xref: /openbmc/linux/drivers/thunderbolt/switch.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 
17 #include "tb.h"
18 
19 /* Switch NVM support */
20 
21 #define NVM_CSS			0x10
22 
23 struct nvm_auth_status {
24 	struct list_head list;
25 	uuid_t uuid;
26 	u32 status;
27 };
28 
29 enum nvm_write_ops {
30 	WRITE_AND_AUTHENTICATE = 1,
31 	WRITE_ONLY = 2,
32 };
33 
34 /*
35  * Hold NVM authentication failure status per switch This information
36  * needs to stay around even when the switch gets power cycled so we
37  * keep it separately.
38  */
39 static LIST_HEAD(nvm_auth_status_cache);
40 static DEFINE_MUTEX(nvm_auth_status_lock);
41 
42 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
43 {
44 	struct nvm_auth_status *st;
45 
46 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
47 		if (uuid_equal(&st->uuid, sw->uuid))
48 			return st;
49 	}
50 
51 	return NULL;
52 }
53 
54 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
55 {
56 	struct nvm_auth_status *st;
57 
58 	mutex_lock(&nvm_auth_status_lock);
59 	st = __nvm_get_auth_status(sw);
60 	mutex_unlock(&nvm_auth_status_lock);
61 
62 	*status = st ? st->status : 0;
63 }
64 
65 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
66 {
67 	struct nvm_auth_status *st;
68 
69 	if (WARN_ON(!sw->uuid))
70 		return;
71 
72 	mutex_lock(&nvm_auth_status_lock);
73 	st = __nvm_get_auth_status(sw);
74 
75 	if (!st) {
76 		st = kzalloc(sizeof(*st), GFP_KERNEL);
77 		if (!st)
78 			goto unlock;
79 
80 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
81 		INIT_LIST_HEAD(&st->list);
82 		list_add_tail(&st->list, &nvm_auth_status_cache);
83 	}
84 
85 	st->status = status;
86 unlock:
87 	mutex_unlock(&nvm_auth_status_lock);
88 }
89 
90 static void nvm_clear_auth_status(const struct tb_switch *sw)
91 {
92 	struct nvm_auth_status *st;
93 
94 	mutex_lock(&nvm_auth_status_lock);
95 	st = __nvm_get_auth_status(sw);
96 	if (st) {
97 		list_del(&st->list);
98 		kfree(st);
99 	}
100 	mutex_unlock(&nvm_auth_status_lock);
101 }
102 
103 static int nvm_validate_and_write(struct tb_switch *sw)
104 {
105 	unsigned int image_size, hdr_size;
106 	const u8 *buf = sw->nvm->buf;
107 	u16 ds_size;
108 	int ret;
109 
110 	if (!buf)
111 		return -EINVAL;
112 
113 	image_size = sw->nvm->buf_data_size;
114 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
115 		return -EINVAL;
116 
117 	/*
118 	 * FARB pointer must point inside the image and must at least
119 	 * contain parts of the digital section we will be reading here.
120 	 */
121 	hdr_size = (*(u32 *)buf) & 0xffffff;
122 	if (hdr_size + NVM_DEVID + 2 >= image_size)
123 		return -EINVAL;
124 
125 	/* Digital section start should be aligned to 4k page */
126 	if (!IS_ALIGNED(hdr_size, SZ_4K))
127 		return -EINVAL;
128 
129 	/*
130 	 * Read digital section size and check that it also fits inside
131 	 * the image.
132 	 */
133 	ds_size = *(u16 *)(buf + hdr_size);
134 	if (ds_size >= image_size)
135 		return -EINVAL;
136 
137 	if (!sw->safe_mode) {
138 		u16 device_id;
139 
140 		/*
141 		 * Make sure the device ID in the image matches the one
142 		 * we read from the switch config space.
143 		 */
144 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
145 		if (device_id != sw->config.device_id)
146 			return -EINVAL;
147 
148 		if (sw->generation < 3) {
149 			/* Write CSS headers first */
150 			ret = dma_port_flash_write(sw->dma_port,
151 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
152 				DMA_PORT_CSS_MAX_SIZE);
153 			if (ret)
154 				return ret;
155 		}
156 
157 		/* Skip headers in the image */
158 		buf += hdr_size;
159 		image_size -= hdr_size;
160 	}
161 
162 	if (tb_switch_is_usb4(sw))
163 		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
164 	else
165 		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
166 	if (!ret)
167 		sw->nvm->flushed = true;
168 	return ret;
169 }
170 
171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
172 {
173 	int ret = 0;
174 
175 	/*
176 	 * Root switch NVM upgrade requires that we disconnect the
177 	 * existing paths first (in case it is not in safe mode
178 	 * already).
179 	 */
180 	if (!sw->safe_mode) {
181 		u32 status;
182 
183 		ret = tb_domain_disconnect_all_paths(sw->tb);
184 		if (ret)
185 			return ret;
186 		/*
187 		 * The host controller goes away pretty soon after this if
188 		 * everything goes well so getting timeout is expected.
189 		 */
190 		ret = dma_port_flash_update_auth(sw->dma_port);
191 		if (!ret || ret == -ETIMEDOUT)
192 			return 0;
193 
194 		/*
195 		 * Any error from update auth operation requires power
196 		 * cycling of the host router.
197 		 */
198 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 			nvm_set_auth_status(sw, status);
201 	}
202 
203 	/*
204 	 * From safe mode we can get out by just power cycling the
205 	 * switch.
206 	 */
207 	dma_port_power_cycle(sw->dma_port);
208 	return ret;
209 }
210 
211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
212 {
213 	int ret, retries = 10;
214 
215 	ret = dma_port_flash_update_auth(sw->dma_port);
216 	switch (ret) {
217 	case 0:
218 	case -ETIMEDOUT:
219 	case -EACCES:
220 	case -EINVAL:
221 		/* Power cycle is required */
222 		break;
223 	default:
224 		return ret;
225 	}
226 
227 	/*
228 	 * Poll here for the authentication status. It takes some time
229 	 * for the device to respond (we get timeout for a while). Once
230 	 * we get response the device needs to be power cycled in order
231 	 * to the new NVM to be taken into use.
232 	 */
233 	do {
234 		u32 status;
235 
236 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 		if (ret < 0 && ret != -ETIMEDOUT)
238 			return ret;
239 		if (ret > 0) {
240 			if (status) {
241 				tb_sw_warn(sw, "failed to authenticate NVM\n");
242 				nvm_set_auth_status(sw, status);
243 			}
244 
245 			tb_sw_info(sw, "power cycling the switch now\n");
246 			dma_port_power_cycle(sw->dma_port);
247 			return 0;
248 		}
249 
250 		msleep(500);
251 	} while (--retries);
252 
253 	return -ETIMEDOUT;
254 }
255 
256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257 {
258 	struct pci_dev *root_port;
259 
260 	/*
261 	 * During host router NVM upgrade we should not allow root port to
262 	 * go into D3cold because some root ports cannot trigger PME
263 	 * itself. To be on the safe side keep the root port in D0 during
264 	 * the whole upgrade process.
265 	 */
266 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
267 	if (root_port)
268 		pm_runtime_get_noresume(&root_port->dev);
269 }
270 
271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272 {
273 	struct pci_dev *root_port;
274 
275 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
276 	if (root_port)
277 		pm_runtime_put(&root_port->dev);
278 }
279 
280 static inline bool nvm_readable(struct tb_switch *sw)
281 {
282 	if (tb_switch_is_usb4(sw)) {
283 		/*
284 		 * USB4 devices must support NVM operations but it is
285 		 * optional for hosts. Therefore we query the NVM sector
286 		 * size here and if it is supported assume NVM
287 		 * operations are implemented.
288 		 */
289 		return usb4_switch_nvm_sector_size(sw) > 0;
290 	}
291 
292 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 	return !!sw->dma_port;
294 }
295 
296 static inline bool nvm_upgradeable(struct tb_switch *sw)
297 {
298 	if (sw->no_nvm_upgrade)
299 		return false;
300 	return nvm_readable(sw);
301 }
302 
303 static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 			   void *buf, size_t size)
305 {
306 	if (tb_switch_is_usb4(sw))
307 		return usb4_switch_nvm_read(sw, address, buf, size);
308 	return dma_port_flash_read(sw->dma_port, address, buf, size);
309 }
310 
311 static int nvm_authenticate(struct tb_switch *sw)
312 {
313 	int ret;
314 
315 	if (tb_switch_is_usb4(sw))
316 		return usb4_switch_nvm_authenticate(sw);
317 
318 	if (!tb_route(sw)) {
319 		nvm_authenticate_start_dma_port(sw);
320 		ret = nvm_authenticate_host_dma_port(sw);
321 	} else {
322 		ret = nvm_authenticate_device_dma_port(sw);
323 	}
324 
325 	return ret;
326 }
327 
328 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
329 			      size_t bytes)
330 {
331 	struct tb_nvm *nvm = priv;
332 	struct tb_switch *sw = tb_to_switch(nvm->dev);
333 	int ret;
334 
335 	pm_runtime_get_sync(&sw->dev);
336 
337 	if (!mutex_trylock(&sw->tb->lock)) {
338 		ret = restart_syscall();
339 		goto out;
340 	}
341 
342 	ret = nvm_read(sw, offset, val, bytes);
343 	mutex_unlock(&sw->tb->lock);
344 
345 out:
346 	pm_runtime_mark_last_busy(&sw->dev);
347 	pm_runtime_put_autosuspend(&sw->dev);
348 
349 	return ret;
350 }
351 
352 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
353 			       size_t bytes)
354 {
355 	struct tb_nvm *nvm = priv;
356 	struct tb_switch *sw = tb_to_switch(nvm->dev);
357 	int ret;
358 
359 	if (!mutex_trylock(&sw->tb->lock))
360 		return restart_syscall();
361 
362 	/*
363 	 * Since writing the NVM image might require some special steps,
364 	 * for example when CSS headers are written, we cache the image
365 	 * locally here and handle the special cases when the user asks
366 	 * us to authenticate the image.
367 	 */
368 	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
369 	mutex_unlock(&sw->tb->lock);
370 
371 	return ret;
372 }
373 
374 static int tb_switch_nvm_add(struct tb_switch *sw)
375 {
376 	struct tb_nvm *nvm;
377 	u32 val;
378 	int ret;
379 
380 	if (!nvm_readable(sw))
381 		return 0;
382 
383 	/*
384 	 * The NVM format of non-Intel hardware is not known so
385 	 * currently restrict NVM upgrade for Intel hardware. We may
386 	 * relax this in the future when we learn other NVM formats.
387 	 */
388 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
389 	    sw->config.vendor_id != 0x8087) {
390 		dev_info(&sw->dev,
391 			 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
392 			 sw->config.vendor_id);
393 		return 0;
394 	}
395 
396 	nvm = tb_nvm_alloc(&sw->dev);
397 	if (IS_ERR(nvm))
398 		return PTR_ERR(nvm);
399 
400 	/*
401 	 * If the switch is in safe-mode the only accessible portion of
402 	 * the NVM is the non-active one where userspace is expected to
403 	 * write new functional NVM.
