1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - switch/port utility functions 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2018, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/idr.h> 11 #include <linux/nvmem-provider.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 17 #include "tb.h" 18 19 /* Switch NVM support */ 20 21 #define NVM_CSS 0x10 22 23 struct nvm_auth_status { 24 struct list_head list; 25 uuid_t uuid; 26 u32 status; 27 }; 28 29 /* 30 * Hold NVM authentication failure status per switch This information 31 * needs to stay around even when the switch gets power cycled so we 32 * keep it separately. 33 */ 34 static LIST_HEAD(nvm_auth_status_cache); 35 static DEFINE_MUTEX(nvm_auth_status_lock); 36 37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 38 { 39 struct nvm_auth_status *st; 40 41 list_for_each_entry(st, &nvm_auth_status_cache, list) { 42 if (uuid_equal(&st->uuid, sw->uuid)) 43 return st; 44 } 45 46 return NULL; 47 } 48 49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 50 { 51 struct nvm_auth_status *st; 52 53 mutex_lock(&nvm_auth_status_lock); 54 st = __nvm_get_auth_status(sw); 55 mutex_unlock(&nvm_auth_status_lock); 56 57 *status = st ? st->status : 0; 58 } 59 60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 61 { 62 struct nvm_auth_status *st; 63 64 if (WARN_ON(!sw->uuid)) 65 return; 66 67 mutex_lock(&nvm_auth_status_lock); 68 st = __nvm_get_auth_status(sw); 69 70 if (!st) { 71 st = kzalloc(sizeof(*st), GFP_KERNEL); 72 if (!st) 73 goto unlock; 74 75 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 76 INIT_LIST_HEAD(&st->list); 77 list_add_tail(&st->list, &nvm_auth_status_cache); 78 } 79 80 st->status = status; 81 unlock: 82 mutex_unlock(&nvm_auth_status_lock); 83 } 84 85 static void nvm_clear_auth_status(const struct tb_switch *sw) 86 { 87 struct nvm_auth_status *st; 88 89 mutex_lock(&nvm_auth_status_lock); 90 st = __nvm_get_auth_status(sw); 91 if (st) { 92 list_del(&st->list); 93 kfree(st); 94 } 95 mutex_unlock(&nvm_auth_status_lock); 96 } 97 98 static int nvm_validate_and_write(struct tb_switch *sw) 99 { 100 unsigned int image_size, hdr_size; 101 const u8 *buf = sw->nvm->buf; 102 u16 ds_size; 103 int ret; 104 105 if (!buf) 106 return -EINVAL; 107 108 image_size = sw->nvm->buf_data_size; 109 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) 110 return -EINVAL; 111 112 /* 113 * FARB pointer must point inside the image and must at least 114 * contain parts of the digital section we will be reading here. 115 */ 116 hdr_size = (*(u32 *)buf) & 0xffffff; 117 if (hdr_size + NVM_DEVID + 2 >= image_size) 118 return -EINVAL; 119 120 /* Digital section start should be aligned to 4k page */ 121 if (!IS_ALIGNED(hdr_size, SZ_4K)) 122 return -EINVAL; 123 124 /* 125 * Read digital section size and check that it also fits inside 126 * the image. 127 */ 128 ds_size = *(u16 *)(buf + hdr_size); 129 if (ds_size >= image_size) 130 return -EINVAL; 131 132 if (!sw->safe_mode) { 133 u16 device_id; 134 135 /* 136 * Make sure the device ID in the image matches the one 137 * we read from the switch config space. 138 */ 139 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID); 140 if (device_id != sw->config.device_id) 141 return -EINVAL; 142 143 if (sw->generation < 3) { 144 /* Write CSS headers first */ 145 ret = dma_port_flash_write(sw->dma_port, 146 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS, 147 DMA_PORT_CSS_MAX_SIZE); 148 if (ret) 149 return ret; 150 } 151 152 /* Skip headers in the image */ 153 buf += hdr_size; 154 image_size -= hdr_size; 155 } 156 157 if (tb_switch_is_usb4(sw)) 158 ret = usb4_switch_nvm_write(sw, 0, buf, image_size); 159 else 160 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size); 161 if (!ret) 162 sw->nvm->flushed = true; 163 return ret; 164 } 165 166 static int nvm_authenticate_host_dma_port(struct tb_switch *sw) 167 { 168 int ret = 0; 169 170 /* 171 * Root switch NVM upgrade requires that we disconnect the 172 * existing paths first (in case it is not in safe mode 173 * already). 174 */ 175 if (!sw->safe_mode) { 176 u32 status; 177 178 ret = tb_domain_disconnect_all_paths(sw->tb); 179 if (ret) 180 return ret; 181 /* 182 * The host controller goes away pretty soon after this if 183 * everything goes well so getting timeout is expected. 184 */ 185 ret = dma_port_flash_update_auth(sw->dma_port); 186 if (!ret || ret == -ETIMEDOUT) 187 return 0; 188 189 /* 190 * Any error from update auth operation requires power 191 * cycling of the host router. 192 */ 193 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n"); 194 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0) 195 nvm_set_auth_status(sw, status); 196 } 197 198 /* 199 * From safe mode we can get out by just power cycling the 200 * switch. 201 */ 202 dma_port_power_cycle(sw->dma_port); 203 return ret; 204 } 205 206 static int nvm_authenticate_device_dma_port(struct tb_switch *sw) 207 { 208 int ret, retries = 10; 209 210 ret = dma_port_flash_update_auth(sw->dma_port); 211 switch (ret) { 212 case 0: 213 case -ETIMEDOUT: 214 case -EACCES: 215 case -EINVAL: 216 /* Power cycle is required */ 217 break; 218 default: 219 return ret; 220 } 221 222 /* 223 * Poll here for the authentication status. It takes some time 224 * for the device to respond (we get timeout for a while). Once 225 * we get response the device needs to be power cycled in order 226 * to the new NVM to be taken into use. 227 */ 228 do { 229 u32 status; 230 231 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 232 if (ret < 0 && ret != -ETIMEDOUT) 233 return ret; 234 if (ret > 0) { 235 if (status) { 236 tb_sw_warn(sw, "failed to authenticate NVM\n"); 237 nvm_set_auth_status(sw, status); 238 } 239 240 tb_sw_info(sw, "power cycling the switch now\n"); 241 dma_port_power_cycle(sw->dma_port); 242 return 0; 243 } 244 245 msleep(500); 246 } while (--retries); 247 248 return -ETIMEDOUT; 249 } 250 251 static void nvm_authenticate_start_dma_port(struct tb_switch *sw) 252 { 253 struct pci_dev *root_port; 254 255 /* 256 * During host router NVM upgrade we should not allow root port to 257 * go into D3cold because some root ports cannot trigger PME 258 * itself. To be on the safe side keep the root port in D0 during 259 * the whole upgrade process. 260 */ 261 root_port = pcie_find_root_port(sw->tb->nhi->pdev); 262 if (root_port) 263 pm_runtime_get_noresume(&root_port->dev); 264 } 265 266 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw) 267 { 268 struct pci_dev *root_port; 269 270 root_port = pcie_find_root_port(sw->tb->nhi->pdev); 271 if (root_port) 272 pm_runtime_put(&root_port->dev); 273 } 274 275 static inline bool nvm_readable(struct tb_switch *sw) 276 { 277 if (tb_switch_is_usb4(sw)) { 278 /* 279 * USB4 devices must support NVM operations but it is 280 * optional for hosts. Therefore we query the NVM sector 281 * size here and if it is supported assume NVM 282 * operations are implemented. 283 */ 284 return usb4_switch_nvm_sector_size(sw) > 0; 285 } 286 287 /* Thunderbolt 2 and 3 devices support NVM through DMA port */ 288 return !!sw->dma_port; 289 } 290 291 static inline bool nvm_upgradeable(struct tb_switch *sw) 292 { 293 if (sw->no_nvm_upgrade) 294 return false; 295 return nvm_readable(sw); 296 } 297 298 static inline int nvm_read(struct tb_switch *sw, unsigned int address, 299 void *buf, size_t size) 300 { 301 if (tb_switch_is_usb4(sw)) 302 return usb4_switch_nvm_read(sw, address, buf, size); 303 return dma_port_flash_read(sw->dma_port, address, buf, size); 304 } 305 306 static int nvm_authenticate(struct tb_switch *sw, bool auth_only) 307 { 308 int ret; 309 310 if (tb_switch_is_usb4(sw)) { 311 if (auth_only) { 312 ret = usb4_switch_nvm_set_offset(sw, 0); 313 if (ret) 314 return ret; 315 } 316 sw->nvm->authenticating = true; 317 return usb4_switch_nvm_authenticate(sw); 318 } else if (auth_only) { 319 return -EOPNOTSUPP; 320 } 321 322 sw->nvm->authenticating = true; 323 if (!tb_route(sw)) { 324 nvm_authenticate_start_dma_port(sw); 325 ret = nvm_authenticate_host_dma_port(sw); 326 } else { 327 ret = nvm_authenticate_device_dma_port(sw); 328 } 329 330 return ret; 331 } 332 333 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val, 334 size_t bytes) 335 { 336 struct tb_nvm *nvm = priv; 337 struct tb_switch *sw = tb_to_switch(nvm->dev); 338 int ret; 339 340 pm_runtime_get_sync(&sw->dev); 341 342 if (!mutex_trylock(&sw->tb->lock)) { 343 ret = restart_syscall(); 344 goto out; 345 } 346 347 ret = nvm_read(sw, offset, val, bytes); 348 mutex_unlock(&sw->tb->lock); 349 350 out: 351 pm_runtime_mark_last_busy(&sw->dev); 352 pm_runtime_put_autosuspend(&sw->dev); 353 354 return ret; 355 } 356 357 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val, 358 size_t bytes) 359 { 360 struct tb_nvm *nvm = priv; 361 struct tb_switch *sw = tb_to_switch(nvm->dev); 362 int ret; 363 364 if (!mutex_trylock(&sw->tb->lock)) 365 return restart_syscall(); 366 367 /* 368 * Since writing the NVM image might require some special steps, 369 * for example when CSS headers are written, we cache the image 370 * locally here and handle the special cases when the user asks 371 * us to authenticate the image. 372 */ 373 ret = tb_nvm_write_buf(nvm, offset, val, bytes); 374 mutex_unlock(&sw->tb->lock); 375 376 return ret; 377 } 378 379 static int tb_switch_nvm_add(struct tb_switch *sw) 380 { 381 struct tb_nvm *nvm; 382 u32 val; 383 int ret; 384 385 if (!nvm_readable(sw)) 386 return 0; 387 388 /* 389 * The NVM format of non-Intel hardware is not known so 390 * currently restrict NVM upgrade for Intel hardware. We may 391 * relax this in the future when we learn other NVM formats. 