638 	 * is one we need to power cycle the switch in any case to make
2639 	 * it functional again.
2640 	 */
2641 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2642 	if (ret <= 0)
2643 		return ret;
2644 
2645 	/* Now we can allow root port to suspend again */
2646 	if (!tb_route(sw))
2647 		nvm_authenticate_complete_dma_port(sw);
2648 
2649 	if (status) {
2650 		tb_sw_info(sw, "switch flash authentication failed\n");
2651 		nvm_set_auth_status(sw, status);
2652 	}
2653 
2654 	tb_sw_info(sw, "power cycling the switch now\n");
2655 	dma_port_power_cycle(sw->dma_port);
2656 
2657 	/*
2658 	 * We return error here which causes the switch adding failure.
2659 	 * It should appear back after power cycle is complete.
2660 	 */
2661 	return -ESHUTDOWN;
2662 }
2663 
2664 static void tb_switch_default_link_ports(struct tb_switch *sw)
2665 {
2666 	int i;
2667 
2668 	for (i = 1; i <= sw->config.max_port_number; i++) {
2669 		struct tb_port *port = &sw->ports[i];
2670 		struct tb_port *subordinate;
2671 
2672 		if (!tb_port_is_null(port))
2673 			continue;
2674 
2675 		/* Check for the subordinate port */
2676 		if (i == sw->config.max_port_number ||
2677 		    !tb_port_is_null(&sw->ports[i + 1]))
2678 			continue;
2679 
2680 		/* Link them if not already done so (by DROM) */
2681 		subordinate = &sw->ports[i + 1];
2682 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2683 			port->link_nr = 0;
2684 			port->dual_link_port = subordinate;
2685 			subordinate->link_nr = 1;
2686 			subordinate->dual_link_port = port;
2687 
2688 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2689 				  port->port, subordinate->port);
2690 		}
2691 	}
2692 }
2693 
2694 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2695 {
2696 	const struct tb_port *up = tb_upstream_port(sw);
2697 
2698 	if (!up->dual_link_port || !up->dual_link_port->remote)
2699 		return false;
2700 
2701 	if (tb_switch_is_usb4(sw))
2702 		return usb4_switch_lane_bonding_possible(sw);
2703 	return tb_lc_lane_bonding_possible(sw);
2704 }
2705 
2706 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2707 {
2708 	struct tb_port *up;
2709 	bool change = false;
2710 	int ret;
2711 
2712 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2713 		return 0;
2714 
2715 	up = tb_upstream_port(sw);
2716 
2717 	ret = tb_port_get_link_speed(up);
2718 	if (ret < 0)
2719 		return ret;
2720 	if (sw->link_speed != ret)
2721 		change = true;
2722 	sw->link_speed = ret;
2723 
2724 	ret = tb_port_get_link_width(up);
2725 	if (ret < 0)
2726 		return ret;
2727 	if (sw->link_width != ret)
2728 		change = true;
2729 	sw->link_width = ret;
2730 
2731 	/* Notify userspace that there is possible link attribute change */
2732 	if (device_is_registered(&sw->dev) && change)
2733 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2734 
2735 	return 0;
2736 }
2737 
2738 /**
2739  * tb_switch_lane_bonding_enable() - Enable lane bonding
2740  * @sw: Switch to enable lane bonding
2741  *
2742  * Connection manager can call this function to enable lane bonding of a
2743  * switch. If conditions are correct and both switches support the feature,
2744  * lanes are bonded. It is safe to call this to any switch.
2745  */
2746 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2747 {
2748 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2749 	struct tb_port *up, *down;
2750 	u64 route = tb_route(sw);
2751 	int ret;
2752 
2753 	if (!route)
2754 		return 0;
2755 
2756 	if (!tb_switch_lane_bonding_possible(sw))
2757 		return 0;
2758 
2759 	up = tb_upstream_port(sw);
2760 	down = tb_port_at(route, parent);
2761 
2762 	if (!tb_port_is_width_supported(up, 2) ||
2763 	    !tb_port_is_width_supported(down, 2))
2764 		return 0;
2765 
2766 	ret = tb_port_lane_bonding_enable(up);
2767 	if (ret) {
2768 		tb_port_warn(up, "failed to enable lane bonding\n");
2769 		return ret;
2770 	}
2771 
2772 	ret = tb_port_lane_bonding_enable(down);
2773 	if (ret) {
2774 		tb_port_warn(down, "failed to enable lane bonding\n");
2775 		tb_port_lane_bonding_disable(up);
2776 		return ret;
2777 	}
2778 
2779 	ret = tb_port_wait_for_link_width(down, 2, 100);
2780 	if (ret) {
2781 		tb_port_warn(down, "timeout enabling lane bonding\n");
2782 		return ret;
2783 	}
2784 
2785 	tb_port_update_credits(down);
2786 	tb_port_update_credits(up);
2787 	tb_switch_update_link_attributes(sw);
2788 
2789 	tb_sw_dbg(sw, "lane bonding enabled\n");
2790 	return ret;
2791 }
2792 
2793 /**
2794  * tb_switch_lane_bonding_disable() - Disable lane bonding
2795  * @sw: Switch whose lane bonding to disable
2796  *
2797  * Disables lane bonding between @sw and parent. This can be called even
2798  * if lanes were not bonded originally.