404 	 */
405 	if (!sw->safe_mode) {
406 		u32 nvm_size, hdr_size;
407 
408 		ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
409 		if (ret)
410 			goto err_nvm;
411 
412 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
413 		nvm_size = (SZ_1M << (val & 7)) / 8;
414 		nvm_size = (nvm_size - hdr_size) / 2;
415 
416 		ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
417 		if (ret)
418 			goto err_nvm;
419 
420 		nvm->major = val >> 16;
421 		nvm->minor = val >> 8;
422 
423 		ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
424 		if (ret)
425 			goto err_nvm;
426 	}
427 
428 	if (!sw->no_nvm_upgrade) {
429 		ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
430 					    tb_switch_nvm_write);
431 		if (ret)
432 			goto err_nvm;
433 	}
434 
435 	sw->nvm = nvm;
436 	return 0;
437 
438 err_nvm:
439 	tb_nvm_free(nvm);
440 	return ret;
441 }
442 
443 static void tb_switch_nvm_remove(struct tb_switch *sw)
444 {
445 	struct tb_nvm *nvm;
446 
447 	nvm = sw->nvm;
448 	sw->nvm = NULL;
449 
450 	if (!nvm)
451 		return;
452 
453 	/* Remove authentication status in case the switch is unplugged */
454 	if (!nvm->authenticating)
455 		nvm_clear_auth_status(sw);
456 
457 	tb_nvm_free(nvm);
458 }
459 
460 /* port utility functions */
461 
462 static const char *tb_port_type(struct tb_regs_port_header *port)
463 {
464 	switch (port->type >> 16) {
465 	case 0:
466 		switch ((u8) port->type) {
467 		case 0:
468 			return "Inactive";
469 		case 1:
470 			return "Port";
471 		case 2:
472 			return "NHI";
473 		default:
474 			return "unknown";
475 		}
476 	case 0x2:
477 		return "Ethernet";
478 	case 0x8:
479 		return "SATA";
480 	case 0xe:
481 		return "DP/HDMI";
482 	case 0x10:
483 		return "PCIe";
484 	case 0x20:
485 		return "USB";
486 	default:
487 		return "unknown";
488 	}
489 }
490 
491 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
492 {
493 	tb_dbg(tb,
494 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
495 	       port->port_number, port->vendor_id, port->device_id,
496 	       port->revision, port->thunderbolt_version, tb_port_type(port),
497 	       port->type);
498 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
499 	       port->max_in_hop_id, port->max_out_hop_id);
500 	tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
501 	tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
502 }
503 
504 /**
505  * tb_port_state() - get connectedness state of a port
506  * @port: the port to check
507  *
508  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
509  *
510  * Return: Returns an enum tb_port_state on success or an error code on failure.
511  */
512 int tb_port_state(struct tb_port *port)
513 {
514 	struct tb_cap_phy phy;
515 	int res;
516 	if (port->cap_phy == 0) {
517 		tb_port_WARN(port, "does not have a PHY\n");
518 		return -EINVAL;
519 	}
520 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
521 	if (res)
522 		return res;
523 	return phy.state;
524 }
525 
526 /**
527  * tb_wait_for_port() - wait for a port to become ready
528  * @port: Port to wait
529  * @wait_if_unplugged: Wait also when port is unplugged
530  *
531  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
532  * wait_if_unplugged is set then we also wait if the port is in state
533  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
534  * switch resume). Otherwise we only wait if a device is registered but the link
535  * has not yet been established.
536  *
537  * Return: Returns an error code on failure. Returns 0 if the port is not
538  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
539  * if the port is connected and in state TB_PORT_UP.
540  */
541 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
542 {
543 	int retries = 10;
544 	int state;
545 	if (!port->cap_phy) {
546 		tb_port_WARN(port, "does not have PHY\n");
547 		return -EINVAL;
548 	}
549 	if (tb_is_upstream_port(port)) {
550 		tb_port_WARN(port, "is the upstream port\n");
551 		return -EINVAL;
552 	}
553 
554 	while (retries--) {
555 		state = tb_port_state(port);
556 		if (state < 0)
557 			return state;
558 		if (state == TB_PORT_DISABLED) {
559 			tb_port_dbg(port, "is disabled (state: 0)\n");
560 			return 0;
561 		}
562 		if (state == TB_PORT_UNPLUGGED) {
563 			if (wait_if_unplugged) {
564 				/* used during resume */
565 				tb_port_dbg(port,
566 					    "is unplugged (state: 7), retrying...\n");
567 				msleep(100);
568 				continue;
569 			}
570 			tb_port_dbg(port, "is unplugged (state: 7)\n");
571 			return 0;
572 		}
573 		if (state == TB_PORT_UP) {
574 			tb_port_dbg(port, "is connected, link is up (state: 2)\n");
575 			return 1;
576 		}
577 
578 		/*
579 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
580 		 * time.
581 		 */
582 		tb_port_dbg(port,
583 			    "is connected, link is not up (state: %d), retrying...\n",
584 			    state);
585 		msleep(100);
586 	}
587 	tb_port_warn(port,
588 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
589 	return 0;
590 }
591 
592 /**
593  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
594  * @port: Port to add/remove NFC credits
595  * @credits: Credits to add/remove
596  *
597  * Change the number of NFC credits allocated to @port by @credits. To remove
598  * NFC credits pass a negative amount of credits.
599  *
600  * Return: Returns 0 on success or an error code on failure.
601  */
602 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
603 {
604 	u32 nfc_credits;
605 
606 	if (credits == 0 || port->sw->is_unplugged)
607 		return 0;
608 
609 	/*
610 	 * USB4 restricts programming NFC buffers to lane adapters only
611 	 * so skip other ports.
612 	 */
613 	if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
614 		return 0;
615 
616 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
617 	nfc_credits += credits;
618 
619 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
620 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
621 
622 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
623 	port->config.nfc_credits |= nfc_credits;
624 
625 	return tb_port_write(port, &port->config.nfc_credits,
626 			     TB_CFG_PORT, ADP_CS_4, 1);
627 }
628 
629 /**
630  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
631  * @port: Port whose counters to clear
632  * @counter: Counter index to clear
633  *
634  * Return: Returns 0 on success or an error code on failure.
635  */
636 int tb_port_clear_counter(struct tb_port *port, int counter)
637 {
638 	u32 zero[3] = { 0, 0, 0 };
639 	tb_port_dbg(port, "clearing counter %d\n", counter);
640 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
641 }
642 
643 /**
644  * tb_port_unlock() - Unlock downstream port
645  * @port: Port to unlock
646  *
647  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
648  * downstream router accessible for CM.
649  */
650 int tb_port_unlock(struct tb_port *port)
651 {
652 	if (tb_switch_is_icm(port->sw))
653 		return 0;
654 	if (!tb_port_is_null(port))
655 		return -EINVAL;
656 	if (tb_switch_is_usb4(port->sw))
657 		return usb4_port_unlock(port);
658 	return 0;
659 }
660 
661 static int __tb_port_enable(struct tb_port *port, bool enable)
662 {
663 	int ret;
664 	u32 phy;
665 
666 	if (!tb_port_is_null(port))
667 		return -EINVAL;
668 
669 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
670 			   port->cap_phy + LANE_ADP_CS_1, 1);
671 	if (ret)
672 		return ret;
673 
674 	if (enable)
675 		phy &= ~LANE_ADP_CS_1_LD;
676 	else
677 		phy |= LANE_ADP_CS_1_LD;
678 
679 	return tb_port_write(port, &phy, TB_CFG_PORT,
680 			     port->cap_phy + LANE_ADP_CS_1, 1);
681 }
682 
683 /**
684  * tb_port_enable() - Enable lane adapter
685  * @port: Port to enable (can be %NULL)
686  *
687  * This is used for lane 0 and 1 adapters to enable it.
688  */
689 int tb_port_enable(struct tb_port *port)
690 {
691 	return __tb_port_enable(port, true);
692 }
693 
694 /**
695  * tb_port_disable() - Disable lane adapter
696  * @port: Port to disable (can be %NULL)
697  *
698  * This is used for lane 0 and 1 adapters to disable it.
699  */
700 int tb_port_disable(struct tb_port *port)
701 {
702 	return __tb_port_enable(port, false);
703 }
704 
705 /*
706  * tb_init_port() - initialize a port
707  *
708  * This is a helper method for tb_switch_alloc. Does not check or initialize
709  * any downstream switches.
710  *
711  * Return: Returns 0 on success or an error code on failure.
712  */
713 static int tb_init_port(struct tb_port *port)
714 {
715 	int res;
716 	int cap;
717 
718 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
719 	if (res) {
720 		if (res == -ENODEV) {
721 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
722 			       port->port);
723 			port->disabled = true;
724 			return 0;
725 		}
726 		return res;
727 	}
728 
729 	/* Port 0 is the switch itself and has no PHY. */
730 	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
731 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
732 
733 		if (cap > 0)
734 			port->cap_phy = cap;
735 		else
736 			tb_port_WARN(port, "non switch port without a PHY\n");
737 
738 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
739 		if (cap > 0)
740 			port->cap_usb4 = cap;
741 	} else if (port->port != 0) {
742 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
743 		if (cap > 0)
744 			port->cap_adap = cap;
745 	}
746 
747 	tb_dump_port(port->sw->tb, &port->config);
748 
749 	INIT_LIST_HEAD(&port->list);
750 	return 0;
751 
752 }
753 
754 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
755 			       int max_hopid)
756 {
757 	int port_max_hopid;
758 	struct ida *ida;
759 
760 	if (in) {
761 		port_max_hopid = port->config.max_in_hop_id;
762 		ida = &port->in_hopids;
763 	} else {
764 		port_max_hopid = port->config.max_out_hop_id;
765 		ida = &port->out_hopids;
766 	}
767 
768 	/*
769 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
770 	 * reserved.
771 	 */
772 	if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
773 		min_hopid = TB_PATH_MIN_HOPID;
774 
775 	if (max_hopid < 0 || max_hopid > port_max_hopid)
776 		max_hopid = port_max_hopid;
777 
778 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
779 }
780 
781 /**
782  * tb_port_alloc_in_hopid() - Allocate input HopID from port
783  * @port: Port to allocate HopID for
784  * @min_hopid: Minimum acceptable input HopID
785  * @max_hopid: Maximum acceptable input HopID
786  *
787  * Return: HopID between @min_hopid and @max_hopid or negative errno in
788  * case of error.
789  */
790 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
791 {
792 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
793 }
794 
795 /**
796  * tb_port_alloc_out_hopid() - Allocate output HopID from port
797  * @port: Port to allocate HopID for
798  * @min_hopid: Minimum acceptable output HopID
799  * @max_hopid: Maximum acceptable output HopID
800  *
801  * Return: HopID between @min_hopid and @max_hopid or negative errno in
802  * case of error.
