1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - switch/port utility functions 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2018, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/idr.h> 11 #include <linux/nvmem-provider.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 #include <linux/vmalloc.h> 17 18 #include "tb.h" 19 20 /* Switch NVM support */ 21 22 #define NVM_DEVID 0x05 23 #define NVM_VERSION 0x08 24 #define NVM_CSS 0x10 25 #define NVM_FLASH_SIZE 0x45 26 27 #define NVM_MIN_SIZE SZ_32K 28 #define NVM_MAX_SIZE SZ_512K 29 30 static DEFINE_IDA(nvm_ida); 31 32 struct nvm_auth_status { 33 struct list_head list; 34 uuid_t uuid; 35 u32 status; 36 }; 37 38 /* 39 * Hold NVM authentication failure status per switch This information 40 * needs to stay around even when the switch gets power cycled so we 41 * keep it separately. 42 */ 43 static LIST_HEAD(nvm_auth_status_cache); 44 static DEFINE_MUTEX(nvm_auth_status_lock); 45 46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 47 { 48 struct nvm_auth_status *st; 49 50 list_for_each_entry(st, &nvm_auth_status_cache, list) { 51 if (uuid_equal(&st->uuid, sw->uuid)) 52 return st; 53 } 54 55 return NULL; 56 } 57 58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 59 { 60 struct nvm_auth_status *st; 61 62 mutex_lock(&nvm_auth_status_lock); 63 st = __nvm_get_auth_status(sw); 64 mutex_unlock(&nvm_auth_status_lock); 65 66 *status = st ? st->status : 0; 67 } 68 69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 70 { 71 struct nvm_auth_status *st; 72 73 if (WARN_ON(!sw->uuid)) 74 return; 75 76 mutex_lock(&nvm_auth_status_lock); 77 st = __nvm_get_auth_status(sw); 78 79 if (!st) { 80 st = kzalloc(sizeof(*st), GFP_KERNEL); 81 if (!st) 82 goto unlock; 83 84 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 85 INIT_LIST_HEAD(&st->list); 86 list_add_tail(&st->list, &nvm_auth_status_cache); 87 } 88 89 st->status = status; 90 unlock: 91 mutex_unlock(&nvm_auth_status_lock); 92 } 93 94 static void nvm_clear_auth_status(const struct tb_switch *sw) 95 { 96 struct nvm_auth_status *st; 97 98 mutex_lock(&nvm_auth_status_lock); 99 st = __nvm_get_auth_status(sw); 100 if (st) { 101 list_del(&st->list); 102 kfree(st); 103 } 104 mutex_unlock(&nvm_auth_status_lock); 105 } 106 107 static int nvm_validate_and_write(struct tb_switch *sw) 108 { 109 unsigned int image_size, hdr_size; 110 const u8 *buf = sw->nvm->buf; 111 u16 ds_size; 112 int ret; 113 114 if (!buf) 115 return -EINVAL; 116 117 image_size = sw->nvm->buf_data_size; 118 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) 119 return -EINVAL; 120 121 /* 122 * FARB pointer must point inside the image and must at least 123 * contain parts of the digital section we will be reading here. 124 */ 125 hdr_size = (*(u32 *)buf) & 0xffffff; 126 if (hdr_size + NVM_DEVID + 2 >= image_size) 127 return -EINVAL; 128 129 /* Digital section start should be aligned to 4k page */ 130 if (!IS_ALIGNED(hdr_size, SZ_4K)) 131 return -EINVAL; 132 133 /* 134 * Read digital section size and check that it also fits inside 135 * the image. 136 */ 137 ds_size = *(u16 *)(buf + hdr_size); 138 if (ds_size >= image_size) 139 return -EINVAL; 140 141 if (!sw->safe_mode) { 142 u16 device_id; 143 144 /* 145 * Make sure the device ID in the image matches the one 146 * we read from the switch config space. 147 */ 148 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID); 149 if (device_id != sw->config.device_id) 150 return -EINVAL; 151 152 if (sw->generation < 3) { 153 /* Write CSS headers first */ 154 ret = dma_port_flash_write(sw->dma_port, 155 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS, 156 DMA_PORT_CSS_MAX_SIZE); 157 if (ret) 158 return ret; 159 } 160 161 /* Skip headers in the image */ 162 buf += hdr_size; 163 image_size -= hdr_size; 164 } 165 166 if (tb_switch_is_usb4(sw)) 167 return usb4_switch_nvm_write(sw, 0, buf, image_size); 168 return dma_port_flash_write(sw->dma_port, 0, buf, image_size); 169 } 170 171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw) 172 { 173 int ret = 0; 174 175 /* 176 * Root switch NVM upgrade requires that we disconnect the 177 * existing paths first (in case it is not in safe mode 178 * already). 179 */ 180 if (!sw->safe_mode) { 181 u32 status; 182 183 ret = tb_domain_disconnect_all_paths(sw->tb); 184 if (ret) 185 return ret; 186 /* 187 * The host controller goes away pretty soon after this if 188 * everything goes well so getting timeout is expected. 189 */ 190 ret = dma_port_flash_update_auth(sw->dma_port); 191 if (!ret || ret == -ETIMEDOUT) 192 return 0; 193 194 /* 195 * Any error from update auth operation requires power 196 * cycling of the host router. 197 */ 198 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n"); 199 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0) 200 nvm_set_auth_status(sw, status); 201 } 202 203 /* 204 * From safe mode we can get out by just power cycling the 205 * switch. 206 */ 207 dma_port_power_cycle(sw->dma_port); 208 return ret; 209 } 210 211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw) 212 { 213 int ret, retries = 10; 214 215 ret = dma_port_flash_update_auth(sw->dma_port); 216 switch (ret) { 217 case 0: 218 case -ETIMEDOUT: 219 case -EACCES: 220 case -EINVAL: 221 /* Power cycle is required */ 222 break; 223 default: 224 return ret; 225 } 226 227 /* 228 * Poll here for the authentication status. It takes some time 229 * for the device to respond (we get timeout for a while). Once 230 * we get response the device needs to be power cycled in order 231 * to the new NVM to be taken into use. 232 */ 233 do { 234 u32 status; 235 236 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 237 if (ret < 0 && ret != -ETIMEDOUT) 238 return ret; 239 if (ret > 0) { 240 if (status) { 241 tb_sw_warn(sw, "failed to authenticate NVM\n"); 242 nvm_set_auth_status(sw, status); 243 } 244 245 tb_sw_info(sw, "power cycling the switch now\n"); 246 dma_port_power_cycle(sw->dma_port); 247 return 0; 248 } 249 250 msleep(500); 251 } while (--retries); 252 253 return -ETIMEDOUT; 254 } 255 256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw) 257 { 258 struct pci_dev *root_port; 259 260 /* 261 * During host router NVM upgrade we should not allow root port to 262 * go into D3cold because some root ports cannot trigger PME 263 * itself. To be on the safe side keep the root port in D0 during 264 * the whole upgrade process. 265 */ 266 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev); 267 if (root_port) 268 pm_runtime_get_noresume(&root_port->dev); 269 } 270 271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw) 272 { 273 struct pci_dev *root_port; 274 275 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev); 276 if (root_port) 277 pm_runtime_put(&root_port->dev); 278 } 279 280 static inline bool nvm_readable(struct tb_switch *sw) 281 { 282 if (tb_switch_is_usb4(sw)) { 283 /* 284 * USB4 devices must support NVM operations but it is 285 * optional for hosts. Therefore we query the NVM sector 286 * size here and if it is supported assume NVM 287 * operations are implemented. 288 */ 289 return usb4_switch_nvm_sector_size(sw) > 0; 290 } 291 292 /* Thunderbolt 2 and 3 devices support NVM through DMA port */ 293 return !!sw->dma_port; 294 } 295 296 static inline bool nvm_upgradeable(struct tb_switch *sw) 297 { 298 if (sw->no_nvm_upgrade) 299 return false; 300 return nvm_readable(sw); 301 } 302 303 static inline int nvm_read(struct tb_switch *sw, unsigned int address, 304 void *buf, size_t size) 305 { 306 if (tb_switch_is_usb4(sw)) 307 return usb4_switch_nvm_read(sw, address, buf, size); 308 return dma_port_flash_read(sw->dma_port, address, buf, size); 309 } 310 311 static int nvm_authenticate(struct tb_switch *sw) 312 { 313 int ret; 314 315 if (tb_switch_is_usb4(sw)) 316 return usb4_switch_nvm_authenticate(sw); 317 318 if (!tb_route(sw)) { 319 nvm_authenticate_start_dma_port(sw); 320 ret = nvm_authenticate_host_dma_port(sw); 321 } else { 322 ret = nvm_authenticate_device_dma_port(sw); 323 } 324 325 return ret; 326 } 327 328 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val, 329 size_t bytes) 330 { 331 struct tb_switch *sw = priv; 332 int ret; 333 334 pm_runtime_get_sync(&sw->dev); 335 336 if (!mutex_trylock(&sw->tb->lock)) { 337 ret = restart_syscall(); 338 goto out; 339 } 340 341 ret = nvm_read(sw, offset, val, bytes); 342 mutex_unlock(&sw->tb->lock); 343 344 out: 345 pm_runtime_mark_last_busy(&sw->dev); 346 pm_runtime_put_autosuspend(&sw->dev); 347 348 return ret; 349 } 350 351 static int tb_switch_nvm_no_read(void *priv, unsigned int offset, void *val, 352 size_t bytes) 353 { 354 return -EPERM; 355 } 356 357 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val, 358 size_t bytes) 359 { 360 struct tb_switch *sw = priv; 361 int ret = 0; 362 363 if (!mutex_trylock(&sw->tb->lock)) 364 return restart_syscall(); 365 366 /* 367 * Since writing the NVM image might require some special steps, 368 * for example when CSS headers are written, we cache the image 369 * locally here and handle the special cases when the user asks 370 * us to authenticate the image. 