2799  */
2800 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2801 {
2802 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2803 	struct tb_port *up, *down;
2804 
2805 	if (!tb_route(sw))
2806 		return;
2807 
2808 	up = tb_upstream_port(sw);
2809 	if (!up->bonded)
2810 		return;
2811 
2812 	down = tb_port_at(tb_route(sw), parent);
2813 
2814 	tb_port_lane_bonding_disable(up);
2815 	tb_port_lane_bonding_disable(down);
2816 
2817 	/*
2818 	 * It is fine if we get other errors as the router might have
2819 	 * been unplugged.
2820 	 */
2821 	if (tb_port_wait_for_link_width(down, 1, 100) == -ETIMEDOUT)
2822 		tb_sw_warn(sw, "timeout disabling lane bonding\n");
2823 
2824 	tb_port_update_credits(down);
2825 	tb_port_update_credits(up);
2826 	tb_switch_update_link_attributes(sw);
2827 
2828 	tb_sw_dbg(sw, "lane bonding disabled\n");
2829 }
2830 
2831 /**
2832  * tb_switch_configure_link() - Set link configured
2833  * @sw: Switch whose link is configured
2834  *
2835  * Sets the link upstream from @sw configured (from both ends) so that
2836  * it will not be disconnected when the domain exits sleep. Can be
2837  * called for any switch.
2838  *
2839  * It is recommended that this is called after lane bonding is enabled.
2840  *
2841  * Returns %0 on success and negative errno in case of error.
2842  */
2843 int tb_switch_configure_link(struct tb_switch *sw)
2844 {
2845 	struct tb_port *up, *down;
2846 	int ret;
2847 
2848 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2849 		return 0;
2850 
2851 	up = tb_upstream_port(sw);
2852 	if (tb_switch_is_usb4(up->sw))
2853 		ret = usb4_port_configure(up);
2854 	else
2855 		ret = tb_lc_configure_port(up);
2856 	if (ret)
2857 		return ret;
2858 
2859 	down = up->remote;
2860 	if (tb_switch_is_usb4(down->sw))
2861 		return usb4_port_configure(down);
2862 	return tb_lc_configure_port(down);
2863 }
2864 
2865 /**
2866  * tb_switch_unconfigure_link() - Unconfigure link
2867  * @sw: Switch whose link is unconfigured
2868  *
2869  * Sets the link unconfigured so the @sw will be disconnected if the
2870  * domain exists sleep.
2871  */
2872 void tb_switch_unconfigure_link(struct tb_switch *sw)
2873 {
2874 	struct tb_port *up, *down;
2875 
2876 	if (sw->is_unplugged)
2877 		return;
2878 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2879 		return;
2880 
2881 	up = tb_upstream_port(sw);
2882 	if (tb_switch_is_usb4(up->sw))
2883 		usb4_port_unconfigure(up);
2884 	else
2885 		tb_lc_unconfigure_port(up);
2886 
2887 	down = up->remote;
2888 	if (tb_switch_is_usb4(down->sw))
2889 		usb4_port_unconfigure(down);
2890 	else
2891 		tb_lc_unconfigure_port(down);
2892 }
2893 
2894 static void tb_switch_credits_init(struct tb_switch *sw)
2895 {
2896 	if (tb_switch_is_icm(sw))
2897 		return;
2898 	if (!tb_switch_is_usb4(sw))
2899 		return;
2900 	if (usb4_switch_credits_init(sw))
2901 		tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
2902 }
2903 
2904 static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
2905 {
2906 	struct tb_port *port;
2907 
2908 	if (tb_switch_is_icm(sw))
2909 		return 0;
2910 
2911 	tb_switch_for_each_port(sw, port) {
2912 		int res;
2913 
2914 		if (!port->cap_usb4)
2915 			continue;
2916 
2917 		res = usb4_port_hotplug_enable(port);
2918 		if (res)
2919 			return res;
2920 	}
2921 	return 0;
2922 }
2923 
2924 /**
2925  * tb_switch_add() - Add a switch to the domain
2926  * @sw: Switch to add
2927  *
2928  * This is the last step in adding switch to the domain. It will read
2929  * identification information from DROM and initializes ports so that
2930  * they can be used to connect other switches. The switch will be
2931  * exposed to the userspace when this function successfully returns. To
2932  * remove and release the switch, call tb_switch_remove().
2933  *
2934  * Return: %0 in case of success and negative errno in case of failure
2935  */
2936 int tb_switch_add(struct tb_switch *sw)
2937 {
2938 	int i, ret;
2939 
2940 	/*
2941 	 * Initialize DMA control port now before we read DROM. Recent
2942 	 * host controllers have more complete DROM on NVM that includes
2943 	 * vendor and model identification strings which we then expose
2944 	 * to the userspace. NVM can be accessed through DMA
2945 	 * configuration based mailbox.