803  */
804 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
805 {
806 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
807 }
808 
809 /**
810  * tb_port_release_in_hopid() - Release allocated input HopID from port
811  * @port: Port whose HopID to release
812  * @hopid: HopID to release
813  */
814 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
815 {
816 	ida_simple_remove(&port->in_hopids, hopid);
817 }
818 
819 /**
820  * tb_port_release_out_hopid() - Release allocated output HopID from port
821  * @port: Port whose HopID to release
822  * @hopid: HopID to release
823  */
824 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
825 {
826 	ida_simple_remove(&port->out_hopids, hopid);
827 }
828 
829 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
830 					  const struct tb_switch *sw)
831 {
832 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
833 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
834 }
835 
836 /**
837  * tb_next_port_on_path() - Return next port for given port on a path
838  * @start: Start port of the walk
839  * @end: End port of the walk
840  * @prev: Previous port (%NULL if this is the first)
841  *
842  * This function can be used to walk from one port to another if they
843  * are connected through zero or more switches. If the @prev is dual
844  * link port, the function follows that link and returns another end on
845  * that same link.
846  *
847  * If the @end port has been reached, return %NULL.
848  *
849  * Domain tb->lock must be held when this function is called.
850  */
851 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
852 				     struct tb_port *prev)
853 {
854 	struct tb_port *next;
855 
856 	if (!prev)
857 		return start;
858 
859 	if (prev->sw == end->sw) {
860 		if (prev == end)
861 			return NULL;
862 		return end;
863 	}
864 
865 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
866 		next = tb_port_at(tb_route(end->sw), prev->sw);
867 		/* Walk down the topology if next == prev */
868 		if (prev->remote &&
869 		    (next == prev || next->dual_link_port == prev))
870 			next = prev->remote;
871 	} else {
872 		if (tb_is_upstream_port(prev)) {
873 			next = prev->remote;
874 		} else {
875 			next = tb_upstream_port(prev->sw);
876 			/*
877 			 * Keep the same link if prev and next are both
878 			 * dual link ports.
879 			 */
880 			if (next->dual_link_port &&
881 			    next->link_nr != prev->link_nr) {
882 				next = next->dual_link_port;
883 			}
884 		}
885 	}
886 
887 	return next != prev ? next : NULL;
888 }
889 
890 /**
891  * tb_port_get_link_speed() - Get current link speed
892  * @port: Port to check (USB4 or CIO)
893  *
894  * Returns link speed in Gb/s or negative errno in case of failure.
895  */
896 int tb_port_get_link_speed(struct tb_port *port)
897 {
898 	u32 val, speed;
899 	int ret;
900 
901 	if (!port->cap_phy)
902 		return -EINVAL;
903 
904 	ret = tb_port_read(port, &val, TB_CFG_PORT,
905 			   port->cap_phy + LANE_ADP_CS_1, 1);
906 	if (ret)
907 		return ret;
908 
909 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
910 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
911 	return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
912 }
913 
914 /**
915  * tb_port_get_link_width() - Get current link width
916  * @port: Port to check (USB4 or CIO)
917  *
918  * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane)
919  * or negative errno in case of failure.
920  */
921 int tb_port_get_link_width(struct tb_port *port)
922 {
923 	u32 val;
924 	int ret;
925 
926 	if (!port->cap_phy)
927 		return -EINVAL;
928 
929 	ret = tb_port_read(port, &val, TB_CFG_PORT,
930 			   port->cap_phy + LANE_ADP_CS_1, 1);
931 	if (ret)
932 		return ret;
933 
934 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
935 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
936 }
937 
938 static bool tb_port_is_width_supported(struct tb_port *port, int width)
939 {
940 	u32 phy, widths;
941 	int ret;
942 
943 	if (!port->cap_phy)
944 		return false;
945 
946 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
947 			   port->cap_phy + LANE_ADP_CS_0, 1);
948 	if (ret)
949 		return false;
950 
951 	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
952 		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
953 
954 	return !!(widths & width);
955 }
956 
957 static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
958 {
959 	u32 val;
960 	int ret;
961 
962 	if (!port->cap_phy)
963 		return -EINVAL;
964 
965 	ret = tb_port_read(port, &val, TB_CFG_PORT,
966 			   port->cap_phy + LANE_ADP_CS_1, 1);
967 	if (ret)
968 		return ret;
969 
970 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
971 	switch (width) {
972 	case 1:
973 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
974 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
975 		break;
976 	case 2:
977 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
978 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
979 		break;
980 	default:
981 		return -EINVAL;
982 	}
983 
984 	val |= LANE_ADP_CS_1_LB;
985 
986 	return tb_port_write(port, &val, TB_CFG_PORT,
987 			     port->cap_phy + LANE_ADP_CS_1, 1);
988 }
989 
990 /**
991  * tb_port_lane_bonding_enable() - Enable bonding on port
992  * @port: port to enable
993  *
994  * Enable bonding by setting the link width of the port and the
995  * other port in case of dual link port.
996  *
997  * Return: %0 in case of success and negative errno in case of error
998  */
999 int tb_port_lane_bonding_enable(struct tb_port *port)
1000 {
1001 	int ret;
1002 
1003 	/*
1004 	 * Enable lane bonding for both links if not already enabled by
1005 	 * for example the boot firmware.
1006 	 */
1007 	ret = tb_port_get_link_width(port);
1008 	if (ret == 1) {
1009 		ret = tb_port_set_link_width(port, 2);
1010 		if (ret)
1011 			return ret;
1012 	}
1013 
1014 	ret = tb_port_get_link_width(port->dual_link_port);
1015 	if (ret == 1) {
1016 		ret = tb_port_set_link_width(port->dual_link_port, 2);
1017 		if (ret) {
1018 			tb_port_set_link_width(port, 1);
1019 			return ret;
1020 		}
1021 	}
1022 
1023 	port->bonded = true;
1024 	port->dual_link_port->bonded = true;
1025 
1026 	return 0;
1027 }
1028 
1029 /**
1030  * tb_port_lane_bonding_disable() - Disable bonding on port
1031  * @port: port to disable
1032  *
1033  * Disable bonding by setting the link width of the port and the
1034  * other port in case of dual link port.
1035  *
1036  */
1037 void tb_port_lane_bonding_disable(struct tb_port *port)
1038 {
1039 	port->dual_link_port->bonded = false;
1040 	port->bonded = false;
1041 
1042 	tb_port_set_link_width(port->dual_link_port, 1);
1043 	tb_port_set_link_width(port, 1);
1044 }
1045 
1046 static int tb_port_start_lane_initialization(struct tb_port *port)
1047 {
1048 	int ret;
1049 
1050 	if (tb_switch_is_usb4(port->sw))
1051 		return 0;
1052 
1053 	ret = tb_lc_start_lane_initialization(port);
1054 	return ret == -EINVAL ? 0 : ret;
1055 }
1056 
1057 /**
1058  * tb_port_is_enabled() - Is the adapter port enabled
1059  * @port: Port to check
1060  */
1061 bool tb_port_is_enabled(struct tb_port *port)
1062 {
1063 	switch (port->config.type) {
1064 	case TB_TYPE_PCIE_UP:
1065 	case TB_TYPE_PCIE_DOWN:
1066 		return tb_pci_port_is_enabled(port);
1067 
1068 	case TB_TYPE_DP_HDMI_IN:
1069 	case TB_TYPE_DP_HDMI_OUT:
1070 		return tb_dp_port_is_enabled(port);
1071 
1072 	case TB_TYPE_USB3_UP:
1073 	case TB_TYPE_USB3_DOWN:
1074 		return tb_usb3_port_is_enabled(port);
1075 
1076 	default:
1077 		return false;
1078 	}
1079 }
1080 
1081 /**
1082  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1083  * @port: USB3 adapter port to check
1084  */
1085 bool tb_usb3_port_is_enabled(struct tb_port *port)
1086 {
1087 	u32 data;
1088 
1089 	if (tb_port_read(port, &data, TB_CFG_PORT,
1090 			 port->cap_adap + ADP_USB3_CS_0, 1))
1091 		return false;
1092 
1093 	return !!(data & ADP_USB3_CS_0_PE);
1094 }
1095 
1096 /**
1097  * tb_usb3_port_enable() - Enable USB3 adapter port
1098  * @port: USB3 adapter port to enable
1099  * @enable: Enable/disable the USB3 adapter
1100  */
1101 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1102 {
1103 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1104 			  : ADP_USB3_CS_0_V;
1105 
1106 	if (!port->cap_adap)
1107 		return -ENXIO;
1108 	return tb_port_write(port, &word, TB_CFG_PORT,
1109 			     port->cap_adap + ADP_USB3_CS_0, 1);
1110 }
1111 
1112 /**
1113  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1114  * @port: PCIe port to check
1115  */
1116 bool tb_pci_port_is_enabled(struct tb_port *port)
1117 {
1118 	u32 data;
1119 
1120 	if (tb_port_read(port, &data, TB_CFG_PORT,
1121 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1122 		return false;
1123 
1124 	return !!(data & ADP_PCIE_CS_0_PE);
1125 }
1126 
1127 /**
1128  * tb_pci_port_enable() - Enable PCIe adapter port
1129  * @port: PCIe port to enable
1130  * @enable: Enable/disable the PCIe adapter
1131  */
1132 int tb_pci_port_enable(struct tb_port *port, bool enable)
1133 {
1134 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1135 	if (!port->cap_adap)
1136 		return -ENXIO;
1137 	return tb_port_write(port, &word, TB_CFG_PORT,
1138 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1139 }
1140 
1141 /**
1142  * tb_dp_port_hpd_is_active() - Is HPD already active
1143  * @port: DP out port to check
1144  *
1145  * Checks if the DP OUT adapter port has HDP bit already set.
1146  */
1147 int tb_dp_port_hpd_is_active(struct tb_port *port)
1148 {
1149 	u32 data;
1150 	int ret;
1151 
1152 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1153 			   port->cap_adap + ADP_DP_CS_2, 1);
1154 	if (ret)
1155 		return ret;
1156 
1157 	return !!(data & ADP_DP_CS_2_HDP);
1158 }
1159 
1160 /**
1161  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1162  * @port: Port to clear HPD
1163  *
1164  * If the DP IN port has HDP set, this function can be used to clear it.
1165  */
1166 int tb_dp_port_hpd_clear(struct tb_port *port)
1167 {
1168 	u32 data;
1169 	int ret;
1170 
1171 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1172 			   port->cap_adap + ADP_DP_CS_3, 1);
1173 	if (ret)
1174 		return ret;
1175 
1176 	data |= ADP_DP_CS_3_HDPC;
1177 	return tb_port_write(port, &data, TB_CFG_PORT,
1178 			     port->cap_adap + ADP_DP_CS_3, 1);
1179 }
1180 
1181 /**
1182  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1183  * @port: DP IN/OUT port to set hops
1184  * @video: Video Hop ID
1185  * @aux_tx: AUX TX Hop ID
1186  * @aux_rx: AUX RX Hop ID
1187  *
1188  * Programs specified Hop IDs for DP IN/OUT port.
1189  */
1190 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1191 			unsigned int aux_tx, unsigned int aux_rx)
1192 {
1193 	u32 data[2];
1194 	int ret;
1195 
1196 	ret = tb_port_read(port, data, TB_CFG_PORT,
1197 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1198 	if (ret)
1199 		return ret;
1200 
1201 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1202 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1203 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1204 
1205 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1206 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1207 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1208 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1209 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1210 
1211 	return tb_port_write(port, data, TB_CFG_PORT,
1212 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1213 }
1214 
1215 /**
1216  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1217  * @port: DP adapter port to check
1218  */
1219 bool tb_dp_port_is_enabled(struct tb_port *port)
1220 {
1221 	u32 data[2];
1222 
1223 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1224 			 ARRAY_SIZE(data)))
1225 		return false;
1226 
1227 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1228 }
1229 
1230 /**
1231  * tb_dp_port_enable() - Enables/disables DP paths of a port
1232  * @port: DP IN/OUT port
1233  * @enable: Enable/disable DP path
1234  *
1235  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1236  * calling this function.