392 */ 393 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL && 394 sw->config.vendor_id != 0x8087) { 395 dev_info(&sw->dev, 396 "NVM format of vendor %#x is not known, disabling NVM upgrade\n", 397 sw->config.vendor_id); 398 return 0; 399 } 400 401 nvm = tb_nvm_alloc(&sw->dev); 402 if (IS_ERR(nvm)) 403 return PTR_ERR(nvm); 404 405 /* 406 * If the switch is in safe-mode the only accessible portion of 407 * the NVM is the non-active one where userspace is expected to 408 * write new functional NVM. 409 */ 410 if (!sw->safe_mode) { 411 u32 nvm_size, hdr_size; 412 413 ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val)); 414 if (ret) 415 goto err_nvm; 416 417 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; 418 nvm_size = (SZ_1M << (val & 7)) / 8; 419 nvm_size = (nvm_size - hdr_size) / 2; 420 421 ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val)); 422 if (ret) 423 goto err_nvm; 424 425 nvm->major = val >> 16; 426 nvm->minor = val >> 8; 427 428 ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read); 429 if (ret) 430 goto err_nvm; 431 } 432 433 if (!sw->no_nvm_upgrade) { 434 ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE, 435 tb_switch_nvm_write); 436 if (ret) 437 goto err_nvm; 438 } 439 440 sw->nvm = nvm; 441 return 0; 442 443 err_nvm: 444 tb_nvm_free(nvm); 445 return ret; 446 } 447 448 static void tb_switch_nvm_remove(struct tb_switch *sw) 449 { 450 struct tb_nvm *nvm; 451 452 nvm = sw->nvm; 453 sw->nvm = NULL; 454 455 if (!nvm) 456 return; 457 458 /* Remove authentication status in case the switch is unplugged */ 459 if (!nvm->authenticating) 460 nvm_clear_auth_status(sw); 461 462 tb_nvm_free(nvm); 463 } 464 465 /* port utility functions */ 466 467 static const char *tb_port_type(const struct tb_regs_port_header *port) 468 { 469 switch (port->type >> 16) { 470 case 0: 471 switch ((u8) port->type) { 472 case 0: 473 return "Inactive"; 474 case 1: 475 return "Port"; 476 case 2: 477 return "NHI"; 478 default: 479 return "unknown"; 480 } 481 case 0x2: 482 return "Ethernet"; 483 case 0x8: 484 return "SATA"; 485 case 0xe: 486 return "DP/HDMI"; 487 case 0x10: 488 return "PCIe"; 489 case 0x20: 490 return "USB"; 491 default: 492 return "unknown"; 493 } 494 } 495 496 static void tb_dump_port(struct tb *tb, const struct tb_port *port) 497 { 498 const struct tb_regs_port_header *regs = &port->config; 499 500 tb_dbg(tb, 501 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 502 regs->port_number, regs->vendor_id, regs->device_id, 503 regs->revision, regs->thunderbolt_version, tb_port_type(regs), 504 regs->type); 505 tb_dbg(tb, " Max hop id (in/out): %d/%d\n", 506 regs->max_in_hop_id, regs->max_out_hop_id); 507 tb_dbg(tb, " Max counters: %d\n", regs->max_counters); 508 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits); 509 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits, 510 port->ctl_credits); 511 } 512 513 /** 514 * tb_port_state() - get connectedness state of a port 515 * @port: the port to check 516 * 517 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 518 * 519 * Return: Returns an enum tb_port_state on success or an error code on failure. 520 */ 521 int tb_port_state(struct tb_port *port) 522 { 523 struct tb_cap_phy phy; 524 int res; 525 if (port->cap_phy == 0) { 526 tb_port_WARN(port, "does not have a PHY\n"); 527 return -EINVAL; 528 } 529 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 530 if (res) 531 return res; 532 return phy.state; 533 } 534 535 /** 536 * tb_wait_for_port() - wait for a port to become ready 537 * @port: Port to wait 538 * @wait_if_unplugged: Wait also when port is unplugged 539 * 540 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 541 * wait_if_unplugged is set then we also wait if the port is in state 542 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 543 * switch resume). Otherwise we only wait if a device is registered but the link 544 * has not yet been established. 545 * 546 * Return: Returns an error code on failure. Returns 0 if the port is not 547 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 548 * if the port is connected and in state TB_PORT_UP. 549 */ 550 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 551 { 552 int retries = 10; 553 int state; 554 if (!port->cap_phy) { 555 tb_port_WARN(port, "does not have PHY\n"); 556 return -EINVAL; 557 } 558 if (tb_is_upstream_port(port)) { 559 tb_port_WARN(port, "is the upstream port\n"); 560 return -EINVAL; 561 } 562 563 while (retries--) { 564 state = tb_port_state(port); 565 if (state < 0) 566 return state; 567 if (state == TB_PORT_DISABLED) { 568 tb_port_dbg(port, "is disabled (state: 0)\n"); 569 return 0; 570 } 571 if (state == TB_PORT_UNPLUGGED) { 572 if (wait_if_unplugged) { 573 /* used during resume */ 574 tb_port_dbg(port, 575 "is unplugged (state: 7), retrying...\n"); 576 msleep(100); 577 continue; 578 } 579 tb_port_dbg(port, "is unplugged (state: 7)\n"); 580 return 0; 581 } 582 if (state == TB_PORT_UP) { 583 tb_port_dbg(port, "is connected, link is up (state: 2)\n"); 584 return 1; 585 } 586 587 /* 588 * After plug-in the state is TB_PORT_CONNECTING. Give it some 589 * time. 590 */ 591 tb_port_dbg(port, 592 "is connected, link is not up (state: %d), retrying...\n", 593 state); 594 msleep(100); 595 } 596 tb_port_warn(port, 597 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 598 return 0; 599 } 600 601 /** 602 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 603 * @port: Port to add/remove NFC credits 604 * @credits: Credits to add/remove 605 * 606 * Change the number of NFC credits allocated to @port by @credits. To remove 607 * NFC credits pass a negative amount of credits. 608 * 609 * Return: Returns 0 on success or an error code on failure. 610 */ 611 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 612 { 613 u32 nfc_credits; 614 615 if (credits == 0 || port->sw->is_unplugged) 616 return 0; 617 618 /* 619 * USB4 restricts programming NFC buffers to lane adapters only 620 * so skip other ports. 621 */ 622 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port)) 623 return 0; 624 625 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK; 626 nfc_credits += credits; 627 628 tb_port_dbg(port, "adding %d NFC credits to %lu", credits, 629 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK); 630 631 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK; 632 port->config.nfc_credits |= nfc_credits; 633 634 return tb_port_write(port, &port->config.nfc_credits, 635 TB_CFG_PORT, ADP_CS_4, 1); 636 } 637 638 /** 639 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 640 * @port: Port whose counters to clear 641 * @counter: Counter index to clear 642 * 643 * Return: Returns 0 on success or an error code on failure. 644 */ 645 int tb_port_clear_counter(struct tb_port *port, int counter) 646 { 647 u32 zero[3] = { 0, 0, 0 }; 648 tb_port_dbg(port, "clearing counter %d\n", counter); 649 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 650 } 651 652 /** 653 * tb_port_unlock() - Unlock downstream port 654 * @port: Port to unlock 655 * 656 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the 657 * downstream router accessible for CM. 658 */ 659 int tb_port_unlock(struct tb_port *port) 660 { 661 if (tb_switch_is_icm(port->sw)) 662 return 0; 663 if (!tb_port_is_null(port)) 664 return -EINVAL; 665 if (tb_switch_is_usb4(port->sw)) 666 return usb4_port_unlock(port); 667 return 0; 668 } 669 670 static int __tb_port_enable(struct tb_port *port, bool enable) 671 { 672 int ret; 673 u32 phy; 674 675 if (!tb_port_is_null(port)) 676 return -EINVAL; 677 678 ret = tb_port_read(port, &phy, TB_CFG_PORT, 679 port->cap_phy + LANE_ADP_CS_1, 1); 680 if (ret) 681 return ret; 682 683 if (enable) 684 phy &= ~LANE_ADP_CS_1_LD; 685 else 686 phy |= LANE_ADP_CS_1_LD; 687 688 return tb_port_write(port, &phy, TB_CFG_PORT, 689 port->cap_phy + LANE_ADP_CS_1, 1); 690 } 691 692 /** 693 * tb_port_enable() - Enable lane adapter 694 * @port: Port to enable (can be %NULL) 695 * 696 * This is used for lane 0 and 1 adapters to enable it. 697 */ 698 int tb_port_enable(struct tb_port *port) 699 { 700 return __tb_port_enable(port, true); 701 } 702 703 /** 704 * tb_port_disable() - Disable lane adapter 705 * @port: Port to disable (can be %NULL) 706 * 707 * This is used for lane 0 and 1 adapters to disable it. 708 */ 709 int tb_port_disable(struct tb_port *port) 710 { 711 return __tb_port_enable(port, false); 712 } 713 714 /* 715 * tb_init_port() - initialize a port 716 * 717 * This is a helper method for tb_switch_alloc. Does not check or initialize 718 * any downstream switches. 719 * 720 * Return: Returns 0 on success or an error code on failure. 721 */ 722 static int tb_init_port(struct tb_port *port) 723 { 724 int res; 725 int cap; 726 727 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 728 if (res) { 729 if (res == -ENODEV) { 730 tb_dbg(port->sw->tb, " Port %d: not implemented\n", 731 port->port); 732 port->disabled = true; 733 return 0; 734 } 735 return res; 736 } 737 738 /* Port 0 is the switch itself and has no PHY. */ 739 if (port->config.type == TB_TYPE_PORT && port->port != 0) { 740 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 741 742 if (cap > 0) 743 port->cap_phy = cap; 744 else 745 tb_port_WARN(port, "non switch port without a PHY\n"); 746 747 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4); 748 if (cap > 0) 749 port->cap_usb4 = cap; 750 751 /* 752 * USB4 ports the buffers allocated for the control path 753 * can be read from the path config space. Legacy 754 * devices we use hard-coded value. 755 */ 756 if (tb_switch_is_usb4(port->sw)) { 757 struct tb_regs_hop hop; 758 759 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2)) 760 port->ctl_credits = hop.initial_credits; 761 } 762 if (!port->ctl_credits) 763 port->ctl_credits = 2; 764 765 } else if (port->port != 0) { 766 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP); 767 if (cap > 0) 768 port->cap_adap = cap; 769 } 770 771 port->total_credits = 772 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >> 773 ADP_CS_4_TOTAL_BUFFERS_SHIFT; 774 775 tb_dump_port(port->sw->tb, port); 776 777 INIT_LIST_HEAD(&port->list); 778 return 0; 779 780 } 781 782 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid, 783 int max_hopid) 784 { 785 int port_max_hopid; 786 struct ida *ida; 787 788 if (in) { 789 port_max_hopid = port->config.max_in_hop_id; 790 ida = &port->in_hopids; 791 } else { 792 port_max_hopid = port->config.max_out_hop_id; 793 ida = &port->out_hopids; 794 } 795 796 /* 797 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are 798 * reserved. 799 */ 800 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID) 801 min_hopid = TB_PATH_MIN_HOPID; 802 803 if (max_hopid < 0 || max_hopid > port_max_hopid) 804 max_hopid = port_max_hopid; 805 806 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL); 807 } 808 809 /** 810 * tb_port_alloc_in_hopid() - Allocate input HopID from port 811 * @port: Port to allocate HopID for 812 * @min_hopid: Minimum acceptable input HopID 813 * @max_hopid: Maximum acceptable input HopID 814 * 815 * Return: HopID between @min_hopid and @max_hopid or negative errno in 816 * case of error. 817 */ 818 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid) 819 { 820 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid); 821 } 822 823 /** 824 * tb_port_alloc_out_hopid() - Allocate output HopID from port 825 * @port: Port to allocate HopID for 826 * @min_hopid: Minimum acceptable output HopID 827 * @max_hopid: Maximum acceptable output HopID 828 * 829 * Return: HopID between @min_hopid and @max_hopid or negative errno in 830 * case of error. 