371 */ 372 if (!sw->nvm->buf) { 373 sw->nvm->buf = vmalloc(NVM_MAX_SIZE); 374 if (!sw->nvm->buf) { 375 ret = -ENOMEM; 376 goto unlock; 377 } 378 } 379 380 sw->nvm->buf_data_size = offset + bytes; 381 memcpy(sw->nvm->buf + offset, val, bytes); 382 383 unlock: 384 mutex_unlock(&sw->tb->lock); 385 386 return ret; 387 } 388 389 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id, 390 size_t size, bool active) 391 { 392 struct nvmem_config config; 393 394 memset(&config, 0, sizeof(config)); 395 396 if (active) { 397 config.name = "nvm_active"; 398 config.reg_read = tb_switch_nvm_read; 399 config.read_only = true; 400 } else { 401 config.name = "nvm_non_active"; 402 config.reg_read = tb_switch_nvm_no_read; 403 config.reg_write = tb_switch_nvm_write; 404 config.root_only = true; 405 } 406 407 config.id = id; 408 config.stride = 4; 409 config.word_size = 4; 410 config.size = size; 411 config.dev = &sw->dev; 412 config.owner = THIS_MODULE; 413 config.priv = sw; 414 415 return nvmem_register(&config); 416 } 417 418 static int tb_switch_nvm_add(struct tb_switch *sw) 419 { 420 struct nvmem_device *nvm_dev; 421 struct tb_switch_nvm *nvm; 422 u32 val; 423 int ret; 424 425 if (!nvm_readable(sw)) 426 return 0; 427 428 /* 429 * The NVM format of non-Intel hardware is not known so 430 * currently restrict NVM upgrade for Intel hardware. We may 431 * relax this in the future when we learn other NVM formats. 432 */ 433 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) { 434 dev_info(&sw->dev, 435 "NVM format of vendor %#x is not known, disabling NVM upgrade\n", 436 sw->config.vendor_id); 437 return 0; 438 } 439 440 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 441 if (!nvm) 442 return -ENOMEM; 443 444 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL); 445 446 /* 447 * If the switch is in safe-mode the only accessible portion of 448 * the NVM is the non-active one where userspace is expected to 449 * write new functional NVM. 450 */ 451 if (!sw->safe_mode) { 452 u32 nvm_size, hdr_size; 453 454 ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val)); 455 if (ret) 456 goto err_ida; 457 458 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; 459 nvm_size = (SZ_1M << (val & 7)) / 8; 460 nvm_size = (nvm_size - hdr_size) / 2; 461 462 ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val)); 463 if (ret) 464 goto err_ida; 465 466 nvm->major = val >> 16; 467 nvm->minor = val >> 8; 468 469 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true); 470 if (IS_ERR(nvm_dev)) { 471 ret = PTR_ERR(nvm_dev); 472 goto err_ida; 473 } 474 nvm->active = nvm_dev; 475 } 476 477 if (!sw->no_nvm_upgrade) { 478 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false); 479 if (IS_ERR(nvm_dev)) { 480 ret = PTR_ERR(nvm_dev); 481 goto err_nvm_active; 482 } 483 nvm->non_active = nvm_dev; 484 } 485 486 sw->nvm = nvm; 487 return 0; 488 489 err_nvm_active: 490 if (nvm->active) 491 nvmem_unregister(nvm->active); 492 err_ida: 493 ida_simple_remove(&nvm_ida, nvm->id); 494 kfree(nvm); 495 496 return ret; 497 } 498 499 static void tb_switch_nvm_remove(struct tb_switch *sw) 500 { 501 struct tb_switch_nvm *nvm; 502 503 nvm = sw->nvm; 504 sw->nvm = NULL; 505 506 if (!nvm) 507 return; 508 509 /* Remove authentication status in case the switch is unplugged */ 510 if (!nvm->authenticating) 511 nvm_clear_auth_status(sw); 512 513 if (nvm->non_active) 514 nvmem_unregister(nvm->non_active); 515 if (nvm->active) 516 nvmem_unregister(nvm->active); 517 ida_simple_remove(&nvm_ida, nvm->id); 518 vfree(nvm->buf); 519 kfree(nvm); 520 } 521 522 /* port utility functions */ 523 524 static const char *tb_port_type(struct tb_regs_port_header *port) 525 { 526 switch (port->type >> 16) { 527 case 0: 528 switch ((u8) port->type) { 529 case 0: 530 return "Inactive"; 531 case 1: 532 return "Port"; 533 case 2: 534 return "NHI"; 535 default: 536 return "unknown"; 537 } 538 case 0x2: 539 return "Ethernet"; 540 case 0x8: 541 return "SATA"; 542 case 0xe: 543 return "DP/HDMI"; 544 case 0x10: 545 return "PCIe"; 546 case 0x20: 547 return "USB"; 548 default: 549 return "unknown"; 550 } 551 } 552 553 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port) 554 { 555 tb_dbg(tb, 556 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 557 port->port_number, port->vendor_id, port->device_id, 558 port->revision, port->thunderbolt_version, tb_port_type(port), 559 port->type); 560 tb_dbg(tb, " Max hop id (in/out): %d/%d\n", 561 port->max_in_hop_id, port->max_out_hop_id); 562 tb_dbg(tb, " Max counters: %d\n", port->max_counters); 563 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits); 564 } 565 566 /** 567 * tb_port_state() - get connectedness state of a port 568 * 569 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 570 * 571 * Return: Returns an enum tb_port_state on success or an error code on failure. 572 */ 573 static int tb_port_state(struct tb_port *port) 574 { 575 struct tb_cap_phy phy; 576 int res; 577 if (port->cap_phy == 0) { 578 tb_port_WARN(port, "does not have a PHY\n"); 579 return -EINVAL; 580 } 581 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 582 if (res) 583 return res; 584 return phy.state; 585 } 586 587 /** 588 * tb_wait_for_port() - wait for a port to become ready 589 * 590 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 591 * wait_if_unplugged is set then we also wait if the port is in state 592 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 593 * switch resume). Otherwise we only wait if a device is registered but the link 594 * has not yet been established. 595 * 596 * Return: Returns an error code on failure. Returns 0 if the port is not 597 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 598 * if the port is connected and in state TB_PORT_UP. 599 */ 600 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 601 { 602 int retries = 10; 603 int state; 604 if (!port->cap_phy) { 605 tb_port_WARN(port, "does not have PHY\n"); 606 return -EINVAL; 607 } 608 if (tb_is_upstream_port(port)) { 609 tb_port_WARN(port, "is the upstream port\n"); 610 return -EINVAL; 611 } 612 613 while (retries--) { 614 state = tb_port_state(port); 615 if (state < 0) 616 return state; 617 if (state == TB_PORT_DISABLED) { 618 tb_port_dbg(port, "is disabled (state: 0)\n"); 619 return 0; 620 } 621 if (state == TB_PORT_UNPLUGGED) { 622 if (wait_if_unplugged) { 623 /* used during resume */ 624 tb_port_dbg(port, 625 "is unplugged (state: 7), retrying...\n"); 626 msleep(100); 627 continue; 628 } 629 tb_port_dbg(port, "is unplugged (state: 7)\n"); 630 return 0; 631 } 632 if (state == TB_PORT_UP) { 633 tb_port_dbg(port, "is connected, link is up (state: 2)\n"); 634 return 1; 635 } 636 637 /* 638 * After plug-in the state is TB_PORT_CONNECTING. Give it some 639 * time. 640 */ 641 tb_port_dbg(port, 642 "is connected, link is not up (state: %d), retrying...\n", 643 state); 644 msleep(100); 645 } 646 tb_port_warn(port, 647 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 648 return 0; 649 } 650 651 /** 652 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 653 * 654 * Change the number of NFC credits allocated to @port by @credits. To remove 655 * NFC credits pass a negative amount of credits. 656 * 657 * Return: Returns 0 on success or an error code on failure. 658 */ 659 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 660 { 661 u32 nfc_credits; 662 663 if (credits == 0 || port->sw->is_unplugged) 664 return 0; 665 666 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK; 667 nfc_credits += credits; 668 669 tb_port_dbg(port, "adding %d NFC credits to %lu", credits, 670 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK); 671 672 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK; 673 port->config.nfc_credits |= nfc_credits; 674 675 return tb_port_write(port, &port->config.nfc_credits, 676 TB_CFG_PORT, ADP_CS_4, 1); 677 } 678 679 /** 680 * tb_port_set_initial_credits() - Set initial port link credits allocated 681 * @port: Port to set the initial credits 682 * @credits: Number of credits to to allocate 683 * 684 * Set initial credits value to be used for ingress shared buffering. 685 */ 686 int tb_port_set_initial_credits(struct tb_port *port, u32 credits) 687 { 688 u32 data; 689 int ret; 690 691 ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1); 692 if (ret) 693 return ret; 694 695 data &= ~ADP_CS_5_LCA_MASK; 696 data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK; 697 698 return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1); 699 } 700 701 /** 702 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 703 * 704 * Return: Returns 0 on success or an error code on failure. 705 */ 706 int tb_port_clear_counter(struct tb_port *port, int counter) 707 { 708 u32 zero[3] = { 0, 0, 0 }; 709 tb_port_dbg(port, "clearing counter %d\n", counter); 710 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 711 } 712 713 /** 714 * tb_port_unlock() - Unlock downstream port 715 * @port: Port to unlock 716 * 717 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the 718 * downstream router accessible for CM. 719 */ 720 int tb_port_unlock(struct tb_port *port) 721 { 722 if (tb_switch_is_icm(port->sw)) 723 return 0; 724 if (!tb_port_is_null(port)) 725 return -EINVAL; 726 if (tb_switch_is_usb4(port->sw)) 727 return usb4_port_unlock(port); 728 return 0; 729 } 730 731 /** 732 * tb_init_port() - initialize a port 733 * 734 * This is a helper method for tb_switch_alloc. Does not check or initialize 735 * any downstream switches. 