1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - switch/port utility functions 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2018, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/idr.h> 11 #include <linux/module.h> 12 #include <linux/nvmem-provider.h> 13 #include <linux/pm_runtime.h> 14 #include <linux/sched/signal.h> 15 #include <linux/sizes.h> 16 #include <linux/slab.h> 17 #include <linux/string_helpers.h> 18 19 #include "tb.h" 20 21 /* Switch NVM support */ 22 23 struct nvm_auth_status { 24 struct list_head list; 25 uuid_t uuid; 26 u32 status; 27 }; 28 29 /* 30 * Hold NVM authentication failure status per switch This information 31 * needs to stay around even when the switch gets power cycled so we 32 * keep it separately. 33 */ 34 static LIST_HEAD(nvm_auth_status_cache); 35 static DEFINE_MUTEX(nvm_auth_status_lock); 36 37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 38 { 39 struct nvm_auth_status *st; 40 41 list_for_each_entry(st, &nvm_auth_status_cache, list) { 42 if (uuid_equal(&st->uuid, sw->uuid)) 43 return st; 44 } 45 46 return NULL; 47 } 48 49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 50 { 51 struct nvm_auth_status *st; 52 53 mutex_lock(&nvm_auth_status_lock); 54 st = __nvm_get_auth_status(sw); 55 mutex_unlock(&nvm_auth_status_lock); 56 57 *status = st ? st->status : 0; 58 } 59 60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 61 { 62 struct nvm_auth_status *st; 63 64 if (WARN_ON(!sw->uuid)) 65 return; 66 67 mutex_lock(&nvm_auth_status_lock); 68 st = __nvm_get_auth_status(sw); 69 70 if (!st) { 71 st = kzalloc(sizeof(*st), GFP_KERNEL); 72 if (!st) 73 goto unlock; 74 75 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 76 INIT_LIST_HEAD(&st->list); 77 list_add_tail(&st->list, &nvm_auth_status_cache); 78 } 79 80 st->status = status; 81 unlock: 82 mutex_unlock(&nvm_auth_status_lock); 83 } 84 85 static void nvm_clear_auth_status(const struct tb_switch *sw) 86 { 87 struct nvm_auth_status *st; 88 89 mutex_lock(&nvm_auth_status_lock); 90 st = __nvm_get_auth_status(sw); 91 if (st) { 92 list_del(&st->list); 93 kfree(st); 94 } 95 mutex_unlock(&nvm_auth_status_lock); 96 } 97 98 static int nvm_validate_and_write(struct tb_switch *sw) 99 { 100 unsigned int image_size; 101 const u8 *buf; 102 int ret; 103 104 ret = tb_nvm_validate(sw->nvm); 105 if (ret) 106 return ret; 107 108 ret = tb_nvm_write_headers(sw->nvm); 109 if (ret) 110 return ret; 111 112 buf = sw->nvm->buf_data_start; 113 image_size = sw->nvm->buf_data_size; 114 115 if (tb_switch_is_usb4(sw)) 116 ret = usb4_switch_nvm_write(sw, 0, buf, image_size); 117 else 118 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size); 119 if (ret) 120 return ret; 121 122 sw->nvm->flushed = true; 123 return 0; 124 } 125 126 static int nvm_authenticate_host_dma_port(struct tb_switch *sw) 127 { 128 int ret = 0; 129 130 /* 131 * Root switch NVM upgrade requires that we disconnect the 132 * existing paths first (in case it is not in safe mode 133 * already). 134 */ 135 if (!sw->safe_mode) { 136 u32 status; 137 138 ret = tb_domain_disconnect_all_paths(sw->tb); 139 if (ret) 140 return ret; 141 /* 142 * The host controller goes away pretty soon after this if 143 * everything goes well so getting timeout is expected. 144 */ 145 ret = dma_port_flash_update_auth(sw->dma_port); 146 if (!ret || ret == -ETIMEDOUT) 147 return 0; 148 149 /* 150 * Any error from update auth operation requires power 151 * cycling of the host router. 152 */ 153 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n"); 154 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0) 155 nvm_set_auth_status(sw, status); 156 } 157 158 /* 159 * From safe mode we can get out by just power cycling the 160 * switch. 161 */ 162 dma_port_power_cycle(sw->dma_port); 163 return ret; 164 } 165 166 static int nvm_authenticate_device_dma_port(struct tb_switch *sw) 167 { 168 int ret, retries = 10; 169 170 ret = dma_port_flash_update_auth(sw->dma_port); 171 switch (ret) { 172 case 0: 173 case -ETIMEDOUT: 174 case -EACCES: 175 case -EINVAL: 176 /* Power cycle is required */ 177 break; 178 default: 179 return ret; 180 } 181 182 /* 183 * Poll here for the authentication status. It takes some time 184 * for the device to respond (we get timeout for a while). Once 185 * we get response the device needs to be power cycled in order 186 * to the new NVM to be taken into use. 187 */ 188 do { 189 u32 status; 190 191 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 192 if (ret < 0 && ret != -ETIMEDOUT) 193 return ret; 194 if (ret > 0) { 195 if (status) { 196 tb_sw_warn(sw, "failed to authenticate NVM\n"); 197 nvm_set_auth_status(sw, status); 198 } 199 200 tb_sw_info(sw, "power cycling the switch now\n"); 201 dma_port_power_cycle(sw->dma_port); 202 return 0; 203 } 204 205 msleep(500); 206 } while (--retries); 207 208 return -ETIMEDOUT; 209 } 210 211 static void nvm_authenticate_start_dma_port(struct tb_switch *sw) 212 { 213 struct pci_dev *root_port; 214 215 /* 216 * During host router NVM upgrade we should not allow root port to 217 * go into D3cold because some root ports cannot trigger PME 218 * itself. To be on the safe side keep the root port in D0 during 219 * the whole upgrade process. 220 */ 221 root_port = pcie_find_root_port(sw->tb->nhi->pdev); 222 if (root_port) 223 pm_runtime_get_noresume(&root_port->dev); 224 } 225 226 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw) 227 { 228 struct pci_dev *root_port; 229 230 root_port = pcie_find_root_port(sw->tb->nhi->pdev); 231 if (root_port) 232 pm_runtime_put(&root_port->dev); 233 } 234 235 static inline bool nvm_readable(struct tb_switch *sw) 236 { 237 if (tb_switch_is_usb4(sw)) { 238 /* 239 * USB4 devices must support NVM operations but it is 240 * optional for hosts. Therefore we query the NVM sector 241 * size here and if it is supported assume NVM 242 * operations are implemented. 243 */ 244 return usb4_switch_nvm_sector_size(sw) > 0; 245 } 246 247 /* Thunderbolt 2 and 3 devices support NVM through DMA port */ 248 return !!sw->dma_port; 249 } 250 251 static inline bool nvm_upgradeable(struct tb_switch *sw) 252 { 253 if (sw->no_nvm_upgrade) 254 return false; 255 return nvm_readable(sw); 256 } 257 258 static int nvm_authenticate(struct tb_switch *sw, bool auth_only) 259 { 260 int ret; 261 262 if (tb_switch_is_usb4(sw)) { 263 if (auth_only) { 264 ret = usb4_switch_nvm_set_offset(sw, 0); 265 if (ret) 266 return ret; 267 } 268 sw->nvm->authenticating = true; 269 return usb4_switch_nvm_authenticate(sw); 270 } 271 if (auth_only) 272 return -EOPNOTSUPP; 273 274 sw->nvm->authenticating = true; 275 if (!tb_route(sw)) { 276 nvm_authenticate_start_dma_port(sw); 277 ret = nvm_authenticate_host_dma_port(sw); 278 } else { 279 ret = nvm_authenticate_device_dma_port(sw); 280 } 281 282 return ret; 283 } 284 285 /** 286 * tb_switch_nvm_read() - Read router NVM 287 * @sw: Router whose NVM to read 288 * @address: Start address on the NVM 289 * @buf: Buffer where the read data is copied 290 * @size: Size of the buffer in bytes 291 * 292 * Reads from router NVM and returns the requested data in @buf. Locking 293 * is up to the caller. Returns %0 in success and negative errno in case 294 * of failure. 295 */ 296 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf, 297 size_t size) 298 { 299 if (tb_switch_is_usb4(sw)) 300 return usb4_switch_nvm_read(sw, address, buf, size); 301 return dma_port_flash_read(sw->dma_port, address, buf, size); 302 } 303 304 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes) 305 { 306 struct tb_nvm *nvm = priv; 307 struct tb_switch *sw = tb_to_switch(nvm->dev); 308 int ret; 309 310 pm_runtime_get_sync(&sw->dev); 311 312 if (!mutex_trylock(&sw->tb->lock)) { 313 ret = restart_syscall(); 314 goto out; 315 } 316 317 ret = tb_switch_nvm_read(sw, offset, val, bytes); 318 mutex_unlock(&sw->tb->lock); 319 320 out: 321 pm_runtime_mark_last_busy(&sw->dev); 322 pm_runtime_put_autosuspend(&sw->dev); 323 324 return ret; 325 } 326 327 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes) 328 { 329 struct tb_nvm *nvm = priv; 330 struct tb_switch *sw = tb_to_switch(nvm->dev); 331 int ret; 332 333 if (!mutex_trylock(&sw->tb->lock)) 334 return restart_syscall(); 335 336 /* 337 * Since writing the NVM image might require some special steps, 338 * for example when CSS headers are written, we cache the image 339 * locally here and handle the special cases when the user asks 340 * us to authenticate the image. 341 */ 342 ret = tb_nvm_write_buf(nvm, offset, val, bytes); 343 mutex_unlock(&sw->tb->lock); 344 345 return ret; 346 } 347 348 static int tb_switch_nvm_add(struct tb_switch *sw) 349 { 350 struct tb_nvm *nvm; 351 int ret; 352 353 if (!nvm_readable(sw)) 354 return 0; 355 356 nvm = tb_nvm_alloc(&sw->dev); 357 if (IS_ERR(nvm)) { 358 ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm); 359 goto err_nvm; 360 } 361 362 ret = tb_nvm_read_version(nvm); 363 if (ret) 364 goto err_nvm; 365 366 /* 367 * If the switch is in safe-mode the only accessible portion of 368 * the NVM is the non-active one where userspace is expected to 369 * write new functional NVM. 370 */ 371 if (!sw->safe_mode) { 372 ret = tb_nvm_add_active(nvm, nvm_read); 373 if (ret) 374 goto err_nvm; 375 } 376 377 if (!sw->no_nvm_upgrade) { 378 ret = tb_nvm_add_non_active(nvm, nvm_write); 379 if (ret) 380 goto err_nvm; 381 } 382 383 sw->nvm = nvm; 384 return 0; 385 386 err_nvm: 387 tb_sw_dbg(sw, "NVM upgrade disabled\n"); 388 sw->no_nvm_upgrade = true; 389 if (!IS_ERR(nvm)) 390 tb_nvm_free(nvm); 391 392 return ret; 393 } 394 395 static void tb_switch_nvm_remove(struct tb_switch *sw) 396 { 397 struct tb_nvm *nvm; 398 399 nvm = sw->nvm; 400 sw->nvm = NULL; 401 402 if (!nvm) 403 return; 404 405 /* Remove authentication status in case the switch is unplugged */ 406 if (!nvm->authenticating) 407 nvm_clear_auth_status(sw); 408 409 tb_nvm_free(nvm); 410 } 411 412 /* port utility functions */ 413 414 static const char *tb_port_type(const struct tb_regs_port_header *port) 415 { 416 switch (port->type >> 16) { 417 case 0: 418 switch ((u8) port->type) { 419 case 0: 420 return "Inactive"; 421 case 1: 422 return "Port"; 423 case 2: 424 return "NHI"; 425 default: 426 return "unknown"; 427 } 428 case 0x2: 429 return "Ethernet"; 430 case 0x8: 431 return "SATA"; 432 case 0xe: 433 return "DP/HDMI"; 434 case 0x10: 435 return "PCIe"; 436 case 0x20: 437 return "USB"; 438 default: 439 return "unknown"; 440 } 441 } 442 443 static void tb_dump_port(struct tb *tb, const struct tb_port *port) 444 { 445 const struct tb_regs_port_header *regs = &port->config; 446 447 tb_dbg(tb, 448 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 449 regs->port_number, regs->vendor_id, regs->device_id, 450 regs->revision, regs->thunderbolt_version, tb_port_type(regs), 451 regs->type); 452 tb_dbg(tb, " Max hop id (in/out): %d/%d\n", 453 regs->max_in_hop_id, regs->max_out_hop_id); 454 tb_dbg(tb, " Max counters: %d\n", regs->max_counters); 455 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits); 456 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits, 457 port->ctl_credits); 458 } 459 460 /** 461 * tb_port_state() - get connectedness state of a port 462 * @port: the port to check 463 * 464 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 465 * 466 * Return: Returns an enum tb_port_state on success or an error code on failure. 467 */ 468 int tb_port_state(struct tb_port *port) 469 { 470 struct tb_cap_phy phy; 471 int res; 472 if (port->cap_phy == 0) { 473 tb_port_WARN(port, "does not have a PHY\n"); 474 return -EINVAL; 475 } 476 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 477 if (res) 478 return res; 479 return phy.state; 480 } 481 482 /** 483 * tb_wait_for_port() - wait for a port to become ready 484 * @port: Port to wait 485 * @wait_if_unplugged: Wait also when port is unplugged 486 * 487 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 488 * wait_if_unplugged is set then we also wait if the port is in state 489 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 490 * switch resume). Otherwise we only wait if a device is registered but the link 491 * has not yet been established. 492 * 493 * Return: Returns an error code on failure. Returns 0 if the port is not 494 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 495 * if the port is connected and in state TB_PORT_UP. 496 */ 497 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 498 { 499 int retries = 10; 500 int state; 501 if (!port->cap_phy) { 502 tb_port_WARN(port, "does not have PHY\n"); 503 return -EINVAL; 504 } 505 if (tb_is_upstream_port(port)) { 506 tb_port_WARN(port, "is the upstream port\n"); 507 return -EINVAL; 508 } 509 510 while (retries--) { 511 state = tb_port_state(port); 512 switch (state) { 513 case TB_PORT_DISABLED: 514 tb_port_dbg(port, "is disabled (state: 0)\n"); 515 return 0; 516 517 case TB_PORT_UNPLUGGED: 518 if (wait_if_unplugged) { 519 /* used during resume */ 520 tb_port_dbg(port, 521 "is unplugged (state: 7), retrying...