2946 	 */
2947 	ret = tb_switch_add_dma_port(sw);
2948 	if (ret) {
2949 		dev_err(&sw->dev, "failed to add DMA port\n");
2950 		return ret;
2951 	}
2952 
2953 	if (!sw->safe_mode) {
2954 		tb_switch_credits_init(sw);
2955 
2956 		/* read drom */
2957 		ret = tb_drom_read(sw);
2958 		if (ret)
2959 			dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
2960 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2961 
2962 		tb_check_quirks(sw);
2963 
2964 		ret = tb_switch_set_uuid(sw);
2965 		if (ret) {
2966 			dev_err(&sw->dev, "failed to set UUID\n");
2967 			return ret;
2968 		}
2969 
2970 		for (i = 0; i <= sw->config.max_port_number; i++) {
2971 			if (sw->ports[i].disabled) {
2972 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2973 				continue;
2974 			}
2975 			ret = tb_init_port(&sw->ports[i]);
2976 			if (ret) {
2977 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
2978 				return ret;
2979 			}
2980 		}
2981 
2982 		tb_switch_default_link_ports(sw);
2983 
2984 		ret = tb_switch_update_link_attributes(sw);
2985 		if (ret)
2986 			return ret;
2987 
2988 		ret = tb_switch_tmu_init(sw);
2989 		if (ret)
2990 			return ret;
2991 	}
2992 
2993 	ret = tb_switch_port_hotplug_enable(sw);
2994 	if (ret)
2995 		return ret;
2996 
2997 	ret = device_add(&sw->dev);
2998 	if (ret) {
2999 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
3000 		return ret;
3001 	}
3002 
3003 	if (tb_route(sw)) {
3004 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
3005 			 sw->vendor, sw->device);
3006 		if (sw->vendor_name && sw->device_name)
3007 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
3008 				 sw->device_name);
3009 	}
3010 
3011 	ret = usb4_switch_add_ports(sw);
3012 	if (ret) {
3013 		dev_err(&sw->dev, "failed to add USB4 ports\n");
3014 		goto err_del;
3015 	}
3016 
3017 	ret = tb_switch_nvm_add(sw);
3018 	if (ret) {
3019 		dev_err(&sw->dev, "failed to add NVM devices\n");
3020 		goto err_ports;
3021 	}
3022 
3023 	/*
3024 	 * Thunderbolt routers do not generate wakeups themselves but
3025 	 * they forward wakeups from tunneled protocols, so enable it
3026 	 * here.
3027 	 */
3028 	device_init_wakeup(&sw->dev, true);
3029 
3030 	pm_runtime_set_active(&sw->dev);
3031 	if (sw->rpm) {
3032 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3033 		pm_runtime_use_autosuspend(&sw->dev);
3034 		pm_runtime_mark_last_busy(&sw->dev);
3035 		pm_runtime_enable(&sw->dev);
3036 		pm_request_autosuspend(&sw->dev);
3037 	}
3038 
3039 	tb_switch_debugfs_init(sw);
3040 	return 0;
3041 
3042 err_ports:
3043 	usb4_switch_remove_ports(sw);
3044 err_del:
3045 	device_del(&sw->dev);
3046 
3047 	return ret;
3048 }
3049 
3050 /**
3051  * tb_switch_remove() - Remove and release a switch
3052  * @sw: Switch to remove
3053  *
3054  * This will remove the switch from the domain and release it after last
3055  * reference count drops to zero. If there are switches connected below
3056  * this switch, they will be removed as well.
3057  */
3058 void tb_switch_remove(struct tb_switch *sw)
3059 {
3060 	struct tb_port *port;
3061 
3062 	tb_switch_debugfs_remove(sw);
3063 
3064 	if (sw->rpm) {
3065 		pm_runtime_get_sync(&sw->dev);
3066 		pm_runtime_disable(&sw->dev);
3067 	}
3068 
3069 	/* port 0 is the switch itself and never has a remote */
3070 	tb_switch_for_each_port(sw, port) {
3071 		if (tb_port_has_remote(port)) {
3072 			tb_switch_remove(port->remote->sw);
3073 			port->remote = NULL;
3074 		} else if (port->xdomain) {
3075 			tb_xdomain_remove(port->xdomain);
3076 			port->xdomain = NULL;
3077 		}
3078 
3079 		/* Remove any downstream retimers */
3080 		tb_retimer_remove_all(port);
3081 	}
3082 
3083 	if (!sw->is_unplugged)
3084 		tb_plug_events_active(sw, false);
3085 
3086 	tb_switch_nvm_remove(sw);
3087 	usb4_switch_remove_ports(sw);
3088 
3089 	if (tb_route(sw))
3090 		dev_info(&sw->dev, "device disconnected\n");
3091 	device_unregister(&sw->dev);
3092 }
3093 
3094 /**
3095  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3096  * @sw: Router to mark unplugged
3097  */
3098 void tb_sw_set_unplugged(struct tb_switch *sw)
3099 {
3100 	struct tb_port *port;
3101 
3102 	if (sw == sw->tb->root_switch) {
3103 		tb_sw_WARN(sw, "cannot unplug root switch\n");
3104 		return;
3105 	}
3106 	if (sw->is_unplugged) {
3107 		tb_sw_WARN(sw, "is_unplugged already set\n");
3108 		return;
3109 	}
3110 	sw->is_unplugged = true;
3111 	tb_switch_for_each_port(sw, port) {
3112 		if (tb_port_has_remote(port))
3113 			tb_sw_set_unplugged(port->remote->sw);
3114 		else if (port->xdomain)
3115 			port->xdomain->is_unplugged = true;
3116 	}
3117 }
3118 
3119 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3120 {
3121 	if (flags)
3122 		tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3123 	else
3124 		tb_sw_dbg(sw, "disabling wakeup\n");
3125 
3126 	if (tb_switch_is_usb4(sw))
3127 		return usb4_switch_set_wake(sw, flags);
3128 	return tb_lc_set_wake(sw, flags);
3129 }
3130 
3131 int tb_switch_resume(struct tb_switch *sw)
3132 {
3133 	struct tb_port *port;
3134 	int err;
3135 
3136 	tb_sw_dbg(sw, "resuming switch\n");
3137 
3138 	/*
3139 	 * Check for UID of the connected switches except for root
3140 	 * switch which we assume cannot be removed.