1237  */
1238 int tb_dp_port_enable(struct tb_port *port, bool enable)
1239 {
1240 	u32 data[2];
1241 	int ret;
1242 
1243 	ret = tb_port_read(port, data, TB_CFG_PORT,
1244 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1245 	if (ret)
1246 		return ret;
1247 
1248 	if (enable)
1249 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1250 	else
1251 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1252 
1253 	return tb_port_write(port, data, TB_CFG_PORT,
1254 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1255 }
1256 
1257 /* switch utility functions */
1258 
1259 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1260 {
1261 	switch (sw->generation) {
1262 	case 1:
1263 		return "Thunderbolt 1";
1264 	case 2:
1265 		return "Thunderbolt 2";
1266 	case 3:
1267 		return "Thunderbolt 3";
1268 	case 4:
1269 		return "USB4";
1270 	default:
1271 		return "Unknown";
1272 	}
1273 }
1274 
1275 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1276 {
1277 	const struct tb_regs_switch_header *regs = &sw->config;
1278 
1279 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1280 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1281 	       regs->revision, regs->thunderbolt_version);
1282 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1283 	tb_dbg(tb, "  Config:\n");
1284 	tb_dbg(tb,
1285 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1286 	       regs->upstream_port_number, regs->depth,
1287 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1288 	       regs->enabled, regs->plug_events_delay);
1289 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1290 	       regs->__unknown1, regs->__unknown4);
1291 }
1292 
1293 /**
1294  * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1295  * @sw: Switch to reset
1296  *
1297  * Return: Returns 0 on success or an error code on failure.
1298  */
1299 int tb_switch_reset(struct tb_switch *sw)
1300 {
1301 	struct tb_cfg_result res;
1302 
1303 	if (sw->generation > 1)
1304 		return 0;
1305 
1306 	tb_sw_dbg(sw, "resetting switch\n");
1307 
1308 	res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1309 			      TB_CFG_SWITCH, 2, 2);
1310 	if (res.err)
1311 		return res.err;
1312 	res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1313 	if (res.err > 0)
1314 		return -EIO;
1315 	return res.err;
1316 }
1317 
1318 /*
1319  * tb_plug_events_active() - enable/disable plug events on a switch
1320  *
1321  * Also configures a sane plug_events_delay of 255ms.
1322  *
1323  * Return: Returns 0 on success or an error code on failure.
1324  */
1325 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1326 {
1327 	u32 data;
1328 	int res;
1329 
1330 	if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1331 		return 0;
1332 
1333 	sw->config.plug_events_delay = 0xff;
1334 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1335 	if (res)
1336 		return res;
1337 
1338 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1339 	if (res)
1340 		return res;
1341 
1342 	if (active) {
1343 		data = data & 0xFFFFFF83;
1344 		switch (sw->config.device_id) {
1345 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1346 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1347 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1348 			break;
1349 		default:
1350 			data |= 4;
1351 		}
1352 	} else {
1353 		data = data | 0x7c;
1354 	}
1355 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1356 			   sw->cap_plug_events + 1, 1);
1357 }
1358 
1359 static ssize_t authorized_show(struct device *dev,
1360 			       struct device_attribute *attr,
1361 			       char *buf)
1362 {
1363 	struct tb_switch *sw = tb_to_switch(dev);
1364 
1365 	return sprintf(buf, "%u\n", sw->authorized);
1366 }
1367 
1368 static int disapprove_switch(struct device *dev, void *not_used)
1369 {
1370 	struct tb_switch *sw;
1371 
1372 	sw = tb_to_switch(dev);
1373 	if (sw && sw->authorized) {
1374 		int ret;
1375 
1376 		/* First children */
1377 		ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1378 		if (ret)
1379 			return ret;
1380 
1381 		ret = tb_domain_disapprove_switch(sw->tb, sw);
1382 		if (ret)
1383 			return ret;
1384 
1385 		sw->authorized = 0;
1386 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1393 {
1394 	int ret = -EINVAL;
1395 
1396 	if (!mutex_trylock(&sw->tb->lock))
1397 		return restart_syscall();
1398 
1399 	if (!!sw->authorized == !!val)
1400 		goto unlock;
1401 
1402 	switch (val) {
1403 	/* Disapprove switch */
1404 	case 0:
1405 		if (tb_route(sw)) {
1406 			ret = disapprove_switch(&sw->dev, NULL);
1407 			goto unlock;
1408 		}
1409 		break;
1410 
1411 	/* Approve switch */
1412 	case 1:
1413 		if (sw->key)
1414 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1415 		else
1416 			ret = tb_domain_approve_switch(sw->tb, sw);
1417 		break;
1418 
1419 	/* Challenge switch */
1420 	case 2:
1421 		if (sw->key)
1422 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1423 		break;
1424 
1425 	default:
1426 		break;
1427 	}
1428 
1429 	if (!ret) {
1430 		sw->authorized = val;
1431 		/* Notify status change to the userspace */
1432 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1433 	}
1434 
1435 unlock:
1436 	mutex_unlock(&sw->tb->lock);
1437 	return ret;
1438 }
1439 
1440 static ssize_t authorized_store(struct device *dev,
1441 				struct device_attribute *attr,
1442 				const char *buf, size_t count)
1443 {
1444 	struct tb_switch *sw = tb_to_switch(dev);
1445 	unsigned int val;
1446 	ssize_t ret;
1447 
1448 	ret = kstrtouint(buf, 0, &val);
1449 	if (ret)
1450 		return ret;
1451 	if (val > 2)
1452 		return -EINVAL;
1453 
1454 	pm_runtime_get_sync(&sw->dev);
1455 	ret = tb_switch_set_authorized(sw, val);
1456 	pm_runtime_mark_last_busy(&sw->dev);
1457 	pm_runtime_put_autosuspend(&sw->dev);
1458 
1459 	return ret ? ret : count;
1460 }
1461 static DEVICE_ATTR_RW(authorized);
1462 
1463 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1464 			 char *buf)
1465 {
1466 	struct tb_switch *sw = tb_to_switch(dev);
1467 
1468 	return sprintf(buf, "%u\n", sw->boot);
1469 }
1470 static DEVICE_ATTR_RO(boot);
1471 
1472 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1473 			   char *buf)
1474 {
1475 	struct tb_switch *sw = tb_to_switch(dev);
1476 
1477 	return sprintf(buf, "%#x\n", sw->device);
1478 }
1479 static DEVICE_ATTR_RO(device);
1480 
1481 static ssize_t
1482 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1483 {
1484 	struct tb_switch *sw = tb_to_switch(dev);
1485 
1486 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1487 }
1488 static DEVICE_ATTR_RO(device_name);
1489 
1490 static ssize_t
1491 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1492 {
1493 	struct tb_switch *sw = tb_to_switch(dev);
1494 
1495 	return sprintf(buf, "%u\n", sw->generation);
1496 }
1497 static DEVICE_ATTR_RO(generation);
1498 
1499 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1500 			char *buf)
1501 {
1502 	struct tb_switch *sw = tb_to_switch(dev);
1503 	ssize_t ret;
1504 
1505 	if (!mutex_trylock(&sw->tb->lock))
1506 		return restart_syscall();
1507 
1508 	if (sw->key)
1509 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1510 	else
1511 		ret = sprintf(buf, "\n");
1512 
1513 	mutex_unlock(&sw->tb->lock);
1514 	return ret;
1515 }
1516 
1517 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1518 			 const char *buf, size_t count)
1519 {
1520 	struct tb_switch *sw = tb_to_switch(dev);
1521 	u8 key[TB_SWITCH_KEY_SIZE];
1522 	ssize_t ret = count;
1523 	bool clear = false;
1524 
1525 	if (!strcmp(buf, "\n"))
1526 		clear = true;
1527 	else if (hex2bin(key, buf, sizeof(key)))
1528 		return -EINVAL;
1529 
1530 	if (!mutex_trylock(&sw->tb->lock))
1531 		return restart_syscall();
1532 
1533 	if (sw->authorized) {
1534 		ret = -EBUSY;
1535 	} else {
1536 		kfree(sw->key);
1537 		if (clear) {
1538 			sw->key = NULL;
1539 		} else {
1540 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1541 			if (!sw->key)
1542 				ret = -ENOMEM;
1543 		}
1544 	}
1545 
1546 	mutex_unlock(&sw->tb->lock);
1547 	return ret;
1548 }
1549 static DEVICE_ATTR(key, 0600, key_show, key_store);
1550 
1551 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1552 			  char *buf)
1553 {
1554 	struct tb_switch *sw = tb_to_switch(dev);
1555 
1556 	return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1557 }
1558 
1559 /*
1560  * Currently all lanes must run at the same speed but we expose here
1561  * both directions to allow possible asymmetric links in the future.
1562  */
1563 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1564 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1565 
1566 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1567 			  char *buf)
1568 {
1569 	struct tb_switch *sw = tb_to_switch(dev);
1570 
1571 	return sprintf(buf, "%u\n", sw->link_width);
1572 }
1573 
1574 /*
1575  * Currently link has same amount of lanes both directions (1 or 2) but
1576  * expose them separately to allow possible asymmetric links in the future.