736 * 737 * Return: Returns 0 on success or an error code on failure. 738 */ 739 static int tb_init_port(struct tb_port *port) 740 { 741 int res; 742 int cap; 743 744 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 745 if (res) { 746 if (res == -ENODEV) { 747 tb_dbg(port->sw->tb, " Port %d: not implemented\n", 748 port->port); 749 return 0; 750 } 751 return res; 752 } 753 754 /* Port 0 is the switch itself and has no PHY. */ 755 if (port->config.type == TB_TYPE_PORT && port->port != 0) { 756 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 757 758 if (cap > 0) 759 port->cap_phy = cap; 760 else 761 tb_port_WARN(port, "non switch port without a PHY\n"); 762 763 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4); 764 if (cap > 0) 765 port->cap_usb4 = cap; 766 } else if (port->port != 0) { 767 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP); 768 if (cap > 0) 769 port->cap_adap = cap; 770 } 771 772 tb_dump_port(port->sw->tb, &port->config); 773 774 /* Control port does not need HopID allocation */ 775 if (port->port) { 776 ida_init(&port->in_hopids); 777 ida_init(&port->out_hopids); 778 } 779 780 INIT_LIST_HEAD(&port->list); 781 return 0; 782 783 } 784 785 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid, 786 int max_hopid) 787 { 788 int port_max_hopid; 789 struct ida *ida; 790 791 if (in) { 792 port_max_hopid = port->config.max_in_hop_id; 793 ida = &port->in_hopids; 794 } else { 795 port_max_hopid = port->config.max_out_hop_id; 796 ida = &port->out_hopids; 797 } 798 799 /* HopIDs 0-7 are reserved */ 800 if (min_hopid < TB_PATH_MIN_HOPID) 801 min_hopid = TB_PATH_MIN_HOPID; 802 803 if (max_hopid < 0 || max_hopid > port_max_hopid) 804 max_hopid = port_max_hopid; 805 806 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL); 807 } 808 809 /** 810 * tb_port_alloc_in_hopid() - Allocate input HopID from port 811 * @port: Port to allocate HopID for 812 * @min_hopid: Minimum acceptable input HopID 813 * @max_hopid: Maximum acceptable input HopID 814 * 815 * Return: HopID between @min_hopid and @max_hopid or negative errno in 816 * case of error. 817 */ 818 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid) 819 { 820 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid); 821 } 822 823 /** 824 * tb_port_alloc_out_hopid() - Allocate output HopID from port 825 * @port: Port to allocate HopID for 826 * @min_hopid: Minimum acceptable output HopID 827 * @max_hopid: Maximum acceptable output HopID 828 * 829 * Return: HopID between @min_hopid and @max_hopid or negative errno in 830 * case of error. 831 */ 832 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid) 833 { 834 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid); 835 } 836 837 /** 838 * tb_port_release_in_hopid() - Release allocated input HopID from port 839 * @port: Port whose HopID to release 840 * @hopid: HopID to release 841 */ 842 void tb_port_release_in_hopid(struct tb_port *port, int hopid) 843 { 844 ida_simple_remove(&port->in_hopids, hopid); 845 } 846 847 /** 848 * tb_port_release_out_hopid() - Release allocated output HopID from port 849 * @port: Port whose HopID to release 850 * @hopid: HopID to release 851 */ 852 void tb_port_release_out_hopid(struct tb_port *port, int hopid) 853 { 854 ida_simple_remove(&port->out_hopids, hopid); 855 } 856 857 /** 858 * tb_next_port_on_path() - Return next port for given port on a path 859 * @start: Start port of the walk 860 * @end: End port of the walk 861 * @prev: Previous port (%NULL if this is the first) 862 * 863 * This function can be used to walk from one port to another if they 864 * are connected through zero or more switches. If the @prev is dual 865 * link port, the function follows that link and returns another end on 866 * that same link. 867 * 868 * If the @end port has been reached, return %NULL. 869 * 870 * Domain tb->lock must be held when this function is called. 871 */ 872 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end, 873 struct tb_port *prev) 874 { 875 struct tb_port *next; 876 877 if (!prev) 878 return start; 879 880 if (prev->sw == end->sw) { 881 if (prev == end) 882 return NULL; 883 return end; 884 } 885 886 if (start->sw->config.depth < end->sw->config.depth) { 887 if (prev->remote && 888 prev->remote->sw->config.depth > prev->sw->config.depth) 889 next = prev->remote; 890 else 891 next = tb_port_at(tb_route(end->sw), prev->sw); 892 } else { 893 if (tb_is_upstream_port(prev)) { 894 next = prev->remote; 895 } else { 896 next = tb_upstream_port(prev->sw); 897 /* 898 * Keep the same link if prev and next are both 899 * dual link ports. 900 */ 901 if (next->dual_link_port && 902 next->link_nr != prev->link_nr) { 903 next = next->dual_link_port; 904 } 905 } 906 } 907 908 return next; 909 } 910 911 static int tb_port_get_link_speed(struct tb_port *port) 912 { 913 u32 val, speed; 914 int ret; 915 916 if (!port->cap_phy) 917 return -EINVAL; 918 919 ret = tb_port_read(port, &val, TB_CFG_PORT, 920 port->cap_phy + LANE_ADP_CS_1, 1); 921 if (ret) 922 return ret; 923 924 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >> 925 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT; 926 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10; 927 } 928 929 static int tb_port_get_link_width(struct tb_port *port) 930 { 931 u32 val; 932 int ret; 933 934 if (!port->cap_phy) 935 return -EINVAL; 936 937 ret = tb_port_read(port, &val, TB_CFG_PORT, 938 port->cap_phy + LANE_ADP_CS_1, 1); 939 if (ret) 940 return ret; 941 942 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >> 943 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT; 944 } 945 946 static bool tb_port_is_width_supported(struct tb_port *port, int width) 947 { 948 u32 phy, widths; 949 int ret; 950 951 if (!port->cap_phy) 952 return false; 953 954 ret = tb_port_read(port, &phy, TB_CFG_PORT, 955 port->cap_phy + LANE_ADP_CS_0, 1); 956 if (ret) 957 return ret; 958 959 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >> 960 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT; 961 962 return !!(widths & width); 963 } 964 965 static int tb_port_set_link_width(struct tb_port *port, unsigned int width) 966 { 967 u32 val; 968 int ret; 969 970 if (!port->cap_phy) 971 return -EINVAL; 972 973 ret = tb_port_read(port, &val, TB_CFG_PORT, 974 port->cap_phy + LANE_ADP_CS_1, 1); 975 if (ret) 976 return ret; 977 978 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK; 979 switch (width) { 980 case 1: 981 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE << 982 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 983 break; 984 case 2: 985 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL << 986 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 987 break; 988 default: 989 return -EINVAL; 990 } 991 992 val |= LANE_ADP_CS_1_LB; 993 994 return tb_port_write(port, &val, TB_CFG_PORT, 995 port->cap_phy + LANE_ADP_CS_1, 1); 996 } 997 998 static int tb_port_lane_bonding_enable(struct tb_port *port) 999 { 1000 int ret; 1001 1002 /* 1003 * Enable lane bonding for both links if not already enabled by 1004 * for example the boot firmware. 1005 */ 1006 ret = tb_port_get_link_width(port); 1007 if (ret == 1) { 1008 ret = tb_port_set_link_width(port, 2); 1009 if (ret) 1010 return ret; 1011 } 1012 1013 ret = tb_port_get_link_width(port->dual_link_port); 1014 if (ret == 1) { 1015 ret = tb_port_set_link_width(port->dual_link_port, 2); 1016 if (ret) { 1017 tb_port_set_link_width(port, 1); 1018 return ret; 1019 } 1020 } 1021 1022 port->bonded = true; 1023 port->dual_link_port->bonded = true; 1024 1025 return 0; 1026 } 1027 1028 static void tb_port_lane_bonding_disable(struct tb_port *port) 1029 { 1030 port->dual_link_port->bonded = false; 1031 port->bonded = false; 1032 1033 tb_port_set_link_width(port->dual_link_port, 1); 1034 tb_port_set_link_width(port, 1); 1035 } 1036 1037 /** 1038 * tb_port_is_enabled() - Is the adapter port enabled 1039 * @port: Port to check 1040 */ 1041 bool tb_port_is_enabled(struct tb_port *port) 1042 { 1043 switch (port->config.type) { 1044 case TB_TYPE_PCIE_UP: 1045 case TB_TYPE_PCIE_DOWN: 1046 return tb_pci_port_is_enabled(port); 1047 1048 case TB_TYPE_DP_HDMI_IN: 1049 case TB_TYPE_DP_HDMI_OUT: 1050 return tb_dp_port_is_enabled(port); 1051 1052 case TB_TYPE_USB3_UP: 1053 case TB_TYPE_USB3_DOWN: 1054 return tb_usb3_port_is_enabled(port); 1055 1056 default: 1057 return false; 1058 } 1059 } 1060 1061 /** 1062 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled 1063 * @port: USB3 adapter port to check 1064 */ 1065 bool tb_usb3_port_is_enabled(struct tb_port *port) 1066 { 1067 u32 data; 1068 1069 if (tb_port_read(port, &data, TB_CFG_PORT, 1070 port->cap_adap + ADP_USB3_CS_0, 1)) 1071 return false; 1072 1073 return !!