3141 	 */
3142 	if (tb_route(sw)) {
3143 		u64 uid;
3144 
3145 		/*
3146 		 * Check first that we can still read the switch config
3147 		 * space. It may be that there is now another domain
3148 		 * connected.
3149 		 */
3150 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3151 		if (err < 0) {
3152 			tb_sw_info(sw, "switch not present anymore\n");
3153 			return err;
3154 		}
3155 
3156 		/* We don't have any way to confirm this was the same device */
3157 		if (!sw->uid)
3158 			return -ENODEV;
3159 
3160 		if (tb_switch_is_usb4(sw))
3161 			err = usb4_switch_read_uid(sw, &uid);
3162 		else
3163 			err = tb_drom_read_uid_only(sw, &uid);
3164 		if (err) {
3165 			tb_sw_warn(sw, "uid read failed\n");
3166 			return err;
3167 		}
3168 		if (sw->uid != uid) {
3169 			tb_sw_info(sw,
3170 				"changed while suspended (uid %#llx -> %#llx)\n",
3171 				sw->uid, uid);
3172 			return -ENODEV;
3173 		}
3174 	}
3175 
3176 	err = tb_switch_configure(sw);
3177 	if (err)
3178 		return err;
3179 
3180 	/* Disable wakes */
3181 	tb_switch_set_wake(sw, 0);
3182 
3183 	err = tb_switch_tmu_init(sw);
3184 	if (err)
3185 		return err;
3186 
3187 	/* check for surviving downstream switches */
3188 	tb_switch_for_each_port(sw, port) {
3189 		if (!tb_port_is_null(port))
3190 			continue;
3191 
3192 		if (!tb_port_resume(port))
3193 			continue;
3194 
3195 		if (tb_wait_for_port(port, true) <= 0) {
3196 			tb_port_warn(port,
3197 				     "lost during suspend, disconnecting\n");
3198 			if (tb_port_has_remote(port))
3199 				tb_sw_set_unplugged(port->remote->sw);
3200 			else if (port->xdomain)
3201 				port->xdomain->is_unplugged = true;
3202 		} else {
3203 			/*
3204 			 * Always unlock the port so the downstream
3205 			 * switch/domain is accessible.
3206 			 */
3207 			if (tb_port_unlock(port))
3208 				tb_port_warn(port, "failed to unlock port\n");
3209 			if (port->remote && tb_switch_resume(port->remote->sw)) {
3210 				tb_port_warn(port,
3211 					     "lost during suspend, disconnecting\n");
3212 				tb_sw_set_unplugged(port->remote->sw);
3213 			}
3214 		}
3215 	}
3216 	return 0;
3217 }
3218 
3219 /**
3220  * tb_switch_suspend() - Put a switch to sleep
3221  * @sw: Switch to suspend
3222  * @runtime: Is this runtime suspend or system sleep
3223  *
3224  * Suspends router and all its children. Enables wakes according to
3225  * value of @runtime and then sets sleep bit for the router. If @sw is
3226  * host router the domain is ready to go to sleep once this function
3227  * returns.
3228  */
3229 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3230 {
3231 	unsigned int flags = 0;
3232 	struct tb_port *port;
3233 	int err;
3234 
3235 	tb_sw_dbg(sw, "suspending switch\n");
3236 
3237 	/*
3238 	 * Actually only needed for Titan Ridge but for simplicity can be
3239 	 * done for USB4 device too as CLx is re-enabled at resume.
3240 	 * CL0s and CL1 are enabled and supported together.