1577  */
1578 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1579 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1580 
1581 static ssize_t nvm_authenticate_show(struct device *dev,
1582 	struct device_attribute *attr, char *buf)
1583 {
1584 	struct tb_switch *sw = tb_to_switch(dev);
1585 	u32 status;
1586 
1587 	nvm_get_auth_status(sw, &status);
1588 	return sprintf(buf, "%#x\n", status);
1589 }
1590 
1591 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1592 				      bool disconnect)
1593 {
1594 	struct tb_switch *sw = tb_to_switch(dev);
1595 	int val;
1596 	int ret;
1597 
1598 	pm_runtime_get_sync(&sw->dev);
1599 
1600 	if (!mutex_trylock(&sw->tb->lock)) {
1601 		ret = restart_syscall();
1602 		goto exit_rpm;
1603 	}
1604 
1605 	/* If NVMem devices are not yet added */
1606 	if (!sw->nvm) {
1607 		ret = -EAGAIN;
1608 		goto exit_unlock;
1609 	}
1610 
1611 	ret = kstrtoint(buf, 10, &val);
1612 	if (ret)
1613 		goto exit_unlock;
1614 
1615 	/* Always clear the authentication status */
1616 	nvm_clear_auth_status(sw);
1617 
1618 	if (val > 0) {
1619 		if (!sw->nvm->flushed) {
1620 			if (!sw->nvm->buf) {
1621 				ret = -EINVAL;
1622 				goto exit_unlock;
1623 			}
1624 
1625 			ret = nvm_validate_and_write(sw);
1626 			if (ret || val == WRITE_ONLY)
1627 				goto exit_unlock;
1628 		}
1629 		if (val == WRITE_AND_AUTHENTICATE) {
1630 			if (disconnect) {
1631 				ret = tb_lc_force_power(sw);
1632 			} else {
1633 				sw->nvm->authenticating = true;
1634 				ret = nvm_authenticate(sw);
1635 			}
1636 		}
1637 	}
1638 
1639 exit_unlock:
1640 	mutex_unlock(&sw->tb->lock);
1641 exit_rpm:
1642 	pm_runtime_mark_last_busy(&sw->dev);
1643 	pm_runtime_put_autosuspend(&sw->dev);
1644 
1645 	return ret;
1646 }
1647 
1648 static ssize_t nvm_authenticate_store(struct device *dev,
1649 	struct device_attribute *attr, const char *buf, size_t count)
1650 {
1651 	int ret = nvm_authenticate_sysfs(dev, buf, false);
1652 	if (ret)
1653 		return ret;
1654 	return count;
1655 }
1656 static DEVICE_ATTR_RW(nvm_authenticate);
1657 
1658 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1659 	struct device_attribute *attr, char *buf)
1660 {
1661 	return nvm_authenticate_show(dev, attr, buf);
1662 }
1663 
1664 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1665 	struct device_attribute *attr, const char *buf, size_t count)
1666 {
1667 	int ret;
1668 
1669 	ret = nvm_authenticate_sysfs(dev, buf, true);
1670 	return ret ? ret : count;
1671 }
1672 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1673 
1674 static ssize_t nvm_version_show(struct device *dev,
1675 				struct device_attribute *attr, char *buf)
1676 {
1677 	struct tb_switch *sw = tb_to_switch(dev);
1678 	int ret;
1679 
1680 	if (!mutex_trylock(&sw->tb->lock))
1681 		return restart_syscall();
1682 
1683 	if (sw->safe_mode)
1684 		ret = -ENODATA;
1685 	else if (!sw->nvm)
1686 		ret = -EAGAIN;
1687 	else
1688 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1689 
1690 	mutex_unlock(&sw->tb->lock);
1691 
1692 	return ret;
1693 }
1694 static DEVICE_ATTR_RO(nvm_version);
1695 
1696 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1697 			   char *buf)
1698 {
1699 	struct tb_switch *sw = tb_to_switch(dev);
1700 
1701 	return sprintf(buf, "%#x\n", sw->vendor);
1702 }
1703 static DEVICE_ATTR_RO(vendor);
1704 
1705 static ssize_t
1706 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1707 {
1708 	struct tb_switch *sw = tb_to_switch(dev);
1709 
1710 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1711 }
1712 static DEVICE_ATTR_RO(vendor_name);
1713 
1714 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1715 			      char *buf)
1716 {
1717 	struct tb_switch *sw = tb_to_switch(dev);
1718 
1719 	return sprintf(buf, "%pUb\n", sw->uuid);
1720 }
1721 static DEVICE_ATTR_RO(unique_id);
1722 
1723 static struct attribute *switch_attrs[] = {
1724 	&dev_attr_authorized.attr,
1725 	&dev_attr_boot.attr,
1726 	&dev_attr_device.attr,
1727 	&dev_attr_device_name.attr,
1728 	&dev_attr_generation.attr,
1729 	&dev_attr_key.attr,
1730 	&dev_attr_nvm_authenticate.attr,
1731 	&dev_attr_nvm_authenticate_on_disconnect.attr,
1732 	&dev_attr_nvm_version.attr,
1733 	&dev_attr_rx_speed.attr,
1734 	&dev_attr_rx_lanes.attr,
1735 	&dev_attr_tx_speed.attr,
1736 	&dev_attr_tx_lanes.attr,
1737 	&dev_attr_vendor.attr,
1738 	&dev_attr_vendor_name.attr,
1739 	&dev_attr_unique_id.attr,
1740 	NULL,
1741 };
1742 
1743 static bool has_port(const struct tb_switch *sw, enum tb_port_type type)
1744 {
1745 	const struct tb_port *port;
1746 
1747 	tb_switch_for_each_port(sw, port) {
1748 		if (!port->disabled && port->config.type == type)
1749 			return true;
1750 	}
1751 
1752 	return false;
1753 }
1754 
1755 static umode_t switch_attr_is_visible(struct kobject *kobj,
1756 				      struct attribute *attr, int n)
1757 {
1758 	struct device *dev = kobj_to_dev(kobj);
1759 	struct tb_switch *sw = tb_to_switch(dev);
1760 
1761 	if (attr == &dev_attr_authorized.attr) {
1762 		if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
1763 		    sw->tb->security_level == TB_SECURITY_DPONLY ||
1764 		    !has_port(sw, TB_TYPE_PCIE_UP))
1765 			return 0;
1766 	} else if (attr == &dev_attr_device.attr) {
1767 		if (!sw->device)
1768 			return 0;
1769 	} else if (attr == &dev_attr_device_name.attr) {
1770 		if (!sw->device_name)
1771 			return 0;
1772 	} else if (attr == &dev_attr_vendor.attr)  {
1773 		if (!sw->vendor)
1774 			return 0;
1775 	} else if (attr == &dev_attr_vendor_name.attr)  {
1776 		if (!sw->vendor_name)
1777 			return 0;
1778 	} else if (attr == &dev_attr_key.attr) {
1779 		if (tb_route(sw) &&
1780 		    sw->tb->security_level == TB_SECURITY_SECURE &&
1781 		    sw->security_level == TB_SECURITY_SECURE)
1782 			return attr->mode;
1783 		return 0;
1784 	} else if (attr == &dev_attr_rx_speed.attr ||
1785 		   attr == &dev_attr_rx_lanes.attr ||
1786 		   attr == &dev_attr_tx_speed.attr ||
1787 		   attr == &dev_attr_tx_lanes.attr) {
1788 		if (tb_route(sw))
1789 			return attr->mode;
1790 		return 0;
1791 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
1792 		if (nvm_upgradeable(sw))
1793 			return attr->mode;
1794 		return 0;
1795 	} else if (attr == &dev_attr_nvm_version.attr) {
1796 		if (nvm_readable(sw))
1797 			return attr->mode;
1798 		return 0;
1799 	} else if (attr == &dev_attr_boot.attr) {
1800 		if (tb_route(sw))
1801 			return attr->mode;
1802 		return 0;
1803 	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1804 		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1805 			return attr->mode;
1806 		return 0;
1807 	}
1808 
1809 	return sw->safe_mode ? 0 : attr->mode;
1810 }
1811 
1812 static const struct attribute_group switch_group = {
1813 	.is_visible = switch_attr_is_visible,
1814 	.attrs = switch_attrs,
1815 };
1816 
1817 static const struct attribute_group *switch_groups[] = {
1818 	&switch_group,
1819 	NULL,
1820 };
1821 
1822 static void tb_switch_release(struct device *dev)
1823 {
1824 	struct tb_switch *sw = tb_to_switch(dev);
1825 	struct tb_port *port;
1826 
1827 	dma_port_free(sw->dma_port);
1828 
1829 	tb_switch_for_each_port(sw, port) {
1830 		ida_destroy(&port->in_hopids);
1831 		ida_destroy(&port->out_hopids);
1832 	}
1833 
1834 	kfree(sw->uuid);
1835 	kfree(sw->device_name);
1836 	kfree(sw->vendor_name);
1837 	kfree(sw->ports);
1838 	kfree(sw->drom);
1839 	kfree(sw->key);
1840 	kfree(sw);
1841 }
1842 
1843 static int tb_switch_uevent(struct device *dev, struct kobj_uevent_env *env)
1844 {
1845 	struct tb_switch *sw = tb_to_switch(dev);
1846 	const char *type;
1847 
1848 	if (sw->config.thunderbolt_version == USB4_VERSION_1_0) {
1849 		if (add_uevent_var(env, "USB4_VERSION=1.0"))
1850 			return -ENOMEM;
1851 	}
1852 
1853 	if (!tb_route(sw)) {
1854 		type = "host";
1855 	} else {
1856 		const struct tb_port *port;
1857 		bool hub = false;
1858 
1859 		/* Device is hub if it has any downstream ports */
1860 		tb_switch_for_each_port(sw, port) {
1861 			if (!port->disabled && !tb_is_upstream_port(port) &&
1862 			     tb_port_is_null(port)) {
1863 				hub = true;
1864 				break;
1865 			}
1866 		}
1867 
1868 		type = hub ? "hub" : "device";
1869 	}
1870 
1871 	if (add_uevent_var(env, "USB4_TYPE=%s", type))
1872 		return -ENOMEM;
1873 	return 0;
1874 }
1875 
1876 /*
1877  * Currently only need to provide the callbacks. Everything else is handled
1878  * in the connection manager.
1879  */
1880 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1881 {
1882 	struct tb_switch *sw = tb_to_switch(dev);
1883 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1884 
1885 	if (cm_ops->runtime_suspend_switch)
1886 		return cm_ops->runtime_suspend_switch(sw);
1887 
1888 	return 0;
1889 }
1890 
1891 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1892 {
1893 	struct tb_switch *sw = tb_to_switch(dev);
1894 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1895 
1896 	if (cm_ops->runtime_resume_switch)
1897 		return cm_ops->runtime_resume_switch(sw);
1898 	return 0;
1899 }
1900 
1901 static const struct dev_pm_ops tb_switch_pm_ops = {
1902 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1903 			   NULL)
1904 };
1905 
1906 struct device_type tb_switch_type = {
1907 	.name = "thunderbolt_device",
1908 	.release = tb_switch_release,
1909 	.uevent = tb_switch_uevent,
1910 	.pm = &tb_switch_pm_ops,
1911 };
1912 
1913 static int tb_switch_get_generation(struct tb_switch *sw)
1914 {
1915 	switch (sw->config.device_id) {
1916 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1917 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1918 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1919 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1920 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1921 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1922 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1923 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1924 		return 1;
1925 
1926 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1927 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1928 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1929 		return 2;
1930 
1931 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1932 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1933 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1934 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1935 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1936 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1937 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1938 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1939 	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1940 	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1941 		return 3;
1942 
1943 	default:
1944 		if (tb_switch_is_usb4(sw))
1945 			return 4;
1946 
1947 		/*
1948 		 * For unknown switches assume generation to be 1 to be
1949 		 * on the safe side.
1950 		 */
1951 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
1952 			   sw->config.device_id);
1953 		return 1;
1954 	}
1955 }
1956 
1957 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1958 {
1959 	int max_depth;
1960 
1961 	if (tb_switch_is_usb4(sw) ||
1962 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1963 		max_depth = USB4_SWITCH_MAX_DEPTH;
1964 	else
1965 		max_depth = TB_SWITCH_MAX_DEPTH;
1966 
1967 	return depth > max_depth;
1968 }
1969 
1970 /**
1971  * tb_switch_alloc() - allocate a switch
1972  * @tb: Pointer to the owning domain
1973  * @parent: Parent device for this switch
1974  * @route: Route string for this switch
1975  *
1976  * Allocates and initializes a switch. Will not upload configuration to
1977  * the switch. For that you need to call tb_switch_configure()
1978  * separately. The returned switch should be released by calling
1979  * tb_switch_put().
1980  *
1981  * Return: Pointer to the allocated switch or ERR_PTR() in case of
1982  * failure.