(data & ADP_USB3_CS_0_PE); 1074 } 1075 1076 /** 1077 * tb_usb3_port_enable() - Enable USB3 adapter port 1078 * @port: USB3 adapter port to enable 1079 * @enable: Enable/disable the USB3 adapter 1080 */ 1081 int tb_usb3_port_enable(struct tb_port *port, bool enable) 1082 { 1083 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V) 1084 : ADP_USB3_CS_0_V; 1085 1086 if (!port->cap_adap) 1087 return -ENXIO; 1088 return tb_port_write(port, &word, TB_CFG_PORT, 1089 port->cap_adap + ADP_USB3_CS_0, 1); 1090 } 1091 1092 /** 1093 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled 1094 * @port: PCIe port to check 1095 */ 1096 bool tb_pci_port_is_enabled(struct tb_port *port) 1097 { 1098 u32 data; 1099 1100 if (tb_port_read(port, &data, TB_CFG_PORT, 1101 port->cap_adap + ADP_PCIE_CS_0, 1)) 1102 return false; 1103 1104 return !!(data & ADP_PCIE_CS_0_PE); 1105 } 1106 1107 /** 1108 * tb_pci_port_enable() - Enable PCIe adapter port 1109 * @port: PCIe port to enable 1110 * @enable: Enable/disable the PCIe adapter 1111 */ 1112 int tb_pci_port_enable(struct tb_port *port, bool enable) 1113 { 1114 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0; 1115 if (!port->cap_adap) 1116 return -ENXIO; 1117 return tb_port_write(port, &word, TB_CFG_PORT, 1118 port->cap_adap + ADP_PCIE_CS_0, 1); 1119 } 1120 1121 /** 1122 * tb_dp_port_hpd_is_active() - Is HPD already active 1123 * @port: DP out port to check 1124 * 1125 * Checks if the DP OUT adapter port has HDP bit already set. 1126 */ 1127 int tb_dp_port_hpd_is_active(struct tb_port *port) 1128 { 1129 u32 data; 1130 int ret; 1131 1132 ret = tb_port_read(port, &data, TB_CFG_PORT, 1133 port->cap_adap + ADP_DP_CS_2, 1); 1134 if (ret) 1135 return ret; 1136 1137 return !!(data & ADP_DP_CS_2_HDP); 1138 } 1139 1140 /** 1141 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port 1142 * @port: Port to clear HPD 1143 * 1144 * If the DP IN port has HDP set, this function can be used to clear it. 1145 */ 1146 int tb_dp_port_hpd_clear(struct tb_port *port) 1147 { 1148 u32 data; 1149 int ret; 1150 1151 ret = tb_port_read(port, &data, TB_CFG_PORT, 1152 port->cap_adap + ADP_DP_CS_3, 1); 1153 if (ret) 1154 return ret; 1155 1156 data |= ADP_DP_CS_3_HDPC; 1157 return tb_port_write(port, &data, TB_CFG_PORT, 1158 port->cap_adap + ADP_DP_CS_3, 1); 1159 } 1160 1161 /** 1162 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port 1163 * @port: DP IN/OUT port to set hops 1164 * @video: Video Hop ID 1165 * @aux_tx: AUX TX Hop ID 1166 * @aux_rx: AUX RX Hop ID 1167 * 1168 * Programs specified Hop IDs for DP IN/OUT port. 1169 */ 1170 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video, 1171 unsigned int aux_tx, unsigned int aux_rx) 1172 { 1173 u32 data[2]; 1174 int ret; 1175 1176 ret = tb_port_read(port, data, TB_CFG_PORT, 1177 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1178 if (ret) 1179 return ret; 1180 1181 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK; 1182 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1183 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1184 1185 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) & 1186 ADP_DP_CS_0_VIDEO_HOPID_MASK; 1187 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK; 1188 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) & 1189 ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1190 1191 return tb_port_write(port, data, TB_CFG_PORT, 1192 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1193 } 1194 1195 /** 1196 * tb_dp_port_is_enabled() - Is DP adapter port enabled 1197 * @port: DP adapter port to check 1198 */ 1199 bool tb_dp_port_is_enabled(struct tb_port *port) 1200 { 1201 u32 data[2]; 1202 1203 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0, 1204 ARRAY_SIZE(data))) 1205 return false; 1206 1207 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE)); 1208 } 1209 1210 /** 1211 * tb_dp_port_enable() - Enables/disables DP paths of a port 1212 * @port: DP IN/OUT port 1213 * @enable: Enable/disable DP path 1214 * 1215 * Once Hop IDs are programmed DP paths can be enabled or disabled by 1216 * calling this function. 1217 */ 1218 int tb_dp_port_enable(struct tb_port *port, bool enable) 1219 { 1220 u32 data[2]; 1221 int ret; 1222 1223 ret = tb_port_read(port, data, TB_CFG_PORT, 1224 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1225 if (ret) 1226 return ret; 1227 1228 if (enable) 1229 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE; 1230 else 1231 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE); 1232 1233 return tb_port_write(port, data, TB_CFG_PORT, 1234 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1235 } 1236 1237 /* switch utility functions */ 1238 1239 static const char *tb_switch_generation_name(const struct tb_switch *sw) 1240 { 1241 switch (sw->generation) { 1242 case 1: 1243 return "Thunderbolt 1"; 1244 case 2: 1245 return "Thunderbolt 2"; 1246 case 3: 1247 return "Thunderbolt 3"; 1248 case 4: 1249 return "USB4"; 1250 default: 1251 return "Unknown"; 1252 } 1253 } 1254 1255 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw) 1256 { 1257 const struct tb_regs_switch_header *regs = &sw->config; 1258 1259 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n", 1260 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id, 1261 regs->revision, regs->thunderbolt_version); 1262 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number); 1263 tb_dbg(tb, " Config:\n"); 1264 tb_dbg(tb, 1265 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 1266 regs->upstream_port_number, regs->depth, 1267 (((u64) regs->route_hi) << 32) | regs->route_lo, 1268 regs->enabled, regs->plug_events_delay); 1269 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n", 1270 regs->__unknown1, regs->__unknown4); 1271 } 1272 1273 /** 1274 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET 1275 * 1276 * Return: Returns 0 on success or an error code on failure. 1277 */ 1278 int tb_switch_reset(struct tb *tb, u64 route) 1279 { 1280 struct tb_cfg_result res; 1281 struct tb_regs_switch_header header = { 1282 header.route_hi = route >> 32, 1283 header.route_lo = route, 1284 header.enabled = true, 1285 }; 1286 tb_dbg(tb, "resetting switch at %llx\n", route); 1287 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route, 1288 0, 2, 2, 2); 1289 if (res.err) 1290 return res.err; 1291 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT); 1292 if (res.err > 0) 1293 return -EIO; 1294 return res.err; 1295 } 1296 1297 /** 1298 * tb_plug_events_active() - enable/disable plug events on a switch 1299 * 1300 * Also configures a sane plug_events_delay of 255ms. 1301 * 1302 * Return: Returns 0 on success or an error code on failure. 1303 */ 1304 static int tb_plug_events_active(struct tb_switch *sw, bool active) 1305 { 1306 u32 data; 1307 int res; 1308 1309 if (tb_switch_is_icm(sw)) 1310 return 0; 1311 1312 sw->config.plug_events_delay = 0xff; 1313 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 1314 if (res) 1315 return res; 1316 1317 /* Plug events are always enabled in USB4 */ 1318 if (tb_switch_is_usb4(sw)) 1319 return 0; 1320 1321 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 1322 if (res) 1323 return res; 1324 1325 if (active) { 1326 data = data & 0xFFFFFF83; 1327 switch (sw->config.device_id) { 1328 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1329 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1330 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1331 break; 1332 default: 1333 data |= 4; 1334 } 1335 } else { 1336 data = data | 0x7c; 1337 } 1338 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 1339 sw->cap_plug_events + 1, 1); 1340 } 1341 1342 static ssize_t authorized_show(struct device *dev, 1343 struct device_attribute *attr, 1344 char *buf) 1345 { 1346 struct tb_switch *sw = tb_to_switch(dev); 1347 1348 return sprintf(buf, "%u\n", sw->authorized); 1349 } 1350 1351 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 1352 { 1353 int ret = -EINVAL; 1354 1355 if (!mutex_trylock(&sw->tb->lock)) 1356 return restart_syscall(); 1357 1358 if (sw->authorized) 1359 goto unlock; 1360 1361 switch (val) { 1362 /* Approve switch */ 1363 case 1: 1364 if (sw->key) 1365 ret = tb_domain_approve_switch_key(sw->tb, sw); 1366 else 1367 ret = tb_domain_approve_switch(sw->tb, sw); 1368 break; 1369 1370 /* Challenge switch */ 1371 case 2: 1372 if (sw->key) 1373 ret = tb_domain_challenge_switch_key(sw->tb, sw); 1374 break; 1375 1376 default: 1377 break; 1378 } 1379 1380 if (!ret) { 1381 sw->authorized = val; 1382 /* Notify status change to the userspace */ 1383 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 1384 } 1385 1386 unlock: 1387 mutex_unlock(&sw->tb->lock); 1388 return ret; 1389 } 1390 1391 static ssize_t authorized_store(struct device *dev, 1392 struct device_attribute *attr, 1393 const char *buf, size_t count) 1394 { 1395 struct tb_switch *sw = tb_to_switch(dev); 1396 unsigned int val; 1397 ssize_t ret; 1398 1399 ret = kstrtouint(buf, 0, &val); 1400 if (ret) 1401 return ret; 1402 if (val > 2) 1403 return -EINVAL; 1404 1405 pm_runtime_get_sync(&sw->dev); 1406 ret = tb_switch_set_authorized(sw, val); 1407 pm_runtime_mark_last_busy(&sw->dev); 1408 pm_runtime_put_autosuspend(&sw->dev); 1409 1410 return ret ? ret : count; 1411 } 1412 static DEVICE_ATTR_RW(authorized); 1413 1414 static ssize_t boot_show(struct device *dev, struct device_attribute *attr, 1415 char *buf) 1416 { 1417 struct tb_switch *sw = tb_to_switch(dev); 1418 1419 return sprintf(buf, "%u\n", sw->boot); 1420 } 1421 static DEVICE_ATTR_RO(boot); 1422 1423 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 