xref: /openbmc/linux/drivers/thunderbolt/switch.c (revision e5242c5f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/module.h>
12 #include <linux/nvmem-provider.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sizes.h>
16 #include <linux/slab.h>
17 #include <linux/string_helpers.h>
18 
19 #include "tb.h"
20 
21 /* Switch NVM support */
22 
23 struct nvm_auth_status {
24 	struct list_head list;
25 	uuid_t uuid;
26 	u32 status;
27 };
28 
29 /*
30  * Hold NVM authentication failure status per switch This information
31  * needs to stay around even when the switch gets power cycled so we
32  * keep it separately.
33  */
34 static LIST_HEAD(nvm_auth_status_cache);
35 static DEFINE_MUTEX(nvm_auth_status_lock);
36 
37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
38 {
39 	struct nvm_auth_status *st;
40 
41 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
42 		if (uuid_equal(&st->uuid, sw->uuid))
43 			return st;
44 	}
45 
46 	return NULL;
47 }
48 
49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
50 {
51 	struct nvm_auth_status *st;
52 
53 	mutex_lock(&nvm_auth_status_lock);
54 	st = __nvm_get_auth_status(sw);
55 	mutex_unlock(&nvm_auth_status_lock);
56 
57 	*status = st ? st->status : 0;
58 }
59 
60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
61 {
62 	struct nvm_auth_status *st;
63 
64 	if (WARN_ON(!sw->uuid))
65 		return;
66 
67 	mutex_lock(&nvm_auth_status_lock);
68 	st = __nvm_get_auth_status(sw);
69 
70 	if (!st) {
71 		st = kzalloc(sizeof(*st), GFP_KERNEL);
72 		if (!st)
73 			goto unlock;
74 
75 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76 		INIT_LIST_HEAD(&st->list);
77 		list_add_tail(&st->list, &nvm_auth_status_cache);
78 	}
79 
80 	st->status = status;
81 unlock:
82 	mutex_unlock(&nvm_auth_status_lock);
83 }
84 
85 static void nvm_clear_auth_status(const struct tb_switch *sw)
86 {
87 	struct nvm_auth_status *st;
88 
89 	mutex_lock(&nvm_auth_status_lock);
90 	st = __nvm_get_auth_status(sw);
91 	if (st) {
92 		list_del(&st->list);
93 		kfree(st);
94 	}
95 	mutex_unlock(&nvm_auth_status_lock);
96 }
97 
98 static int nvm_validate_and_write(struct tb_switch *sw)
99 {
100 	unsigned int image_size;
101 	const u8 *buf;
102 	int ret;
103 
104 	ret = tb_nvm_validate(sw->nvm);
105 	if (ret)
106 		return ret;
107 
108 	ret = tb_nvm_write_headers(sw->nvm);
109 	if (ret)
110 		return ret;
111 
112 	buf = sw->nvm->buf_data_start;
113 	image_size = sw->nvm->buf_data_size;
114 
115 	if (tb_switch_is_usb4(sw))
116 		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
117 	else
118 		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
119 	if (ret)
120 		return ret;
121 
122 	sw->nvm->flushed = true;
123 	return 0;
124 }
125 
126 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
127 {
128 	int ret = 0;
129 
130 	/*
131 	 * Root switch NVM upgrade requires that we disconnect the
132 	 * existing paths first (in case it is not in safe mode
133 	 * already).
134 	 */
135 	if (!sw->safe_mode) {
136 		u32 status;
137 
138 		ret = tb_domain_disconnect_all_paths(sw->tb);
139 		if (ret)
140 			return ret;
141 		/*
142 		 * The host controller goes away pretty soon after this if
143 		 * everything goes well so getting timeout is expected.
144 		 */
145 		ret = dma_port_flash_update_auth(sw->dma_port);
146 		if (!ret || ret == -ETIMEDOUT)
147 			return 0;
148 
149 		/*
150 		 * Any error from update auth operation requires power
151 		 * cycling of the host router.
152 		 */
153 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
154 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
155 			nvm_set_auth_status(sw, status);
156 	}
157 
158 	/*
159 	 * From safe mode we can get out by just power cycling the
160 	 * switch.
161 	 */
162 	dma_port_power_cycle(sw->dma_port);
163 	return ret;
164 }
165 
166 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
167 {
168 	int ret, retries = 10;
169 
170 	ret = dma_port_flash_update_auth(sw->dma_port);
171 	switch (ret) {
172 	case 0:
173 	case -ETIMEDOUT:
174 	case -EACCES:
175 	case -EINVAL:
176 		/* Power cycle is required */
177 		break;
178 	default:
179 		return ret;
180 	}
181 
182 	/*
183 	 * Poll here for the authentication status. It takes some time
184 	 * for the device to respond (we get timeout for a while). Once
185 	 * we get response the device needs to be power cycled in order
186 	 * to the new NVM to be taken into use.