1983  */
1984 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1985 				  u64 route)
1986 {
1987 	struct tb_switch *sw;
1988 	int upstream_port;
1989 	int i, ret, depth;
1990 
1991 	/* Unlock the downstream port so we can access the switch below */
1992 	if (route) {
1993 		struct tb_switch *parent_sw = tb_to_switch(parent);
1994 		struct tb_port *down;
1995 
1996 		down = tb_port_at(route, parent_sw);
1997 		tb_port_unlock(down);
1998 	}
1999 
2000 	depth = tb_route_length(route);
2001 
2002 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2003 	if (upstream_port < 0)
2004 		return ERR_PTR(upstream_port);
2005 
2006 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2007 	if (!sw)
2008 		return ERR_PTR(-ENOMEM);
2009 
2010 	sw->tb = tb;
2011 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2012 	if (ret)
2013 		goto err_free_sw_ports;
2014 
2015 	sw->generation = tb_switch_get_generation(sw);
2016 
2017 	tb_dbg(tb, "current switch config:\n");
2018 	tb_dump_switch(tb, sw);
2019 
2020 	/* configure switch */
2021 	sw->config.upstream_port_number = upstream_port;
2022 	sw->config.depth = depth;
2023 	sw->config.route_hi = upper_32_bits(route);
2024 	sw->config.route_lo = lower_32_bits(route);
2025 	sw->config.enabled = 0;
2026 
2027 	/* Make sure we do not exceed maximum topology limit */
2028 	if (tb_switch_exceeds_max_depth(sw, depth)) {
2029 		ret = -EADDRNOTAVAIL;
2030 		goto err_free_sw_ports;
2031 	}
2032 
2033 	/* initialize ports */
2034 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2035 				GFP_KERNEL);
2036 	if (!sw->ports) {
2037 		ret = -ENOMEM;
2038 		goto err_free_sw_ports;
2039 	}
2040 
2041 	for (i = 0; i <= sw->config.max_port_number; i++) {
2042 		/* minimum setup for tb_find_cap and tb_drom_read to work */
2043 		sw->ports[i].sw = sw;
2044 		sw->ports[i].port = i;
2045 
2046 		/* Control port does not need HopID allocation */
2047 		if (i) {
2048 			ida_init(&sw->ports[i].in_hopids);
2049 			ida_init(&sw->ports[i].out_hopids);
2050 		}
2051 	}
2052 
2053 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2054 	if (ret > 0)
2055 		sw->cap_plug_events = ret;
2056 
2057 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2058 	if (ret > 0)
2059 		sw->cap_lc = ret;
2060 
2061 	/* Root switch is always authorized */
2062 	if (!route)
2063 		sw->authorized = true;
2064 
2065 	device_initialize(&sw->dev);
2066 	sw->dev.parent = parent;
2067 	sw->dev.bus = &tb_bus_type;
2068 	sw->dev.type = &tb_switch_type;
2069 	sw->dev.groups = switch_groups;
2070 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2071 
2072 	return sw;
2073 
2074 err_free_sw_ports:
2075 	kfree(sw->ports);
2076 	kfree(sw);
2077 
2078 	return ERR_PTR(ret);
2079 }
2080 
2081 /**
2082  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2083  * @tb: Pointer to the owning domain
2084  * @parent: Parent device for this switch
2085  * @route: Route string for this switch
2086  *
2087  * This creates a switch in safe mode. This means the switch pretty much
2088  * lacks all capabilities except DMA configuration port before it is
2089  * flashed with a valid NVM firmware.
2090  *
2091  * The returned switch must be released by calling tb_switch_put().
2092  *
2093  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2094  */
2095 struct tb_switch *
2096 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2097 {
2098 	struct tb_switch *sw;
2099 
2100 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2101 	if (!sw)
2102 		return ERR_PTR(-ENOMEM);
2103 
2104 	sw->tb = tb;
2105 	sw->config.depth = tb_route_length(route);
2106 	sw->config.route_hi = upper_32_bits(route);
2107 	sw->config.route_lo = lower_32_bits(route);
2108 	sw->safe_mode = true;
2109 
2110 	device_initialize(&sw->dev);
2111 	sw->dev.parent = parent;
2112 	sw->dev.bus = &tb_bus_type;
2113 	sw->dev.type = &tb_switch_type;
2114 	sw->dev.groups = switch_groups;
2115 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2116 
2117 	return sw;
2118 }
2119 
2120 /**
2121  * tb_switch_configure() - Uploads configuration to the switch
2122  * @sw: Switch to configure
2123  *
2124  * Call this function before the switch is added to the system. It will
2125  * upload configuration to the switch and makes it available for the
2126  * connection manager to use. Can be called to the switch again after
2127  * resume from low power states to re-initialize it.
2128  *
2129  * Return: %0 in case of success and negative errno in case of failure
2130  */
2131 int tb_switch_configure(struct tb_switch *sw)
2132 {
2133 	struct tb *tb = sw->tb;
2134 	u64 route;
2135 	int ret;
2136 
2137 	route = tb_route(sw);
2138 
2139 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2140 	       sw->config.enabled ? "restoring" : "initializing", route,
2141 	       tb_route_length(route), sw->config.upstream_port_number);
2142 
2143 	sw->config.enabled = 1;
2144 
2145 	if (tb_switch_is_usb4(sw)) {
2146 		/*
2147 		 * For USB4 devices, we need to program the CM version
2148 		 * accordingly so that it knows to expose all the
2149 		 * additional capabilities.
2150 		 */
2151 		sw->config.cmuv = USB4_VERSION_1_0;
2152 
2153 		/* Enumerate the switch */
2154 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2155 				  ROUTER_CS_1, 4);
2156 		if (ret)
2157 			return ret;
2158 
2159 		ret = usb4_switch_setup(sw);
2160 	} else {
2161 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2162 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2163 				   sw->config.vendor_id);
2164 
2165 		if (!sw->cap_plug_events) {
2166 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2167 			return -ENODEV;
2168 		}
2169 
2170 		/* Enumerate the switch */
2171 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2172 				  ROUTER_CS_1, 3);
2173 	}
2174 	if (ret)
2175 		return ret;
2176 
2177 	return tb_plug_events_active(sw, true);
2178 }
2179 
2180 static int tb_switch_set_uuid(struct tb_switch *sw)
2181 {
2182 	bool uid = false;
2183 	u32 uuid[4];
2184 	int ret;
2185 
2186 	if (sw->uuid)
2187 		return 0;
2188 
2189 	if (tb_switch_is_usb4(sw)) {
2190 		ret = usb4_switch_read_uid(sw, &sw->uid);
2191 		if (ret)
2192 			return ret;
2193 		uid = true;
2194 	} else {
2195 		/*
2196 		 * The newer controllers include fused UUID as part of
2197 		 * link controller specific registers
2198 		 */
2199 		ret = tb_lc_read_uuid(sw, uuid);
2200 		if (ret) {
2201 			if (ret != -EINVAL)
2202 				return ret;
2203 			uid = true;
2204 		}
2205 	}
2206 
2207 	if (uid) {
2208 		/*
2209 		 * ICM generates UUID based on UID and fills the upper
2210 		 * two words with ones. This is not strictly following
2211 		 * UUID format but we want to be compatible with it so
2212 		 * we do the same here.
2213 		 */
2214 		uuid[0] = sw->uid & 0xffffffff;
2215 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2216 		uuid[2] = 0xffffffff;
2217 		uuid[3] = 0xffffffff;
2218 	}
2219 
2220 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2221 	if (!sw->uuid)
2222 		return -ENOMEM;
2223 	return 0;
2224 }
2225 
2226 static int tb_switch_add_dma_port(struct tb_switch *sw)
2227 {
2228 	u32 status;
2229 	int ret;
2230 
2231 	switch (sw->generation) {
2232 	case 2:
2233 		/* Only root switch can be upgraded */
2234 		if (tb_route(sw))
2235 			return 0;
2236 
2237 		fallthrough;
2238 	case 3:
2239 	case 4:
2240 		ret = tb_switch_set_uuid(sw);
2241 		if (ret)
2242 			return ret;
2243 		break;
2244 
2245 	default:
2246 		/*
2247 		 * DMA port is the only thing available when the switch
2248 		 * is in safe mode.
2249 		 */
2250 		if (!sw->safe_mode)
2251 			return 0;
2252 		break;
2253 	}
2254 
2255 	if (sw->no_nvm_upgrade)
2256 		return 0;
2257 
2258 	if (tb_switch_is_usb4(sw)) {
2259 		ret = usb4_switch_nvm_authenticate_status(sw, &status);
2260 		if (ret)
2261 			return ret;
2262 
2263 		if (status) {
2264 			tb_sw_info(sw, "switch flash authentication failed\n");
2265 			nvm_set_auth_status(sw, status);
2266 		}
2267 
2268 		return 0;
2269 	}
2270 
2271 	/* Root switch DMA port requires running firmware */
2272 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2273 		return 0;
2274 
2275 	sw->dma_port = dma_port_alloc(sw);
2276 	if (!sw->dma_port)
2277 		return 0;
2278 
2279 	/*
2280 	 * If there is status already set then authentication failed
2281 	 * when the dma_port_flash_update_auth() returned. Power cycling
2282 	 * is not needed (it was done already) so only thing we do here
2283 	 * is to unblock runtime PM of the root port.
2284 	 */
2285 	nvm_get_auth_status(sw, &status);
2286 	if (status) {
2287 		if (!tb_route(sw))
2288 			nvm_authenticate_complete_dma_port(sw);
2289 		return 0;
2290 	}
2291 
2292 	/*
2293 	 * Check status of the previous flash authentication. If there
2294 	 * is one we need to power cycle the switch in any case to make
2295 	 * it functional again.
2296 	 */
2297 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2298 	if (ret <= 0)
2299 		return ret;
2300 
2301 	/* Now we can allow root port to suspend again */
2302 	if (!tb_route(sw))
2303 		nvm_authenticate_complete_dma_port(sw);
2304 
2305 	if (status) {
2306 		tb_sw_info(sw, "switch flash authentication failed\n");
2307 		nvm_set_auth_status(sw, status);
2308 	}
2309 
2310 	tb_sw_info(sw, "power cycling the switch now\n");
2311 	dma_port_power_cycle(sw->dma_port);
2312 
2313 	/*
2314 	 * We return error here which causes the switch adding failure.
2315 	 * It should appear back after power cycle is complete.