\n"); 522 msleep(100); 523 break; 524 } 525 tb_port_dbg(port, "is unplugged (state: 7)\n"); 526 return 0; 527 528 case TB_PORT_UP: 529 case TB_PORT_TX_CL0S: 530 case TB_PORT_RX_CL0S: 531 case TB_PORT_CL1: 532 case TB_PORT_CL2: 533 tb_port_dbg(port, "is connected, link is up (state: %d)\n", state); 534 return 1; 535 536 default: 537 if (state < 0) 538 return state; 539 540 /* 541 * After plug-in the state is TB_PORT_CONNECTING. Give it some 542 * time. 543 */ 544 tb_port_dbg(port, 545 "is connected, link is not up (state: %d), retrying...\n", 546 state); 547 msleep(100); 548 } 549 550 } 551 tb_port_warn(port, 552 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 553 return 0; 554 } 555 556 /** 557 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 558 * @port: Port to add/remove NFC credits 559 * @credits: Credits to add/remove 560 * 561 * Change the number of NFC credits allocated to @port by @credits. To remove 562 * NFC credits pass a negative amount of credits. 563 * 564 * Return: Returns 0 on success or an error code on failure. 565 */ 566 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 567 { 568 u32 nfc_credits; 569 570 if (credits == 0 || port->sw->is_unplugged) 571 return 0; 572 573 /* 574 * USB4 restricts programming NFC buffers to lane adapters only 575 * so skip other ports. 576 */ 577 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port)) 578 return 0; 579 580 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK; 581 if (credits < 0) 582 credits = max_t(int, -nfc_credits, credits); 583 584 nfc_credits += credits; 585 586 tb_port_dbg(port, "adding %d NFC credits to %lu", credits, 587 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK); 588 589 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK; 590 port->config.nfc_credits |= nfc_credits; 591 592 return tb_port_write(port, &port->config.nfc_credits, 593 TB_CFG_PORT, ADP_CS_4, 1); 594 } 595 596 /** 597 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 598 * @port: Port whose counters to clear 599 * @counter: Counter index to clear 600 * 601 * Return: Returns 0 on success or an error code on failure. 602 */ 603 int tb_port_clear_counter(struct tb_port *port, int counter) 604 { 605 u32 zero[3] = { 0, 0, 0 }; 606 tb_port_dbg(port, "clearing counter %d\n", counter); 607 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 608 } 609 610 /** 611 * tb_port_unlock() - Unlock downstream port 612 * @port: Port to unlock 613 * 614 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the 615 * downstream router accessible for CM. 616 */ 617 int tb_port_unlock(struct tb_port *port) 618 { 619 if (tb_switch_is_icm(port->sw)) 620 return 0; 621 if (!tb_port_is_null(port)) 622 return -EINVAL; 623 if (tb_switch_is_usb4(port->sw)) 624 return usb4_port_unlock(port); 625 return 0; 626 } 627 628 static int __tb_port_enable(struct tb_port *port, bool enable) 629 { 630 int ret; 631 u32 phy; 632 633 if (!tb_port_is_null(port)) 634 return -EINVAL; 635 636 ret = tb_port_read(port, &phy, TB_CFG_PORT, 637 port->cap_phy + LANE_ADP_CS_1, 1); 638 if (ret) 639 return ret; 640 641 if (enable) 642 phy &= ~LANE_ADP_CS_1_LD; 643 else 644 phy |= LANE_ADP_CS_1_LD; 645 646 647 ret = tb_port_write(port, &phy, TB_CFG_PORT, 648 port->cap_phy + LANE_ADP_CS_1, 1); 649 if (ret) 650 return ret; 651 652 tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable)); 653 return 0; 654 } 655 656 /** 657 * tb_port_enable() - Enable lane adapter 658 * @port: Port to enable (can be %NULL) 659 * 660 * This is used for lane 0 and 1 adapters to enable it. 661 */ 662 int tb_port_enable(struct tb_port *port) 663 { 664 return __tb_port_enable(port, true); 665 } 666 667 /** 668 * tb_port_disable() - Disable lane adapter 669 * @port: Port to disable (can be %NULL) 670 * 671 * This is used for lane 0 and 1 adapters to disable it. 672 */ 673 int tb_port_disable(struct tb_port *port) 674 { 675 return __tb_port_enable(port, false); 676 } 677 678 static int tb_port_reset(struct tb_port *port) 679 { 680 if (tb_switch_is_usb4(port->sw)) 681 return port->cap_usb4 ? usb4_port_reset(port) : 0; 682 return tb_lc_reset_port(port); 683 } 684 685 /* 686 * tb_init_port() - initialize a port 687 * 688 * This is a helper method for tb_switch_alloc. Does not check or initialize 689 * any downstream switches. 690 * 691 * Return: Returns 0 on success or an error code on failure. 692 */ 693 static int tb_init_port(struct tb_port *port) 694 { 695 int res; 696 int cap; 697 698 INIT_LIST_HEAD(&port->list); 699 700 /* Control adapter does not have configuration space */ 701 if (!port->port) 702 return 0; 703 704 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 705 if (res) { 706 if (res == -ENODEV) { 707 tb_dbg(port->sw->tb, " Port %d: not implemented\n", 708 port->port); 709 port->disabled = true; 710 return 0; 711 } 712 return res; 713 } 714 715 /* Port 0 is the switch itself and has no PHY. */ 716 if (port->config.type == TB_TYPE_PORT) { 717 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 718 719 if (cap > 0) 720 port->cap_phy = cap; 721 else 722 tb_port_WARN(port, "non switch port without a PHY\n"); 723 724 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4); 725 if (cap > 0) 726 port->cap_usb4 = cap; 727 728 /* 729 * USB4 ports the buffers allocated for the control path 730 * can be read from the path config space. Legacy 731 * devices we use hard-coded value. 732 */ 733 if (port->cap_usb4) { 734 struct tb_regs_hop hop; 735 736 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2)) 737 port->ctl_credits = hop.initial_credits; 738 } 739 if (!port->ctl_credits) 740 port->ctl_credits = 2; 741 742 } else { 743 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP); 744 if (cap > 0) 745 port->cap_adap = cap; 746 } 747 748 port->total_credits = 749 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >> 750 ADP_CS_4_TOTAL_BUFFERS_SHIFT; 751 752 tb_dump_port(port->sw->tb, port); 753 return 0; 754 } 755 756 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid, 757 int max_hopid) 758 { 759 int port_max_hopid; 760 struct ida *ida; 761 762 if (in) { 763 port_max_hopid = port->config.max_in_hop_id; 764 ida = &port->in_hopids; 765 } else { 766 port_max_hopid = port->config.max_out_hop_id; 767 ida = &port->out_hopids; 768 } 769 770 /* 771 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are 772 * reserved. 773 */ 774 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID) 775 min_hopid = TB_PATH_MIN_HOPID; 776 777 if (max_hopid < 0 || max_hopid > port_max_hopid) 778 max_hopid = port_max_hopid; 779 780 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL); 781 } 782 783 /** 784 * tb_port_alloc_in_hopid() - Allocate input HopID from port 785 * @port: Port to allocate HopID for 786 * @min_hopid: Minimum acceptable input HopID 787 * @max_hopid: Maximum acceptable input HopID 788 * 789 * Return: HopID between @min_hopid and @max_hopid or negative errno in 790 * case of error. 791 */ 792 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid) 793 { 794 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid); 795 } 796 797 /** 798 * tb_port_alloc_out_hopid() - Allocate output HopID from port 799 * @port: Port to allocate HopID for 800 * @min_hopid: Minimum acceptable output HopID 801 * @max_hopid: Maximum acceptable output HopID 802 * 803 * Return: HopID between @min_hopid and @max_hopid or negative errno in 804 * case of error. 805 */ 806 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid) 807 { 808 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid); 809 } 810 811 /** 812 * tb_port_release_in_hopid() - Release allocated input HopID from port 813 * @port: Port whose HopID to release 814 * @hopid: HopID to release 815 */ 816 void tb_port_release_in_hopid(struct tb_port *port, int hopid) 817 { 818 ida_simple_remove(&port->in_hopids, hopid); 819 } 820 821 /** 822 * tb_port_release_out_hopid() - Release allocated output HopID from port 823 * @port: Port whose HopID to release 824 * @hopid: HopID to release 825 */ 826 void tb_port_release_out_hopid(struct tb_port *port, int hopid) 827 { 828 ida_simple_remove(&port->out_hopids, hopid); 829 } 830 831 static inline bool tb_switch_is_reachable(const struct tb_switch *parent, 832 const struct tb_switch *sw) 833 { 834 u64 mask = (1ULL << parent->config.depth * 8) - 1; 835 return (tb_route(parent) & mask) == (tb_route(sw) & mask); 836 } 837 838 /** 839 * tb_next_port_on_path() - Return next port for given port on a path 840 * @start: Start port of the walk 841 * @end: End port of the walk 842 * @prev: Previous port (%NULL if this is the first) 843 * 844 * This function can be used to walk from one port to another if they 845 * are connected through zero or more switches. If the @prev is dual 846 * link port, the function follows that link and returns another end on 847 * that same link. 848 * 849 * If the @end port has been reached, return %NULL. 850 * 851 * Domain tb->lock must be held when this function is called. 852 */ 853 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end, 854 struct tb_port *prev) 855 { 856 struct tb_port *next; 857 858 if (!prev) 859 return start; 860 861 if (prev->sw == end->sw) { 862 if (prev == end) 863 return NULL; 864 return end; 865 } 866 867 if (tb_switch_is_reachable(prev->sw, end->sw)) { 868 next = tb_port_at(tb_route(end->sw), prev->sw); 869 /* Walk down the topology if next == prev */ 870 if (prev->remote && 871 (next == prev || next->dual_link_port == prev)) 872 next = prev->remote; 873 } else { 874 if (tb_is_upstream_port(prev)) { 875 next = prev->remote; 876 } else { 877 next = tb_upstream_port(prev->sw); 878 /* 879 * Keep the same link if prev and next are both 880 * dual link ports. 881 */ 882 if (next->dual_link_port && 883 next->link_nr != prev->link_nr) { 884 next = next->dual_link_port; 885 } 886 } 887 } 888 889 return next != prev ? next : NULL; 890 } 891 892 /** 893 * tb_port_get_link_speed() - Get current link speed 894 * @port: Port to check (USB4 or CIO) 895 * 896 * Returns link speed in Gb/s or negative errno in case of failure. 897 */ 898 int tb_port_get_link_speed(struct tb_port *port) 899 { 900 u32 val, speed; 901 int ret; 902 903 if (!port->cap_phy) 904 return -EINVAL; 905 906 ret = tb_port_read(port, &val, TB_CFG_PORT, 907 port->cap_phy + LANE_ADP_CS_1, 1); 908 if (ret) 909 return ret; 910 911 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >> 912 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT; 913 914 switch (speed) { 915 case LANE_ADP_CS_1_CURRENT_SPEED_GEN4: 916 return 40; 917 case LANE_ADP_CS_1_CURRENT_SPEED_GEN3: 918 return 20; 919 default: 920 return 10; 921 } 922 } 923 924 /** 925 * tb_port_get_link_width() - Get current link width 926 * @port: Port to check (USB4 or CIO) 927 * 928 * Returns link width. Return the link width as encoded in &enum 929 * tb_link_width or negative errno in case of failure. 930 */ 931 int tb_port_get_link_width(struct tb_port *port) 932 { 933 u32 val; 934 int ret; 935 936 if (!port->cap_phy) 937 return -EINVAL; 938 939 ret = tb_port_read(port, &val, TB_CFG_PORT, 940 port->cap_phy + LANE_ADP_CS_1, 1); 941 if (ret) 942 return ret; 943 944 /* Matches the values in enum tb_link_width */ 945 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >> 946 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT; 947 } 948 949 static bool tb_port_is_width_supported(struct tb_port *port, 950 unsigned int width_mask) 951 { 952 u32 phy, widths; 953 int ret; 954 955 if (!port->cap_phy) 956 return false; 957 958 ret = tb_port_read(port, &phy, TB_CFG_PORT, 959 port->cap_phy + LANE_ADP_CS_0, 1); 960 if (ret) 961 return false; 962 963 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >> 964 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT; 965 966 return widths & width_mask; 967 } 968 969 static bool is_gen4_link(struct tb_port *port) 970 { 971 return tb_port_get_link_speed(port) > 20; 972 } 973 974 /** 975 * tb_port_set_link_width() - Set target link width of the lane adapter 976 * @port: Lane adapter 977 * @width: Target link width 978 * 979 * Sets the target link width of the lane adapter to @width. Does not 980 * enable/disable lane bonding. For that call tb_port_set_lane_bonding(). 