831 */ 832 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid) 833 { 834 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid); 835 } 836 837 /** 838 * tb_port_release_in_hopid() - Release allocated input HopID from port 839 * @port: Port whose HopID to release 840 * @hopid: HopID to release 841 */ 842 void tb_port_release_in_hopid(struct tb_port *port, int hopid) 843 { 844 ida_simple_remove(&port->in_hopids, hopid); 845 } 846 847 /** 848 * tb_port_release_out_hopid() - Release allocated output HopID from port 849 * @port: Port whose HopID to release 850 * @hopid: HopID to release 851 */ 852 void tb_port_release_out_hopid(struct tb_port *port, int hopid) 853 { 854 ida_simple_remove(&port->out_hopids, hopid); 855 } 856 857 static inline bool tb_switch_is_reachable(const struct tb_switch *parent, 858 const struct tb_switch *sw) 859 { 860 u64 mask = (1ULL << parent->config.depth * 8) - 1; 861 return (tb_route(parent) & mask) == (tb_route(sw) & mask); 862 } 863 864 /** 865 * tb_next_port_on_path() - Return next port for given port on a path 866 * @start: Start port of the walk 867 * @end: End port of the walk 868 * @prev: Previous port (%NULL if this is the first) 869 * 870 * This function can be used to walk from one port to another if they 871 * are connected through zero or more switches. If the @prev is dual 872 * link port, the function follows that link and returns another end on 873 * that same link. 874 * 875 * If the @end port has been reached, return %NULL. 876 * 877 * Domain tb->lock must be held when this function is called. 878 */ 879 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end, 880 struct tb_port *prev) 881 { 882 struct tb_port *next; 883 884 if (!prev) 885 return start; 886 887 if (prev->sw == end->sw) { 888 if (prev == end) 889 return NULL; 890 return end; 891 } 892 893 if (tb_switch_is_reachable(prev->sw, end->sw)) { 894 next = tb_port_at(tb_route(end->sw), prev->sw); 895 /* Walk down the topology if next == prev */ 896 if (prev->remote && 897 (next == prev || next->dual_link_port == prev)) 898 next = prev->remote; 899 } else { 900 if (tb_is_upstream_port(prev)) { 901 next = prev->remote; 902 } else { 903 next = tb_upstream_port(prev->sw); 904 /* 905 * Keep the same link if prev and next are both 906 * dual link ports. 907 */ 908 if (next->dual_link_port && 909 next->link_nr != prev->link_nr) { 910 next = next->dual_link_port; 911 } 912 } 913 } 914 915 return next != prev ? next : NULL; 916 } 917 918 /** 919 * tb_port_get_link_speed() - Get current link speed 920 * @port: Port to check (USB4 or CIO) 921 * 922 * Returns link speed in Gb/s or negative errno in case of failure. 923 */ 924 int tb_port_get_link_speed(struct tb_port *port) 925 { 926 u32 val, speed; 927 int ret; 928 929 if (!port->cap_phy) 930 return -EINVAL; 931 932 ret = tb_port_read(port, &val, TB_CFG_PORT, 933 port->cap_phy + LANE_ADP_CS_1, 1); 934 if (ret) 935 return ret; 936 937 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >> 938 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT; 939 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10; 940 } 941 942 /** 943 * tb_port_get_link_width() - Get current link width 944 * @port: Port to check (USB4 or CIO) 945 * 946 * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane) 947 * or negative errno in case of failure. 948 */ 949 int tb_port_get_link_width(struct tb_port *port) 950 { 951 u32 val; 952 int ret; 953 954 if (!port->cap_phy) 955 return -EINVAL; 956 957 ret = tb_port_read(port, &val, TB_CFG_PORT, 958 port->cap_phy + LANE_ADP_CS_1, 1); 959 if (ret) 960 return ret; 961 962 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >> 963 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT; 964 } 965 966 static bool tb_port_is_width_supported(struct tb_port *port, int width) 967 { 968 u32 phy, widths; 969 int ret; 970 971 if (!port->cap_phy) 972 return false; 973 974 ret = tb_port_read(port, &phy, TB_CFG_PORT, 975 port->cap_phy + LANE_ADP_CS_0, 1); 976 if (ret) 977 return false; 978 979 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >> 980 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT; 981 982 return !!(widths & width); 983 } 984 985 static int tb_port_set_link_width(struct tb_port *port, unsigned int width) 986 { 987 u32 val; 988 int ret; 989 990 if (!port->cap_phy) 991 return -EINVAL; 992 993 ret = tb_port_read(port, &val, TB_CFG_PORT, 994 port->cap_phy + LANE_ADP_CS_1, 1); 995 if (ret) 996 return ret; 997 998 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK; 999 switch (width) { 1000 case 1: 1001 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE << 1002 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 1003 break; 1004 case 2: 1005 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL << 1006 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 1007 break; 1008 default: 1009 return -EINVAL; 1010 } 1011 1012 val |= LANE_ADP_CS_1_LB; 1013 1014 return tb_port_write(port, &val, TB_CFG_PORT, 1015 port->cap_phy + LANE_ADP_CS_1, 1); 1016 } 1017 1018 /** 1019 * tb_port_lane_bonding_enable() - Enable bonding on port 1020 * @port: port to enable 1021 * 1022 * Enable bonding by setting the link width of the port and the other 1023 * port in case of dual link port. Does not wait for the link to 1024 * actually reach the bonded state so caller needs to call 1025 * tb_port_wait_for_link_width() before enabling any paths through the 1026 * link to make sure the link is in expected state. 1027 * 1028 * Return: %0 in case of success and negative errno in case of error 1029 */ 1030 int tb_port_lane_bonding_enable(struct tb_port *port) 1031 { 1032 int ret; 1033 1034 /* 1035 * Enable lane bonding for both links if not already enabled by 1036 * for example the boot firmware. 1037 */ 1038 ret = tb_port_get_link_width(port); 1039 if (ret == 1) { 1040 ret = tb_port_set_link_width(port, 2); 1041 if (ret) 1042 return ret; 1043 } 1044 1045 ret = tb_port_get_link_width(port->dual_link_port); 1046 if (ret == 1) { 1047 ret = tb_port_set_link_width(port->dual_link_port, 2); 1048 if (ret) { 1049 tb_port_set_link_width(port, 1); 1050 return ret; 1051 } 1052 } 1053 1054 port->bonded = true; 1055 port->dual_link_port->bonded = true; 1056 1057 return 0; 1058 } 1059 1060 /** 1061 * tb_port_lane_bonding_disable() - Disable bonding on port 1062 * @port: port to disable 1063 * 1064 * Disable bonding by setting the link width of the port and the 1065 * other port in case of dual link port. 1066 * 1067 */ 1068 void tb_port_lane_bonding_disable(struct tb_port *port) 1069 { 1070 port->dual_link_port->bonded = false; 1071 port->bonded = false; 1072 1073 tb_port_set_link_width(port->dual_link_port, 1); 1074 tb_port_set_link_width(port, 1); 1075 } 1076 1077 /** 1078 * tb_port_wait_for_link_width() - Wait until link reaches specific width 1079 * @port: Port to wait for 1080 * @width: Expected link width (%1 or %2) 1081 * @timeout_msec: Timeout in ms how long to wait 1082 * 1083 * Should be used after both ends of the link have been bonded (or 1084 * bonding has been disabled) to wait until the link actually reaches 1085 * the expected state. Returns %-ETIMEDOUT if the @width was not reached 1086 * within the given timeout, %0 if it did. 1087 */ 1088 int tb_port_wait_for_link_width(struct tb_port *port, int width, 1089 int timeout_msec) 1090 { 1091 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 1092 int ret; 1093 1094 do { 1095 ret = tb_port_get_link_width(port); 1096 if (ret < 0) 1097 return ret; 1098 else if (ret == width) 1099 return 0; 1100 1101 usleep_range(1000, 2000); 1102 } while (ktime_before(ktime_get(), timeout)); 1103 1104 return -ETIMEDOUT; 1105 } 1106 1107 static int tb_port_do_update_credits(struct tb_port *port) 1108 { 1109 u32 nfc_credits; 1110 int ret; 1111 1112 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1); 1113 if (ret) 1114 return ret; 1115 1116 if (nfc_credits != port->config.nfc_credits) { 1117 u32 total; 1118 1119 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >> 1120 ADP_CS_4_TOTAL_BUFFERS_SHIFT; 1121 1122 tb_port_dbg(port, "total credits changed %u -> %u\n", 1123 port->total_credits, total); 1124 1125 port->config.nfc_credits = nfc_credits; 1126 port->total_credits = total; 1127 } 1128 1129 return 0; 1130 } 1131 1132 /** 1133 * tb_port_update_credits() - Re-read port total credits 1134 * @port: Port to update 1135 * 1136 * After the link is bonded (or bonding was disabled) the port total 1137 * credits may change, so this function needs to be called to re-read 1138 * the credits. Updates also the second lane adapter. 1139 */ 1140 int tb_port_update_credits(struct tb_port *port) 1141 { 1142 int ret; 1143 1144 ret = tb_port_do_update_credits(port); 1145 if (ret) 1146 return ret; 1147 return tb_port_do_update_credits(port->dual_link_port); 1148 } 1149 1150 static int tb_port_start_lane_initialization(struct tb_port *port) 1151 { 1152 int ret; 1153 1154 if (tb_switch_is_usb4(port->sw)) 1155 return 0; 1156 1157 ret = tb_lc_start_lane_initialization(port); 1158 return ret == -EINVAL ? 0 : ret; 1159 } 1160 1161 /* 1162 * Returns true if the port had something (router, XDomain) connected 1163 * before suspend. 1164 */ 1165 static bool tb_port_resume(struct tb_port *port) 1166 { 1167 bool has_remote = tb_port_has_remote(port); 1168 1169 if (port->usb4) { 1170 usb4_port_device_resume(port->usb4); 1171 } else if (!has_remote) { 1172 /* 1173 * For disconnected downstream lane adapters start lane 1174 * initialization now so we detect future connects. 1175 * 1176 * For XDomain start the lane initialzation now so the 1177 * link gets re-established. 1178 * 1179 * This is only needed for non-USB4 ports. 1180 */ 1181 if (!tb_is_upstream_port(port) || port->xdomain) 1182 tb_port_start_lane_initialization(port); 1183 } 1184 1185 return has_remote || port->xdomain; 1186 } 1187 1188 /** 1189 * tb_port_is_enabled() - Is the adapter port enabled 1190 * @port: Port to check 1191 */ 1192 bool tb_port_is_enabled(struct tb_port *port) 1193 { 1194 switch (port->config.type) { 1195 case TB_TYPE_PCIE_UP: 1196 case TB_TYPE_PCIE_DOWN: 1197 return tb_pci_port_is_enabled(port); 1198 1199 case TB_TYPE_DP_HDMI_IN: 1200 case TB_TYPE_DP_HDMI_OUT: 1201 return tb_dp_port_is_enabled(port); 1202 1203 case TB_TYPE_USB3_UP: 1204 case TB_TYPE_USB3_DOWN: 1205 return tb_usb3_port_is_enabled(port); 1206 1207 default: 1208 return false; 1209 } 1210 } 1211 1212 /** 1213 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled 1214 * @port: USB3 adapter port to check 1215 */ 1216 bool tb_usb3_port_is_enabled(struct tb_port *port) 1217 { 1218 u32 data; 1219 1220 if (tb_port_read(port, &data, TB_CFG_PORT, 1221 port->cap_adap + ADP_USB3_CS_0, 1)) 1222 return false; 1223 1224 return !!