2316 	 */
2317 	return -ESHUTDOWN;
2318 }
2319 
2320 static void tb_switch_default_link_ports(struct tb_switch *sw)
2321 {
2322 	int i;
2323 
2324 	for (i = 1; i <= sw->config.max_port_number; i += 2) {
2325 		struct tb_port *port = &sw->ports[i];
2326 		struct tb_port *subordinate;
2327 
2328 		if (!tb_port_is_null(port))
2329 			continue;
2330 
2331 		/* Check for the subordinate port */
2332 		if (i == sw->config.max_port_number ||
2333 		    !tb_port_is_null(&sw->ports[i + 1]))
2334 			continue;
2335 
2336 		/* Link them if not already done so (by DROM) */
2337 		subordinate = &sw->ports[i + 1];
2338 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2339 			port->link_nr = 0;
2340 			port->dual_link_port = subordinate;
2341 			subordinate->link_nr = 1;
2342 			subordinate->dual_link_port = port;
2343 
2344 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2345 				  port->port, subordinate->port);
2346 		}
2347 	}
2348 }
2349 
2350 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2351 {
2352 	const struct tb_port *up = tb_upstream_port(sw);
2353 
2354 	if (!up->dual_link_port || !up->dual_link_port->remote)
2355 		return false;
2356 
2357 	if (tb_switch_is_usb4(sw))
2358 		return usb4_switch_lane_bonding_possible(sw);
2359 	return tb_lc_lane_bonding_possible(sw);
2360 }
2361 
2362 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2363 {
2364 	struct tb_port *up;
2365 	bool change = false;
2366 	int ret;
2367 
2368 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2369 		return 0;
2370 
2371 	up = tb_upstream_port(sw);
2372 
2373 	ret = tb_port_get_link_speed(up);
2374 	if (ret < 0)
2375 		return ret;
2376 	if (sw->link_speed != ret)
2377 		change = true;
2378 	sw->link_speed = ret;
2379 
2380 	ret = tb_port_get_link_width(up);
2381 	if (ret < 0)
2382 		return ret;
2383 	if (sw->link_width != ret)
2384 		change = true;
2385 	sw->link_width = ret;
2386 
2387 	/* Notify userspace that there is possible link attribute change */
2388 	if (device_is_registered(&sw->dev) && change)
2389 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2390 
2391 	return 0;
2392 }
2393 
2394 /**
2395  * tb_switch_lane_bonding_enable() - Enable lane bonding
2396  * @sw: Switch to enable lane bonding
2397  *
2398  * Connection manager can call this function to enable lane bonding of a
2399  * switch. If conditions are correct and both switches support the feature,
2400  * lanes are bonded. It is safe to call this to any switch.
2401  */
2402 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2403 {
2404 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2405 	struct tb_port *up, *down;
2406 	u64 route = tb_route(sw);
2407 	int ret;
2408 
2409 	if (!route)
2410 		return 0;
2411 
2412 	if (!tb_switch_lane_bonding_possible(sw))
2413 		return 0;
2414 
2415 	up = tb_upstream_port(sw);
2416 	down = tb_port_at(route, parent);
2417 
2418 	if (!tb_port_is_width_supported(up, 2) ||
2419 	    !tb_port_is_width_supported(down, 2))
2420 		return 0;
2421 
2422 	ret = tb_port_lane_bonding_enable(up);
2423 	if (ret) {
2424 		tb_port_warn(up, "failed to enable lane bonding\n");
2425 		return ret;
2426 	}
2427 
2428 	ret = tb_port_lane_bonding_enable(down);
2429 	if (ret) {
2430 		tb_port_warn(down, "failed to enable lane bonding\n");
2431 		tb_port_lane_bonding_disable(up);
2432 		return ret;
2433 	}
2434 
2435 	tb_switch_update_link_attributes(sw);
2436 
2437 	tb_sw_dbg(sw, "lane bonding enabled\n");
2438 	return ret;
2439 }
2440 
2441 /**
2442  * tb_switch_lane_bonding_disable() - Disable lane bonding
2443  * @sw: Switch whose lane bonding to disable
2444  *
2445  * Disables lane bonding between @sw and parent. This can be called even
2446  * if lanes were not bonded originally.
2447  */
2448 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2449 {
2450 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2451 	struct tb_port *up, *down;
2452 
2453 	if (!tb_route(sw))
2454 		return;
2455 
2456 	up = tb_upstream_port(sw);
2457 	if (!up->bonded)
2458 		return;
2459 
2460 	down = tb_port_at(tb_route(sw), parent);
2461 
2462 	tb_port_lane_bonding_disable(up);
2463 	tb_port_lane_bonding_disable(down);
2464 
2465 	tb_switch_update_link_attributes(sw);
2466 	tb_sw_dbg(sw, "lane bonding disabled\n");
2467 }
2468 
2469 /**
2470  * tb_switch_configure_link() - Set link configured
2471  * @sw: Switch whose link is configured
2472  *
2473  * Sets the link upstream from @sw configured (from both ends) so that
2474  * it will not be disconnected when the domain exits sleep. Can be
2475  * called for any switch.
2476  *
2477  * It is recommended that this is called after lane bonding is enabled.
2478  *
2479  * Returns %0 on success and negative errno in case of error.
2480  */
2481 int tb_switch_configure_link(struct tb_switch *sw)
2482 {
2483 	struct tb_port *up, *down;
2484 	int ret;
2485 
2486 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2487 		return 0;
2488 
2489 	up = tb_upstream_port(sw);
2490 	if (tb_switch_is_usb4(up->sw))
2491 		ret = usb4_port_configure(up);
2492 	else
2493 		ret = tb_lc_configure_port(up);
2494 	if (ret)
2495 		return ret;
2496 
2497 	down = up->remote;
2498 	if (tb_switch_is_usb4(down->sw))
2499 		return usb4_port_configure(down);
2500 	return tb_lc_configure_port(down);
2501 }
2502 
2503 /**
2504  * tb_switch_unconfigure_link() - Unconfigure link
2505  * @sw: Switch whose link is unconfigured
2506  *
2507  * Sets the link unconfigured so the @sw will be disconnected if the
2508  * domain exists sleep.
2509  */
2510 void tb_switch_unconfigure_link(struct tb_switch *sw)
2511 {
2512 	struct tb_port *up, *down;
2513 
2514 	if (sw->is_unplugged)
2515 		return;
2516 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2517 		return;
2518 
2519 	up = tb_upstream_port(sw);
2520 	if (tb_switch_is_usb4(up->sw))
2521 		usb4_port_unconfigure(up);
2522 	else
2523 		tb_lc_unconfigure_port(up);
2524 
2525 	down = up->remote;
2526 	if (tb_switch_is_usb4(down->sw))
2527 		usb4_port_unconfigure(down);
2528 	else
2529 		tb_lc_unconfigure_port(down);
2530 }
2531 
2532 /**
2533  * tb_switch_add() - Add a switch to the domain
2534  * @sw: Switch to add
2535  *
2536  * This is the last step in adding switch to the domain. It will read
2537  * identification information from DROM and initializes ports so that
2538  * they can be used to connect other switches. The switch will be
2539  * exposed to the userspace when this function successfully returns. To
2540  * remove and release the switch, call tb_switch_remove().
2541  *
2542  * Return: %0 in case of success and negative errno in case of failure
2543  */
2544 int tb_switch_add(struct tb_switch *sw)
2545 {
2546 	int i, ret;
2547 
2548 	/*
2549 	 * Initialize DMA control port now before we read DROM. Recent
2550 	 * host controllers have more complete DROM on NVM that includes
2551 	 * vendor and model identification strings which we then expose
2552 	 * to the userspace. NVM can be accessed through DMA
2553 	 * configuration based mailbox.
2554 	 */
2555 	ret = tb_switch_add_dma_port(sw);
2556 	if (ret) {
2557 		dev_err(&sw->dev, "failed to add DMA port\n");
2558 		return ret;
2559 	}
2560 
2561 	if (!sw->safe_mode) {
2562 		/* read drom */
2563 		ret = tb_drom_read(sw);
2564 		if (ret) {
2565 			dev_err(&sw->dev, "reading DROM failed\n");
2566 			return ret;
2567 		}
2568 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2569 
2570 		tb_check_quirks(sw);
2571 
2572 		ret = tb_switch_set_uuid(sw);
2573 		if (ret) {
2574 			dev_err(&sw->dev, "failed to set UUID\n");
2575 			return ret;
2576 		}
2577 
2578 		for (i = 0; i <= sw->config.max_port_number; i++) {
2579 			if (sw->ports[i].disabled) {
2580 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2581 				continue;
2582 			}
2583 			ret = tb_init_port(&sw->ports[i]);
2584 			if (ret) {
2585 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
2586 				return ret;
2587 			}
2588 		}
2589 
2590 		tb_switch_default_link_ports(sw);
2591 
2592 		ret = tb_switch_update_link_attributes(sw);
2593 		if (ret)
2594 			return ret;
2595 
2596 		ret = tb_switch_tmu_init(sw);
2597 		if (ret)
2598 			return ret;
2599 	}
2600 
2601 	ret = device_add(&sw->dev);
2602 	if (ret) {
2603 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
2604 		return ret;
2605 	}
2606 
2607 	if (tb_route(sw)) {
2608 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2609 			 sw->vendor, sw->device);
2610 		if (sw->vendor_name && sw->device_name)
2611 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2612 				 sw->device_name);
2613 	}
2614 
2615 	ret = tb_switch_nvm_add(sw);
2616 	if (ret) {
2617 		dev_err(&sw->dev, "failed to add NVM devices\n");
2618 		device_del(&sw->dev);
2619 		return ret;
2620 	}
2621 
2622 	/*
2623 	 * Thunderbolt routers do not generate wakeups themselves but
2624 	 * they forward wakeups from tunneled protocols, so enable it
2625 	 * here.
2626 	 */
2627 	device_init_wakeup(&sw->dev, true);
2628 
2629 	pm_runtime_set_active(&sw->dev);
2630 	if (sw->rpm) {
2631 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2632 		pm_runtime_use_autosuspend(&sw->dev);
2633 		pm_runtime_mark_last_busy(&sw->dev);
2634 		pm_runtime_enable(&sw->dev);
2635 		pm_request_autosuspend(&sw->dev);
2636 	}
2637 
2638 	tb_switch_debugfs_init(sw);
2639 	return 0;
2640 }
2641 
2642 /**
2643  * tb_switch_remove() - Remove and release a switch
2644  * @sw: Switch to remove
2645  *
2646  * This will remove the switch from the domain and release it after last
2647  * reference count drops to zero. If there are switches connected below
2648  * this switch, they will be removed as well.