981 * 982 * Return: %0 in case of success and negative errno in case of error 983 */ 984 int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width) 985 { 986 u32 val; 987 int ret; 988 989 if (!port->cap_phy) 990 return -EINVAL; 991 992 ret = tb_port_read(port, &val, TB_CFG_PORT, 993 port->cap_phy + LANE_ADP_CS_1, 1); 994 if (ret) 995 return ret; 996 997 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK; 998 switch (width) { 999 case TB_LINK_WIDTH_SINGLE: 1000 /* Gen 4 link cannot be single */ 1001 if (is_gen4_link(port)) 1002 return -EOPNOTSUPP; 1003 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE << 1004 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 1005 break; 1006 case TB_LINK_WIDTH_DUAL: 1007 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL << 1008 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 1009 break; 1010 default: 1011 return -EINVAL; 1012 } 1013 1014 return tb_port_write(port, &val, TB_CFG_PORT, 1015 port->cap_phy + LANE_ADP_CS_1, 1); 1016 } 1017 1018 /** 1019 * tb_port_set_lane_bonding() - Enable/disable lane bonding 1020 * @port: Lane adapter 1021 * @bonding: enable/disable bonding 1022 * 1023 * Enables or disables lane bonding. This should be called after target 1024 * link width has been set (tb_port_set_link_width()). Note in most 1025 * cases one should use tb_port_lane_bonding_enable() instead to enable 1026 * lane bonding. 1027 * 1028 * Return: %0 in case of success and negative errno in case of error 1029 */ 1030 static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding) 1031 { 1032 u32 val; 1033 int ret; 1034 1035 if (!port->cap_phy) 1036 return -EINVAL; 1037 1038 ret = tb_port_read(port, &val, TB_CFG_PORT, 1039 port->cap_phy + LANE_ADP_CS_1, 1); 1040 if (ret) 1041 return ret; 1042 1043 if (bonding) 1044 val |= LANE_ADP_CS_1_LB; 1045 else 1046 val &= ~LANE_ADP_CS_1_LB; 1047 1048 return tb_port_write(port, &val, TB_CFG_PORT, 1049 port->cap_phy + LANE_ADP_CS_1, 1); 1050 } 1051 1052 /** 1053 * tb_port_lane_bonding_enable() - Enable bonding on port 1054 * @port: port to enable 1055 * 1056 * Enable bonding by setting the link width of the port and the other 1057 * port in case of dual link port. Does not wait for the link to 1058 * actually reach the bonded state so caller needs to call 1059 * tb_port_wait_for_link_width() before enabling any paths through the 1060 * link to make sure the link is in expected state. 1061 * 1062 * Return: %0 in case of success and negative errno in case of error 1063 */ 1064 int tb_port_lane_bonding_enable(struct tb_port *port) 1065 { 1066 enum tb_link_width width; 1067 int ret; 1068 1069 /* 1070 * Enable lane bonding for both links if not already enabled by 1071 * for example the boot firmware. 1072 */ 1073 width = tb_port_get_link_width(port); 1074 if (width == TB_LINK_WIDTH_SINGLE) { 1075 ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL); 1076 if (ret) 1077 goto err_lane0; 1078 } 1079 1080 width = tb_port_get_link_width(port->dual_link_port); 1081 if (width == TB_LINK_WIDTH_SINGLE) { 1082 ret = tb_port_set_link_width(port->dual_link_port, 1083 TB_LINK_WIDTH_DUAL); 1084 if (ret) 1085 goto err_lane0; 1086 } 1087 1088 /* 1089 * Only set bonding if the link was not already bonded. This 1090 * avoids the lane adapter to re-enter bonding state. 1091 */ 1092 if (width == TB_LINK_WIDTH_SINGLE && !tb_is_upstream_port(port)) { 1093 ret = tb_port_set_lane_bonding(port, true); 1094 if (ret) 1095 goto err_lane1; 1096 } 1097 1098 /* 1099 * When lane 0 bonding is set it will affect lane 1 too so 1100 * update both. 1101 */ 1102 port->bonded = true; 1103 port->dual_link_port->bonded = true; 1104 1105 return 0; 1106 1107 err_lane1: 1108 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE); 1109 err_lane0: 1110 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE); 1111 1112 return ret; 1113 } 1114 1115 /** 1116 * tb_port_lane_bonding_disable() - Disable bonding on port 1117 * @port: port to disable 1118 * 1119 * Disable bonding by setting the link width of the port and the 1120 * other port in case of dual link port. 1121 */ 1122 void tb_port_lane_bonding_disable(struct tb_port *port) 1123 { 1124 tb_port_set_lane_bonding(port, false); 1125 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE); 1126 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE); 1127 port->dual_link_port->bonded = false; 1128 port->bonded = false; 1129 } 1130 1131 /** 1132 * tb_port_wait_for_link_width() - Wait until link reaches specific width 1133 * @port: Port to wait for 1134 * @width_mask: Expected link width mask 1135 * @timeout_msec: Timeout in ms how long to wait 1136 * 1137 * Should be used after both ends of the link have been bonded (or 1138 * bonding has been disabled) to wait until the link actually reaches 1139 * the expected state. Returns %-ETIMEDOUT if the width was not reached 1140 * within the given timeout, %0 if it did. Can be passed a mask of 1141 * expected widths and succeeds if any of the widths is reached. 1142 */ 1143 int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width_mask, 1144 int timeout_msec) 1145 { 1146 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 1147 int ret; 1148 1149 /* Gen 4 link does not support single lane */ 1150 if ((width_mask & TB_LINK_WIDTH_SINGLE) && is_gen4_link(port)) 1151 return -EOPNOTSUPP; 1152 1153 do { 1154 ret = tb_port_get_link_width(port); 1155 if (ret < 0) { 1156 /* 1157 * Sometimes we get port locked error when 1158 * polling the lanes so we can ignore it and 1159 * retry. 1160 */ 1161 if (ret != -EACCES) 1162 return ret; 1163 } else if (ret & width_mask) { 1164 return 0; 1165 } 1166 1167 usleep_range(1000, 2000); 1168 } while (ktime_before(ktime_get(), timeout)); 1169 1170 return -ETIMEDOUT; 1171 } 1172 1173 static int tb_port_do_update_credits(struct tb_port *port) 1174 { 1175 u32 nfc_credits; 1176 int ret; 1177 1178 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1); 1179 if (ret) 1180 return ret; 1181 1182 if (nfc_credits != port->config.nfc_credits) { 1183 u32 total; 1184 1185 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >> 1186 ADP_CS_4_TOTAL_BUFFERS_SHIFT; 1187 1188 tb_port_dbg(port, "total credits changed %u -> %u\n", 1189 port->total_credits, total); 1190 1191 port->config.nfc_credits = nfc_credits; 1192 port->total_credits = total; 1193 } 1194 1195 return 0; 1196 } 1197 1198 /** 1199 * tb_port_update_credits() - Re-read port total credits 1200 * @port: Port to update 1201 * 1202 * After the link is bonded (or bonding was disabled) the port total 1203 * credits may change, so this function needs to be called to re-read 1204 * the credits. Updates also the second lane adapter. 1205 */ 1206 int tb_port_update_credits(struct tb_port *port) 1207 { 1208 int ret; 1209 1210 ret = tb_port_do_update_credits(port); 1211 if (ret) 1212 return ret; 1213 return tb_port_do_update_credits(port->dual_link_port); 1214 } 1215 1216 static int tb_port_start_lane_initialization(struct tb_port *port) 1217 { 1218 int ret; 1219 1220 if (tb_switch_is_usb4(port->sw)) 1221 return 0; 1222 1223 ret = tb_lc_start_lane_initialization(port); 1224 return ret == -EINVAL ? 0 : ret; 1225 } 1226 1227 /* 1228 * Returns true if the port had something (router, XDomain) connected 1229 * before suspend. 1230 */ 1231 static bool tb_port_resume(struct tb_port *port) 1232 { 1233 bool has_remote = tb_port_has_remote(port); 1234 1235 if (port->usb4) { 1236 usb4_port_device_resume(port->usb4); 1237 } else if (!has_remote) { 1238 /* 1239 * For disconnected downstream lane adapters start lane 1240 * initialization now so we detect future connects. 1241 * 1242 * For XDomain start the lane initialzation now so the 1243 * link gets re-established. 1244 * 1245 * This is only needed for non-USB4 ports. 1246 */ 1247 if (!tb_is_upstream_port(port) || port->xdomain) 1248 tb_port_start_lane_initialization(port); 1249 } 1250 1251 return has_remote || port->xdomain; 1252 } 1253 1254 /** 1255 * tb_port_is_enabled() - Is the adapter port enabled 1256 * @port: Port to check 1257 */ 1258 bool tb_port_is_enabled(struct tb_port *port) 1259 { 1260 switch (port->config.type) { 1261 case TB_TYPE_PCIE_UP: 1262 case TB_TYPE_PCIE_DOWN: 1263 return tb_pci_port_is_enabled(port); 1264 1265 case TB_TYPE_DP_HDMI_IN: 1266 case TB_TYPE_DP_HDMI_OUT: 1267 return tb_dp_port_is_enabled(port); 1268 1269 case TB_TYPE_USB3_UP: 1270 case TB_TYPE_USB3_DOWN: 1271 return tb_usb3_port_is_enabled(port); 1272 1273 default: 1274 return false; 1275 } 1276 } 1277 1278 /** 1279 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled 1280 * @port: USB3 adapter port to check 1281 */ 1282 bool tb_usb3_port_is_enabled(struct tb_port *port) 1283 { 1284 u32 data; 1285 1286 if (tb_port_read(port, &data, TB_CFG_PORT, 1287 port->cap_adap + ADP_USB3_CS_0, 1)) 1288 return false; 1289 1290 return !!(data & ADP_USB3_CS_0_PE); 1291 } 1292 1293 /** 1294 * tb_usb3_port_enable() - Enable USB3 adapter port 1295 * @port: USB3 adapter port to enable 1296 * @enable: Enable/disable the USB3 adapter 1297 */ 1298 int tb_usb3_port_enable(struct tb_port *port, bool enable) 1299 { 1300 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V) 1301 : ADP_USB3_CS_0_V; 1302 1303 if (!port->cap_adap) 1304 return -ENXIO; 1305 return tb_port_write(port, &word, TB_CFG_PORT, 1306 port->cap_adap + ADP_USB3_CS_0, 1); 1307 } 1308 1309 /** 1310 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled 1311 * @port: PCIe port to check 1312 */ 1313 bool tb_pci_port_is_enabled(struct tb_port *port) 1314 { 1315 u32 data; 1316 1317 if (tb_port_read(port, &data, TB_CFG_PORT, 1318 port->cap_adap + ADP_PCIE_CS_0, 1)) 1319 return false; 1320 1321 return !!(data & ADP_PCIE_CS_0_PE); 1322 } 1323 1324 /** 1325 * tb_pci_port_enable() - Enable PCIe adapter port 1326 * @port: PCIe port to enable 1327 * @enable: Enable/disable the PCIe adapter 1328 */ 1329 int tb_pci_port_enable(struct tb_port *port, bool enable) 1330 { 1331 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0; 1332 if (!port->cap_adap) 1333 return -ENXIO; 1334 return tb_port_write(port, &word, TB_CFG_PORT, 1335 port->cap_adap + ADP_PCIE_CS_0, 1); 1336 } 1337 1338 /** 1339 * tb_dp_port_hpd_is_active() - Is HPD already active 1340 * @port: DP out port to check 1341 * 1342 * Checks if the DP OUT adapter port has HDP bit already set. 1343 */ 1344 int tb_dp_port_hpd_is_active(struct tb_port *port) 1345 { 1346 u32 data; 1347 int ret; 1348 1349 ret = tb_port_read(port, &data, TB_CFG_PORT, 1350 port->cap_adap + ADP_DP_CS_2, 1); 1351 if (ret) 1352 return ret; 1353 1354 return !!(data & ADP_DP_CS_2_HDP); 1355 } 1356 1357 /** 1358 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port 1359 * @port: Port to clear HPD 1360 * 1361 * If the DP IN port has HDP set, this function can be used to clear it. 1362 */ 1363 int tb_dp_port_hpd_clear(struct tb_port *port) 1364 { 1365 u32 data; 1366 int ret; 1367 1368 ret = tb_port_read(port, &data, TB_CFG_PORT, 1369 port->cap_adap + ADP_DP_CS_3, 1); 1370 if (ret) 1371 return ret; 1372 1373 data |= ADP_DP_CS_3_HDPC; 1374 return tb_port_write(port, &data, TB_CFG_PORT, 1375 port->cap_adap + ADP_DP_CS_3, 1); 1376 } 1377 1378 /** 1379 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port 1380 * @port: DP IN/OUT port to set hops 1381 * @video: Video Hop ID 1382 * @aux_tx: AUX TX Hop ID 1383 * @aux_rx: AUX RX Hop ID 1384 * 1385 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4 1386 * router DP adapters too but does not program the values as the fields 1387 * are read-only. 1388 */ 1389 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video, 1390 unsigned int aux_tx, unsigned int aux_rx) 1391 { 1392 u32 data[2]; 1393 int ret; 1394 1395 if (tb_switch_is_usb4(port->sw)) 1396 return 0; 1397 1398 ret = tb_port_read(port, data, TB_CFG_PORT, 1399 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1400 if (ret) 1401 return ret; 1402 1403 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK; 1404 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1405 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1406 1407 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) & 1408 ADP_DP_CS_0_VIDEO_HOPID_MASK; 1409 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK; 1410 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) & 1411 ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1412 1413 return tb_port_write(port, data, TB_CFG_PORT, 1414 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1415 } 1416 1417 /** 1418 * tb_dp_port_is_enabled() - Is DP adapter port enabled 1419 * @port: DP adapter port to check 1420 */ 1421 bool tb_dp_port_is_enabled(struct tb_port *port) 1422 { 1423 u32 data[2]; 1424 1425 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0, 1426 ARRAY_SIZE(data))) 1427 return false; 1428 1429 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE)); 1430 } 1431 1432 /** 1433 * tb_dp_port_enable() - Enables/disables DP paths of a port 1434 * @port: DP IN/OUT port 1435 * @enable: Enable/disable DP path 1436 * 1437 * Once Hop IDs are programmed DP paths can be enabled or disabled by 1438 * calling this function. 