3241 	 */
3242 	if (tb_switch_is_clx_enabled(sw, TB_CL1)) {
3243 		if (tb_switch_disable_clx(sw, TB_CL1))
3244 			tb_sw_warn(sw, "failed to disable %s on upstream port\n",
3245 				   tb_switch_clx_name(TB_CL1));
3246 	}
3247 
3248 	err = tb_plug_events_active(sw, false);
3249 	if (err)
3250 		return;
3251 
3252 	tb_switch_for_each_port(sw, port) {
3253 		if (tb_port_has_remote(port))
3254 			tb_switch_suspend(port->remote->sw, runtime);
3255 	}
3256 
3257 	if (runtime) {
3258 		/* Trigger wake when something is plugged in/out */
3259 		flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3260 		flags |= TB_WAKE_ON_USB4;
3261 		flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3262 	} else if (device_may_wakeup(&sw->dev)) {
3263 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3264 	}
3265 
3266 	tb_switch_set_wake(sw, flags);
3267 
3268 	if (tb_switch_is_usb4(sw))
3269 		usb4_switch_set_sleep(sw);
3270 	else
3271 		tb_lc_set_sleep(sw);
3272 }
3273 
3274 /**
3275  * tb_switch_query_dp_resource() - Query availability of DP resource
3276  * @sw: Switch whose DP resource is queried
3277  * @in: DP IN port
3278  *
3279  * Queries availability of DP resource for DP tunneling using switch
3280  * specific means. Returns %true if resource is available.
3281  */
3282 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3283 {
3284 	if (tb_switch_is_usb4(sw))
3285 		return usb4_switch_query_dp_resource(sw, in);
3286 	return tb_lc_dp_sink_query(sw, in);
3287 }
3288 
3289 /**
3290  * tb_switch_alloc_dp_resource() - Allocate available DP resource
3291  * @sw: Switch whose DP resource is allocated
3292  * @in: DP IN port
3293  *
3294  * Allocates DP resource for DP tunneling. The resource must be
3295  * available for this to succeed (see tb_switch_query_dp_resource()).
3296  * Returns %0 in success and negative errno otherwise.
3297  */
3298 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3299 {
3300 	int ret;
3301 
3302 	if (tb_switch_is_usb4(sw))
3303 		ret = usb4_switch_alloc_dp_resource(sw, in);
3304 	else
3305 		ret = tb_lc_dp_sink_alloc(sw, in);
3306 
3307 	if (ret)
3308 		tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3309 			   in->port);
3310 	else
3311 		tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3312 
3313 	return ret;
3314 }
3315 
3316 /**
3317  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3318  * @sw: Switch whose DP resource is de-allocated
3319  * @in: DP IN port
3320  *
3321  * De-allocates DP resource that was previously allocated for DP
3322  * tunneling.
3323  */
3324 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3325 {
3326 	int ret;
3327 
3328 	if (tb_switch_is_usb4(sw))
3329 		ret = usb4_switch_dealloc_dp_resource(sw, in);
3330 	else
3331 		ret = tb_lc_dp_sink_dealloc(sw, in);
3332 
3333 	if (ret)
3334 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3335 			   in->port);
3336 	else
3337 		tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3338 }
3339 
3340 struct tb_sw_lookup {
3341 	struct tb *tb;
3342 	u8 link;
3343 	u8 depth;
3344 	const uuid_t *uuid;
3345 	u64 route;
3346 };
3347 
3348 static int tb_switch_match(struct device *dev, const void *data)
3349 {
3350 	struct tb_switch *sw = tb_to_switch(dev);
3351 	const struct tb_sw_lookup *lookup = data;
3352 
3353 	if (!sw)
3354 		return 0;
3355 	if (sw->tb != lookup->tb)
3356 		return 0;
3357 
3358 	if (lookup->uuid)
3359 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3360 
3361 	if (lookup->route) {
3362 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
3363 		       sw->config.route_hi == upper_32_bits(lookup->route);
3364 	}
3365 
3366 	/* Root switch is matched only by depth */
3367 	if (!lookup->depth)
3368 		return !sw->depth;
3369 
3370 	return sw->link == lookup->link && sw->depth == lookup->depth;
3371 }
3372 
3373 /**
3374  * tb_switch_find_by_link_depth() - Find switch by link and depth
3375  * @tb: Domain the switch belongs
3376  * @link: Link number the switch is connected
3377  * @depth: Depth of the switch in link
3378  *
3379  * Returned switch has reference count increased so the caller needs to
3380  * call tb_switch_put() when done with the switch.
3381  */
3382 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3383 {
3384 	struct tb_sw_lookup lookup;
3385 	struct device *dev;
3386 
3387 	memset(&lookup, 0, sizeof(lookup));
3388 	lookup.tb = tb;
3389 	lookup.link = link;
3390 	lookup.depth = depth;
3391 
3392 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3393 	if (dev)
3394 		return tb_to_switch(dev);
3395 
3396 	return NULL;
3397 }
3398 
3399 /**
3400  * tb_switch_find_by_uuid() - Find switch by UUID
3401  * @tb: Domain the switch belongs
3402  * @uuid: UUID to look for
3403  *
3404  * Returned switch has reference count increased so the caller needs to
3405  * call tb_switch_put() when done with the switch.