(data & ADP_USB3_CS_0_PE); 1225 } 1226 1227 /** 1228 * tb_usb3_port_enable() - Enable USB3 adapter port 1229 * @port: USB3 adapter port to enable 1230 * @enable: Enable/disable the USB3 adapter 1231 */ 1232 int tb_usb3_port_enable(struct tb_port *port, bool enable) 1233 { 1234 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V) 1235 : ADP_USB3_CS_0_V; 1236 1237 if (!port->cap_adap) 1238 return -ENXIO; 1239 return tb_port_write(port, &word, TB_CFG_PORT, 1240 port->cap_adap + ADP_USB3_CS_0, 1); 1241 } 1242 1243 /** 1244 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled 1245 * @port: PCIe port to check 1246 */ 1247 bool tb_pci_port_is_enabled(struct tb_port *port) 1248 { 1249 u32 data; 1250 1251 if (tb_port_read(port, &data, TB_CFG_PORT, 1252 port->cap_adap + ADP_PCIE_CS_0, 1)) 1253 return false; 1254 1255 return !!(data & ADP_PCIE_CS_0_PE); 1256 } 1257 1258 /** 1259 * tb_pci_port_enable() - Enable PCIe adapter port 1260 * @port: PCIe port to enable 1261 * @enable: Enable/disable the PCIe adapter 1262 */ 1263 int tb_pci_port_enable(struct tb_port *port, bool enable) 1264 { 1265 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0; 1266 if (!port->cap_adap) 1267 return -ENXIO; 1268 return tb_port_write(port, &word, TB_CFG_PORT, 1269 port->cap_adap + ADP_PCIE_CS_0, 1); 1270 } 1271 1272 /** 1273 * tb_dp_port_hpd_is_active() - Is HPD already active 1274 * @port: DP out port to check 1275 * 1276 * Checks if the DP OUT adapter port has HDP bit already set. 1277 */ 1278 int tb_dp_port_hpd_is_active(struct tb_port *port) 1279 { 1280 u32 data; 1281 int ret; 1282 1283 ret = tb_port_read(port, &data, TB_CFG_PORT, 1284 port->cap_adap + ADP_DP_CS_2, 1); 1285 if (ret) 1286 return ret; 1287 1288 return !!(data & ADP_DP_CS_2_HDP); 1289 } 1290 1291 /** 1292 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port 1293 * @port: Port to clear HPD 1294 * 1295 * If the DP IN port has HDP set, this function can be used to clear it. 1296 */ 1297 int tb_dp_port_hpd_clear(struct tb_port *port) 1298 { 1299 u32 data; 1300 int ret; 1301 1302 ret = tb_port_read(port, &data, TB_CFG_PORT, 1303 port->cap_adap + ADP_DP_CS_3, 1); 1304 if (ret) 1305 return ret; 1306 1307 data |= ADP_DP_CS_3_HDPC; 1308 return tb_port_write(port, &data, TB_CFG_PORT, 1309 port->cap_adap + ADP_DP_CS_3, 1); 1310 } 1311 1312 /** 1313 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port 1314 * @port: DP IN/OUT port to set hops 1315 * @video: Video Hop ID 1316 * @aux_tx: AUX TX Hop ID 1317 * @aux_rx: AUX RX Hop ID 1318 * 1319 * Programs specified Hop IDs for DP IN/OUT port. 1320 */ 1321 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video, 1322 unsigned int aux_tx, unsigned int aux_rx) 1323 { 1324 u32 data[2]; 1325 int ret; 1326 1327 ret = tb_port_read(port, data, TB_CFG_PORT, 1328 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1329 if (ret) 1330 return ret; 1331 1332 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK; 1333 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1334 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1335 1336 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) & 1337 ADP_DP_CS_0_VIDEO_HOPID_MASK; 1338 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK; 1339 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) & 1340 ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1341 1342 return tb_port_write(port, data, TB_CFG_PORT, 1343 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1344 } 1345 1346 /** 1347 * tb_dp_port_is_enabled() - Is DP adapter port enabled 1348 * @port: DP adapter port to check 1349 */ 1350 bool tb_dp_port_is_enabled(struct tb_port *port) 1351 { 1352 u32 data[2]; 1353 1354 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0, 1355 ARRAY_SIZE(data))) 1356 return false; 1357 1358 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE)); 1359 } 1360 1361 /** 1362 * tb_dp_port_enable() - Enables/disables DP paths of a port 1363 * @port: DP IN/OUT port 1364 * @enable: Enable/disable DP path 1365 * 1366 * Once Hop IDs are programmed DP paths can be enabled or disabled by 1367 * calling this function. 1368 */ 1369 int tb_dp_port_enable(struct tb_port *port, bool enable) 1370 { 1371 u32 data[2]; 1372 int ret; 1373 1374 ret = tb_port_read(port, data, TB_CFG_PORT, 1375 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1376 if (ret) 1377 return ret; 1378 1379 if (enable) 1380 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE; 1381 else 1382 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE); 1383 1384 return tb_port_write(port, data, TB_CFG_PORT, 1385 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1386 } 1387 1388 /* switch utility functions */ 1389 1390 static const char *tb_switch_generation_name(const struct tb_switch *sw) 1391 { 1392 switch (sw->generation) { 1393 case 1: 1394 return "Thunderbolt 1"; 1395 case 2: 1396 return "Thunderbolt 2"; 1397 case 3: 1398 return "Thunderbolt 3"; 1399 case 4: 1400 return "USB4"; 1401 default: 1402 return "Unknown"; 1403 } 1404 } 1405 1406 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw) 1407 { 1408 const struct tb_regs_switch_header *regs = &sw->config; 1409 1410 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n", 1411 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id, 1412 regs->revision, regs->thunderbolt_version); 1413 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number); 1414 tb_dbg(tb, " Config:\n"); 1415 tb_dbg(tb, 1416 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 1417 regs->upstream_port_number, regs->depth, 1418 (((u64) regs->route_hi) << 32) | regs->route_lo, 1419 regs->enabled, regs->plug_events_delay); 1420 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n", 1421 regs->__unknown1, regs->__unknown4); 1422 } 1423 1424 /** 1425 * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET 1426 * @sw: Switch to reset 1427 * 1428 * Return: Returns 0 on success or an error code on failure. 1429 */ 1430 int tb_switch_reset(struct tb_switch *sw) 1431 { 1432 struct tb_cfg_result res; 1433 1434 if (sw->generation > 1) 1435 return 0; 1436 1437 tb_sw_dbg(sw, "resetting switch\n"); 1438 1439 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2, 1440 TB_CFG_SWITCH, 2, 2); 1441 if (res.err) 1442 return res.err; 1443 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw)); 1444 if (res.err > 0) 1445 return -EIO; 1446 return res.err; 1447 } 1448 1449 /* 1450 * tb_plug_events_active() - enable/disable plug events on a switch 1451 * 1452 * Also configures a sane plug_events_delay of 255ms. 1453 * 1454 * Return: Returns 0 on success or an error code on failure. 1455 */ 1456 static int tb_plug_events_active(struct tb_switch *sw, bool active) 1457 { 1458 u32 data; 1459 int res; 1460 1461 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw)) 1462 return 0; 1463 1464 sw->config.plug_events_delay = 0xff; 1465 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 1466 if (res) 1467 return res; 1468 1469 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 1470 if (res) 1471 return res; 1472 1473 if (active) { 1474 data = data & 0xFFFFFF83; 1475 switch (sw->config.device_id) { 1476 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1477 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1478 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1479 break; 1480 default: 1481 data |= 4; 1482 } 1483 } else { 1484 data = data | 0x7c; 1485 } 1486 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 1487 sw->cap_plug_events + 1, 1); 1488 } 1489 1490 static ssize_t authorized_show(struct device *dev, 1491 struct device_attribute *attr, 1492 char *buf) 1493 { 1494 struct tb_switch *sw = tb_to_switch(dev); 1495 1496 return sprintf(buf, "%u\n", sw->authorized); 1497 } 1498 1499 static int disapprove_switch(struct device *dev, void *not_used) 1500 { 1501 struct tb_switch *sw; 1502 1503 sw = tb_to_switch(dev); 1504 if (sw && sw->authorized) { 1505 int ret; 1506 1507 /* First children */ 1508 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch); 1509 if (ret) 1510 return ret; 1511 1512 ret = tb_domain_disapprove_switch(sw->tb, sw); 1513 if (ret) 1514 return ret; 1515 1516 sw->authorized = 0; 1517 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 1518 } 1519 1520 return 0; 1521 } 1522 1523 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 1524 { 1525 int ret = -EINVAL; 1526 1527 if (!mutex_trylock(&sw->tb->lock)) 1528 return restart_syscall(); 1529 1530 if (!!sw->authorized == !!val) 1531 goto unlock; 1532 1533 switch (val) { 1534 /* Disapprove switch */ 1535 case 0: 1536 if (tb_route(sw)) { 1537 ret = disapprove_switch(&sw->dev, NULL); 1538 goto unlock; 1539 } 1540 break; 1541 1542 /* Approve switch */ 1543 case 1: 1544 if (sw->key) 1545 ret = tb_domain_approve_switch_key(sw->tb, sw); 1546 else 1547 ret = tb_domain_approve_switch(sw->tb, sw); 1548 break; 1549 1550 /* Challenge switch */ 1551 case 2: 1552 if (sw->key) 1553 ret = tb_domain_challenge_switch_key(sw->tb, sw); 1554 break; 1555 1556 default: 1557 break; 1558 } 1559 1560 if (!ret) { 1561 sw->authorized = val; 1562 /* Notify status change to the userspace */ 1563 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 1564 } 1565 1566 unlock: 1567 mutex_unlock(&sw->tb->lock); 1568 return ret; 1569 } 1570 1571 static ssize_t authorized_store(struct device *dev, 1572 struct device_attribute *attr, 1573 const char *buf, size_t count) 1574 { 1575 struct tb_switch *sw = tb_to_switch(dev); 1576 unsigned int val; 1577 ssize_t ret; 1578 1579 ret = kstrtouint(buf, 0, &val); 1580 if (ret) 1581 return ret; 1582 if (val > 2) 1583 return -EINVAL; 1584 1585 pm_runtime_get_sync(&sw->dev); 1586 ret = tb_switch_set_authorized(sw, val); 1587 pm_runtime_mark_last_busy(&sw->dev); 1588 pm_runtime_put_autosuspend(&sw->dev); 1589 1590 return ret ? ret : count; 1591 } 1592 static DEVICE_ATTR_RW(authorized); 1593 1594 static ssize_t boot_show(struct device *dev, struct device_attribute *attr, 1595 char *buf) 1596 { 1597 struct tb_switch *sw = tb_to_switch(dev); 1598 1599 return sprintf(buf, "%u\n", sw->boot); 1600 } 1601 static DEVICE_ATTR_RO(boot); 1602 1603 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 1604 char *buf) 1605 { 1606 struct tb_switch *sw = tb_to_switch(dev); 1607 1608 return sprintf(buf, "%#x\n", sw->device); 1609 } 1610 static DEVICE_ATTR_RO(device); 1611 1612 static ssize_t 1613 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1614 { 1615 struct tb_switch *sw = tb_to_switch(dev); 1616 1617 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : ""); 1618 } 1619 static DEVICE_ATTR_RO(device_name); 1620 1621 static ssize_t 1622 generation_show(struct device *dev, struct device_attribute *attr, char *buf) 1623 { 1624 struct tb_switch *sw = tb_to_switch(dev); 1625 1626 return sprintf(buf, "%u\n", sw->generation); 1627 } 1628 static DEVICE_ATTR_RO(generation); 1629 1630 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 1631 char *buf) 1632 { 1633 struct tb_switch *sw = tb_to_switch(dev); 1634 ssize_t ret; 1635 1636 if (!mutex_trylock(&sw->tb->lock)) 1637 return restart_syscall(); 1638 1639 if (sw->key) 1640 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 1641 else 1642 ret = sprintf(buf, "\n"); 1643 1644 mutex_unlock(&sw->tb->lock); 1645 return ret; 1646 } 1647 1648 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 1649 const char *buf, size_t count) 1650 { 1651 struct tb_switch *sw = tb_to_switch(dev); 1652 u8 key[TB_SWITCH_KEY_SIZE]; 1653 ssize_t ret = count; 1654 bool clear = false; 1655 1656 if (!strcmp(buf, "\n")) 1657 clear = true; 1658 else if (hex2bin(key, buf, sizeof(key))) 1659 return -EINVAL; 1660 1661 if (!mutex_trylock(&sw->tb->lock)) 1662 return restart_syscall(); 1663 1664 if (sw->authorized) { 1665 ret = -EBUSY; 1666 } else { 1667 kfree(sw->key); 1668 if (clear) { 1669 sw->key = NULL; 1670 } else { 1671 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 1672 if (!sw->key) 1673 ret = -ENOMEM; 1674 } 1675 } 1676 1677 mutex_unlock(&sw->tb->lock); 1678 return ret; 1679 } 1680 static DEVICE_ATTR(key, 0600, key_show, key_store); 1681 1682 static ssize_t speed_show(struct device *dev, struct device_attribute *attr, 1683 char *buf) 1684 { 1685 struct tb_switch *sw = tb_to_switch(dev); 1686 1687 return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed); 1688 } 1689 1690 /* 1691 * Currently all lanes must run at the same speed but we expose here 1692 * both directions to allow possible asymmetric links in the future. 