1439 */ 1440 int tb_dp_port_enable(struct tb_port *port, bool enable) 1441 { 1442 u32 data[2]; 1443 int ret; 1444 1445 ret = tb_port_read(port, data, TB_CFG_PORT, 1446 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1447 if (ret) 1448 return ret; 1449 1450 if (enable) 1451 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE; 1452 else 1453 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE); 1454 1455 return tb_port_write(port, data, TB_CFG_PORT, 1456 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1457 } 1458 1459 /* switch utility functions */ 1460 1461 static const char *tb_switch_generation_name(const struct tb_switch *sw) 1462 { 1463 switch (sw->generation) { 1464 case 1: 1465 return "Thunderbolt 1"; 1466 case 2: 1467 return "Thunderbolt 2"; 1468 case 3: 1469 return "Thunderbolt 3"; 1470 case 4: 1471 return "USB4"; 1472 default: 1473 return "Unknown"; 1474 } 1475 } 1476 1477 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw) 1478 { 1479 const struct tb_regs_switch_header *regs = &sw->config; 1480 1481 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n", 1482 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id, 1483 regs->revision, regs->thunderbolt_version); 1484 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number); 1485 tb_dbg(tb, " Config:\n"); 1486 tb_dbg(tb, 1487 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 1488 regs->upstream_port_number, regs->depth, 1489 (((u64) regs->route_hi) << 32) | regs->route_lo, 1490 regs->enabled, regs->plug_events_delay); 1491 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n", 1492 regs->__unknown1, regs->__unknown4); 1493 } 1494 1495 static int tb_switch_reset_host(struct tb_switch *sw) 1496 { 1497 if (sw->generation > 1) { 1498 struct tb_port *port; 1499 1500 tb_switch_for_each_port(sw, port) { 1501 int i, ret; 1502 1503 /* 1504 * For lane adapters we issue downstream port 1505 * reset and clear up path config spaces. 1506 * 1507 * For protocol adapters we disable the path and 1508 * clear path config space one by one (from 8 to 1509 * Max Input HopID of the adapter). 1510 */ 1511 if (tb_port_is_null(port) && !tb_is_upstream_port(port)) { 1512 ret = tb_port_reset(port); 1513 if (ret) 1514 return ret; 1515 } else if (tb_port_is_usb3_down(port) || 1516 tb_port_is_usb3_up(port)) { 1517 tb_usb3_port_enable(port, false); 1518 } else if (tb_port_is_dpin(port) || 1519 tb_port_is_dpout(port)) { 1520 tb_dp_port_enable(port, false); 1521 } else if (tb_port_is_pcie_down(port) || 1522 tb_port_is_pcie_up(port)) { 1523 tb_pci_port_enable(port, false); 1524 } else { 1525 continue; 1526 } 1527 1528 /* Cleanup path config space of protocol adapter */ 1529 for (i = TB_PATH_MIN_HOPID; 1530 i <= port->config.max_in_hop_id; i++) { 1531 ret = tb_path_deactivate_hop(port, i); 1532 if (ret) 1533 return ret; 1534 } 1535 } 1536 } else { 1537 struct tb_cfg_result res; 1538 1539 /* Thunderbolt 1 uses the "reset" config space packet */ 1540 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2, 1541 TB_CFG_SWITCH, 2, 2); 1542 if (res.err) 1543 return res.err; 1544 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw)); 1545 if (res.err > 0) 1546 return -EIO; 1547 else if (res.err < 0) 1548 return res.err; 1549 } 1550 1551 return 0; 1552 } 1553 1554 static int tb_switch_reset_device(struct tb_switch *sw) 1555 { 1556 return tb_port_reset(tb_switch_downstream_port(sw)); 1557 } 1558 1559 static bool tb_switch_enumerated(struct tb_switch *sw) 1560 { 1561 u32 val; 1562 int ret; 1563 1564 /* 1565 * Read directly from the hardware because we use this also 1566 * during system sleep where sw->config.enabled is already set 1567 * by us. 1568 */ 1569 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_3, 1); 1570 if (ret) 1571 return false; 1572 1573 return !!(val & ROUTER_CS_3_V); 1574 } 1575 1576 /** 1577 * tb_switch_reset() - Perform reset to the router 1578 * @sw: Router to reset 1579 * 1580 * Issues reset to the router @sw. Can be used for any router. For host 1581 * routers, resets all the downstream ports and cleans up path config 1582 * spaces accordingly. For device routers issues downstream port reset 1583 * through the parent router, so as side effect there will be unplug 1584 * soon after this is finished. 1585 * 1586 * If the router is not enumerated does nothing. 1587 * 1588 * Returns %0 on success or negative errno in case of failure. 1589 */ 1590 int tb_switch_reset(struct tb_switch *sw) 1591 { 1592 int ret; 1593 1594 /* 1595 * We cannot access the port config spaces unless the router is 1596 * already enumerated. If the router is not enumerated it is 1597 * equal to being reset so we can skip that here. 1598 */ 1599 if (!tb_switch_enumerated(sw)) 1600 return 0; 1601 1602 tb_sw_dbg(sw, "resetting\n"); 1603 1604 if (tb_route(sw)) 1605 ret = tb_switch_reset_device(sw); 1606 else 1607 ret = tb_switch_reset_host(sw); 1608 1609 if (ret) 1610 tb_sw_warn(sw, "failed to reset\n"); 1611 1612 return ret; 1613 } 1614 1615 /** 1616 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset 1617 * @sw: Router to read the offset value from 1618 * @offset: Offset in the router config space to read from 1619 * @bit: Bit mask in the offset to wait for 1620 * @value: Value of the bits to wait for 1621 * @timeout_msec: Timeout in ms how long to wait 1622 * 1623 * Wait till the specified bits in specified offset reach specified value. 1624 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached 1625 * within the given timeout or a negative errno in case of failure. 1626 */ 1627 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit, 1628 u32 value, int timeout_msec) 1629 { 1630 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 1631 1632 do { 1633 u32 val; 1634 int ret; 1635 1636 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1); 1637 if (ret) 1638 return ret; 1639 1640 if ((val & bit) == value) 1641 return 0; 1642 1643 usleep_range(50, 100); 1644 } while (ktime_before(ktime_get(), timeout)); 1645 1646 return -ETIMEDOUT; 1647 } 1648 1649 /* 1650 * tb_plug_events_active() - enable/disable plug events on a switch 1651 * 1652 * Also configures a sane plug_events_delay of 255ms. 1653 * 1654 * Return: Returns 0 on success or an error code on failure. 1655 */ 1656 static int tb_plug_events_active(struct tb_switch *sw, bool active) 1657 { 1658 u32 data; 1659 int res; 1660 1661 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw)) 1662 return 0; 1663 1664 sw->config.plug_events_delay = 0xff; 1665 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 1666 if (res) 1667 return res; 1668 1669 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 1670 if (res) 1671 return res; 1672 1673 if (active) { 1674 data = data & 0xFFFFFF83; 1675 switch (sw->config.device_id) { 1676 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1677 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1678 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1679 break; 1680 default: 1681 /* 1682 * Skip Alpine Ridge, it needs to have vendor 1683 * specific USB hotplug event enabled for the 1684 * internal xHCI to work. 1685 */ 1686 if (!tb_switch_is_alpine_ridge(sw)) 1687 data |= TB_PLUG_EVENTS_USB_DISABLE; 1688 } 1689 } else { 1690 data = data | 0x7c; 1691 } 1692 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 1693 sw->cap_plug_events + 1, 1); 1694 } 1695 1696 static ssize_t authorized_show(struct device *dev, 1697 struct device_attribute *attr, 1698 char *buf) 1699 { 1700 struct tb_switch *sw = tb_to_switch(dev); 1701 1702 return sysfs_emit(buf, "%u\n", sw->authorized); 1703 } 1704 1705 static int disapprove_switch(struct device *dev, void *not_used) 1706 { 1707 char *envp[] = { "AUTHORIZED=0", NULL }; 1708 struct tb_switch *sw; 1709 1710 sw = tb_to_switch(dev); 1711 if (sw && sw->authorized) { 1712 int ret; 1713 1714 /* First children */ 1715 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch); 1716 if (ret) 1717 return ret; 1718 1719 ret = tb_domain_disapprove_switch(sw->tb, sw); 1720 if (ret) 1721 return ret; 1722 1723 sw->authorized = 0; 1724 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp); 1725 } 1726 1727 return 0; 1728 } 1729 1730 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 1731 { 1732 char envp_string[13]; 1733 int ret = -EINVAL; 1734 char *envp[] = { envp_string, NULL }; 1735 1736 if (!mutex_trylock(&sw->tb->lock)) 1737 return restart_syscall(); 1738 1739 if (!!sw->authorized == !!val) 1740 goto unlock; 1741 1742 switch (val) { 1743 /* Disapprove switch */ 1744 case 0: 1745 if (tb_route(sw)) { 1746 ret = disapprove_switch(&sw->dev, NULL); 1747 goto unlock; 1748 } 1749 break; 1750 1751 /* Approve switch */ 1752 case 1: 1753 if (sw->key) 1754 ret = tb_domain_approve_switch_key(sw->tb, sw); 1755 else 1756 ret = tb_domain_approve_switch(sw->tb, sw); 1757 break; 1758 1759 /* Challenge switch */ 1760 case 2: 1761 if (sw->key) 1762 ret = tb_domain_challenge_switch_key(sw->tb, sw); 1763 break; 1764 1765 default: 1766 break; 1767 } 1768 1769 if (!ret) { 1770 sw->authorized = val; 1771 /* 1772 * Notify status change to the userspace, informing the new 1773 * value of /sys/bus/thunderbolt/devices/.../authorized. 1774 */ 1775 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized); 1776 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp); 1777 } 1778 1779 unlock: 1780 mutex_unlock(&sw->tb->lock); 1781 return ret; 1782 } 1783 1784 static ssize_t authorized_store(struct device *dev, 1785 struct device_attribute *attr, 1786 const char *buf, size_t count) 1787 { 1788 struct tb_switch *sw = tb_to_switch(dev); 1789 unsigned int val; 1790 ssize_t ret; 1791 1792 ret = kstrtouint(buf, 0, &val); 1793 if (ret) 1794 return ret; 1795 if (val > 2) 1796 return -EINVAL; 1797 1798 pm_runtime_get_sync(&sw->dev); 1799 ret = tb_switch_set_authorized(sw, val); 1800 pm_runtime_mark_last_busy(&sw->dev); 1801 pm_runtime_put_autosuspend(&sw->dev); 1802 1803 return ret ? ret : count; 1804 } 1805 static DEVICE_ATTR_RW(authorized); 1806 1807 static ssize_t boot_show(struct device *dev, struct device_attribute *attr, 1808 char *buf) 1809 { 1810 struct tb_switch *sw = tb_to_switch(dev); 1811 1812 return sysfs_emit(buf, "%u\n", sw->boot); 1813 } 1814 static DEVICE_ATTR_RO(boot); 1815 1816 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 1817 char *buf) 1818 { 1819 struct tb_switch *sw = tb_to_switch(dev); 1820 1821 return sysfs_emit(buf, "%#x\n", sw->device); 1822 } 1823 static DEVICE_ATTR_RO(device); 1824 1825 static ssize_t 1826 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1827 { 1828 struct tb_switch *sw = tb_to_switch(dev); 1829 1830 return sysfs_emit(buf, "%s\n", sw->device_name ?: ""); 1831 } 1832 static DEVICE_ATTR_RO(device_name); 1833 1834 static ssize_t 1835 generation_show(struct device *dev, struct device_attribute *attr, char *buf) 1836 { 1837 struct tb_switch *sw = tb_to_switch(dev); 1838 1839 return sysfs_emit(buf, "%u\n", sw->generation); 1840 } 1841 static DEVICE_ATTR_RO(generation); 1842 1843 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 1844 char *buf) 1845 { 1846 struct tb_switch *sw = tb_to_switch(dev); 1847 ssize_t ret; 1848 1849 if (!mutex_trylock(&sw->tb->lock)) 1850 return restart_syscall(); 1851 1852 if (sw->key) 1853 ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 1854 else 1855 ret = sysfs_emit(buf, "\n"); 1856 1857 mutex_unlock(&sw->tb->lock); 1858 return ret; 1859 } 1860 1861 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 1862 const char *buf, size_t count) 1863 { 1864 struct tb_switch *sw = tb_to_switch(dev); 1865 u8 key[TB_SWITCH_KEY_SIZE]; 1866 ssize_t ret = count; 1867 bool clear = false; 1868 1869 if (!strcmp(buf, "\n")) 1870 clear = true; 1871 else if (hex2bin(key, buf, sizeof(key))) 1872 return -EINVAL; 1873 1874 if (!mutex_trylock(&sw->tb->lock)) 1875 return restart_syscall(); 1876 1877 if (sw->authorized) { 1878 ret = -EBUSY; 1879 } else { 1880 kfree(sw->key); 1881 if (clear) { 1882 sw->key = NULL; 1883 } else { 1884 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 1885 if (!sw->key) 1886 ret = -ENOMEM; 1887 } 1888 } 1889 1890 mutex_unlock(&sw->tb->lock); 1891 return ret; 1892 } 1893 static DEVICE_ATTR(key, 0600, key_show, key_store); 1894 1895 static ssize_t speed_show(struct device *dev, struct device_attribute *attr, 1896 char *buf) 1897 { 1898 struct tb_switch *sw = tb_to_switch(dev); 1899 1900 return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed); 1901 } 1902 1903 /* 1904 * Currently all lanes must run at the same speed but we expose here 1905 * both directions to allow possible asymmetric links in the future. 