1424 char *buf) 1425 { 1426 struct tb_switch *sw = tb_to_switch(dev); 1427 1428 return sprintf(buf, "%#x\n", sw->device); 1429 } 1430 static DEVICE_ATTR_RO(device); 1431 1432 static ssize_t 1433 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1434 { 1435 struct tb_switch *sw = tb_to_switch(dev); 1436 1437 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : ""); 1438 } 1439 static DEVICE_ATTR_RO(device_name); 1440 1441 static ssize_t 1442 generation_show(struct device *dev, struct device_attribute *attr, char *buf) 1443 { 1444 struct tb_switch *sw = tb_to_switch(dev); 1445 1446 return sprintf(buf, "%u\n", sw->generation); 1447 } 1448 static DEVICE_ATTR_RO(generation); 1449 1450 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 1451 char *buf) 1452 { 1453 struct tb_switch *sw = tb_to_switch(dev); 1454 ssize_t ret; 1455 1456 if (!mutex_trylock(&sw->tb->lock)) 1457 return restart_syscall(); 1458 1459 if (sw->key) 1460 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 1461 else 1462 ret = sprintf(buf, "\n"); 1463 1464 mutex_unlock(&sw->tb->lock); 1465 return ret; 1466 } 1467 1468 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 1469 const char *buf, size_t count) 1470 { 1471 struct tb_switch *sw = tb_to_switch(dev); 1472 u8 key[TB_SWITCH_KEY_SIZE]; 1473 ssize_t ret = count; 1474 bool clear = false; 1475 1476 if (!strcmp(buf, "\n")) 1477 clear = true; 1478 else if (hex2bin(key, buf, sizeof(key))) 1479 return -EINVAL; 1480 1481 if (!mutex_trylock(&sw->tb->lock)) 1482 return restart_syscall(); 1483 1484 if (sw->authorized) { 1485 ret = -EBUSY; 1486 } else { 1487 kfree(sw->key); 1488 if (clear) { 1489 sw->key = NULL; 1490 } else { 1491 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 1492 if (!sw->key) 1493 ret = -ENOMEM; 1494 } 1495 } 1496 1497 mutex_unlock(&sw->tb->lock); 1498 return ret; 1499 } 1500 static DEVICE_ATTR(key, 0600, key_show, key_store); 1501 1502 static ssize_t speed_show(struct device *dev, struct device_attribute *attr, 1503 char *buf) 1504 { 1505 struct tb_switch *sw = tb_to_switch(dev); 1506 1507 return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed); 1508 } 1509 1510 /* 1511 * Currently all lanes must run at the same speed but we expose here 1512 * both directions to allow possible asymmetric links in the future. 1513 */ 1514 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL); 1515 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL); 1516 1517 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr, 1518 char *buf) 1519 { 1520 struct tb_switch *sw = tb_to_switch(dev); 1521 1522 return sprintf(buf, "%u\n", sw->link_width); 1523 } 1524 1525 /* 1526 * Currently link has same amount of lanes both directions (1 or 2) but 1527 * expose them separately to allow possible asymmetric links in the future. 1528 */ 1529 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL); 1530 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL); 1531 1532 static ssize_t nvm_authenticate_show(struct device *dev, 1533 struct device_attribute *attr, char *buf) 1534 { 1535 struct tb_switch *sw = tb_to_switch(dev); 1536 u32 status; 1537 1538 nvm_get_auth_status(sw, &status); 1539 return sprintf(buf, "%#x\n", status); 1540 } 1541 1542 static ssize_t nvm_authenticate_store(struct device *dev, 1543 struct device_attribute *attr, const char *buf, size_t count) 1544 { 1545 struct tb_switch *sw = tb_to_switch(dev); 1546 bool val; 1547 int ret; 1548 1549 pm_runtime_get_sync(&sw->dev); 1550 1551 if (!mutex_trylock(&sw->tb->lock)) { 1552 ret = restart_syscall(); 1553 goto exit_rpm; 1554 } 1555 1556 /* If NVMem devices are not yet added */ 1557 if (!sw->nvm) { 1558 ret = -EAGAIN; 1559 goto exit_unlock; 1560 } 1561 1562 ret = kstrtobool(buf, &val); 1563 if (ret) 1564 goto exit_unlock; 1565 1566 /* Always clear the authentication status */ 1567 nvm_clear_auth_status(sw); 1568 1569 if (val) { 1570 if (!sw->nvm->buf) { 1571 ret = -EINVAL; 1572 goto exit_unlock; 1573 } 1574 1575 ret = nvm_validate_and_write(sw); 1576 if (ret) 1577 goto exit_unlock; 1578 1579 sw->nvm->authenticating = true; 1580 ret = nvm_authenticate(sw); 1581 } 1582 1583 exit_unlock: 1584 mutex_unlock(&sw->tb->lock); 1585 exit_rpm: 1586 pm_runtime_mark_last_busy(&sw->dev); 1587 pm_runtime_put_autosuspend(&sw->dev); 1588 1589 if (ret) 1590 return ret; 1591 return count; 1592 } 1593 static DEVICE_ATTR_RW(nvm_authenticate); 1594 1595 static ssize_t nvm_version_show(struct device *dev, 1596 struct device_attribute *attr, char *buf) 1597 { 1598 struct tb_switch *sw = tb_to_switch(dev); 1599 int ret; 1600 1601 if (!mutex_trylock(&sw->tb->lock)) 1602 return restart_syscall(); 1603 1604 if (sw->safe_mode) 1605 ret = -ENODATA; 1606 else if (!sw->nvm) 1607 ret = -EAGAIN; 1608 else 1609 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 1610 1611 mutex_unlock(&sw->tb->lock); 1612 1613 return ret; 1614 } 1615 static DEVICE_ATTR_RO(nvm_version); 1616 1617 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 1618 char *buf) 1619 { 1620 struct tb_switch *sw = tb_to_switch(dev); 1621 1622 return sprintf(buf, "%#x\n", sw->vendor); 1623 } 1624 static DEVICE_ATTR_RO(vendor); 1625 1626 static ssize_t 1627 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1628 { 1629 struct tb_switch *sw = tb_to_switch(dev); 1630 1631 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : ""); 1632 } 1633 static DEVICE_ATTR_RO(vendor_name); 1634 1635 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 1636 char *buf) 1637 { 1638 struct tb_switch *sw = tb_to_switch(dev); 1639 1640 return sprintf(buf, "%pUb\n", sw->uuid); 1641 } 1642 static DEVICE_ATTR_RO(unique_id); 1643 1644 static struct attribute *switch_attrs[] = { 1645 &dev_attr_authorized.attr, 1646 &dev_attr_boot.attr, 1647 &dev_attr_device.attr, 1648 &dev_attr_device_name.attr, 1649 &dev_attr_generation.attr, 1650 &dev_attr_key.attr, 1651 &dev_attr_nvm_authenticate.attr, 1652 &dev_attr_nvm_version.attr, 1653 &dev_attr_rx_speed.attr, 1654 &dev_attr_rx_lanes.attr, 1655 &dev_attr_tx_speed.attr, 1656 &dev_attr_tx_lanes.attr, 1657 &dev_attr_vendor.attr, 1658 &dev_attr_vendor_name.attr, 1659 &dev_attr_unique_id.attr, 1660 NULL, 1661 }; 1662 1663 static umode_t switch_attr_is_visible(struct kobject *kobj, 1664 struct attribute *attr, int n) 1665 { 1666 struct device *dev = container_of(kobj, struct device, kobj); 1667 struct tb_switch *sw = tb_to_switch(dev); 1668 1669 if (attr == &dev_attr_device.attr) { 1670 if (!sw->device) 1671 return 0; 1672 } else if (attr == &dev_attr_device_name.attr) { 1673 if (!sw->device_name) 1674 return 0; 1675 } else if (attr == &dev_attr_vendor.attr) { 1676 if (!sw->vendor) 1677 return 0; 1678 } else if (attr == &dev_attr_vendor_name.attr) { 1679 if (!sw->vendor_name) 1680 return 0; 1681 } else if (attr == &dev_attr_key.attr) { 1682 if (tb_route(sw) && 1683 sw->tb->security_level == TB_SECURITY_SECURE && 1684 sw->security_level == TB_SECURITY_SECURE) 1685 return attr->mode; 1686 return 0; 1687 } else if (attr == &dev_attr_rx_speed.attr || 1688 attr == &dev_attr_rx_lanes.attr || 1689 attr == &dev_attr_tx_speed.attr || 1690 attr == &dev_attr_tx_lanes.attr) { 1691 if (tb_route(sw)) 1692 return attr->mode; 1693 return 0; 1694 } else if (attr == &dev_attr_nvm_authenticate.attr) { 1695 if (nvm_upgradeable(sw)) 1696 return attr->mode; 1697 return 0; 1698 } else if (attr == &dev_attr_nvm_version.attr) { 1699 if (nvm_readable(sw)) 1700 return attr->mode; 1701 return 0; 1702 } else if (attr == &dev_attr_boot.attr) { 1703 if (tb_route(sw)) 1704 return attr->mode; 1705 return 0; 1706 } 1707 1708 return sw->safe_mode ? 0 : attr->mode; 1709 } 1710 1711 static struct attribute_group switch_group = { 1712 .is_visible = switch_attr_is_visible, 1713 .attrs = switch_attrs, 1714 }; 1715 1716 static const struct attribute_group *switch_groups[] = { 1717 &switch_group, 1718 NULL, 1719 }; 1720 1721 static void tb_switch_release(struct device *dev) 1722 { 1723 struct tb_switch *sw = tb_to_switch(dev); 1724 struct tb_port *port; 1725 1726 dma_port_free(sw->dma_port); 1727 1728 tb_switch_for_each_port(sw, port) { 1729 if (!port->disabled) { 1730 ida_destroy(&port->in_hopids); 1731 ida_destroy(&port->out_hopids); 1732 } 1733 } 1734 1735 kfree(sw->uuid); 1736 kfree(sw->device_name); 1737 kfree(sw->vendor_name); 1738 kfree(sw->ports); 1739 kfree(sw->drom); 1740 kfree(sw->key); 1741 kfree(sw); 1742 } 1743 1744 /* 1745 * Currently only need to provide the callbacks. Everything else is handled 1746 * in the connection manager. 