1693 */ 1694 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL); 1695 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL); 1696 1697 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr, 1698 char *buf) 1699 { 1700 struct tb_switch *sw = tb_to_switch(dev); 1701 1702 return sprintf(buf, "%u\n", sw->link_width); 1703 } 1704 1705 /* 1706 * Currently link has same amount of lanes both directions (1 or 2) but 1707 * expose them separately to allow possible asymmetric links in the future. 1708 */ 1709 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL); 1710 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL); 1711 1712 static ssize_t nvm_authenticate_show(struct device *dev, 1713 struct device_attribute *attr, char *buf) 1714 { 1715 struct tb_switch *sw = tb_to_switch(dev); 1716 u32 status; 1717 1718 nvm_get_auth_status(sw, &status); 1719 return sprintf(buf, "%#x\n", status); 1720 } 1721 1722 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf, 1723 bool disconnect) 1724 { 1725 struct tb_switch *sw = tb_to_switch(dev); 1726 int val, ret; 1727 1728 pm_runtime_get_sync(&sw->dev); 1729 1730 if (!mutex_trylock(&sw->tb->lock)) { 1731 ret = restart_syscall(); 1732 goto exit_rpm; 1733 } 1734 1735 /* If NVMem devices are not yet added */ 1736 if (!sw->nvm) { 1737 ret = -EAGAIN; 1738 goto exit_unlock; 1739 } 1740 1741 ret = kstrtoint(buf, 10, &val); 1742 if (ret) 1743 goto exit_unlock; 1744 1745 /* Always clear the authentication status */ 1746 nvm_clear_auth_status(sw); 1747 1748 if (val > 0) { 1749 if (val == AUTHENTICATE_ONLY) { 1750 if (disconnect) 1751 ret = -EINVAL; 1752 else 1753 ret = nvm_authenticate(sw, true); 1754 } else { 1755 if (!sw->nvm->flushed) { 1756 if (!sw->nvm->buf) { 1757 ret = -EINVAL; 1758 goto exit_unlock; 1759 } 1760 1761 ret = nvm_validate_and_write(sw); 1762 if (ret || val == WRITE_ONLY) 1763 goto exit_unlock; 1764 } 1765 if (val == WRITE_AND_AUTHENTICATE) { 1766 if (disconnect) 1767 ret = tb_lc_force_power(sw); 1768 else 1769 ret = nvm_authenticate(sw, false); 1770 } 1771 } 1772 } 1773 1774 exit_unlock: 1775 mutex_unlock(&sw->tb->lock); 1776 exit_rpm: 1777 pm_runtime_mark_last_busy(&sw->dev); 1778 pm_runtime_put_autosuspend(&sw->dev); 1779 1780 return ret; 1781 } 1782 1783 static ssize_t nvm_authenticate_store(struct device *dev, 1784 struct device_attribute *attr, const char *buf, size_t count) 1785 { 1786 int ret = nvm_authenticate_sysfs(dev, buf, false); 1787 if (ret) 1788 return ret; 1789 return count; 1790 } 1791 static DEVICE_ATTR_RW(nvm_authenticate); 1792 1793 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev, 1794 struct device_attribute *attr, char *buf) 1795 { 1796 return nvm_authenticate_show(dev, attr, buf); 1797 } 1798 1799 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev, 1800 struct device_attribute *attr, const char *buf, size_t count) 1801 { 1802 int ret; 1803 1804 ret = nvm_authenticate_sysfs(dev, buf, true); 1805 return ret ? ret : count; 1806 } 1807 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect); 1808 1809 static ssize_t nvm_version_show(struct device *dev, 1810 struct device_attribute *attr, char *buf) 1811 { 1812 struct tb_switch *sw = tb_to_switch(dev); 1813 int ret; 1814 1815 if (!mutex_trylock(&sw->tb->lock)) 1816 return restart_syscall(); 1817 1818 if (sw->safe_mode) 1819 ret = -ENODATA; 1820 else if (!sw->nvm) 1821 ret = -EAGAIN; 1822 else 1823 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 1824 1825 mutex_unlock(&sw->tb->lock); 1826 1827 return ret; 1828 } 1829 static DEVICE_ATTR_RO(nvm_version); 1830 1831 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 1832 char *buf) 1833 { 1834 struct tb_switch *sw = tb_to_switch(dev); 1835 1836 return sprintf(buf, "%#x\n", sw->vendor); 1837 } 1838 static DEVICE_ATTR_RO(vendor); 1839 1840 static ssize_t 1841 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1842 { 1843 struct tb_switch *sw = tb_to_switch(dev); 1844 1845 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : ""); 1846 } 1847 static DEVICE_ATTR_RO(vendor_name); 1848 1849 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 1850 char *buf) 1851 { 1852 struct tb_switch *sw = tb_to_switch(dev); 1853 1854 return sprintf(buf, "%pUb\n", sw->uuid); 1855 } 1856 static DEVICE_ATTR_RO(unique_id); 1857 1858 static struct attribute *switch_attrs[] = { 1859 &dev_attr_authorized.attr, 1860 &dev_attr_boot.attr, 1861 &dev_attr_device.attr, 1862 &dev_attr_device_name.attr, 1863 &dev_attr_generation.attr, 1864 &dev_attr_key.attr, 1865 &dev_attr_nvm_authenticate.attr, 1866 &dev_attr_nvm_authenticate_on_disconnect.attr, 1867 &dev_attr_nvm_version.attr, 1868 &dev_attr_rx_speed.attr, 1869 &dev_attr_rx_lanes.attr, 1870 &dev_attr_tx_speed.attr, 1871 &dev_attr_tx_lanes.attr, 1872 &dev_attr_vendor.attr, 1873 &dev_attr_vendor_name.attr, 1874 &dev_attr_unique_id.attr, 1875 NULL, 1876 }; 1877 1878 static bool has_port(const struct tb_switch *sw, enum tb_port_type type) 1879 { 1880 const struct tb_port *port; 1881 1882 tb_switch_for_each_port(sw, port) { 1883 if (!port->disabled && port->config.type == type) 1884 return true; 1885 } 1886 1887 return false; 1888 } 1889 1890 static umode_t switch_attr_is_visible(struct kobject *kobj, 1891 struct attribute *attr, int n) 1892 { 1893 struct device *dev = kobj_to_dev(kobj); 1894 struct tb_switch *sw = tb_to_switch(dev); 1895 1896 if (attr == &dev_attr_authorized.attr) { 1897 if (sw->tb->security_level == TB_SECURITY_NOPCIE || 1898 sw->tb->security_level == TB_SECURITY_DPONLY || 1899 !has_port(sw, TB_TYPE_PCIE_UP)) 1900 return 0; 1901 } else if (attr == &dev_attr_device.attr) { 1902 if (!sw->device) 1903 return 0; 1904 } else if (attr == &dev_attr_device_name.attr) { 1905 if (!sw->device_name) 1906 return 0; 1907 } else if (attr == &dev_attr_vendor.attr) { 1908 if (!sw->vendor) 1909 return 0; 1910 } else if (attr == &dev_attr_vendor_name.attr) { 1911 if (!sw->vendor_name) 1912 return 0; 1913 } else if (attr == &dev_attr_key.attr) { 1914 if (tb_route(sw) && 1915 sw->tb->security_level == TB_SECURITY_SECURE && 1916 sw->security_level == TB_SECURITY_SECURE) 1917 return attr->mode; 1918 return 0; 1919 } else if (attr == &dev_attr_rx_speed.attr || 1920 attr == &dev_attr_rx_lanes.attr || 1921 attr == &dev_attr_tx_speed.attr || 1922 attr == &dev_attr_tx_lanes.attr) { 1923 if (tb_route(sw)) 1924 return attr->mode; 1925 return 0; 1926 } else if (attr == &dev_attr_nvm_authenticate.attr) { 1927 if (nvm_upgradeable(sw)) 1928 return attr->mode; 1929 return 0; 1930 } else if (attr == &dev_attr_nvm_version.attr) { 1931 if (nvm_readable(sw)) 1932 return attr->mode; 1933 return 0; 1934 } else if (attr == &dev_attr_boot.attr) { 1935 if (tb_route(sw)) 1936 return attr->mode; 1937 return 0; 1938 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) { 1939 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER) 1940 return attr->mode; 1941 return 0; 1942 } 1943 1944 return sw->safe_mode ? 0 : attr->mode; 1945 } 1946 1947 static const struct attribute_group switch_group = { 1948 .is_visible = switch_attr_is_visible, 1949 .attrs = switch_attrs, 1950 }; 1951 1952 static const struct attribute_group *switch_groups[] = { 1953 &switch_group, 1954 NULL, 1955 }; 1956 1957 static void tb_switch_release(struct device *dev) 1958 { 1959 struct tb_switch *sw = tb_to_switch(dev); 1960 struct tb_port *port; 1961 1962 dma_port_free(sw->dma_port); 1963 1964 tb_switch_for_each_port(sw, port) { 1965 ida_destroy(&port->in_hopids); 1966 ida_destroy(&port->out_hopids); 1967 } 1968 1969 kfree(sw->uuid); 1970 kfree(sw->device_name); 1971 kfree(sw->vendor_name); 1972 kfree(sw->ports); 1973 kfree(sw->drom); 1974 kfree(sw->key); 1975 kfree(sw); 1976 } 1977 1978 static int tb_switch_uevent(struct device *dev, struct kobj_uevent_env *env) 1979 { 1980 struct tb_switch *sw = tb_to_switch(dev); 1981 const char *type; 1982 1983 if (sw->config.thunderbolt_version == USB4_VERSION_1_0) { 1984 if (add_uevent_var(env, "USB4_VERSION=1.0")) 1985 return -ENOMEM; 1986 } 1987 1988 if (!tb_route(sw)) { 1989 type = "host"; 1990 } else { 1991 const struct tb_port *port; 1992 bool hub = false; 1993 1994 /* Device is hub if it has any downstream ports */ 1995 tb_switch_for_each_port(sw, port) { 1996 if (!port->disabled && !tb_is_upstream_port(port) && 1997 tb_port_is_null(port)) { 1998 hub = true; 1999 break; 2000 } 2001 } 2002 2003 type = hub ? "hub" : "device"; 2004 } 2005 2006 if (add_uevent_var(env, "USB4_TYPE=%s", type)) 2007 return -ENOMEM; 2008 return 0; 2009 } 2010 2011 /* 2012 * Currently only need to provide the callbacks. Everything else is handled 2013 * in the connection manager. 