1906 */ 1907 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL); 1908 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL); 1909 1910 static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr, 1911 char *buf) 1912 { 1913 struct tb_switch *sw = tb_to_switch(dev); 1914 unsigned int width; 1915 1916 switch (sw->link_width) { 1917 case TB_LINK_WIDTH_SINGLE: 1918 case TB_LINK_WIDTH_ASYM_TX: 1919 width = 1; 1920 break; 1921 case TB_LINK_WIDTH_DUAL: 1922 width = 2; 1923 break; 1924 case TB_LINK_WIDTH_ASYM_RX: 1925 width = 3; 1926 break; 1927 default: 1928 WARN_ON_ONCE(1); 1929 return -EINVAL; 1930 } 1931 1932 return sysfs_emit(buf, "%u\n", width); 1933 } 1934 static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL); 1935 1936 static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr, 1937 char *buf) 1938 { 1939 struct tb_switch *sw = tb_to_switch(dev); 1940 unsigned int width; 1941 1942 switch (sw->link_width) { 1943 case TB_LINK_WIDTH_SINGLE: 1944 case TB_LINK_WIDTH_ASYM_RX: 1945 width = 1; 1946 break; 1947 case TB_LINK_WIDTH_DUAL: 1948 width = 2; 1949 break; 1950 case TB_LINK_WIDTH_ASYM_TX: 1951 width = 3; 1952 break; 1953 default: 1954 WARN_ON_ONCE(1); 1955 return -EINVAL; 1956 } 1957 1958 return sysfs_emit(buf, "%u\n", width); 1959 } 1960 static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL); 1961 1962 static ssize_t nvm_authenticate_show(struct device *dev, 1963 struct device_attribute *attr, char *buf) 1964 { 1965 struct tb_switch *sw = tb_to_switch(dev); 1966 u32 status; 1967 1968 nvm_get_auth_status(sw, &status); 1969 return sysfs_emit(buf, "%#x\n", status); 1970 } 1971 1972 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf, 1973 bool disconnect) 1974 { 1975 struct tb_switch *sw = tb_to_switch(dev); 1976 int val, ret; 1977 1978 pm_runtime_get_sync(&sw->dev); 1979 1980 if (!mutex_trylock(&sw->tb->lock)) { 1981 ret = restart_syscall(); 1982 goto exit_rpm; 1983 } 1984 1985 if (sw->no_nvm_upgrade) { 1986 ret = -EOPNOTSUPP; 1987 goto exit_unlock; 1988 } 1989 1990 /* If NVMem devices are not yet added */ 1991 if (!sw->nvm) { 1992 ret = -EAGAIN; 1993 goto exit_unlock; 1994 } 1995 1996 ret = kstrtoint(buf, 10, &val); 1997 if (ret) 1998 goto exit_unlock; 1999 2000 /* Always clear the authentication status */ 2001 nvm_clear_auth_status(sw); 2002 2003 if (val > 0) { 2004 if (val == AUTHENTICATE_ONLY) { 2005 if (disconnect) 2006 ret = -EINVAL; 2007 else 2008 ret = nvm_authenticate(sw, true); 2009 } else { 2010 if (!sw->nvm->flushed) { 2011 if (!sw->nvm->buf) { 2012 ret = -EINVAL; 2013 goto exit_unlock; 2014 } 2015 2016 ret = nvm_validate_and_write(sw); 2017 if (ret || val == WRITE_ONLY) 2018 goto exit_unlock; 2019 } 2020 if (val == WRITE_AND_AUTHENTICATE) { 2021 if (disconnect) 2022 ret = tb_lc_force_power(sw); 2023 else 2024 ret = nvm_authenticate(sw, false); 2025 } 2026 } 2027 } 2028 2029 exit_unlock: 2030 mutex_unlock(&sw->tb->lock); 2031 exit_rpm: 2032 pm_runtime_mark_last_busy(&sw->dev); 2033 pm_runtime_put_autosuspend(&sw->dev); 2034 2035 return ret; 2036 } 2037 2038 static ssize_t nvm_authenticate_store(struct device *dev, 2039 struct device_attribute *attr, const char *buf, size_t count) 2040 { 2041 int ret = nvm_authenticate_sysfs(dev, buf, false); 2042 if (ret) 2043 return ret; 2044 return count; 2045 } 2046 static DEVICE_ATTR_RW(nvm_authenticate); 2047 2048 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev, 2049 struct device_attribute *attr, char *buf) 2050 { 2051 return nvm_authenticate_show(dev, attr, buf); 2052 } 2053 2054 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev, 2055 struct device_attribute *attr, const char *buf, size_t count) 2056 { 2057 int ret; 2058 2059 ret = nvm_authenticate_sysfs(dev, buf, true); 2060 return ret ? ret : count; 2061 } 2062 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect); 2063 2064 static ssize_t nvm_version_show(struct device *dev, 2065 struct device_attribute *attr, char *buf) 2066 { 2067 struct tb_switch *sw = tb_to_switch(dev); 2068 int ret; 2069 2070 if (!mutex_trylock(&sw->tb->lock)) 2071 return restart_syscall(); 2072 2073 if (sw->safe_mode) 2074 ret = -ENODATA; 2075 else if (!sw->nvm) 2076 ret = -EAGAIN; 2077 else 2078 ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 2079 2080 mutex_unlock(&sw->tb->lock); 2081 2082 return ret; 2083 } 2084 static DEVICE_ATTR_RO(nvm_version); 2085 2086 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 2087 char *buf) 2088 { 2089 struct tb_switch *sw = tb_to_switch(dev); 2090 2091 return sysfs_emit(buf, "%#x\n", sw->vendor); 2092 } 2093 static DEVICE_ATTR_RO(vendor); 2094 2095 static ssize_t 2096 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 2097 { 2098 struct tb_switch *sw = tb_to_switch(dev); 2099 2100 return sysfs_emit(buf, "%s\n", sw->vendor_name ?: ""); 2101 } 2102 static DEVICE_ATTR_RO(vendor_name); 2103 2104 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 2105 char *buf) 2106 { 2107 struct tb_switch *sw = tb_to_switch(dev); 2108 2109 return sysfs_emit(buf, "%pUb\n", sw->uuid); 2110 } 2111 static DEVICE_ATTR_RO(unique_id); 2112 2113 static struct attribute *switch_attrs[] = { 2114 &dev_attr_authorized.attr, 2115 &dev_attr_boot.attr, 2116 &dev_attr_device.attr, 2117 &dev_attr_device_name.attr, 2118 &dev_attr_generation.attr, 2119 &dev_attr_key.attr, 2120 &dev_attr_nvm_authenticate.attr, 2121 &dev_attr_nvm_authenticate_on_disconnect.attr, 2122 &dev_attr_nvm_version.attr, 2123 &dev_attr_rx_speed.attr, 2124 &dev_attr_rx_lanes.attr, 2125 &dev_attr_tx_speed.attr, 2126 &dev_attr_tx_lanes.attr, 2127 &dev_attr_vendor.attr, 2128 &dev_attr_vendor_name.attr, 2129 &dev_attr_unique_id.attr, 2130 NULL, 2131 }; 2132 2133 static umode_t switch_attr_is_visible(struct kobject *kobj, 2134 struct attribute *attr, int n) 2135 { 2136 struct device *dev = kobj_to_dev(kobj); 2137 struct tb_switch *sw = tb_to_switch(dev); 2138 2139 if (attr == &dev_attr_authorized.attr) { 2140 if (sw->tb->security_level == TB_SECURITY_NOPCIE || 2141 sw->tb->security_level == TB_SECURITY_DPONLY) 2142 return 0; 2143 } else if (attr == &dev_attr_device.attr) { 2144 if (!sw->device) 2145 return 0; 2146 } else if (attr == &dev_attr_device_name.attr) { 2147 if (!sw->device_name) 2148 return 0; 2149 } else if (attr == &dev_attr_vendor.attr) { 2150 if (!sw->vendor) 2151 return 0; 2152 } else if (attr == &dev_attr_vendor_name.attr) { 2153 if (!sw->vendor_name) 2154 return 0; 2155 } else if (attr == &dev_attr_key.attr) { 2156 if (tb_route(sw) && 2157 sw->tb->security_level == TB_SECURITY_SECURE && 2158 sw->security_level == TB_SECURITY_SECURE) 2159 return attr->mode; 2160 return 0; 2161 } else if (attr == &dev_attr_rx_speed.attr || 2162 attr == &dev_attr_rx_lanes.attr || 2163 attr == &dev_attr_tx_speed.attr || 2164 attr == &dev_attr_tx_lanes.attr) { 2165 if (tb_route(sw)) 2166 return attr->mode; 2167 return 0; 2168 } else if (attr == &dev_attr_nvm_authenticate.attr) { 2169 if (nvm_upgradeable(sw)) 2170 return attr->mode; 2171 return 0; 2172 } else if (attr == &dev_attr_nvm_version.attr) { 2173 if (nvm_readable(sw)) 2174 return attr->mode; 2175 return 0; 2176 } else if (attr == &dev_attr_boot.attr) { 2177 if (tb_route(sw)) 2178 return attr->mode; 2179 return 0; 2180 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) { 2181 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER) 2182 return attr->mode; 2183 return 0; 2184 } 2185 2186 return sw->safe_mode ? 0 : attr->mode; 2187 } 2188 2189 static const struct attribute_group switch_group = { 2190 .is_visible = switch_attr_is_visible, 2191 .attrs = switch_attrs, 2192 }; 2193 2194 static const struct attribute_group *switch_groups[] = { 2195 &switch_group, 2196 NULL, 2197 }; 2198 2199 static void tb_switch_release(struct device *dev) 2200 { 2201 struct tb_switch *sw = tb_to_switch(dev); 2202 struct tb_port *port; 2203 2204 dma_port_free(sw->dma_port); 2205 2206 tb_switch_for_each_port(sw, port) { 2207 ida_destroy(&port->in_hopids); 2208 ida_destroy(&port->out_hopids); 2209 } 2210 2211 kfree(sw->uuid); 2212 kfree(sw->device_name); 2213 kfree(sw->vendor_name); 2214 kfree(sw->ports); 2215 kfree(sw->drom); 2216 kfree(sw->key); 2217 kfree(sw); 2218 } 2219 2220 static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env) 2221 { 2222 const struct tb_switch *sw = tb_to_switch(dev); 2223 const char *type; 2224 2225 if (tb_switch_is_usb4(sw)) { 2226 if (add_uevent_var(env, "USB4_VERSION=%u.0", 2227 usb4_switch_version(sw))) 2228 return -ENOMEM; 2229 } 2230 2231 if (!tb_route(sw)) { 2232 type = "host"; 2233 } else { 2234 const struct tb_port *port; 2235 bool hub = false; 2236 2237 /* Device is hub if it has any downstream ports */ 2238 tb_switch_for_each_port(sw, port) { 2239 if (!port->disabled && !tb_is_upstream_port(port) && 2240 tb_port_is_null(port)) { 2241 hub = true; 2242 break; 2243 } 2244 } 2245 2246 type = hub ? "hub" : "device"; 2247 } 2248 2249 if (add_uevent_var(env, "USB4_TYPE=%s", type)) 2250 return -ENOMEM; 2251 return 0; 2252 } 2253 2254 /* 2255 * Currently only need to provide the callbacks. Everything else is handled 2256 * in the connection manager. 2257 */ 2258 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev) 2259 { 2260 struct tb_switch *sw = tb_to_switch(dev); 2261 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 2262 2263 if (cm_ops->runtime_suspend_switch) 2264 return cm_ops->runtime_suspend_switch(sw); 2265 2266 return 0; 2267 } 2268 2269 static int __maybe_unused tb_switch_runtime_resume(struct device *dev) 2270 { 2271 struct tb_switch *sw = tb_to_switch(dev); 2272 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 2273 2274 if (cm_ops->runtime_resume_switch) 2275 return cm_ops->runtime_resume_switch(sw); 2276 return 0; 2277 } 2278 2279 static const struct dev_pm_ops tb_switch_pm_ops = { 2280 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume, 2281 NULL) 2282 }; 2283 2284 struct device_type tb_switch_type = { 2285 .name = "thunderbolt_device", 2286 .release = tb_switch_release, 2287 .uevent = tb_switch_uevent, 2288 .pm = &tb_switch_pm_ops, 2289 }; 2290 2291 static int tb_switch_get_generation(struct tb_switch *sw) 2292 { 2293 if (tb_switch_is_usb4(sw)) 2294 return 4; 2295 2296 if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) { 2297 switch (sw->config.device_id) { 2298 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 2299 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 2300 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 2301 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 2302 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 2303 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 2304 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 2305 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 2306 return 1; 2307 2308 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 2309 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 2310 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 2311 return 2; 2312 2313 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 2314 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 2315 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 2316 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 2317 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 2318 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: 2319 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: 2320 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: 2321 case PCI_DEVICE_ID_INTEL_ICL_NHI0: 2322 case PCI_DEVICE_ID_INTEL_ICL_NHI1: 2323 return 3; 2324 } 2325 } 2326 2327 /* 2328 * For unknown switches assume generation to be 1 to be on the 2329 * safe side. 2330 */ 2331 tb_sw_warn(sw, "unsupported switch device id %#x\n", 2332 sw->config.device_id); 2333 return 1; 2334 } 2335 2336 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth) 2337 { 2338 int max_depth; 2339 2340 if (tb_switch_is_usb4(sw) || 2341 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch))) 2342 max_depth = USB4_SWITCH_MAX_DEPTH; 2343 else 2344 max_depth = TB_SWITCH_MAX_DEPTH; 2345 2346 return depth > max_depth; 2347 } 2348 2349 /** 2350 * tb_switch_alloc() - allocate a switch 2351 * @tb: Pointer to the owning domain 2352 * @parent: Parent device for this switch 2353 * @route: Route string for this switch 2354 * 2355 * Allocates and initializes a switch. Will not upload configuration to 2356 * the switch. For that you need to call tb_switch_configure() 2357 * separately. The returned switch should be released by calling 2358 * tb_switch_put(). 