3406  */
3407 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3408 {
3409 	struct tb_sw_lookup lookup;
3410 	struct device *dev;
3411 
3412 	memset(&lookup, 0, sizeof(lookup));
3413 	lookup.tb = tb;
3414 	lookup.uuid = uuid;
3415 
3416 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3417 	if (dev)
3418 		return tb_to_switch(dev);
3419 
3420 	return NULL;
3421 }
3422 
3423 /**
3424  * tb_switch_find_by_route() - Find switch by route string
3425  * @tb: Domain the switch belongs
3426  * @route: Route string to look for
3427  *
3428  * Returned switch has reference count increased so the caller needs to
3429  * call tb_switch_put() when done with the switch.
3430  */
3431 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3432 {
3433 	struct tb_sw_lookup lookup;
3434 	struct device *dev;
3435 
3436 	if (!route)
3437 		return tb_switch_get(tb->root_switch);
3438 
3439 	memset(&lookup, 0, sizeof(lookup));
3440 	lookup.tb = tb;
3441 	lookup.route = route;
3442 
3443 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3444 	if (dev)
3445 		return tb_to_switch(dev);
3446 
3447 	return NULL;
3448 }
3449 
3450 /**
3451  * tb_switch_find_port() - return the first port of @type on @sw or NULL
3452  * @sw: Switch to find the port from
3453  * @type: Port type to look for
3454  */
3455 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3456 				    enum tb_port_type type)
3457 {
3458 	struct tb_port *port;
3459 
3460 	tb_switch_for_each_port(sw, port) {
3461 		if (port->config.type == type)
3462 			return port;
3463 	}
3464 
3465 	return NULL;
3466 }
3467 
3468 static int tb_switch_pm_secondary_resolve(struct tb_switch *sw)
3469 {
3470 	struct tb_switch *parent = tb_switch_parent(sw);
3471 	struct tb_port *up, *down;
3472 	int ret;
3473 
3474 	if (!tb_route(sw))
3475 		return 0;
3476 
3477 	up = tb_upstream_port(sw);
3478 	down = tb_port_at(tb_route(sw), parent);
3479 	ret = tb_port_pm_secondary_enable(up);
3480 	if (ret)
3481 		return ret;
3482 
3483 	return tb_port_pm_secondary_disable(down);
3484 }
3485 
3486 static int __tb_switch_enable_clx(struct tb_switch *sw, enum tb_clx clx)
3487 {
3488 	struct tb_switch *parent = tb_switch_parent(sw);
3489 	bool up_clx_support, down_clx_support;
3490 	struct tb_port *up, *down;
3491 	int ret;
3492 
3493 	if (!tb_switch_is_clx_supported(sw))
3494 		return 0;
3495 
3496 	/*
3497 	 * Enable CLx for host router's downstream port as part of the
3498 	 * downstream router enabling procedure.
3499 	 */
3500 	if (!tb_route(sw))
3501 		return 0;
3502 
3503 	/* Enable CLx only for first hop router (depth = 1) */
3504 	if (tb_route(parent))
3505 		return 0;
3506 
3507 	ret = tb_switch_pm_secondary_resolve(sw);
3508 	if (ret)
3509 		return ret;
3510 
3511 	up = tb_upstream_port(sw);
3512 	down = tb_port_at(tb_route(sw), parent);
3513 
3514 	up_clx_support = tb_port_clx_supported(up, clx);
3515 	down_clx_support = tb_port_clx_supported(down, clx);
3516 
3517 	tb_port_dbg(up, "%s %ssupported\n", tb_switch_clx_name(clx),
3518 		    up_clx_support ? "" : "not ");
3519 	tb_port_dbg(down, "%s %ssupported\n", tb_switch_clx_name(clx),
3520 		    down_clx_support ? "" : "not ");
3521 
3522 	if (!up_clx_support || !down_clx_support)
3523 		return -EOPNOTSUPP;
3524 
3525 	ret = tb_port_clx_enable(up, clx);
3526 	if (ret)
3527 		return ret;
3528 
3529 	ret = tb_port_clx_enable(down, clx);
3530 	if (ret) {
3531 		tb_port_clx_disable(up, clx);
3532 		return ret;
3533 	}
3534 
3535 	ret = tb_switch_mask_clx_objections(sw);
3536 	if (ret) {
3537 		tb_port_clx_disable(up, clx);
3538 		tb_port_clx_disable(down, clx);
3539 		return ret;
3540 	}
3541 
3542 	sw->clx = clx;
3543 
3544 	tb_port_dbg(up, "%s enabled\n", tb_switch_clx_name(clx));
3545 	return 0;
3546 }
3547 
3548 /**
3549  * tb_switch_enable_clx() - Enable CLx on upstream port of specified router
3550  * @sw: Router to enable CLx for
3551  * @clx: The CLx state to enable
3552  *
3553  * Enable CLx state only for first hop router. That is the most common
3554  * use-case, that is intended for better thermal management, and so helps
3555  * to improve performance. CLx is enabled only if both sides of the link
3556  * support CLx, and if both sides of the link are not configured as two
3557  * single lane links and only if the link is not inter-domain link. The
3558  * complete set of conditions is described in CM Guide 1.0 section 8.1.