2014 */ 2015 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev) 2016 { 2017 struct tb_switch *sw = tb_to_switch(dev); 2018 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 2019 2020 if (cm_ops->runtime_suspend_switch) 2021 return cm_ops->runtime_suspend_switch(sw); 2022 2023 return 0; 2024 } 2025 2026 static int __maybe_unused tb_switch_runtime_resume(struct device *dev) 2027 { 2028 struct tb_switch *sw = tb_to_switch(dev); 2029 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 2030 2031 if (cm_ops->runtime_resume_switch) 2032 return cm_ops->runtime_resume_switch(sw); 2033 return 0; 2034 } 2035 2036 static const struct dev_pm_ops tb_switch_pm_ops = { 2037 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume, 2038 NULL) 2039 }; 2040 2041 struct device_type tb_switch_type = { 2042 .name = "thunderbolt_device", 2043 .release = tb_switch_release, 2044 .uevent = tb_switch_uevent, 2045 .pm = &tb_switch_pm_ops, 2046 }; 2047 2048 static int tb_switch_get_generation(struct tb_switch *sw) 2049 { 2050 switch (sw->config.device_id) { 2051 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 2052 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 2053 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 2054 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 2055 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 2056 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 2057 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 2058 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 2059 return 1; 2060 2061 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 2062 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 2063 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 2064 return 2; 2065 2066 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 2067 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 2068 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 2069 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 2070 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 2071 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: 2072 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: 2073 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: 2074 case PCI_DEVICE_ID_INTEL_ICL_NHI0: 2075 case PCI_DEVICE_ID_INTEL_ICL_NHI1: 2076 return 3; 2077 2078 default: 2079 if (tb_switch_is_usb4(sw)) 2080 return 4; 2081 2082 /* 2083 * For unknown switches assume generation to be 1 to be 2084 * on the safe side. 2085 */ 2086 tb_sw_warn(sw, "unsupported switch device id %#x\n", 2087 sw->config.device_id); 2088 return 1; 2089 } 2090 } 2091 2092 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth) 2093 { 2094 int max_depth; 2095 2096 if (tb_switch_is_usb4(sw) || 2097 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch))) 2098 max_depth = USB4_SWITCH_MAX_DEPTH; 2099 else 2100 max_depth = TB_SWITCH_MAX_DEPTH; 2101 2102 return depth > max_depth; 2103 } 2104 2105 /** 2106 * tb_switch_alloc() - allocate a switch 2107 * @tb: Pointer to the owning domain 2108 * @parent: Parent device for this switch 2109 * @route: Route string for this switch 2110 * 2111 * Allocates and initializes a switch. Will not upload configuration to 2112 * the switch. For that you need to call tb_switch_configure() 2113 * separately. The returned switch should be released by calling 2114 * tb_switch_put(). 2115 * 2116 * Return: Pointer to the allocated switch or ERR_PTR() in case of 2117 * failure. 2118 */ 2119 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 2120 u64 route) 2121 { 2122 struct tb_switch *sw; 2123 int upstream_port; 2124 int i, ret, depth; 2125 2126 /* Unlock the downstream port so we can access the switch below */ 2127 if (route) { 2128 struct tb_switch *parent_sw = tb_to_switch(parent); 2129 struct tb_port *down; 2130 2131 down = tb_port_at(route, parent_sw); 2132 tb_port_unlock(down); 2133 } 2134 2135 depth = tb_route_length(route); 2136 2137 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 2138 if (upstream_port < 0) 2139 return ERR_PTR(upstream_port); 2140 2141 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 2142 if (!sw) 2143 return ERR_PTR(-ENOMEM); 2144 2145 sw->tb = tb; 2146 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5); 2147 if (ret) 2148 goto err_free_sw_ports; 2149 2150 sw->generation = tb_switch_get_generation(sw); 2151 2152 tb_dbg(tb, "current switch config:\n"); 2153 tb_dump_switch(tb, sw); 2154 2155 /* configure switch */ 2156 sw->config.upstream_port_number = upstream_port; 2157 sw->config.depth = depth; 2158 sw->config.route_hi = upper_32_bits(route); 2159 sw->config.route_lo = lower_32_bits(route); 2160 sw->config.enabled = 0; 2161 2162 /* Make sure we do not exceed maximum topology limit */ 2163 if (tb_switch_exceeds_max_depth(sw, depth)) { 2164 ret = -EADDRNOTAVAIL; 2165 goto err_free_sw_ports; 2166 } 2167 2168 /* initialize ports */ 2169 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 2170 GFP_KERNEL); 2171 if (!sw->ports) { 2172 ret = -ENOMEM; 2173 goto err_free_sw_ports; 2174 } 2175 2176 for (i = 0; i <= sw->config.max_port_number; i++) { 2177 /* minimum setup for tb_find_cap and tb_drom_read to work */ 2178 sw->ports[i].sw = sw; 2179 sw->ports[i].port = i; 2180 2181 /* Control port does not need HopID allocation */ 2182 if (i) { 2183 ida_init(&sw->ports[i].in_hopids); 2184 ida_init(&sw->ports[i].out_hopids); 2185 } 2186 } 2187 2188 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 2189 if (ret > 0) 2190 sw->cap_plug_events = ret; 2191 2192 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 2193 if (ret > 0) 2194 sw->cap_lc = ret; 2195 2196 /* Root switch is always authorized */ 2197 if (!route) 2198 sw->authorized = true; 2199 2200 device_initialize(&sw->dev); 2201 sw->dev.parent = parent; 2202 sw->dev.bus = &tb_bus_type; 2203 sw->dev.type = &tb_switch_type; 2204 sw->dev.groups = switch_groups; 2205 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 2206 2207 return sw; 2208 2209 err_free_sw_ports: 2210 kfree(sw->ports); 2211 kfree(sw); 2212 2213 return ERR_PTR(ret); 2214 } 2215 2216 /** 2217 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 2218 * @tb: Pointer to the owning domain 2219 * @parent: Parent device for this switch 2220 * @route: Route string for this switch 2221 * 2222 * This creates a switch in safe mode. This means the switch pretty much 2223 * lacks all capabilities except DMA configuration port before it is 2224 * flashed with a valid NVM firmware. 2225 * 2226 * The returned switch must be released by calling tb_switch_put(). 2227 * 2228 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure 2229 */ 2230 struct tb_switch * 2231 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 2232 { 2233 struct tb_switch *sw; 2234 2235 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 2236 if (!sw) 2237 return ERR_PTR(-ENOMEM); 2238 2239 sw->tb = tb; 2240 sw->config.depth = tb_route_length(route); 2241 sw->config.route_hi = upper_32_bits(route); 2242 sw->config.route_lo = lower_32_bits(route); 2243 sw->safe_mode = true; 2244 2245 device_initialize(&sw->dev); 2246 sw->dev.parent = parent; 2247 sw->dev.bus = &tb_bus_type; 2248 sw->dev.type = &tb_switch_type; 2249 sw->dev.groups = switch_groups; 2250 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 2251 2252 return sw; 2253 } 2254 2255 /** 2256 * tb_switch_configure() - Uploads configuration to the switch 2257 * @sw: Switch to configure 2258 * 2259 * Call this function before the switch is added to the system. It will 2260 * upload configuration to the switch and makes it available for the 2261 * connection manager to use. Can be called to the switch again after 2262 * resume from low power states to re-initialize it. 2263 * 2264 * Return: %0 in case of success and negative errno in case of failure 2265 */ 2266 int tb_switch_configure(struct tb_switch *sw) 2267 { 2268 struct tb *tb = sw->tb; 2269 u64 route; 2270 int ret; 2271 2272 route = tb_route(sw); 2273 2274 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n", 2275 sw->config.enabled ? "restoring" : "initializing", route, 2276 tb_route_length(route), sw->config.upstream_port_number); 2277 2278 sw->config.enabled = 1; 2279 2280 if (tb_switch_is_usb4(sw)) { 2281 /* 2282 * For USB4 devices, we need to program the CM version 2283 * accordingly so that it knows to expose all the 2284 * additional capabilities. 2285 */ 2286 sw->config.cmuv = USB4_VERSION_1_0; 2287 2288 /* Enumerate the switch */ 2289 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2290 ROUTER_CS_1, 4); 2291 if (ret) 2292 return ret; 2293 2294 ret = usb4_switch_setup(sw); 2295 } else { 2296 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 2297 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 2298 sw->config.vendor_id); 2299 2300 if (!sw->cap_plug_events) { 2301 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 2302 return -ENODEV; 2303 } 2304 2305 /* Enumerate the switch */ 2306 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2307 ROUTER_CS_1, 3); 2308 } 2309 if (ret) 2310 return ret; 2311 2312 return tb_plug_events_active(sw, true); 2313 } 2314 2315 static int tb_switch_set_uuid(struct tb_switch *sw) 2316 { 2317 bool uid = false; 2318 u32 uuid[4]; 2319 int ret; 2320 2321 if (sw->uuid) 2322 return 0; 2323 2324 if (tb_switch_is_usb4(sw)) { 2325 ret = usb4_switch_read_uid(sw, &sw->uid); 2326 if (ret) 2327 return ret; 2328 uid = true; 2329 } else { 2330 /* 2331 * The newer controllers include fused UUID as part of 2332 * link controller specific registers 2333 */ 2334 ret = tb_lc_read_uuid(sw, uuid); 2335 if (ret) { 2336 if (ret != -EINVAL) 2337 return ret; 2338 uid = true; 2339 } 2340 } 2341 2342 if (uid) { 2343 /* 2344 * ICM generates UUID based on UID and fills the upper 2345 * two words with ones. This is not strictly following 2346 * UUID format but we want to be compatible with it so 2347 * we do the same here. 2348 */ 2349 uuid[0] = sw->uid & 0xffffffff; 2350 uuid[1] = (sw->uid >> 32) & 0xffffffff; 2351 uuid[2] = 0xffffffff; 2352 uuid[3] = 0xffffffff; 2353 } 2354 2355 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 2356 if (!sw->uuid) 2357 return -ENOMEM; 2358 return 0; 2359 } 2360 2361 static int tb_switch_add_dma_port(struct tb_switch *sw) 2362 { 2363 u32 status; 2364 int ret; 2365 2366 switch (sw->generation) { 2367 case 2: 2368 /* Only root switch can be upgraded */ 2369 if (tb_route(sw)) 2370 return 0; 2371 2372 fallthrough; 2373 case 3: 2374 case 4: 2375 ret = tb_switch_set_uuid(sw); 2376 if (ret) 2377 return ret; 2378 break; 2379 2380 default: 2381 /* 2382 * DMA port is the only thing available when the switch 2383 * is in safe mode. 2384 */ 2385 if (!sw->safe_mode) 2386 return 0; 2387 break; 2388 } 2389 2390 if (sw->no_nvm_upgrade) 2391 return 0; 2392 2393 if (tb_switch_is_usb4(sw)) { 2394 ret = usb4_switch_nvm_authenticate_status(sw, &status); 2395 if (ret) 2396 return ret; 2397 2398 if (status) { 2399 tb_sw_info(sw, "switch flash authentication failed\n"); 2400 nvm_set_auth_status(sw, status); 2401 } 2402 2403 return 0; 2404 } 2405 2406 /* Root switch DMA port requires running firmware */ 2407 if (!tb_route(sw) && !tb_switch_is_icm(sw)) 2408 return 0; 2409 2410 sw->dma_port = dma_port_alloc(sw); 2411 if (!sw->dma_port) 2412 return 0; 2413 2414 /* 2415 * If there is status already set then authentication failed 2416 * when the dma_port_flash_update_auth() returned. Power cycling 2417 * is not needed (it was done already) so only thing we do here 2418 * is to unblock runtime PM of the root port. 2419 */ 2420 nvm_get_auth_status(sw, &status); 2421 if (status) { 2422 if (!tb_route(sw)) 2423 nvm_authenticate_complete_dma_port(sw); 2424 return 0; 2425 } 2426 2427 /* 2428 * Check status of the previous flash authentication. If there 2429 * is one we need to power cycle the switch in any case to make 2430 * it functional again. 