2359 * 2360 * Return: Pointer to the allocated switch or ERR_PTR() in case of 2361 * failure. 2362 */ 2363 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 2364 u64 route) 2365 { 2366 struct tb_switch *sw; 2367 int upstream_port; 2368 int i, ret, depth; 2369 2370 /* Unlock the downstream port so we can access the switch below */ 2371 if (route) { 2372 struct tb_switch *parent_sw = tb_to_switch(parent); 2373 struct tb_port *down; 2374 2375 down = tb_port_at(route, parent_sw); 2376 tb_port_unlock(down); 2377 } 2378 2379 depth = tb_route_length(route); 2380 2381 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 2382 if (upstream_port < 0) 2383 return ERR_PTR(upstream_port); 2384 2385 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 2386 if (!sw) 2387 return ERR_PTR(-ENOMEM); 2388 2389 sw->tb = tb; 2390 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5); 2391 if (ret) 2392 goto err_free_sw_ports; 2393 2394 sw->generation = tb_switch_get_generation(sw); 2395 2396 tb_dbg(tb, "current switch config:\n"); 2397 tb_dump_switch(tb, sw); 2398 2399 /* configure switch */ 2400 sw->config.upstream_port_number = upstream_port; 2401 sw->config.depth = depth; 2402 sw->config.route_hi = upper_32_bits(route); 2403 sw->config.route_lo = lower_32_bits(route); 2404 sw->config.enabled = 0; 2405 2406 /* Make sure we do not exceed maximum topology limit */ 2407 if (tb_switch_exceeds_max_depth(sw, depth)) { 2408 ret = -EADDRNOTAVAIL; 2409 goto err_free_sw_ports; 2410 } 2411 2412 /* initialize ports */ 2413 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 2414 GFP_KERNEL); 2415 if (!sw->ports) { 2416 ret = -ENOMEM; 2417 goto err_free_sw_ports; 2418 } 2419 2420 for (i = 0; i <= sw->config.max_port_number; i++) { 2421 /* minimum setup for tb_find_cap and tb_drom_read to work */ 2422 sw->ports[i].sw = sw; 2423 sw->ports[i].port = i; 2424 2425 /* Control port does not need HopID allocation */ 2426 if (i) { 2427 ida_init(&sw->ports[i].in_hopids); 2428 ida_init(&sw->ports[i].out_hopids); 2429 } 2430 } 2431 2432 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 2433 if (ret > 0) 2434 sw->cap_plug_events = ret; 2435 2436 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2); 2437 if (ret > 0) 2438 sw->cap_vsec_tmu = ret; 2439 2440 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 2441 if (ret > 0) 2442 sw->cap_lc = ret; 2443 2444 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP); 2445 if (ret > 0) 2446 sw->cap_lp = ret; 2447 2448 /* Root switch is always authorized */ 2449 if (!route) 2450 sw->authorized = true; 2451 2452 device_initialize(&sw->dev); 2453 sw->dev.parent = parent; 2454 sw->dev.bus = &tb_bus_type; 2455 sw->dev.type = &tb_switch_type; 2456 sw->dev.groups = switch_groups; 2457 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 2458 2459 return sw; 2460 2461 err_free_sw_ports: 2462 kfree(sw->ports); 2463 kfree(sw); 2464 2465 return ERR_PTR(ret); 2466 } 2467 2468 /** 2469 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 2470 * @tb: Pointer to the owning domain 2471 * @parent: Parent device for this switch 2472 * @route: Route string for this switch 2473 * 2474 * This creates a switch in safe mode. This means the switch pretty much 2475 * lacks all capabilities except DMA configuration port before it is 2476 * flashed with a valid NVM firmware. 2477 * 2478 * The returned switch must be released by calling tb_switch_put(). 2479 * 2480 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure 2481 */ 2482 struct tb_switch * 2483 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 2484 { 2485 struct tb_switch *sw; 2486 2487 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 2488 if (!sw) 2489 return ERR_PTR(-ENOMEM); 2490 2491 sw->tb = tb; 2492 sw->config.depth = tb_route_length(route); 2493 sw->config.route_hi = upper_32_bits(route); 2494 sw->config.route_lo = lower_32_bits(route); 2495 sw->safe_mode = true; 2496 2497 device_initialize(&sw->dev); 2498 sw->dev.parent = parent; 2499 sw->dev.bus = &tb_bus_type; 2500 sw->dev.type = &tb_switch_type; 2501 sw->dev.groups = switch_groups; 2502 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 2503 2504 return sw; 2505 } 2506 2507 /** 2508 * tb_switch_configure() - Uploads configuration to the switch 2509 * @sw: Switch to configure 2510 * 2511 * Call this function before the switch is added to the system. It will 2512 * upload configuration to the switch and makes it available for the 2513 * connection manager to use. Can be called to the switch again after 2514 * resume from low power states to re-initialize it. 2515 * 2516 * Return: %0 in case of success and negative errno in case of failure 2517 */ 2518 int tb_switch_configure(struct tb_switch *sw) 2519 { 2520 struct tb *tb = sw->tb; 2521 u64 route; 2522 int ret; 2523 2524 route = tb_route(sw); 2525 2526 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n", 2527 sw->config.enabled ? "restoring" : "initializing", route, 2528 tb_route_length(route), sw->config.upstream_port_number); 2529 2530 sw->config.enabled = 1; 2531 2532 if (tb_switch_is_usb4(sw)) { 2533 /* 2534 * For USB4 devices, we need to program the CM version 2535 * accordingly so that it knows to expose all the 2536 * additional capabilities. Program it according to USB4 2537 * version to avoid changing existing (v1) routers behaviour. 2538 */ 2539 if (usb4_switch_version(sw) < 2) 2540 sw->config.cmuv = ROUTER_CS_4_CMUV_V1; 2541 else 2542 sw->config.cmuv = ROUTER_CS_4_CMUV_V2; 2543 sw->config.plug_events_delay = 0xa; 2544 2545 /* Enumerate the switch */ 2546 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2547 ROUTER_CS_1, 4); 2548 if (ret) 2549 return ret; 2550 2551 ret = usb4_switch_setup(sw); 2552 } else { 2553 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 2554 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 2555 sw->config.vendor_id); 2556 2557 if (!sw->cap_plug_events) { 2558 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 2559 return -ENODEV; 2560 } 2561 2562 /* Enumerate the switch */ 2563 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2564 ROUTER_CS_1, 3); 2565 } 2566 if (ret) 2567 return ret; 2568 2569 return tb_plug_events_active(sw, true); 2570 } 2571 2572 /** 2573 * tb_switch_configuration_valid() - Set the tunneling configuration to be valid 2574 * @sw: Router to configure 2575 * 2576 * Needs to be called before any tunnels can be setup through the 2577 * router. Can be called to any router. 2578 * 2579 * Returns %0 in success and negative errno otherwise. 2580 */ 2581 int tb_switch_configuration_valid(struct tb_switch *sw) 2582 { 2583 if (tb_switch_is_usb4(sw)) 2584 return usb4_switch_configuration_valid(sw); 2585 return 0; 2586 } 2587 2588 static int tb_switch_set_uuid(struct tb_switch *sw) 2589 { 2590 bool uid = false; 2591 u32 uuid[4]; 2592 int ret; 2593 2594 if (sw->uuid) 2595 return 0; 2596 2597 if (tb_switch_is_usb4(sw)) { 2598 ret = usb4_switch_read_uid(sw, &sw->uid); 2599 if (ret) 2600 return ret; 2601 uid = true; 2602 } else { 2603 /* 2604 * The newer controllers include fused UUID as part of 2605 * link controller specific registers 2606 */ 2607 ret = tb_lc_read_uuid(sw, uuid); 2608 if (ret) { 2609 if (ret != -EINVAL) 2610 return ret; 2611 uid = true; 2612 } 2613 } 2614 2615 if (uid) { 2616 /* 2617 * ICM generates UUID based on UID and fills the upper 2618 * two words with ones. This is not strictly following 2619 * UUID format but we want to be compatible with it so 2620 * we do the same here. 2621 */ 2622 uuid[0] = sw->uid & 0xffffffff; 2623 uuid[1] = (sw->uid >> 32) & 0xffffffff; 2624 uuid[2] = 0xffffffff; 2625 uuid[3] = 0xffffffff; 2626 } 2627 2628 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 2629 if (!sw->uuid) 2630 return -ENOMEM; 2631 return 0; 2632 } 2633 2634 static int tb_switch_add_dma_port(struct tb_switch *sw) 2635 { 2636 u32 status; 2637 int ret; 2638 2639 switch (sw->generation) { 2640 case 2: 2641 /* Only root switch can be upgraded */ 2642 if (tb_route(sw)) 2643 return 0; 2644 2645 fallthrough; 2646 case 3: 2647 case 4: 2648 ret = tb_switch_set_uuid(sw); 2649 if (ret) 2650 return ret; 2651 break; 2652 2653 default: 2654 /* 2655 * DMA port is the only thing available when the switch 2656 * is in safe mode. 2657 */ 2658 if (!sw->safe_mode) 2659 return 0; 2660 break; 2661 } 2662 2663 if (sw->no_nvm_upgrade) 2664 return 0; 2665 2666 if (tb_switch_is_usb4(sw)) { 2667 ret = usb4_switch_nvm_authenticate_status(sw, &status); 2668 if (ret) 2669 return ret; 2670 2671 if (status) { 2672 tb_sw_info(sw, "switch flash authentication failed\n"); 2673 nvm_set_auth_status(sw, status); 2674 } 2675 2676 return 0; 2677 } 2678 2679 /* Root switch DMA port requires running firmware */ 2680 if (!tb_route(sw) && !tb_switch_is_icm(sw)) 2681 return 0; 2682 2683 sw->dma_port = dma_port_alloc(sw); 2684 if (!sw->dma_port) 2685 return 0; 2686 2687 /* 2688 * If there is status already set then authentication failed 2689 * when the dma_port_flash_update_auth() returned. Power cycling 2690 * is not needed (it was done already) so only thing we do here 2691 * is to unblock runtime PM of the root port. 2692 */ 2693 nvm_get_auth_status(sw, &status); 2694 if (status) { 2695 if (!tb_route(sw)) 2696 nvm_authenticate_complete_dma_port(sw); 2697 return 0; 2698 } 2699 2700 /* 2701 * Check status of the previous flash authentication. If there 2702 * is one we need to power cycle the switch in any case to make 2703 * it functional again. 2704 */ 2705 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 2706 if (ret <= 0) 2707 return ret; 2708 2709 /* Now we can allow root port to suspend again */ 2710 if (!tb_route(sw)) 2711 nvm_authenticate_complete_dma_port(sw); 2712 2713 if (status) { 2714 tb_sw_info(sw, "switch flash authentication failed\n"); 2715 nvm_set_auth_status(sw, status); 2716 } 2717 2718 tb_sw_info(sw, "power cycling the switch now\n"); 2719 dma_port_power_cycle(sw->dma_port); 2720 2721 /* 2722 * We return error here which causes the switch adding failure. 2723 * It should appear back after power cycle is complete. 2724 */ 2725 return -ESHUTDOWN; 2726 } 2727 2728 static void tb_switch_default_link_ports(struct tb_switch *sw) 2729 { 2730 int i; 2731 2732 for (i = 1; i <= sw->config.max_port_number; i++) { 2733 struct tb_port *port = &sw->ports[i]; 2734 struct tb_port *subordinate; 2735 2736 if (!tb_port_is_null(port)) 2737 continue; 2738 2739 /* Check for the subordinate port */ 2740 if (i == sw->config.max_port_number || 2741 !tb_port_is_null(&sw->ports[i + 1])) 2742 continue; 2743 2744 /* Link them if not already done so (by DROM) */ 2745 subordinate = &sw->ports[i + 1]; 2746 if (!port->dual_link_port && !subordinate->dual_link_port) { 2747 port->link_nr = 0; 2748 port->dual_link_port = subordinate; 2749 subordinate->link_nr = 1; 2750 subordinate->dual_link_port = port; 2751 2752 tb_sw_dbg(sw, "linked ports %d <-> %d\n", 2753 port->port, subordinate->port); 2754 } 2755 } 2756 } 2757 2758 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw) 2759 { 2760 const struct tb_port *up = tb_upstream_port(sw); 2761 2762 if (!up->dual_link_port || !up->dual_link_port->remote) 2763 return false; 2764 2765 if (tb_switch_is_usb4(sw)) 2766 return usb4_switch_lane_bonding_possible(sw); 2767 return tb_lc_lane_bonding_possible(sw); 2768 } 2769 2770 static int tb_switch_update_link_attributes(struct tb_switch *sw) 2771 { 2772 struct tb_port *up; 2773 bool change = false; 2774 int ret; 2775 2776 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2777 return 0; 2778 2779 up = tb_upstream_port(sw); 2780 2781 ret = tb_port_get_link_speed(up); 2782 if (ret < 0) 2783 return ret; 2784 if (sw->link_speed != ret) 2785 change = true; 2786 sw->link_speed = ret; 2787 2788 ret = tb_port_get_link_width(up); 2789 if (ret < 0) 2790 return ret; 2791 if (sw->link_width != ret) 2792 change = true; 2793 sw->link_width = ret; 2794 2795 /* Notify userspace that there is possible link attribute change */ 2796 if (device_is_registered(&sw->dev) && change) 2797 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 2798 2799 return 0; 2800 } 2801 2802 /** 2803 * tb_switch_lane_bonding_enable() - Enable lane bonding 2804 * @sw: Switch to enable lane bonding 2805 * 2806 * Connection manager can call this function to enable lane bonding of a 2807 * switch. If conditions are correct and both switches support the feature, 2808 * lanes are bonded. It is safe to call this to any switch. 