1747 */ 1748 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev) 1749 { 1750 struct tb_switch *sw = tb_to_switch(dev); 1751 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 1752 1753 if (cm_ops->runtime_suspend_switch) 1754 return cm_ops->runtime_suspend_switch(sw); 1755 1756 return 0; 1757 } 1758 1759 static int __maybe_unused tb_switch_runtime_resume(struct device *dev) 1760 { 1761 struct tb_switch *sw = tb_to_switch(dev); 1762 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 1763 1764 if (cm_ops->runtime_resume_switch) 1765 return cm_ops->runtime_resume_switch(sw); 1766 return 0; 1767 } 1768 1769 static const struct dev_pm_ops tb_switch_pm_ops = { 1770 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume, 1771 NULL) 1772 }; 1773 1774 struct device_type tb_switch_type = { 1775 .name = "thunderbolt_device", 1776 .release = tb_switch_release, 1777 .pm = &tb_switch_pm_ops, 1778 }; 1779 1780 static int tb_switch_get_generation(struct tb_switch *sw) 1781 { 1782 switch (sw->config.device_id) { 1783 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1784 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1785 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 1786 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 1787 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 1788 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1789 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 1790 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 1791 return 1; 1792 1793 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 1794 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 1795 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 1796 return 2; 1797 1798 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 1799 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 1800 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 1801 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 1802 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 1803 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: 1804 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: 1805 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: 1806 case PCI_DEVICE_ID_INTEL_ICL_NHI0: 1807 case PCI_DEVICE_ID_INTEL_ICL_NHI1: 1808 return 3; 1809 1810 default: 1811 if (tb_switch_is_usb4(sw)) 1812 return 4; 1813 1814 /* 1815 * For unknown switches assume generation to be 1 to be 1816 * on the safe side. 1817 */ 1818 tb_sw_warn(sw, "unsupported switch device id %#x\n", 1819 sw->config.device_id); 1820 return 1; 1821 } 1822 } 1823 1824 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth) 1825 { 1826 int max_depth; 1827 1828 if (tb_switch_is_usb4(sw) || 1829 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch))) 1830 max_depth = USB4_SWITCH_MAX_DEPTH; 1831 else 1832 max_depth = TB_SWITCH_MAX_DEPTH; 1833 1834 return depth > max_depth; 1835 } 1836 1837 /** 1838 * tb_switch_alloc() - allocate a switch 1839 * @tb: Pointer to the owning domain 1840 * @parent: Parent device for this switch 1841 * @route: Route string for this switch 1842 * 1843 * Allocates and initializes a switch. Will not upload configuration to 1844 * the switch. For that you need to call tb_switch_configure() 1845 * separately. The returned switch should be released by calling 1846 * tb_switch_put(). 1847 * 1848 * Return: Pointer to the allocated switch or ERR_PTR() in case of 1849 * failure. 1850 */ 1851 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 1852 u64 route) 1853 { 1854 struct tb_switch *sw; 1855 int upstream_port; 1856 int i, ret, depth; 1857 1858 /* Unlock the downstream port so we can access the switch below */ 1859 if (route) { 1860 struct tb_switch *parent_sw = tb_to_switch(parent); 1861 struct tb_port *down; 1862 1863 down = tb_port_at(route, parent_sw); 1864 tb_port_unlock(down); 1865 } 1866 1867 depth = tb_route_length(route); 1868 1869 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 1870 if (upstream_port < 0) 1871 return ERR_PTR(upstream_port); 1872 1873 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1874 if (!sw) 1875 return ERR_PTR(-ENOMEM); 1876 1877 sw->tb = tb; 1878 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5); 1879 if (ret) 1880 goto err_free_sw_ports; 1881 1882 sw->generation = tb_switch_get_generation(sw); 1883 1884 tb_dbg(tb, "current switch config:\n"); 1885 tb_dump_switch(tb, sw); 1886 1887 /* configure switch */ 1888 sw->config.upstream_port_number = upstream_port; 1889 sw->config.depth = depth; 1890 sw->config.route_hi = upper_32_bits(route); 1891 sw->config.route_lo = lower_32_bits(route); 1892 sw->config.enabled = 0; 1893 1894 /* Make sure we do not exceed maximum topology limit */ 1895 if (tb_switch_exceeds_max_depth(sw, depth)) { 1896 ret = -EADDRNOTAVAIL; 1897 goto err_free_sw_ports; 1898 } 1899 1900 /* initialize ports */ 1901 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 1902 GFP_KERNEL); 1903 if (!sw->ports) { 1904 ret = -ENOMEM; 1905 goto err_free_sw_ports; 1906 } 1907 1908 for (i = 0; i <= sw->config.max_port_number; i++) { 1909 /* minimum setup for tb_find_cap and tb_drom_read to work */ 1910 sw->ports[i].sw = sw; 1911 sw->ports[i].port = i; 1912 } 1913 1914 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 1915 if (ret > 0) 1916 sw->cap_plug_events = ret; 1917 1918 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 1919 if (ret > 0) 1920 sw->cap_lc = ret; 1921 1922 /* Root switch is always authorized */ 1923 if (!route) 1924 sw->authorized = true; 1925 1926 device_initialize(&sw->dev); 1927 sw->dev.parent = parent; 1928 sw->dev.bus = &tb_bus_type; 1929 sw->dev.type = &tb_switch_type; 1930 sw->dev.groups = switch_groups; 1931 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1932 1933 return sw; 1934 1935 err_free_sw_ports: 1936 kfree(sw->ports); 1937 kfree(sw); 1938 1939 return ERR_PTR(ret); 1940 } 1941 1942 /** 1943 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 1944 * @tb: Pointer to the owning domain 1945 * @parent: Parent device for this switch 1946 * @route: Route string for this switch 1947 * 1948 * This creates a switch in safe mode. This means the switch pretty much 1949 * lacks all capabilities except DMA configuration port before it is 1950 * flashed with a valid NVM firmware. 1951 * 1952 * The returned switch must be released by calling tb_switch_put(). 1953 * 1954 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure 1955 */ 1956 struct tb_switch * 1957 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 1958 { 1959 struct tb_switch *sw; 1960 1961 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1962 if (!sw) 1963 return ERR_PTR(-ENOMEM); 1964 1965 sw->tb = tb; 1966 sw->config.depth = tb_route_length(route); 1967 sw->config.route_hi = upper_32_bits(route); 1968 sw->config.route_lo = lower_32_bits(route); 1969 sw->safe_mode = true; 1970 1971 device_initialize(&sw->dev); 1972 sw->dev.parent = parent; 1973 sw->dev.bus = &tb_bus_type; 1974 sw->dev.type = &tb_switch_type; 1975 sw->dev.groups = switch_groups; 1976 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1977 1978 return sw; 1979 } 1980 1981 /** 1982 * tb_switch_configure() - Uploads configuration to the switch 1983 * @sw: Switch to configure 1984 * 1985 * Call this function before the switch is added to the system. It will 1986 * upload configuration to the switch and makes it available for the 1987 * connection manager to use. Can be called to the switch again after 1988 * resume from low power states to re-initialize it. 1989 * 1990 * Return: %0 in case of success and negative errno in case of failure 1991 */ 1992 int tb_switch_configure(struct tb_switch *sw) 1993 { 1994 struct tb *tb = sw->tb; 1995 u64 route; 1996 int ret; 1997 1998 route = tb_route(sw); 1999 2000 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n", 2001 sw->config.enabled ? "restoring " : "initializing", route, 2002 tb_route_length(route), sw->config.upstream_port_number); 2003 2004 sw->config.enabled = 1; 2005 2006 if (tb_switch_is_usb4(sw)) { 2007 /* 2008 * For USB4 devices, we need to program the CM version 2009 * accordingly so that it knows to expose all the 2010 * additional capabilities. 2011 */ 2012 sw->config.cmuv = USB4_VERSION_1_0; 2013 2014 /* Enumerate the switch */ 2015 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2016 ROUTER_CS_1, 4); 2017 if (ret) 2018 return ret; 2019 2020 ret = usb4_switch_setup(sw); 2021 if (ret) 2022 return ret; 2023 2024 ret = usb4_switch_configure_link(sw); 2025 } else { 2026 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 2027 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 2028 sw->config.vendor_id); 2029 2030 if (!sw->cap_plug_events) { 2031 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 2032 return -ENODEV; 2033 } 2034 2035 /* Enumerate the switch */ 2036 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2037 ROUTER_CS_1, 3); 2038 if (ret) 2039 return ret; 2040 2041 ret = tb_lc_configure_link(sw); 2042 } 2043 if (ret) 2044 return ret; 2045 2046 return tb_plug_events_active(sw, true); 2047 } 2048 2049 static int tb_switch_set_uuid(struct tb_switch *sw) 2050 { 2051 bool uid = false; 2052 u32 uuid[4]; 2053 int ret; 2054 2055 if (sw->uuid) 2056 return 0; 2057 2058 if (tb_switch_is_usb4(sw)) { 2059 ret = usb4_switch_read_uid(sw, &sw->uid); 2060 if (ret) 2061 return ret; 2062 uid = true; 2063 } else { 2064 /* 2065 * The newer controllers include fused UUID as part of 2066 * link controller specific registers 2067 */ 2068 ret = tb_lc_read_uuid(sw, uuid); 2069 if (ret) { 2070 if (ret != -EINVAL) 2071 return ret; 2072 uid = true; 2073 } 2074 } 2075 2076 if (uid) { 2077 /* 2078 * ICM generates UUID based on UID and fills the upper 2079 * two words with ones. This is not strictly following 2080 * UUID format but we want to be compatible with it so 2081 * we do the same here. 2082 */ 2083 uuid[0] = sw->uid & 0xffffffff; 2084 uuid[1] = (sw->uid >> 32) & 