2431 */ 2432 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 2433 if (ret <= 0) 2434 return ret; 2435 2436 /* Now we can allow root port to suspend again */ 2437 if (!tb_route(sw)) 2438 nvm_authenticate_complete_dma_port(sw); 2439 2440 if (status) { 2441 tb_sw_info(sw, "switch flash authentication failed\n"); 2442 nvm_set_auth_status(sw, status); 2443 } 2444 2445 tb_sw_info(sw, "power cycling the switch now\n"); 2446 dma_port_power_cycle(sw->dma_port); 2447 2448 /* 2449 * We return error here which causes the switch adding failure. 2450 * It should appear back after power cycle is complete. 2451 */ 2452 return -ESHUTDOWN; 2453 } 2454 2455 static void tb_switch_default_link_ports(struct tb_switch *sw) 2456 { 2457 int i; 2458 2459 for (i = 1; i <= sw->config.max_port_number; i += 2) { 2460 struct tb_port *port = &sw->ports[i]; 2461 struct tb_port *subordinate; 2462 2463 if (!tb_port_is_null(port)) 2464 continue; 2465 2466 /* Check for the subordinate port */ 2467 if (i == sw->config.max_port_number || 2468 !tb_port_is_null(&sw->ports[i + 1])) 2469 continue; 2470 2471 /* Link them if not already done so (by DROM) */ 2472 subordinate = &sw->ports[i + 1]; 2473 if (!port->dual_link_port && !subordinate->dual_link_port) { 2474 port->link_nr = 0; 2475 port->dual_link_port = subordinate; 2476 subordinate->link_nr = 1; 2477 subordinate->dual_link_port = port; 2478 2479 tb_sw_dbg(sw, "linked ports %d <-> %d\n", 2480 port->port, subordinate->port); 2481 } 2482 } 2483 } 2484 2485 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw) 2486 { 2487 const struct tb_port *up = tb_upstream_port(sw); 2488 2489 if (!up->dual_link_port || !up->dual_link_port->remote) 2490 return false; 2491 2492 if (tb_switch_is_usb4(sw)) 2493 return usb4_switch_lane_bonding_possible(sw); 2494 return tb_lc_lane_bonding_possible(sw); 2495 } 2496 2497 static int tb_switch_update_link_attributes(struct tb_switch *sw) 2498 { 2499 struct tb_port *up; 2500 bool change = false; 2501 int ret; 2502 2503 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2504 return 0; 2505 2506 up = tb_upstream_port(sw); 2507 2508 ret = tb_port_get_link_speed(up); 2509 if (ret < 0) 2510 return ret; 2511 if (sw->link_speed != ret) 2512 change = true; 2513 sw->link_speed = ret; 2514 2515 ret = tb_port_get_link_width(up); 2516 if (ret < 0) 2517 return ret; 2518 if (sw->link_width != ret) 2519 change = true; 2520 sw->link_width = ret; 2521 2522 /* Notify userspace that there is possible link attribute change */ 2523 if (device_is_registered(&sw->dev) && change) 2524 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 2525 2526 return 0; 2527 } 2528 2529 /** 2530 * tb_switch_lane_bonding_enable() - Enable lane bonding 2531 * @sw: Switch to enable lane bonding 2532 * 2533 * Connection manager can call this function to enable lane bonding of a 2534 * switch. If conditions are correct and both switches support the feature, 2535 * lanes are bonded. It is safe to call this to any switch. 2536 */ 2537 int tb_switch_lane_bonding_enable(struct tb_switch *sw) 2538 { 2539 struct tb_switch *parent = tb_to_switch(sw->dev.parent); 2540 struct tb_port *up, *down; 2541 u64 route = tb_route(sw); 2542 int ret; 2543 2544 if (!route) 2545 return 0; 2546 2547 if (!tb_switch_lane_bonding_possible(sw)) 2548 return 0; 2549 2550 up = tb_upstream_port(sw); 2551 down = tb_port_at(route, parent); 2552 2553 if (!tb_port_is_width_supported(up, 2) || 2554 !tb_port_is_width_supported(down, 2)) 2555 return 0; 2556 2557 ret = tb_port_lane_bonding_enable(up); 2558 if (ret) { 2559 tb_port_warn(up, "failed to enable lane bonding\n"); 2560 return ret; 2561 } 2562 2563 ret = tb_port_lane_bonding_enable(down); 2564 if (ret) { 2565 tb_port_warn(down, "failed to enable lane bonding\n"); 2566 tb_port_lane_bonding_disable(up); 2567 return ret; 2568 } 2569 2570 ret = tb_port_wait_for_link_width(down, 2, 100); 2571 if (ret) { 2572 tb_port_warn(down, "timeout enabling lane bonding\n"); 2573 return ret; 2574 } 2575 2576 tb_port_update_credits(down); 2577 tb_port_update_credits(up); 2578 tb_switch_update_link_attributes(sw); 2579 2580 tb_sw_dbg(sw, "lane bonding enabled\n"); 2581 return ret; 2582 } 2583 2584 /** 2585 * tb_switch_lane_bonding_disable() - Disable lane bonding 2586 * @sw: Switch whose lane bonding to disable 2587 * 2588 * Disables lane bonding between @sw and parent. This can be called even 2589 * if lanes were not bonded originally. 2590 */ 2591 void tb_switch_lane_bonding_disable(struct tb_switch *sw) 2592 { 2593 struct tb_switch *parent = tb_to_switch(sw->dev.parent); 2594 struct tb_port *up, *down; 2595 2596 if (!tb_route(sw)) 2597 return; 2598 2599 up = tb_upstream_port(sw); 2600 if (!up->bonded) 2601 return; 2602 2603 down = tb_port_at(tb_route(sw), parent); 2604 2605 tb_port_lane_bonding_disable(up); 2606 tb_port_lane_bonding_disable(down); 2607 2608 /* 2609 * It is fine if we get other errors as the router might have 2610 * been unplugged. 2611 */ 2612 if (tb_port_wait_for_link_width(down, 1, 100) == -ETIMEDOUT) 2613 tb_sw_warn(sw, "timeout disabling lane bonding\n"); 2614 2615 tb_port_update_credits(down); 2616 tb_port_update_credits(up); 2617 tb_switch_update_link_attributes(sw); 2618 2619 tb_sw_dbg(sw, "lane bonding disabled\n"); 2620 } 2621 2622 /** 2623 * tb_switch_configure_link() - Set link configured 2624 * @sw: Switch whose link is configured 2625 * 2626 * Sets the link upstream from @sw configured (from both ends) so that 2627 * it will not be disconnected when the domain exits sleep. Can be 2628 * called for any switch. 2629 * 2630 * It is recommended that this is called after lane bonding is enabled. 2631 * 2632 * Returns %0 on success and negative errno in case of error. 2633 */ 2634 int tb_switch_configure_link(struct tb_switch *sw) 2635 { 2636 struct tb_port *up, *down; 2637 int ret; 2638 2639 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2640 return 0; 2641 2642 up = tb_upstream_port(sw); 2643 if (tb_switch_is_usb4(up->sw)) 2644 ret = usb4_port_configure(up); 2645 else 2646 ret = tb_lc_configure_port(up); 2647 if (ret) 2648 return ret; 2649 2650 down = up->remote; 2651 if (tb_switch_is_usb4(down->sw)) 2652 return usb4_port_configure(down); 2653 return tb_lc_configure_port(down); 2654 } 2655 2656 /** 2657 * tb_switch_unconfigure_link() - Unconfigure link 2658 * @sw: Switch whose link is unconfigured 2659 * 2660 * Sets the link unconfigured so the @sw will be disconnected if the 2661 * domain exists sleep. 2662 */ 2663 void tb_switch_unconfigure_link(struct tb_switch *sw) 2664 { 2665 struct tb_port *up, *down; 2666 2667 if (sw->is_unplugged) 2668 return; 2669 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2670 return; 2671 2672 up = tb_upstream_port(sw); 2673 if (tb_switch_is_usb4(up->sw)) 2674 usb4_port_unconfigure(up); 2675 else 2676 tb_lc_unconfigure_port(up); 2677 2678 down = up->remote; 2679 if (tb_switch_is_usb4(down->sw)) 2680 usb4_port_unconfigure(down); 2681 else 2682 tb_lc_unconfigure_port(down); 2683 } 2684 2685 static void tb_switch_credits_init(struct tb_switch *sw) 2686 { 2687 if (tb_switch_is_icm(sw)) 2688 return; 2689 if (!tb_switch_is_usb4(sw)) 2690 return; 2691 if (usb4_switch_credits_init(sw)) 2692 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n"); 2693 } 2694 2695 /** 2696 * tb_switch_add() - Add a switch to the domain 2697 * @sw: Switch to add 2698 * 2699 * This is the last step in adding switch to the domain. It will read 2700 * identification information from DROM and initializes ports so that 2701 * they can be used to connect other switches. The switch will be 2702 * exposed to the userspace when this function successfully returns. To 2703 * remove and release the switch, call tb_switch_remove(). 2704 * 2705 * Return: %0 in case of success and negative errno in case of failure 2706 */ 2707 int tb_switch_add(struct tb_switch *sw) 2708 { 2709 int i, ret; 2710 2711 /* 2712 * Initialize DMA control port now before we read DROM. Recent 2713 * host controllers have more complete DROM on NVM that includes 2714 * vendor and model identification strings which we then expose 2715 * to the userspace. NVM can be accessed through DMA 2716 * configuration based mailbox. 2717 */ 2718 ret = tb_switch_add_dma_port(sw); 2719 if (ret) { 2720 dev_err(&sw->dev, "failed to add DMA port\n"); 2721 return ret; 2722 } 2723 2724 if (!sw->safe_mode) { 2725 tb_switch_credits_init(sw); 2726 2727 /* read drom */ 2728 ret = tb_drom_read(sw); 2729 if (ret) { 2730 dev_err(&sw->dev, "reading DROM failed\n"); 2731 return ret; 2732 } 2733 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid); 2734 2735 tb_check_quirks(sw); 2736 2737 ret = tb_switch_set_uuid(sw); 2738 if (ret) { 2739 dev_err(&sw->dev, "failed to set UUID\n"); 2740 return ret; 2741 } 2742 2743 for (i = 0; i <= sw->config.max_port_number; i++) { 2744 if (sw->ports[i].disabled) { 2745 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n"); 2746 continue; 2747 } 2748 ret = tb_init_port(&sw->ports[i]); 2749 if (ret) { 2750 dev_err(&sw->dev, "failed to initialize port %d\n", i); 2751 return ret; 2752 } 2753 } 2754 2755 tb_switch_default_link_ports(sw); 2756 2757 ret = tb_switch_update_link_attributes(sw); 2758 if (ret) 2759 return ret; 2760 2761 ret = tb_switch_tmu_init(sw); 2762 if (ret) 2763 return ret; 2764 } 2765 2766 ret = device_add(&sw->dev); 2767 if (ret) { 2768 dev_err(&sw->dev, "failed to add device: %d\n", ret); 2769 return ret; 2770 } 2771 2772 if (tb_route(sw)) { 2773 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n", 2774 sw->vendor, sw->device); 2775 if (sw->vendor_name && sw->device_name) 2776 dev_info(&sw->dev, "%s %s\n", sw->vendor_name, 2777 sw->device_name); 2778 } 2779 2780 ret = usb4_switch_add_ports(sw); 2781 if (ret) { 2782 dev_err(&sw->dev, "failed to add USB4 ports\n"); 2783 goto err_del; 2784 } 2785 2786 ret = tb_switch_nvm_add(sw); 2787 if (ret) { 2788 dev_err(&sw->dev, "failed to add NVM devices\n"); 2789 goto err_ports; 2790 } 2791 2792 /* 2793 * Thunderbolt routers do not generate wakeups themselves but 2794 * they forward wakeups from tunneled protocols, so enable it 2795 * here. 2796 */ 2797 device_init_wakeup(&sw->dev, true); 2798 2799 pm_runtime_set_active(&sw->dev); 2800 if (sw->rpm) { 2801 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY); 2802 pm_runtime_use_autosuspend(&sw->dev); 2803 pm_runtime_mark_last_busy(&sw->dev); 2804 pm_runtime_enable(&sw->dev); 2805 pm_request_autosuspend(&sw->dev); 2806 } 2807 2808 tb_switch_debugfs_init(sw); 2809 