2809 */ 2810 int tb_switch_lane_bonding_enable(struct tb_switch *sw) 2811 { 2812 struct tb_port *up, *down; 2813 u64 route = tb_route(sw); 2814 unsigned int width_mask; 2815 int ret; 2816 2817 if (!route) 2818 return 0; 2819 2820 if (!tb_switch_lane_bonding_possible(sw)) 2821 return 0; 2822 2823 up = tb_upstream_port(sw); 2824 down = tb_switch_downstream_port(sw); 2825 2826 if (!tb_port_is_width_supported(up, TB_LINK_WIDTH_DUAL) || 2827 !tb_port_is_width_supported(down, TB_LINK_WIDTH_DUAL)) 2828 return 0; 2829 2830 /* 2831 * Both lanes need to be in CL0. Here we assume lane 0 already be in 2832 * CL0 and check just for lane 1. 2833 */ 2834 if (tb_wait_for_port(down->dual_link_port, false) <= 0) 2835 return -ENOTCONN; 2836 2837 ret = tb_port_lane_bonding_enable(up); 2838 if (ret) { 2839 tb_port_warn(up, "failed to enable lane bonding\n"); 2840 return ret; 2841 } 2842 2843 ret = tb_port_lane_bonding_enable(down); 2844 if (ret) { 2845 tb_port_warn(down, "failed to enable lane bonding\n"); 2846 tb_port_lane_bonding_disable(up); 2847 return ret; 2848 } 2849 2850 /* Any of the widths are all bonded */ 2851 width_mask = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX | 2852 TB_LINK_WIDTH_ASYM_RX; 2853 2854 ret = tb_port_wait_for_link_width(down, width_mask, 100); 2855 if (ret) { 2856 tb_port_warn(down, "timeout enabling lane bonding\n"); 2857 return ret; 2858 } 2859 2860 tb_port_update_credits(down); 2861 tb_port_update_credits(up); 2862 tb_switch_update_link_attributes(sw); 2863 2864 tb_sw_dbg(sw, "lane bonding enabled\n"); 2865 return ret; 2866 } 2867 2868 /** 2869 * tb_switch_lane_bonding_disable() - Disable lane bonding 2870 * @sw: Switch whose lane bonding to disable 2871 * 2872 * Disables lane bonding between @sw and parent. This can be called even 2873 * if lanes were not bonded originally. 2874 */ 2875 void tb_switch_lane_bonding_disable(struct tb_switch *sw) 2876 { 2877 struct tb_port *up, *down; 2878 int ret; 2879 2880 if (!tb_route(sw)) 2881 return; 2882 2883 up = tb_upstream_port(sw); 2884 if (!up->bonded) 2885 return; 2886 2887 down = tb_switch_downstream_port(sw); 2888 2889 tb_port_lane_bonding_disable(up); 2890 tb_port_lane_bonding_disable(down); 2891 2892 /* 2893 * It is fine if we get other errors as the router might have 2894 * been unplugged. 2895 */ 2896 ret = tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100); 2897 if (ret == -ETIMEDOUT) 2898 tb_sw_warn(sw, "timeout disabling lane bonding\n"); 2899 2900 tb_port_update_credits(down); 2901 tb_port_update_credits(up); 2902 tb_switch_update_link_attributes(sw); 2903 2904 tb_sw_dbg(sw, "lane bonding disabled\n"); 2905 } 2906 2907 /** 2908 * tb_switch_configure_link() - Set link configured 2909 * @sw: Switch whose link is configured 2910 * 2911 * Sets the link upstream from @sw configured (from both ends) so that 2912 * it will not be disconnected when the domain exits sleep. Can be 2913 * called for any switch. 2914 * 2915 * It is recommended that this is called after lane bonding is enabled. 2916 * 2917 * Returns %0 on success and negative errno in case of error. 2918 */ 2919 int tb_switch_configure_link(struct tb_switch *sw) 2920 { 2921 struct tb_port *up, *down; 2922 int ret; 2923 2924 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2925 return 0; 2926 2927 up = tb_upstream_port(sw); 2928 if (tb_switch_is_usb4(up->sw)) 2929 ret = usb4_port_configure(up); 2930 else 2931 ret = tb_lc_configure_port(up); 2932 if (ret) 2933 return ret; 2934 2935 down = up->remote; 2936 if (tb_switch_is_usb4(down->sw)) 2937 return usb4_port_configure(down); 2938 return tb_lc_configure_port(down); 2939 } 2940 2941 /** 2942 * tb_switch_unconfigure_link() - Unconfigure link 2943 * @sw: Switch whose link is unconfigured 2944 * 2945 * Sets the link unconfigured so the @sw will be disconnected if the 2946 * domain exists sleep. 2947 */ 2948 void tb_switch_unconfigure_link(struct tb_switch *sw) 2949 { 2950 struct tb_port *up, *down; 2951 2952 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2953 return; 2954 2955 /* 2956 * Unconfigure downstream port so that wake-on-connect can be 2957 * configured after router unplug. No need to unconfigure upstream port 2958 * since its router is unplugged. 2959 */ 2960 up = tb_upstream_port(sw); 2961 down = up->remote; 2962 if (tb_switch_is_usb4(down->sw)) 2963 usb4_port_unconfigure(down); 2964 else 2965 tb_lc_unconfigure_port(down); 2966 2967 if (sw->is_unplugged) 2968 return; 2969 2970 up = tb_upstream_port(sw); 2971 if (tb_switch_is_usb4(up->sw)) 2972 usb4_port_unconfigure(up); 2973 else 2974 tb_lc_unconfigure_port(up); 2975 } 2976 2977 static void tb_switch_credits_init(struct tb_switch *sw) 2978 { 2979 if (tb_switch_is_icm(sw)) 2980 return; 2981 if (!tb_switch_is_usb4(sw)) 2982 return; 2983 if (usb4_switch_credits_init(sw)) 2984 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n"); 2985 } 2986 2987 static int tb_switch_port_hotplug_enable(struct tb_switch *sw) 2988 { 2989 struct tb_port *port; 2990 2991 if (tb_switch_is_icm(sw)) 2992 return 0; 2993 2994 tb_switch_for_each_port(sw, port) { 2995 int res; 2996 2997 if (!port->cap_usb4) 2998 continue; 2999 3000 res = usb4_port_hotplug_enable(port); 3001 if (res) 3002 return res; 3003 } 3004 return 0; 3005 } 3006 3007 /** 3008 * tb_switch_add() - Add a switch to the domain 3009 * @sw: Switch to add 3010 * 3011 * This is the last step in adding switch to the domain. It will read 3012 * identification information from DROM and initializes ports so that 3013 * they can be used to connect other switches. The switch will be 3014 * exposed to the userspace when this function successfully returns. To 3015 * remove and release the switch, call tb_switch_remove(). 3016 * 3017 * Return: %0 in case of success and negative errno in case of failure 3018 */ 3019 int tb_switch_add(struct tb_switch *sw) 3020 { 3021 int i, ret; 3022 3023 /* 3024 * Initialize DMA control port now before we read DROM. Recent 3025 * host controllers have more complete DROM on NVM that includes 3026 * vendor and model identification strings which we then expose 3027 * to the userspace. NVM can be accessed through DMA 3028 * configuration based mailbox. 3029 */ 3030 ret = tb_switch_add_dma_port(sw); 3031 if (ret) { 3032 dev_err(&sw->dev, "failed to add DMA port\n"); 3033 return ret; 3034 } 3035 3036 if (!sw->safe_mode) { 3037 tb_switch_credits_init(sw); 3038 3039 /* read drom */ 3040 ret = tb_drom_read(sw); 3041 if (ret) 3042 dev_warn(&sw->dev, "reading DROM failed: %d\n", ret); 3043 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid); 3044 3045 ret = tb_switch_set_uuid(sw); 3046 if (ret) { 3047 dev_err(&sw->dev, "failed to set UUID\n"); 3048 return ret; 3049 } 3050 3051 for (i = 0; i <= sw->config.max_port_number; i++) { 3052 if (sw->ports[i].disabled) { 3053 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n"); 3054 continue; 3055 } 3056 ret = tb_init_port(&sw->ports[i]); 3057 if (ret) { 3058 dev_err(&sw->dev, "failed to initialize port %d\n", i); 3059 return ret; 3060 } 3061 } 3062 3063 tb_check_quirks(sw); 3064 3065 tb_switch_default_link_ports(sw); 3066 3067 ret = tb_switch_update_link_attributes(sw); 3068 if (ret) 3069 return ret; 3070 3071 ret = tb_switch_clx_init(sw); 3072 if (ret) 3073 return ret; 3074 3075 ret = tb_switch_tmu_init(sw); 3076 if (ret) 3077 return ret; 3078 } 3079 3080 ret = tb_switch_port_hotplug_enable(sw); 3081 if (ret) 3082 return ret; 3083 3084 ret = device_add(&sw->dev); 3085 if (ret) { 3086 dev_err(&sw->dev, "failed to add device: %d\n", ret); 3087 return ret; 3088 } 3089 3090 if (tb_route(sw)) { 3091 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n", 3092 sw->vendor, sw->device); 3093 if (sw->vendor_name && sw->device_name) 3094 dev_info(&sw->dev, "%s %s\n", sw->vendor_name, 3095 sw->device_name); 3096 } 3097 3098 ret = usb4_switch_add_ports(sw); 3099 if (ret) { 3100 dev_err(&sw->dev, "failed to add USB4 ports\n"); 3101 goto err_del; 3102 } 3103 3104 ret = tb_switch_nvm_add(sw); 3105 if (ret) { 3106 dev_err(&sw->dev, "failed to add NVM devices\n"); 3107 goto err_ports; 3108 } 3109 3110 /* 3111 * Thunderbolt routers do not generate wakeups themselves but 3112 * they forward wakeups from tunneled protocols, so enable it 3113 * here. 3114 */ 3115 device_init_wakeup(&sw->dev, true); 3116 3117 pm_runtime_set_active(&sw->dev); 3118 if (sw->rpm) { 3119 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY); 3120 pm_runtime_use_autosuspend(&sw->dev); 3121 pm_runtime_mark_last_busy(&sw->dev); 3122 pm_runtime_enable(&sw->dev); 3123 pm_request_autosuspend(&sw->dev); 3124 } 3125 3126 tb_switch_debugfs_init(sw); 3127 return 0; 3128 3129 err_ports: 3130 usb4_switch_remove_ports(sw); 3131 err_del: 3132 device_del(&sw->dev); 3133 3134 return ret; 3135 } 3136 3137 /** 3138 * tb_switch_remove() - Remove and release a switch 3139 * @sw: Switch to remove 3140 * 3141 * This will remove the switch from the domain and release it after last 3142 * reference count drops to zero. If there are switches connected below 3143 * this switch, they will be removed as well. 3144 */ 3145 void tb_switch_remove(struct tb_switch *sw) 3146 { 3147 struct tb_port *port; 3148 3149 tb_switch_debugfs_remove(sw); 3150 3151 if (sw->rpm) { 3152 pm_runtime_get_sync(&sw->dev); 3153 pm_runtime_disable(&sw->dev); 3154 } 3155 3156 /* port 0 is the switch itself and never has a remote */ 3157 tb_switch_for_each_port(sw, port) { 3158 if (tb_port_has_remote(port)) { 3159 tb_switch_remove(port->remote->sw); 3160 port->remote = NULL; 3161 } else if (port->xdomain) { 3162 tb_xdomain_remove(port->xdomain); 3163 port->xdomain = NULL; 3164 } 3165 3166 /* Remove any downstream retimers */ 3167 tb_retimer_remove_all(port); 3168 } 3169 3170 if (!sw->is_unplugged) 3171 tb_plug_events_active(sw, false); 3172 3173 tb_switch_nvm_remove(sw); 3174 usb4_switch_remove_ports(sw); 3175 3176 if (tb_route(sw)) 3177 dev_info(&sw->dev, "device disconnected\n"); 3178 device_unregister(&sw->dev); 3179 } 3180 3181 /** 3182 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 3183 * @sw: Router to mark unplugged 3184 */ 3185 void tb_sw_set_unplugged(struct tb_switch *sw) 3186 { 3187 struct tb_port *port; 3188 3189 if (sw == sw->tb->root_switch) { 3190 tb_sw_WARN(sw, "cannot unplug root switch\n"); 3191 return; 3192 } 3193 if (sw->is_unplugged) { 3194 tb_sw_WARN(sw, "is_unplugged already set\n"); 3195 return; 3196 } 3197 sw->is_unplugged = true; 3198 tb_switch_for_each_port(sw, port) { 3199 if (tb_port_has_remote(port)) 3200 tb_sw_set_unplugged(port->remote->sw); 3201 else if (port->xdomain) 3202 port->xdomain->is_unplugged = true; 3203 } 3204 } 3205 3206 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags) 3207 { 3208 if (flags) 3209 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags); 3210 else 3211 tb_sw_dbg(sw, "disabling wakeup\n"); 3212 3213 if (tb_switch_is_usb4(sw)) 3214 return usb4_switch_set_wake(sw, flags); 3215 return tb_lc_set_wake(sw, flags); 3216 } 3217 3218 static void tb_switch_check_wakes(struct tb_switch *sw) 3219 { 3220 if (device_may_wakeup(&sw->dev)) { 3221 if (tb_switch_is_usb4(sw)) 3222 usb4_switch_check_wakes(sw); 3223 } 3224 } 3225 3226 /** 3227 * tb_switch_resume() - Resume a switch after sleep 3228 * @sw: Switch to resume 3229 * @runtime: Is this resume from runtime suspend or system sleep 3230 * 3231 * Resumes and re-enumerates router (and all its children), if still plugged 3232 * after suspend. Don't enumerate device router whose UID was changed during 3233 * suspend. If this is resume from system sleep, notifies PM core about the 3234 * wakes occurred during suspend. Disables all wakes, except USB4 wake of 3235 * upstream port for USB4 routers that shall be always enabled. 3236 */ 3237 int tb_switch_resume(struct tb_switch *sw, bool runtime) 3238 { 3239 struct tb_port *port; 3240 int err; 3241 3242 tb_sw_dbg(sw, "resuming switch\n"); 3243 3244 /* 3245 * Check for UID of the connected switches except for root 3246 * switch which we assume cannot be removed. 3247 */ 3248 if (tb_route(sw)) { 3249 u64 uid; 3250 3251 /* 3252 * Check first that we can still read the switch config 3253 * space. It may be that there is now another domain 3254 * connected. 