0xffffffff; 2085 uuid[2] = 0xffffffff; 2086 uuid[3] = 0xffffffff; 2087 } 2088 2089 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 2090 if (!sw->uuid) 2091 return -ENOMEM; 2092 return 0; 2093 } 2094 2095 static int tb_switch_add_dma_port(struct tb_switch *sw) 2096 { 2097 u32 status; 2098 int ret; 2099 2100 switch (sw->generation) { 2101 case 2: 2102 /* Only root switch can be upgraded */ 2103 if (tb_route(sw)) 2104 return 0; 2105 2106 /* fallthrough */ 2107 case 3: 2108 ret = tb_switch_set_uuid(sw); 2109 if (ret) 2110 return ret; 2111 break; 2112 2113 default: 2114 /* 2115 * DMA port is the only thing available when the switch 2116 * is in safe mode. 2117 */ 2118 if (!sw->safe_mode) 2119 return 0; 2120 break; 2121 } 2122 2123 /* Root switch DMA port requires running firmware */ 2124 if (!tb_route(sw) && !tb_switch_is_icm(sw)) 2125 return 0; 2126 2127 sw->dma_port = dma_port_alloc(sw); 2128 if (!sw->dma_port) 2129 return 0; 2130 2131 if (sw->no_nvm_upgrade) 2132 return 0; 2133 2134 /* 2135 * If there is status already set then authentication failed 2136 * when the dma_port_flash_update_auth() returned. Power cycling 2137 * is not needed (it was done already) so only thing we do here 2138 * is to unblock runtime PM of the root port. 2139 */ 2140 nvm_get_auth_status(sw, &status); 2141 if (status) { 2142 if (!tb_route(sw)) 2143 nvm_authenticate_complete_dma_port(sw); 2144 return 0; 2145 } 2146 2147 /* 2148 * Check status of the previous flash authentication. If there 2149 * is one we need to power cycle the switch in any case to make 2150 * it functional again. 2151 */ 2152 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 2153 if (ret <= 0) 2154 return ret; 2155 2156 /* Now we can allow root port to suspend again */ 2157 if (!tb_route(sw)) 2158 nvm_authenticate_complete_dma_port(sw); 2159 2160 if (status) { 2161 tb_sw_info(sw, "switch flash authentication failed\n"); 2162 nvm_set_auth_status(sw, status); 2163 } 2164 2165 tb_sw_info(sw, "power cycling the switch now\n"); 2166 dma_port_power_cycle(sw->dma_port); 2167 2168 /* 2169 * We return error here which causes the switch adding failure. 2170 * It should appear back after power cycle is complete. 2171 */ 2172 return -ESHUTDOWN; 2173 } 2174 2175 static void tb_switch_default_link_ports(struct tb_switch *sw) 2176 { 2177 int i; 2178 2179 for (i = 1; i <= sw->config.max_port_number; i += 2) { 2180 struct tb_port *port = &sw->ports[i]; 2181 struct tb_port *subordinate; 2182 2183 if (!tb_port_is_null(port)) 2184 continue; 2185 2186 /* Check for the subordinate port */ 2187 if (i == sw->config.max_port_number || 2188 !tb_port_is_null(&sw->ports[i + 1])) 2189 continue; 2190 2191 /* Link them if not already done so (by DROM) */ 2192 subordinate = &sw->ports[i + 1]; 2193 if (!port->dual_link_port && !subordinate->dual_link_port) { 2194 port->link_nr = 0; 2195 port->dual_link_port = subordinate; 2196 subordinate->link_nr = 1; 2197 subordinate->dual_link_port = port; 2198 2199 tb_sw_dbg(sw, "linked ports %d <-> %d\n", 2200 port->port, subordinate->port); 2201 } 2202 } 2203 } 2204 2205 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw) 2206 { 2207 const struct tb_port *up = tb_upstream_port(sw); 2208 2209 if (!up->dual_link_port || !up->dual_link_port->remote) 2210 return false; 2211 2212 if (tb_switch_is_usb4(sw)) 2213 return usb4_switch_lane_bonding_possible(sw); 2214 return tb_lc_lane_bonding_possible(sw); 2215 } 2216 2217 static int tb_switch_update_link_attributes(struct tb_switch *sw) 2218 { 2219 struct tb_port *up; 2220 bool change = false; 2221 int ret; 2222 2223 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2224 return 0; 2225 2226 up = tb_upstream_port(sw); 2227 2228 ret = tb_port_get_link_speed(up); 2229 if (ret < 0) 2230 return ret; 2231 if (sw->link_speed != ret) 2232 change = true; 2233 sw->link_speed = ret; 2234 2235 ret = tb_port_get_link_width(up); 2236 if (ret < 0) 2237 return ret; 2238 if (sw->link_width != ret) 2239 change = true; 2240 sw->link_width = ret; 2241 2242 /* Notify userspace that there is possible link attribute change */ 2243 if (device_is_registered(&sw->dev) && change) 2244 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 2245 2246 return 0; 2247 } 2248 2249 /** 2250 * tb_switch_lane_bonding_enable() - Enable lane bonding 2251 * @sw: Switch to enable lane bonding 2252 * 2253 * Connection manager can call this function to enable lane bonding of a 2254 * switch. If conditions are correct and both switches support the feature, 2255 * lanes are bonded. It is safe to call this to any switch. 2256 */ 2257 int tb_switch_lane_bonding_enable(struct tb_switch *sw) 2258 { 2259 struct tb_switch *parent = tb_to_switch(sw->dev.parent); 2260 struct tb_port *up, *down; 2261 u64 route = tb_route(sw); 2262 int ret; 2263 2264 if (!route) 2265 return 0; 2266 2267 if (!tb_switch_lane_bonding_possible(sw)) 2268 return 0; 2269 2270 up = tb_upstream_port(sw); 2271 down = tb_port_at(route, parent); 2272 2273 if (!tb_port_is_width_supported(up, 2) || 2274 !tb_port_is_width_supported(down, 2)) 2275 return 0; 2276 2277 ret = tb_port_lane_bonding_enable(up); 2278 if (ret) { 2279 tb_port_warn(up, "failed to enable lane bonding\n"); 2280 return ret; 2281 } 2282 2283 ret = tb_port_lane_bonding_enable(down); 2284 if (ret) { 2285 tb_port_warn(down, "failed to enable lane bonding\n"); 2286 tb_port_lane_bonding_disable(up); 2287 return ret; 2288 } 2289 2290 tb_switch_update_link_attributes(sw); 2291 2292 tb_sw_dbg(sw, "lane bonding enabled\n"); 2293 return ret; 2294 } 2295 2296 /** 2297 * tb_switch_lane_bonding_disable() - Disable lane bonding 2298 * @sw: Switch whose lane bonding to disable 2299 * 2300 * Disables lane bonding between @sw and parent. This can be called even 2301 * if lanes were not bonded originally. 2302 */ 2303 void tb_switch_lane_bonding_disable(struct tb_switch *sw) 2304 { 2305 struct tb_switch *parent = tb_to_switch(sw->dev.parent); 2306 struct tb_port *up, *down; 2307 2308 if (!tb_route(sw)) 2309 return; 2310 2311 up = tb_upstream_port(sw); 2312 if (!up->bonded) 2313 return; 2314 2315 down = tb_port_at(tb_route(sw), parent); 2316 2317 tb_port_lane_bonding_disable(up); 2318 tb_port_lane_bonding_disable(down); 2319 2320 tb_switch_update_link_attributes(sw); 2321 tb_sw_dbg(sw, "lane bonding disabled\n"); 2322 } 2323 2324 /** 2325 * tb_switch_add() - Add a switch to the domain 2326 * @sw: Switch to add 2327 * 2328 * This is the last step in adding switch to the domain. It will read 2329 * identification information from DROM and initializes ports so that 2330 * they can be used to connect other switches. The switch will be 2331 * exposed to the userspace when this function successfully returns. To 2332 * remove and release the switch, call tb_switch_remove(). 2333 * 2334 * Return: %0 in case of success and negative errno in case of failure 2335 */ 2336 int tb_switch_add(struct tb_switch *sw) 2337 { 2338 int i, ret; 2339 2340 /* 2341 * Initialize DMA control port now before we read DROM. Recent 2342 * host controllers have more complete DROM on NVM that includes 2343 * vendor and model identification strings which we then expose 2344 * to the userspace. NVM can be accessed through DMA 2345 * configuration based mailbox. 2346 */ 2347 ret = tb_switch_add_dma_port(sw); 2348 if (ret) { 2349 dev_err(&sw->dev, "failed to add DMA port\n"); 2350 return ret; 2351 } 2352 2353 if (!sw->safe_mode) { 2354 /* read drom */ 2355 ret = tb_drom_read(sw); 2356 if (ret) { 2357 dev_err(&sw->dev, "reading DROM failed\n"); 2358 return ret; 2359 } 2360 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid); 2361 2362 ret = tb_switch_set_uuid(sw); 2363 if (ret) { 2364 dev_err(&sw->dev, "failed to set UUID\n"); 2365 return ret; 2366 } 2367 2368 for (i = 0; i <= sw->config.max_port_number; i++) { 2369 if (sw->ports[i].disabled) { 2370 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n"); 2371 continue; 2372 } 2373 ret = tb_init_port(&sw->ports[i]); 2374 if (ret) { 2375 dev_err(&sw->dev, "failed to initialize port %d\n", i); 2376 return ret; 2377 } 2378 } 2379 2380 tb_switch_default_link_ports(sw); 2381 2382 ret = tb_switch_update_link_attributes(sw); 2383 if (ret) 2384 return ret; 2385 2386 ret = tb_switch_tmu_init(sw); 2387 if (ret) 2388 return ret; 2389 } 2390 2391 ret = device_add(&sw->dev); 2392 if (ret) { 2393 dev_err(&sw->dev, "failed to add device: %d\n", ret); 2394 return ret; 2395 } 2396 2397 if (tb_route(sw)) { 2398 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n", 2399 sw->vendor, sw->device); 2400 if (sw->vendor_name && sw->device_name) 2401 dev_info(&sw->dev, "%s %s\n", sw->vendor_name, 2402 sw->device_name); 2403 } 2404 2405 ret = tb_switch_nvm_add(sw); 2406 if (ret) { 2407 dev_err(&sw->dev, "failed to add NVM devices\n"); 2408 device_del(&sw->dev); 2409 return ret; 2410 } 2411 2412 pm_runtime_set_active(&sw->dev); 2413 if (sw->rpm) { 2414 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY); 2415 pm_runtime_use_autosuspend(&sw->dev); 2416 pm_runtime_mark_last_busy(&sw->dev); 2417 pm_runtime_enable(&sw->dev); 2418 pm_request_autosuspend(&sw->dev); 2419 } 2420 2421 return 0; 2422 } 2423 2424 /** 2425 * tb_switch_remove() - Remove and release a switch 2426 * @sw: Switch to remove 2427 * 2428 * This will remove the switch from the domain and release it after last 2429 * reference count drops to zero. If there are switches connected below 2430 * this switch, they will be removed as well. 2431 */ 2432 void tb_switch_remove(struct tb_switch *sw) 2433 { 2434 struct tb_port *port; 2435 2436 if (sw->rpm) { 2437 pm_runtime_get_sync(&sw->dev); 2438 pm_runtime_disable(&sw->dev); 2439 } 2440 2441 /* port 0 is the switch itself and never has a remote */ 2442 tb_switch_for_each_port(sw, port) { 2443 if (tb_port_has_remote(port)) { 2444 tb_switch_remove(port->remote->sw); 2445 port->remote = NULL; 2446 } else if (port->xdomain) { 2447 tb_xdomain_remove(port->xdomain); 2448 port->xdomain = NULL; 2449 } 2450 } 2451 2452 if (!sw->is_unplugged) 2453 tb_plug_events_active(sw, false); 2454 2455 if (tb_switch_is_usb4(sw)) 2456 usb4_switch_unconfigure_link(sw); 2457 else 2458 tb_lc_unconfigure_link(sw); 2459 2460 tb_switch_nvm_remove(sw); 2461 2462 if (tb_route(sw)) 2463 dev_info(&sw->dev, "device disconnected\n"); 2464 device_unregister(&sw->dev); 2465 } 2466 2467 /** 2468 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 2469 */ 2470 void tb_sw_set_unplugged(struct tb_switch *sw) 2471 { 2472 struct tb_port *port; 2473 2474 if (sw == sw->tb->root_switch) { 2475 tb_sw_WARN(sw, "cannot unplug root switch\n"); 2476 return; 2477 } 2478 if (sw->is_unplugged) { 2479 tb_sw_WARN(sw, "is_unplugged already set\n"); 2480 return; 2481 } 2482 sw->is_unplugged = true; 2483 tb_switch_for_each_port(sw, port) { 2484 if (tb_port_has_remote(port)) 2485 tb_sw_set_unplugged(port->remote->sw); 2486 else if (port->xdomain) 2487 port->xdomain->is_unplugged = true; 2488 } 2489 } 2490 2491 int tb_switch_resume(struct tb_switch *sw) 2492 { 2493 struct tb_port *port; 2494 int err; 2495 2496 tb_sw_dbg(sw, "resuming switch\n"); 2497 2498 /* 2499 * Check for UID of the connected switches except for root 2500 * switch which we assume cannot be removed. 2501 */ 2502 if (tb_route(sw)) { 2503 u64 uid; 2504 2505 /* 2506 * Check first that we can still read the switch config 2507 * space. It may be that there is now another domain 2508 * connected. 2509 */ 2510 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw)); 2511 if (err < 0) { 2512 tb_sw_info(sw, "switch not present anymore\n"); 2513 return err; 2514 } 2515 2516 if (tb_switch_is_usb4(sw)) 2517 err = usb4_switch_read_uid(sw, &uid); 2518 else 2519 err = tb_drom_read_uid_only(sw, &uid); 2520 if (err) { 2521 tb_sw_warn(sw, "uid read failed\n"); 2522 return err; 2523 } 2524 if (sw->uid != uid) { 2525 tb_sw_info(sw, 2526 "changed while suspended (uid %#llx -> %#llx)\n", 2527 sw->uid, uid); 2528 return -ENODEV; 2529 } 2530 } 2531 2532 err = tb_switch_configure(sw); 2533 if (err) 2534 return err; 2535 2536 /* check for surviving downstream switches */ 2537 tb_switch_for_each_port(sw, port) { 2538 if (!tb_port_has_remote(port) && !port->xdomain) 2539 continue; 2540 2541 if (tb_wait_for_port(port, true) <= 0) { 2542 tb_port_warn(port, 2543 "lost during suspend, disconnecting\n"); 2544 if (tb_port_has_remote(port)) 2545 tb_sw_set_unplugged(port->remote->sw); 2546 else if (port->xdomain) 2547 port->xdomain->is_unplugged = true; 2548 } else if (tb_port_has_remote(port) || port->xdomain) { 2549 /* 2550 * Always unlock the port so the downstream 2551 * switch/domain is accessible. 2552 */ 2553 if (tb_port_unlock(port)) 2554 tb_port_warn(port, "failed to unlock port\n"); 2555 if (port->remote && tb_switch_resume(port->remote->sw)) { 2556 tb_port_warn(port, 2557 "lost during suspend, disconnecting\n"); 2558 tb_sw_set_unplugged(port->remote->sw); 2559 } 2560 } 2561 } 2562 return 0; 2563 } 2564 2565 void tb_switch_suspend(struct tb_switch *sw) 2566 { 2567 struct tb_port *port; 2568 int err; 2569 2570 err = tb_plug_events_active(sw, false); 2571 if (err) 2572 return; 2573 2574 tb_switch_for_each_port(sw, port) { 2575 if (tb_port_has_remote(port)) 2576 tb_switch_suspend(port->remote->sw); 2577 } 2578 2579 if (tb_switch_is_usb4(sw)) 2580 usb4_switch_set_sleep(sw); 2581 else 2582 tb_lc_set_sleep(sw); 2583 } 2584 2585 /** 2586 * tb_switch_query_dp_resource() - Query availability of DP resource 2587 * @sw: Switch whose DP resource is queried 2588 * @in: DP IN port 2589 * 2590 * Queries availability of DP resource for DP tunneling using switch 2591 * specific means. Returns %true if resource is available. 2592 */ 2593 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) 2594 { 2595 if (tb_switch_is_usb4(sw)) 2596 return usb4_switch_query_dp_resource(sw, in); 2597 return tb_lc_dp_sink_query(sw, in); 2598 } 2599 2600 /** 2601 * tb_switch_alloc_dp_resource() - Allocate available DP resource 2602 * @sw: Switch whose DP resource is allocated 2603 * @in: DP IN port 2604 * 2605 * Allocates DP resource for DP tunneling. The resource must be 2606 * available for this to succeed (see tb_switch_query_dp_resource()). 2607 * Returns %0 in success and negative errno otherwise. 2608 */ 2609 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 2610 { 2611 if (tb_switch_is_usb4(sw)) 2612 return usb4_switch_alloc_dp_resource(sw, in); 2613 return tb_lc_dp_sink_alloc(sw, in); 2614 } 2615 2616 /** 2617 * tb_switch_dealloc_dp_resource() - De-allocate DP resource 2618 * @sw: Switch whose DP resource is de-allocated 2619 * @in: DP IN port 2620 * 2621 * De-allocates DP resource that was previously allocated for DP 2622 * tunneling. 2623 */ 2624 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 2625 { 2626 int ret; 2627 2628 if (tb_switch_is_usb4(sw)) 2629 ret = usb4_switch_dealloc_dp_resource(sw, in); 2630 else 2631 ret = tb_lc_dp_sink_dealloc(sw, in); 2632 2633 if (ret) 2634 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n", 2635 in->port); 2636 } 2637 2638 struct tb_sw_lookup { 2639 struct tb *tb; 2640 u8 link; 2641 u8 depth; 2642 const uuid_t *uuid; 2643 u64 route; 2644 }; 2645 2646 static int tb_switch_match(struct device *dev, const void *data) 2647 { 2648 struct tb_switch *sw = tb_to_switch(dev); 2649 const struct tb_sw_lookup *lookup = data; 2650 2651 if (!sw) 2652 return 0; 2653 if (sw->tb != lookup->tb) 2654 return 0; 2655 2656 if (lookup->uuid) 2657 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 2658 2659 if (lookup->route) { 2660 return sw->config.route_lo == lower_32_bits(lookup->route) && 2661 sw->config.route_hi == upper_32_bits(lookup->route); 2662 } 2663 2664 /* Root switch is matched only by depth */ 2665 if (!lookup->depth) 2666 return !sw->depth; 2667 2668 return sw->link == lookup->link && sw->depth == lookup->depth; 2669 } 2670 2671 /** 2672 * tb_switch_find_by_link_depth() - Find switch by link and depth 2673 * @tb: Domain the switch belongs 2674 * @link: Link number the switch is connected 2675 * @depth: Depth of the switch in link 2676 * 2677 * Returned switch has reference count increased so the caller needs to 2678 * call tb_switch_put() when done with the switch. 2679 */ 2680 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 2681 { 2682 struct tb_sw_lookup lookup; 2683 struct device *dev; 2684 2685 memset(&lookup, 0, sizeof(lookup)); 2686 lookup.tb = tb; 2687 lookup.link = link; 2688 lookup.depth = depth; 2689 2690 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2691 if (dev) 2692 return tb_to_switch(dev); 2693 2694 return NULL; 2695 } 2696 2697 /** 2698 * tb_switch_find_by_uuid() - Find switch by UUID 2699 * @tb: Domain the switch belongs 2700 * @uuid: UUID to look for 2701 * 2702 * Returned switch has reference count increased so the caller needs to 2703 * call tb_switch_put() when done with the switch. 2704 */ 2705 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) 2706 { 2707 struct tb_sw_lookup lookup; 2708 struct device *dev; 2709 2710 memset(&lookup, 0, sizeof(lookup)); 2711 lookup.tb = tb; 2712 lookup.uuid = uuid; 2713 2714 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2715 if (dev) 2716 return tb_to_switch(dev); 2717 2718 return NULL; 2719 } 2720 2721 /** 2722 * tb_switch_find_by_route() - Find switch by route string 2723 * @tb: Domain the switch belongs 2724 * @route: Route string to look for 2725 * 2726 * Returned switch has reference count increased so the caller needs to 2727 * call tb_switch_put() when done with the switch. 2728 */ 2729 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route) 2730 { 2731 struct tb_sw_lookup lookup; 2732 struct device *dev; 2733 2734 if (!route) 2735 return tb_switch_get(tb->root_switch); 2736 2737 memset(&lookup, 0, sizeof(lookup)); 2738 lookup.tb = tb; 2739 lookup.route = route; 2740 2741 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2742 if (dev) 2743 return tb_to_switch(dev); 2744 2745 return NULL; 2746 } 2747 2748 /** 2749 * tb_switch_find_port() - return the first port of @type on @sw or NULL 2750 * @sw: Switch to find the port from 2751 * @type: Port type to look for 2752 */ 2753 struct tb_port *tb_switch_find_port(struct tb_switch *sw, 2754 enum tb_port_type type) 2755 { 2756 struct tb_port *port; 2757 2758 tb_switch_for_each_port(sw, port) { 2759 if (port->config.type == type) 2760 return port; 2761 } 2762 2763 return NULL; 2764 } 2765 2766 void tb_switch_exit(void) 2767 { 2768 ida_destroy(&nvm_ida); 2769 } 2770