return 0; 2810 2811 err_ports: 2812 usb4_switch_remove_ports(sw); 2813 err_del: 2814 device_del(&sw->dev); 2815 2816 return ret; 2817 } 2818 2819 /** 2820 * tb_switch_remove() - Remove and release a switch 2821 * @sw: Switch to remove 2822 * 2823 * This will remove the switch from the domain and release it after last 2824 * reference count drops to zero. If there are switches connected below 2825 * this switch, they will be removed as well. 2826 */ 2827 void tb_switch_remove(struct tb_switch *sw) 2828 { 2829 struct tb_port *port; 2830 2831 tb_switch_debugfs_remove(sw); 2832 2833 if (sw->rpm) { 2834 pm_runtime_get_sync(&sw->dev); 2835 pm_runtime_disable(&sw->dev); 2836 } 2837 2838 /* port 0 is the switch itself and never has a remote */ 2839 tb_switch_for_each_port(sw, port) { 2840 if (tb_port_has_remote(port)) { 2841 tb_switch_remove(port->remote->sw); 2842 port->remote = NULL; 2843 } else if (port->xdomain) { 2844 tb_xdomain_remove(port->xdomain); 2845 port->xdomain = NULL; 2846 } 2847 2848 /* Remove any downstream retimers */ 2849 tb_retimer_remove_all(port); 2850 } 2851 2852 if (!sw->is_unplugged) 2853 tb_plug_events_active(sw, false); 2854 2855 tb_switch_nvm_remove(sw); 2856 usb4_switch_remove_ports(sw); 2857 2858 if (tb_route(sw)) 2859 dev_info(&sw->dev, "device disconnected\n"); 2860 device_unregister(&sw->dev); 2861 } 2862 2863 /** 2864 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 2865 * @sw: Router to mark unplugged 2866 */ 2867 void tb_sw_set_unplugged(struct tb_switch *sw) 2868 { 2869 struct tb_port *port; 2870 2871 if (sw == sw->tb->root_switch) { 2872 tb_sw_WARN(sw, "cannot unplug root switch\n"); 2873 return; 2874 } 2875 if (sw->is_unplugged) { 2876 tb_sw_WARN(sw, "is_unplugged already set\n"); 2877 return; 2878 } 2879 sw->is_unplugged = true; 2880 tb_switch_for_each_port(sw, port) { 2881 if (tb_port_has_remote(port)) 2882 tb_sw_set_unplugged(port->remote->sw); 2883 else if (port->xdomain) 2884 port->xdomain->is_unplugged = true; 2885 } 2886 } 2887 2888 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags) 2889 { 2890 if (flags) 2891 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags); 2892 else 2893 tb_sw_dbg(sw, "disabling wakeup\n"); 2894 2895 if (tb_switch_is_usb4(sw)) 2896 return usb4_switch_set_wake(sw, flags); 2897 return tb_lc_set_wake(sw, flags); 2898 } 2899 2900 int tb_switch_resume(struct tb_switch *sw) 2901 { 2902 struct tb_port *port; 2903 int err; 2904 2905 tb_sw_dbg(sw, "resuming switch\n"); 2906 2907 /* 2908 * Check for UID of the connected switches except for root 2909 * switch which we assume cannot be removed. 2910 */ 2911 if (tb_route(sw)) { 2912 u64 uid; 2913 2914 /* 2915 * Check first that we can still read the switch config 2916 * space. It may be that there is now another domain 2917 * connected. 2918 */ 2919 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw)); 2920 if (err < 0) { 2921 tb_sw_info(sw, "switch not present anymore\n"); 2922 return err; 2923 } 2924 2925 if (tb_switch_is_usb4(sw)) 2926 err = usb4_switch_read_uid(sw, &uid); 2927 else 2928 err = tb_drom_read_uid_only(sw, &uid); 2929 if (err) { 2930 tb_sw_warn(sw, "uid read failed\n"); 2931 return err; 2932 } 2933 if (sw->uid != uid) { 2934 tb_sw_info(sw, 2935 "changed while suspended (uid %#llx -> %#llx)\n", 2936 sw->uid, uid); 2937 return -ENODEV; 2938 } 2939 } 2940 2941 err = tb_switch_configure(sw); 2942 if (err) 2943 return err; 2944 2945 /* Disable wakes */ 2946 tb_switch_set_wake(sw, 0); 2947 2948 err = tb_switch_tmu_init(sw); 2949 if (err) 2950 return err; 2951 2952 /* check for surviving downstream switches */ 2953 tb_switch_for_each_port(sw, port) { 2954 if (!tb_port_is_null(port)) 2955 continue; 2956 2957 if (!tb_port_resume(port)) 2958 continue; 2959 2960 if (tb_wait_for_port(port, true) <= 0) { 2961 tb_port_warn(port, 2962 "lost during suspend, disconnecting\n"); 2963 if (tb_port_has_remote(port)) 2964 tb_sw_set_unplugged(port->remote->sw); 2965 else if (port->xdomain) 2966 port->xdomain->is_unplugged = true; 2967 } else { 2968 /* 2969 * Always unlock the port so the downstream 2970 * switch/domain is accessible. 2971 */ 2972 if (tb_port_unlock(port)) 2973 tb_port_warn(port, "failed to unlock port\n"); 2974 if (port->remote && tb_switch_resume(port->remote->sw)) { 2975 tb_port_warn(port, 2976 "lost during suspend, disconnecting\n"); 2977 tb_sw_set_unplugged(port->remote->sw); 2978 } 2979 } 2980 } 2981 return 0; 2982 } 2983 2984 /** 2985 * tb_switch_suspend() - Put a switch to sleep 2986 * @sw: Switch to suspend 2987 * @runtime: Is this runtime suspend or system sleep 2988 * 2989 * Suspends router and all its children. Enables wakes according to 2990 * value of @runtime and then sets sleep bit for the router. If @sw is 2991 * host router the domain is ready to go to sleep once this function 2992 * returns. 2993 */ 2994 void tb_switch_suspend(struct tb_switch *sw, bool runtime) 2995 { 2996 unsigned int flags = 0; 2997 struct tb_port *port; 2998 int err; 2999 3000 tb_sw_dbg(sw, "suspending switch\n"); 3001 3002 err = tb_plug_events_active(sw, false); 3003 if (err) 3004 return; 3005 3006 tb_switch_for_each_port(sw, port) { 3007 if (tb_port_has_remote(port)) 3008 tb_switch_suspend(port->remote->sw, runtime); 3009 } 3010 3011 if (runtime) { 3012 /* Trigger wake when something is plugged in/out */ 3013 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT; 3014 flags |= TB_WAKE_ON_USB4; 3015 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP; 3016 } else if (device_may_wakeup(&sw->dev)) { 3017 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE; 3018 } 3019 3020 tb_switch_set_wake(sw, flags); 3021 3022 if (tb_switch_is_usb4(sw)) 3023 usb4_switch_set_sleep(sw); 3024 else 3025 tb_lc_set_sleep(sw); 3026 } 3027 3028 /** 3029 * tb_switch_query_dp_resource() - Query availability of DP resource 3030 * @sw: Switch whose DP resource is queried 3031 * @in: DP IN port 3032 * 3033 * Queries availability of DP resource for DP tunneling using switch 3034 * specific means. Returns %true if resource is available. 3035 */ 3036 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) 3037 { 3038 if (tb_switch_is_usb4(sw)) 3039 return usb4_switch_query_dp_resource(sw, in); 3040 return tb_lc_dp_sink_query(sw, in); 3041 } 3042 3043 /** 3044 * tb_switch_alloc_dp_resource() - Allocate available DP resource 3045 * @sw: Switch whose DP resource is allocated 3046 * @in: DP IN port 3047 * 3048 * Allocates DP resource for DP tunneling. The resource must be 3049 * available for this to succeed (see tb_switch_query_dp_resource()). 3050 * Returns %0 in success and negative errno otherwise. 3051 */ 3052 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 3053 { 3054 if (tb_switch_is_usb4(sw)) 3055 return usb4_switch_alloc_dp_resource(sw, in); 3056 return tb_lc_dp_sink_alloc(sw, in); 3057 } 3058 3059 /** 3060 * tb_switch_dealloc_dp_resource() - De-allocate DP resource 3061 * @sw: Switch whose DP resource is de-allocated 3062 * @in: DP IN port 3063 * 3064 * De-allocates DP resource that was previously allocated for DP 3065 * tunneling. 3066 */ 3067 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 3068 { 3069 int ret; 3070 3071 if (tb_switch_is_usb4(sw)) 3072 ret = usb4_switch_dealloc_dp_resource(sw, in); 3073 else 3074 ret = tb_lc_dp_sink_dealloc(sw, in); 3075 3076 if (ret) 3077 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n", 3078 in->port); 3079 } 3080 3081 struct tb_sw_lookup { 3082 struct tb *tb; 3083 u8 link; 3084 u8 depth; 3085 const uuid_t *uuid; 3086 u64 route; 3087 }; 3088 3089 static int tb_switch_match(struct device *dev, const void *data) 3090 { 3091 struct tb_switch *sw = tb_to_switch(dev); 3092 const struct tb_sw_lookup *lookup = data; 3093 3094 if (!sw) 3095 return 0; 3096 if (sw->tb != lookup->tb) 3097 return 0; 3098 3099 if (lookup->uuid) 3100 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 3101 3102 if (lookup->route) { 3103 return sw->config.route_lo == lower_32_bits(lookup->route) && 3104 sw->config.route_hi == upper_32_bits(lookup->route); 3105 } 3106 3107 /* Root switch is matched only by depth */ 3108 if (!lookup->depth) 3109 return !sw->depth; 3110 3111 return sw->link == lookup->link && sw->depth == lookup->depth; 3112 } 3113 3114 /** 3115 * tb_switch_find_by_link_depth() - Find switch by link and depth 3116 * @tb: Domain the switch belongs 3117 * @link: Link number the switch is connected 3118 * @depth: Depth of the switch in link 3119 * 3120 * Returned switch has reference count increased so the caller needs to 3121 * call tb_switch_put() when done with the switch. 3122 */ 3123 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 3124 { 3125 struct tb_sw_lookup lookup; 3126 struct device *dev; 3127 3128 memset(&lookup, 0, sizeof(lookup)); 3129 lookup.tb = tb; 3130 lookup.link = link; 3131 lookup.depth = depth; 3132 3133 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3134 if (dev) 3135 return tb_to_switch(dev); 3136 3137 return NULL; 3138 } 3139 3140 /** 3141 * tb_switch_find_by_uuid() - Find switch by UUID 3142 * @tb: Domain the switch belongs 3143 * @uuid: UUID to look for 3144 * 3145 * Returned switch has reference count increased so the caller needs to 3146 * call tb_switch_put() when done with the switch. 3147 */ 3148 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) 3149 { 3150 struct tb_sw_lookup lookup; 3151 struct device *dev; 3152 3153 memset(&lookup, 0, sizeof(lookup)); 3154 lookup.tb = tb; 3155 lookup.uuid = uuid; 3156 3157 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3158 if (dev) 3159 return tb_to_switch(dev); 3160 3161 return NULL; 3162 } 3163 3164 /** 3165 * tb_switch_find_by_route() - Find switch by route string 3166 * @tb: Domain the switch belongs 3167 * @route: Route string to look for 3168 * 3169 * Returned switch has reference count increased so the caller needs to 3170 * call tb_switch_put() when done with the switch. 3171 */ 3172 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route) 3173 { 3174 struct tb_sw_lookup lookup; 3175 struct device *dev; 3176 3177 if (!route) 3178 return tb_switch_get(tb->root_switch); 3179 3180 memset(&lookup, 0, sizeof(lookup)); 3181 lookup.tb = tb; 3182 lookup.route = route; 3183 3184 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3185 if (dev) 3186 return tb_to_switch(dev); 3187 3188 return NULL; 3189 } 3190 3191 /** 3192 * tb_switch_find_port() - return the first port of @type on @sw or NULL 3193 * @sw: Switch to find the port from 3194 * @type: Port type to look for 3195 */ 3196 struct tb_port *tb_switch_find_port(struct tb_switch *sw, 3197 enum tb_port_type type) 3198 { 3199 struct tb_port *port; 3200 3201 tb_switch_for_each_port(sw, port) { 3202 if (port->config.type == type) 3203 return port; 3204 } 3205 3206 return NULL; 3207 } 3208