3255 */ 3256 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw)); 3257 if (err < 0) { 3258 tb_sw_info(sw, "switch not present anymore\n"); 3259 return err; 3260 } 3261 3262 /* We don't have any way to confirm this was the same device */ 3263 if (!sw->uid) 3264 return -ENODEV; 3265 3266 if (tb_switch_is_usb4(sw)) 3267 err = usb4_switch_read_uid(sw, &uid); 3268 else 3269 err = tb_drom_read_uid_only(sw, &uid); 3270 if (err) { 3271 tb_sw_warn(sw, "uid read failed\n"); 3272 return err; 3273 } 3274 if (sw->uid != uid) { 3275 tb_sw_info(sw, 3276 "changed while suspended (uid %#llx -> %#llx)\n", 3277 sw->uid, uid); 3278 return -ENODEV; 3279 } 3280 } 3281 3282 err = tb_switch_configure(sw); 3283 if (err) 3284 return err; 3285 3286 if (!runtime) 3287 tb_switch_check_wakes(sw); 3288 3289 /* Disable wakes */ 3290 tb_switch_set_wake(sw, 0); 3291 3292 err = tb_switch_tmu_init(sw); 3293 if (err) 3294 return err; 3295 3296 /* check for surviving downstream switches */ 3297 tb_switch_for_each_port(sw, port) { 3298 if (!tb_port_is_null(port)) 3299 continue; 3300 3301 if (!tb_port_resume(port)) 3302 continue; 3303 3304 if (tb_wait_for_port(port, true) <= 0) { 3305 tb_port_warn(port, 3306 "lost during suspend, disconnecting\n"); 3307 if (tb_port_has_remote(port)) 3308 tb_sw_set_unplugged(port->remote->sw); 3309 else if (port->xdomain) 3310 port->xdomain->is_unplugged = true; 3311 } else { 3312 /* 3313 * Always unlock the port so the downstream 3314 * switch/domain is accessible. 3315 */ 3316 if (tb_port_unlock(port)) 3317 tb_port_warn(port, "failed to unlock port\n"); 3318 if (port->remote && 3319 tb_switch_resume(port->remote->sw, runtime)) { 3320 tb_port_warn(port, 3321 "lost during suspend, disconnecting\n"); 3322 tb_sw_set_unplugged(port->remote->sw); 3323 } 3324 } 3325 } 3326 return 0; 3327 } 3328 3329 /** 3330 * tb_switch_suspend() - Put a switch to sleep 3331 * @sw: Switch to suspend 3332 * @runtime: Is this runtime suspend or system sleep 3333 * 3334 * Suspends router and all its children. Enables wakes according to 3335 * value of @runtime and then sets sleep bit for the router. If @sw is 3336 * host router the domain is ready to go to sleep once this function 3337 * returns. 3338 */ 3339 void tb_switch_suspend(struct tb_switch *sw, bool runtime) 3340 { 3341 unsigned int flags = 0; 3342 struct tb_port *port; 3343 int err; 3344 3345 tb_sw_dbg(sw, "suspending switch\n"); 3346 3347 /* 3348 * Actually only needed for Titan Ridge but for simplicity can be 3349 * done for USB4 device too as CLx is re-enabled at resume. 3350 */ 3351 tb_switch_clx_disable(sw); 3352 3353 err = tb_plug_events_active(sw, false); 3354 if (err) 3355 return; 3356 3357 tb_switch_for_each_port(sw, port) { 3358 if (tb_port_has_remote(port)) 3359 tb_switch_suspend(port->remote->sw, runtime); 3360 } 3361 3362 if (runtime) { 3363 /* Trigger wake when something is plugged in/out */ 3364 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT; 3365 flags |= TB_WAKE_ON_USB4; 3366 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP; 3367 } else if (device_may_wakeup(&sw->dev)) { 3368 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE; 3369 } 3370 3371 tb_switch_set_wake(sw, flags); 3372 3373 if (tb_switch_is_usb4(sw)) 3374 usb4_switch_set_sleep(sw); 3375 else 3376 tb_lc_set_sleep(sw); 3377 } 3378 3379 /** 3380 * tb_switch_query_dp_resource() - Query availability of DP resource 3381 * @sw: Switch whose DP resource is queried 3382 * @in: DP IN port 3383 * 3384 * Queries availability of DP resource for DP tunneling using switch 3385 * specific means. Returns %true if resource is available. 3386 */ 3387 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) 3388 { 3389 if (tb_switch_is_usb4(sw)) 3390 return usb4_switch_query_dp_resource(sw, in); 3391 return tb_lc_dp_sink_query(sw, in); 3392 } 3393 3394 /** 3395 * tb_switch_alloc_dp_resource() - Allocate available DP resource 3396 * @sw: Switch whose DP resource is allocated 3397 * @in: DP IN port 3398 * 3399 * Allocates DP resource for DP tunneling. The resource must be 3400 * available for this to succeed (see tb_switch_query_dp_resource()). 3401 * Returns %0 in success and negative errno otherwise. 3402 */ 3403 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 3404 { 3405 int ret; 3406 3407 if (tb_switch_is_usb4(sw)) 3408 ret = usb4_switch_alloc_dp_resource(sw, in); 3409 else 3410 ret = tb_lc_dp_sink_alloc(sw, in); 3411 3412 if (ret) 3413 tb_sw_warn(sw, "failed to allocate DP resource for port %d\n", 3414 in->port); 3415 else 3416 tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port); 3417 3418 return ret; 3419 } 3420 3421 /** 3422 * tb_switch_dealloc_dp_resource() - De-allocate DP resource 3423 * @sw: Switch whose DP resource is de-allocated 3424 * @in: DP IN port 3425 * 3426 * De-allocates DP resource that was previously allocated for DP 3427 * tunneling. 3428 */ 3429 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 3430 { 3431 int ret; 3432 3433 if (tb_switch_is_usb4(sw)) 3434 ret = usb4_switch_dealloc_dp_resource(sw, in); 3435 else 3436 ret = tb_lc_dp_sink_dealloc(sw, in); 3437 3438 if (ret) 3439 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n", 3440 in->port); 3441 else 3442 tb_sw_dbg(sw, "released DP resource for port %d\n", in->port); 3443 } 3444 3445 struct tb_sw_lookup { 3446 struct tb *tb; 3447 u8 link; 3448 u8 depth; 3449 const uuid_t *uuid; 3450 u64 route; 3451 }; 3452 3453 static int tb_switch_match(struct device *dev, const void *data) 3454 { 3455 struct tb_switch *sw = tb_to_switch(dev); 3456 const struct tb_sw_lookup *lookup = data; 3457 3458 if (!sw) 3459 return 0; 3460 if (sw->tb != lookup->tb) 3461 return 0; 3462 3463 if (lookup->uuid) 3464 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 3465 3466 if (lookup->route) { 3467 return sw->config.route_lo == lower_32_bits(lookup->route) && 3468 sw->config.route_hi == upper_32_bits(lookup->route); 3469 } 3470 3471 /* Root switch is matched only by depth */ 3472 if (!lookup->depth) 3473 return !sw->depth; 3474 3475 return sw->link == lookup->link && sw->depth == lookup->depth; 3476 } 3477 3478 /** 3479 * tb_switch_find_by_link_depth() - Find switch by link and depth 3480 * @tb: Domain the switch belongs 3481 * @link: Link number the switch is connected 3482 * @depth: Depth of the switch in link 3483 * 3484 * Returned switch has reference count increased so the caller needs to 3485 * call tb_switch_put() when done with the switch. 3486 */ 3487 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 3488 { 3489 struct tb_sw_lookup lookup; 3490 struct device *dev; 3491 3492 memset(&lookup, 0, sizeof(lookup)); 3493 lookup.tb = tb; 3494 lookup.link = link; 3495 lookup.depth = depth; 3496 3497 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3498 if (dev) 3499 return tb_to_switch(dev); 3500 3501 return NULL; 3502 } 3503 3504 /** 3505 * tb_switch_find_by_uuid() - Find switch by UUID 3506 * @tb: Domain the switch belongs 3507 * @uuid: UUID to look for 3508 * 3509 * Returned switch has reference count increased so the caller needs to 3510 * call tb_switch_put() when done with the switch. 3511 */ 3512 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) 3513 { 3514 struct tb_sw_lookup lookup; 3515 struct device *dev; 3516 3517 memset(&lookup, 0, sizeof(lookup)); 3518 lookup.tb = tb; 3519 lookup.uuid = uuid; 3520 3521 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3522 if (dev) 3523 return tb_to_switch(dev); 3524 3525 return NULL; 3526 } 3527 3528 /** 3529 * tb_switch_find_by_route() - Find switch by route string 3530 * @tb: Domain the switch belongs 3531 * @route: Route string to look for 3532 * 3533 * Returned switch has reference count increased so the caller needs to 3534 * call tb_switch_put() when done with the switch. 3535 */ 3536 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route) 3537 { 3538 struct tb_sw_lookup lookup; 3539 struct device *dev; 3540 3541 if (!route) 3542 return tb_switch_get(tb->root_switch); 3543 3544 memset(&lookup, 0, sizeof(lookup)); 3545 lookup.tb = tb; 3546 lookup.route = route; 3547 3548 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3549 if (dev) 3550 return tb_to_switch(dev); 3551 3552 return NULL; 3553 } 3554 3555 /** 3556 * tb_switch_find_port() - return the first port of @type on @sw or NULL 3557 * @sw: Switch to find the port from 3558 * @type: Port type to look for 3559 */ 3560 struct tb_port *tb_switch_find_port(struct tb_switch *sw, 3561 enum tb_port_type type) 3562 { 3563 struct tb_port *port; 3564 3565 tb_switch_for_each_port(sw, port) { 3566 if (port->config.type == type) 3567 return port; 3568 } 3569 3570 return NULL; 3571 } 3572 3573 /* 3574 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3 3575 * device. For now used only for Titan Ridge. 3576 */ 3577 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge, 3578 unsigned int pcie_offset, u32 value) 3579 { 3580 u32 offset, command, val; 3581 int ret; 3582 3583 if (sw->generation != 3) 3584 return -EOPNOTSUPP; 3585 3586 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA; 3587 ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1); 3588 if (ret) 3589 return ret; 3590 3591 command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK; 3592 command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT); 3593 command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK; 3594 command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL 3595 << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT; 3596 command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK; 3597 3598 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD; 3599 3600 ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1); 3601 if (ret) 3602 return ret; 3603 3604 ret = tb_switch_wait_for_bit(sw, offset, 3605 TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100); 3606 if (ret) 3607 return ret; 3608 3609 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1); 3610 if (ret) 3611 return ret; 3612 3613 if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK) 3614 return -ETIMEDOUT; 3615 3616 return 0; 3617 } 3618 3619 /** 3620 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state 3621 * @sw: Router to enable PCIe L1 3622 * 3623 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable 3624 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel 3625 * was configured. Due to Intel platforms limitation, shall be called only 3626 * for first hop switch. 3627 */ 3628 int tb_switch_pcie_l1_enable(struct tb_switch *sw) 3629 { 3630 struct tb_switch *parent = tb_switch_parent(sw); 3631 int ret; 3632 3633 if (!tb_route(sw)) 3634 return 0; 3635 3636 if (!tb_switch_is_titan_ridge(sw)) 3637 return 0; 3638 3639 /* Enable PCIe L1 enable only for first hop router (depth = 1) */ 3640 if (tb_route(parent)) 3641 return 0; 3642 3643 /* Write to downstream PCIe bridge #5 aka Dn4 */ 3644 ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1); 3645 if (ret) 3646 return ret; 3647 3648 /* Write to Upstream PCIe bridge #0 aka Up0 */ 3649 return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1); 3650 } 3651 3652 /** 3653 * tb_switch_xhci_connect() - Connect internal xHCI 3654 * @sw: Router whose xHCI to connect 3655 * 3656 * Can be called to any router. For Alpine Ridge and Titan Ridge 3657 * performs special flows that bring the xHCI functional for any device 3658 * connected to the type-C port. Call only after PCIe tunnel has been 3659 * established. The function only does the connect if not done already 3660 * so can be called several times for the same router. 3661 */ 3662 int tb_switch_xhci_connect(struct tb_switch *sw) 3663 { 3664 struct tb_port *port1, *port3; 3665 int ret; 3666 3667 if (sw->generation != 3) 3668 return 0; 3669 3670 port1 = &sw->ports[1]; 3671 port3 = &sw->ports[3]; 3672 3673 if (tb_switch_is_alpine_ridge(sw)) { 3674 bool usb_port1, usb_port3, xhci_port1, xhci_port3; 3675 3676 usb_port1 = tb_lc_is_usb_plugged(port1); 3677 usb_port3 = tb_lc_is_usb_plugged(port3); 3678 xhci_port1 = tb_lc_is_xhci_connected(port1); 3679 xhci_port3 = tb_lc_is_xhci_connected(port3); 3680 3681 /* Figure out correct USB port to connect */ 3682 if (usb_port1 && !xhci_port1) { 3683 ret = tb_lc_xhci_connect(port1); 3684 if (ret) 3685 return ret; 3686 } 3687 if (usb_port3 && !xhci_port3) 3688 return tb_lc_xhci_connect(port3); 3689 } else if (tb_switch_is_titan_ridge(sw)) { 3690 ret = tb_lc_xhci_connect(port1); 3691 if (ret) 3692 return ret; 3693 return tb_lc_xhci_connect(port3); 3694 } 3695 3696 return 0; 3697 } 3698 3699 /** 3700 * tb_switch_xhci_disconnect() - Disconnect internal xHCI 3701 * @sw: Router whose xHCI to disconnect 3702 * 3703 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both 3704 * ports. 3705 */ 3706 void tb_switch_xhci_disconnect(struct tb_switch *sw) 3707 { 3708 if (sw->generation == 3) { 3709 struct tb_port *port1 = &sw->ports[1]; 3710 struct tb_port *port3 = &sw->ports[3]; 3711 3712 tb_lc_xhci_disconnect(port1); 3713 tb_port_dbg(port1, "disconnected xHCI\n"); 3714 tb_lc_xhci_disconnect(port3); 3715 tb_port_dbg(port3, "disconnected xHCI\n"); 3716 } 3717 } 3718