3559  *
3560  * Return: Returns 0 on success or an error code on failure.
3561  */
3562 int tb_switch_enable_clx(struct tb_switch *sw, enum tb_clx clx)
3563 {
3564 	struct tb_switch *root_sw = sw->tb->root_switch;
3565 
3566 	if (!clx_enabled)
3567 		return 0;
3568 
3569 	/*
3570 	 * CLx is not enabled and validated on Intel USB4 platforms before
3571 	 * Alder Lake.
3572 	 */
3573 	if (root_sw->generation < 4 || tb_switch_is_tiger_lake(root_sw))
3574 		return 0;
3575 
3576 	switch (clx) {
3577 	case TB_CL1:
3578 		/* CL0s and CL1 are enabled and supported together */
3579 		return __tb_switch_enable_clx(sw, clx);
3580 
3581 	default:
3582 		return -EOPNOTSUPP;
3583 	}
3584 }
3585 
3586 static int __tb_switch_disable_clx(struct tb_switch *sw, enum tb_clx clx)
3587 {
3588 	struct tb_switch *parent = tb_switch_parent(sw);
3589 	struct tb_port *up, *down;
3590 	int ret;
3591 
3592 	if (!tb_switch_is_clx_supported(sw))
3593 		return 0;
3594 
3595 	/*
3596 	 * Disable CLx for host router's downstream port as part of the
3597 	 * downstream router enabling procedure.
3598 	 */
3599 	if (!tb_route(sw))
3600 		return 0;
3601 
3602 	/* Disable CLx only for first hop router (depth = 1) */
3603 	if (tb_route(parent))
3604 		return 0;
3605 
3606 	up = tb_upstream_port(sw);
3607 	down = tb_port_at(tb_route(sw), parent);
3608 	ret = tb_port_clx_disable(up, clx);
3609 	if (ret)
3610 		return ret;
3611 
3612 	ret = tb_port_clx_disable(down, clx);
3613 	if (ret)
3614 		return ret;
3615 
3616 	sw->clx = TB_CLX_DISABLE;
3617 
3618 	tb_port_dbg(up, "%s disabled\n", tb_switch_clx_name(clx));
3619 	return 0;
3620 }
3621 
3622 /**
3623  * tb_switch_disable_clx() - Disable CLx on upstream port of specified router
3624  * @sw: Router to disable CLx for
3625  * @clx: The CLx state to disable
3626  *
3627  * Return: Returns 0 on success or an error code on failure.
3628  */
3629 int tb_switch_disable_clx(struct tb_switch *sw, enum tb_clx clx)
3630 {
3631 	if (!clx_enabled)
3632 		return 0;
3633 
3634 	switch (clx) {
3635 	case TB_CL1:
3636 		/* CL0s and CL1 are enabled and supported together */
3637 		return __tb_switch_disable_clx(sw, clx);
3638 
3639 	default:
3640 		return -EOPNOTSUPP;
3641 	}
3642 }
3643 
3644 /**
3645  * tb_switch_mask_clx_objections() - Mask CLx objections for a router
3646  * @sw: Router to mask objections for
3647  *
3648  * Mask the objections coming from the second depth routers in order to
3649  * stop these objections from interfering with the CLx states of the first
3650  * depth link.
3651  */
3652 int tb_switch_mask_clx_objections(struct tb_switch *sw)
3653 {
3654 	int up_port = sw->config.upstream_port_number;
3655 	u32 offset, val[2], mask_obj, unmask_obj;
3656 	int ret, i;
3657 
3658 	/* Only Titan Ridge of pre-USB4 devices support CLx states */
3659 	if (!tb_switch_is_titan_ridge(sw))
3660 		return 0;
3661 
3662 	if (!tb_route(sw))
3663 		return 0;
3664 
3665 	/*
3666 	 * In Titan Ridge there are only 2 dual-lane Thunderbolt ports:
3667 	 * Port A consists of lane adapters 1,2 and
3668 	 * Port B consists of lane adapters 3,4
3669 	 * If upstream port is A, (lanes are 1,2), we mask objections from
3670 	 * port B (lanes 3,4) and unmask objections from Port A and vice-versa.