2649  */
2650 void tb_switch_remove(struct tb_switch *sw)
2651 {
2652 	struct tb_port *port;
2653 
2654 	tb_switch_debugfs_remove(sw);
2655 
2656 	if (sw->rpm) {
2657 		pm_runtime_get_sync(&sw->dev);
2658 		pm_runtime_disable(&sw->dev);
2659 	}
2660 
2661 	/* port 0 is the switch itself and never has a remote */
2662 	tb_switch_for_each_port(sw, port) {
2663 		if (tb_port_has_remote(port)) {
2664 			tb_switch_remove(port->remote->sw);
2665 			port->remote = NULL;
2666 		} else if (port->xdomain) {
2667 			tb_xdomain_remove(port->xdomain);
2668 			port->xdomain = NULL;
2669 		}
2670 
2671 		/* Remove any downstream retimers */
2672 		tb_retimer_remove_all(port);
2673 	}
2674 
2675 	if (!sw->is_unplugged)
2676 		tb_plug_events_active(sw, false);
2677 
2678 	tb_switch_nvm_remove(sw);
2679 
2680 	if (tb_route(sw))
2681 		dev_info(&sw->dev, "device disconnected\n");
2682 	device_unregister(&sw->dev);
2683 }
2684 
2685 /**
2686  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2687  * @sw: Router to mark unplugged
2688  */
2689 void tb_sw_set_unplugged(struct tb_switch *sw)
2690 {
2691 	struct tb_port *port;
2692 
2693 	if (sw == sw->tb->root_switch) {
2694 		tb_sw_WARN(sw, "cannot unplug root switch\n");
2695 		return;
2696 	}
2697 	if (sw->is_unplugged) {
2698 		tb_sw_WARN(sw, "is_unplugged already set\n");
2699 		return;
2700 	}
2701 	sw->is_unplugged = true;
2702 	tb_switch_for_each_port(sw, port) {
2703 		if (tb_port_has_remote(port))
2704 			tb_sw_set_unplugged(port->remote->sw);
2705 		else if (port->xdomain)
2706 			port->xdomain->is_unplugged = true;
2707 	}
2708 }
2709 
2710 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
2711 {
2712 	if (flags)
2713 		tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
2714 	else
2715 		tb_sw_dbg(sw, "disabling wakeup\n");
2716 
2717 	if (tb_switch_is_usb4(sw))
2718 		return usb4_switch_set_wake(sw, flags);
2719 	return tb_lc_set_wake(sw, flags);
2720 }
2721 
2722 int tb_switch_resume(struct tb_switch *sw)
2723 {
2724 	struct tb_port *port;
2725 	int err;
2726 
2727 	tb_sw_dbg(sw, "resuming switch\n");
2728 
2729 	/*
2730 	 * Check for UID of the connected switches except for root
2731 	 * switch which we assume cannot be removed.
2732 	 */
2733 	if (tb_route(sw)) {
2734 		u64 uid;
2735 
2736 		/*
2737 		 * Check first that we can still read the switch config
2738 		 * space. It may be that there is now another domain
2739 		 * connected.
2740 		 */
2741 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2742 		if (err < 0) {
2743 			tb_sw_info(sw, "switch not present anymore\n");
2744 			return err;
2745 		}
2746 
2747 		if (tb_switch_is_usb4(sw))
2748 			err = usb4_switch_read_uid(sw, &uid);
2749 		else
2750 			err = tb_drom_read_uid_only(sw, &uid);
2751 		if (err) {
2752 			tb_sw_warn(sw, "uid read failed\n");
2753 			return err;
2754 		}
2755 		if (sw->uid != uid) {
2756 			tb_sw_info(sw,
2757 				"changed while suspended (uid %#llx -> %#llx)\n",
2758 				sw->uid, uid);
2759 			return -ENODEV;
2760 		}
2761 	}
2762 
2763 	err = tb_switch_configure(sw);
2764 	if (err)
2765 		return err;
2766 
2767 	/* Disable wakes */
2768 	tb_switch_set_wake(sw, 0);
2769 
2770 	err = tb_switch_tmu_init(sw);
2771 	if (err)
2772 		return err;
2773 
2774 	/* check for surviving downstream switches */
2775 	tb_switch_for_each_port(sw, port) {
2776 		if (!tb_port_has_remote(port) && !port->xdomain) {
2777 			/*
2778 			 * For disconnected downstream lane adapters
2779 			 * start lane initialization now so we detect
2780 			 * future connects.
2781 			 */
2782 			if (!tb_is_upstream_port(port) && tb_port_is_null(port))
2783 				tb_port_start_lane_initialization(port);
2784 			continue;
2785 		} else if (port->xdomain) {
2786 			/*
2787 			 * Start lane initialization for XDomain so the
2788 			 * link gets re-established.
2789 			 */
2790 			tb_port_start_lane_initialization(port);
2791 		}
2792 
2793 		if (tb_wait_for_port(port, true) <= 0) {
2794 			tb_port_warn(port,
2795 				     "lost during suspend, disconnecting\n");
2796 			if (tb_port_has_remote(port))
2797 				tb_sw_set_unplugged(port->remote->sw);
2798 			else if (port->xdomain)
2799 				port->xdomain->is_unplugged = true;
2800 		} else if (tb_port_has_remote(port) || port->xdomain) {
2801 			/*
2802 			 * Always unlock the port so the downstream
2803 			 * switch/domain is accessible.
2804 			 */
2805 			if (tb_port_unlock(port))
2806 				tb_port_warn(port, "failed to unlock port\n");
2807 			if (port->remote && tb_switch_resume(port->remote->sw)) {
2808 				tb_port_warn(port,
2809 					     "lost during suspend, disconnecting\n");
2810 				tb_sw_set_unplugged(port->remote->sw);
2811 			}
2812 		}
2813 	}
2814 	return 0;
2815 }
2816 
2817 /**
2818  * tb_switch_suspend() - Put a switch to sleep
2819  * @sw: Switch to suspend
2820  * @runtime: Is this runtime suspend or system sleep
2821  *
2822  * Suspends router and all its children. Enables wakes according to
2823  * value of @runtime and then sets sleep bit for the router. If @sw is
2824  * host router the domain is ready to go to sleep once this function
2825  * returns.
2826  */
2827 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
2828 {
2829 	unsigned int flags = 0;
2830 	struct tb_port *port;
2831 	int err;
2832 
2833 	tb_sw_dbg(sw, "suspending switch\n");
2834 
2835 	err = tb_plug_events_active(sw, false);
2836 	if (err)
2837 		return;
2838 
2839 	tb_switch_for_each_port(sw, port) {
2840 		if (tb_port_has_remote(port))
2841 			tb_switch_suspend(port->remote->sw, runtime);
2842 	}
2843 
2844 	if (runtime) {
2845 		/* Trigger wake when something is plugged in/out */
2846 		flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
2847 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2848 	} else if (device_may_wakeup(&sw->dev)) {
2849 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2850 	}
2851 
2852 	tb_switch_set_wake(sw, flags);
2853 
2854 	if (tb_switch_is_usb4(sw))
2855 		usb4_switch_set_sleep(sw);
2856 	else
2857 		tb_lc_set_sleep(sw);
2858 }
2859 
2860 /**
2861  * tb_switch_query_dp_resource() - Query availability of DP resource
2862  * @sw: Switch whose DP resource is queried
2863  * @in: DP IN port
2864  *
2865  * Queries availability of DP resource for DP tunneling using switch
2866  * specific means. Returns %true if resource is available.
2867  */
2868 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2869 {
2870 	if (tb_switch_is_usb4(sw))
2871 		return usb4_switch_query_dp_resource(sw, in);
2872 	return tb_lc_dp_sink_query(sw, in);
2873 }
2874 
2875 /**
2876  * tb_switch_alloc_dp_resource() - Allocate available DP resource
2877  * @sw: Switch whose DP resource is allocated
2878  * @in: DP IN port
2879  *
2880  * Allocates DP resource for DP tunneling. The resource must be
2881  * available for this to succeed (see tb_switch_query_dp_resource()).
2882  * Returns %0 in success and negative errno otherwise.
2883  */
2884 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2885 {
2886 	if (tb_switch_is_usb4(sw))
2887 		return usb4_switch_alloc_dp_resource(sw, in);
2888 	return tb_lc_dp_sink_alloc(sw, in);
2889 }
2890 
2891 /**
2892  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2893  * @sw: Switch whose DP resource is de-allocated
2894  * @in: DP IN port
2895  *
2896  * De-allocates DP resource that was previously allocated for DP
2897  * tunneling.
2898  */
2899 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2900 {
2901 	int ret;
2902 
2903 	if (tb_switch_is_usb4(sw))
2904 		ret = usb4_switch_dealloc_dp_resource(sw, in);
2905 	else
2906 		ret = tb_lc_dp_sink_dealloc(sw, in);
2907 
2908 	if (ret)
2909 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2910 			   in->port);
2911 }
2912 
2913 struct tb_sw_lookup {
2914 	struct tb *tb;
2915 	u8 link;
2916 	u8 depth;
2917 	const uuid_t *uuid;
2918 	u64 route;
2919 };
2920 
2921 static int tb_switch_match(struct device *dev, const void *data)
2922 {
2923 	struct tb_switch *sw = tb_to_switch(dev);
2924 	const struct tb_sw_lookup *lookup = data;
2925 
2926 	if (!sw)
2927 		return 0;
2928 	if (sw->tb != lookup->tb)
2929 		return 0;
2930 
2931 	if (lookup->uuid)
2932 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2933 
2934 	if (lookup->route) {
2935 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
2936 		       sw->config.route_hi == upper_32_bits(lookup->route);
2937 	}
2938 
2939 	/* Root switch is matched only by depth */
2940 	if (!lookup->depth)
2941 		return !sw->depth;
2942 
2943 	return sw->link == lookup->link && sw->depth == lookup->depth;
2944 }
2945 
2946 /**
2947  * tb_switch_find_by_link_depth() - Find switch by link and depth
2948  * @tb: Domain the switch belongs
2949  * @link: Link number the switch is connected
2950  * @depth: Depth of the switch in link
2951  *
2952  * Returned switch has reference count increased so the caller needs to
2953  * call tb_switch_put() when done with the switch.
2954  */
2955 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2956 {
2957 	struct tb_sw_lookup lookup;
2958 	struct device *dev;
2959 
2960 	memset(&lookup, 0, sizeof(lookup));
2961 	lookup.tb = tb;
2962 	lookup.link = link;
2963 	lookup.depth = depth;
2964 
2965 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2966 	if (dev)
2967 		return tb_to_switch(dev);
2968 
2969 	return NULL;
2970 }
2971 
2972 /**
2973  * tb_switch_find_by_uuid() - Find switch by UUID
2974  * @tb: Domain the switch belongs
2975  * @uuid: UUID to look for
2976  *
2977  * Returned switch has reference count increased so the caller needs to
2978  * call tb_switch_put() when done with the switch.
2979  */
2980 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2981 {
2982 	struct tb_sw_lookup lookup;
2983 	struct device *dev;
2984 
2985 	memset(&lookup, 0, sizeof(lookup));
2986 	lookup.tb = tb;
2987 	lookup.uuid = uuid;
2988 
2989 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2990 	if (dev)
2991 		return tb_to_switch(dev);
2992 
2993 	return NULL;
2994 }
2995 
2996 /**
2997  * tb_switch_find_by_route() - Find switch by route string
2998  * @tb: Domain the switch belongs
2999  * @route: Route string to look for
3000  *
3001  * Returned switch has reference count increased so the caller needs to
3002  * call tb_switch_put() when done with the switch.
3003  */
3004 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3005 {
3006 	struct tb_sw_lookup lookup;
3007 	struct device *dev;
3008 
3009 	if (!route)
3010 		return tb_switch_get(tb->root_switch);
3011 
3012 	memset(&lookup, 0, sizeof(lookup));
3013 	lookup.tb = tb;
3014 	lookup.route = route;
3015 
3016 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3017 	if (dev)
3018 		return tb_to_switch(dev);
3019 
3020 	return NULL;
3021 }
3022 
3023 /**
3024  * tb_switch_find_port() - return the first port of @type on @sw or NULL
3025  * @sw: Switch to find the port from
3026  * @type: Port type to look for
3027  */
3028 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3029 				    enum tb_port_type type)
3030 {
3031 	struct tb_port *port;
3032 
3033 	tb_switch_for_each_port(sw, port) {
3034 		if (port->config.type == type)
3035 			return port;
3036 	}
3037 
3038 	return NULL;
3039 }
3040