3671 	 */
3672 	if (up_port == 1) {
3673 		mask_obj = TB_LOW_PWR_C0_PORT_B_MASK;
3674 		unmask_obj = TB_LOW_PWR_C1_PORT_A_MASK;
3675 		offset = TB_LOW_PWR_C1_CL1;
3676 	} else {
3677 		mask_obj = TB_LOW_PWR_C1_PORT_A_MASK;
3678 		unmask_obj = TB_LOW_PWR_C0_PORT_B_MASK;
3679 		offset = TB_LOW_PWR_C3_CL1;
3680 	}
3681 
3682 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH,
3683 			 sw->cap_lp + offset, ARRAY_SIZE(val));
3684 	if (ret)
3685 		return ret;
3686 
3687 	for (i = 0; i < ARRAY_SIZE(val); i++) {
3688 		val[i] |= mask_obj;
3689 		val[i] &= ~unmask_obj;
3690 	}
3691 
3692 	return tb_sw_write(sw, &val, TB_CFG_SWITCH,
3693 			   sw->cap_lp + offset, ARRAY_SIZE(val));
3694 }
3695 
3696 /*
3697  * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3698  * device. For now used only for Titan Ridge.
3699  */
3700 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3701 				       unsigned int pcie_offset, u32 value)
3702 {
3703 	u32 offset, command, val;
3704 	int ret;
3705 
3706 	if (sw->generation != 3)
3707 		return -EOPNOTSUPP;
3708 
3709 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3710 	ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3711 	if (ret)
3712 		return ret;
3713 
3714 	command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3715 	command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3716 	command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3717 	command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3718 			<< TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3719 	command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3720 
3721 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3722 
3723 	ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3724 	if (ret)
3725 		return ret;
3726 
3727 	ret = tb_switch_wait_for_bit(sw, offset,
3728 				     TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3729 	if (ret)
3730 		return ret;
3731 
3732 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3733 	if (ret)
3734 		return ret;
3735 
3736 	if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3737 		return -ETIMEDOUT;
3738 
3739 	return 0;
3740 }
3741 
3742 /**
3743  * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3744  * @sw: Router to enable PCIe L1
3745  *
3746  * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3747  * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3748  * was configured. Due to Intel platforms limitation, shall be called only
3749  * for first hop switch.
3750  */
3751 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3752 {
3753 	struct tb_switch *parent = tb_switch_parent(sw);
3754 	int ret;
3755 
3756 	if (!tb_route(sw))
3757 		return 0;
3758 
3759 	if (!tb_switch_is_titan_ridge(sw))
3760 		return 0;
3761 
3762 	/* Enable PCIe L1 enable only for first hop router (depth = 1) */
3763 	if (tb_route(parent))
3764 		return 0;
3765 
3766 	/* Write to downstream PCIe bridge #5 aka Dn4 */
3767 	ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3768 	if (ret)
3769 		return ret;
3770 
3771 	/* Write to Upstream PCIe bridge #0 aka Up0 */
3772 	return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3773 }
3774 
3775 /**
3776  * tb_switch_xhci_connect() - Connect internal xHCI
3777  * @sw: Router whose xHCI to connect
3778  *
3779  * Can be called to any router. For Alpine Ridge and Titan Ridge
3780  * performs special flows that bring the xHCI functional for any device
3781  * connected to the type-C port. Call only after PCIe tunnel has been
3782  * established. The function only does the connect if not done already
3783  * so can be called several times for the same router.
3784  */
3785 int tb_switch_xhci_connect(struct tb_switch *sw)
3786 {
3787 	struct tb_port *port1, *port3;
3788 	int ret;
3789 
3790 	if (sw->generation != 3)
3791 		return 0;
3792 
3793 	port1 = &sw->ports[1];
3794 	port3 = &sw->ports[3];
3795 
3796 	if (tb_switch_is_alpine_ridge(sw)) {
3797 		bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3798 
3799 		usb_port1 = tb_lc_is_usb_plugged(port1);
3800 		usb_port3 = tb_lc_is_usb_plugged(port3);
3801 		xhci_port1 = tb_lc_is_xhci_connected(port1);
3802 		xhci_port3 = tb_lc_is_xhci_connected(port3);
3803 
3804 		/* Figure out correct USB port to connect */
3805 		if (usb_port1 && !xhci_port1) {
3806 			ret = tb_lc_xhci_connect(port1);
3807 			if (ret)
3808 				return ret;
3809 		}
3810 		if (usb_port3 && !xhci_port3)
3811 			return tb_lc_xhci_connect(port3);
3812 	} else if (tb_switch_is_titan_ridge(sw)) {
3813 		ret = tb_lc_xhci_connect(port1);
3814 		if (ret)
3815 			return ret;
3816 		return tb_lc_xhci_connect(port3);
3817 	}
3818 
3819 	return 0;
3820 }
3821 
3822 /**
3823  * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3824  * @sw: Router whose xHCI to disconnect
3825  *
3826  * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3827  * ports.
3828  */
3829 void tb_switch_xhci_disconnect(struct tb_switch *sw)
3830 {
3831 	if (sw->generation == 3) {
3832 		struct tb_port *port1 = &sw->ports[1];
3833 		struct tb_port *port3 = &sw->ports[3];
3834 
3835 		tb_lc_xhci_disconnect(port1);
3836 		tb_port_dbg(port1, "disconnected xHCI\n");
3837 		tb_lc_xhci_disconnect(port3);
3838 		tb_port_dbg(port3, "disconnected xHCI\n");
3839 	}
3840 }
3841