187 	 */
188 	do {
189 		u32 status;
190 
191 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
192 		if (ret < 0 && ret != -ETIMEDOUT)
193 			return ret;
194 		if (ret > 0) {
195 			if (status) {
196 				tb_sw_warn(sw, "failed to authenticate NVM\n");
197 				nvm_set_auth_status(sw, status);
198 			}
199 
200 			tb_sw_info(sw, "power cycling the switch now\n");
201 			dma_port_power_cycle(sw->dma_port);
202 			return 0;
203 		}
204 
205 		msleep(500);
206 	} while (--retries);
207 
208 	return -ETIMEDOUT;
209 }
210 
211 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
212 {
213 	struct pci_dev *root_port;
214 
215 	/*
216 	 * During host router NVM upgrade we should not allow root port to
217 	 * go into D3cold because some root ports cannot trigger PME
218 	 * itself. To be on the safe side keep the root port in D0 during
219 	 * the whole upgrade process.
220 	 */
221 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
222 	if (root_port)
223 		pm_runtime_get_noresume(&root_port->dev);
224 }
225 
226 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
227 {
228 	struct pci_dev *root_port;
229 
230 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
231 	if (root_port)
232 		pm_runtime_put(&root_port->dev);
233 }
234 
235 static inline bool nvm_readable(struct tb_switch *sw)
236 {
237 	if (tb_switch_is_usb4(sw)) {
238 		/*
239 		 * USB4 devices must support NVM operations but it is
240 		 * optional for hosts. Therefore we query the NVM sector
241 		 * size here and if it is supported assume NVM
242 		 * operations are implemented.
243 		 */
244 		return usb4_switch_nvm_sector_size(sw) > 0;
245 	}
246 
247 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
248 	return !!sw->dma_port;
249 }
250 
251 static inline bool nvm_upgradeable(struct tb_switch *sw)
252 {
253 	if (sw->no_nvm_upgrade)
254 		return false;
255 	return nvm_readable(sw);
256 }
257 
258 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
259 {
260 	int ret;
261 
262 	if (tb_switch_is_usb4(sw)) {
263 		if (auth_only) {
264 			ret = usb4_switch_nvm_set_offset(sw, 0);
265 			if (ret)
266 				return ret;
267 		}
268 		sw->nvm->authenticating = true;
269 		return usb4_switch_nvm_authenticate(sw);
270 	}
271 	if (auth_only)
272 		return -EOPNOTSUPP;
273 
274 	sw->nvm->authenticating = true;
275 	if (!tb_route(sw)) {
276 		nvm_authenticate_start_dma_port(sw);
277 		ret = nvm_authenticate_host_dma_port(sw);
278 	} else {
279 		ret = nvm_authenticate_device_dma_port(sw);
280 	}
281 
282 	return ret;
283 }
284 
285 /**
286  * tb_switch_nvm_read() - Read router NVM
287  * @sw: Router whose NVM to read
288  * @address: Start address on the NVM
289  * @buf: Buffer where the read data is copied
290  * @size: Size of the buffer in bytes
291  *
292  * Reads from router NVM and returns the requested data in @buf. Locking
293  * is up to the caller. Returns %0 in success and negative errno in case
294  * of failure.
295  */
296 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
297 		       size_t size)
298 {
299 	if (tb_switch_is_usb4(sw))
300 		return usb4_switch_nvm_read(sw, address, buf, size);
301 	return dma_port_flash_read(sw->dma_port, address, buf, size);
302 }
303 
304 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
305 {
306 	struct tb_nvm *nvm = priv;
307 	struct tb_switch *sw = tb_to_switch(nvm->dev);
308 	int ret;
309 
310 	pm_runtime_get_sync(&sw->dev);
311 
312 	if (!mutex_trylock(&sw->tb->lock)) {
313 		ret = restart_syscall();
314 		goto out;
315 	}
316 
317 	ret = tb_switch_nvm_read(sw, offset, val, bytes);
318 	mutex_unlock(&sw->tb->lock);
319 
320 out:
321 	pm_runtime_mark_last_busy(&sw->dev);
322 	pm_runtime_put_autosuspend(&sw->dev);
323 
324 	return ret;
325 }
326 
327 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
328 {
329 	struct tb_nvm *nvm = priv;
330 	struct tb_switch *sw = tb_to_switch(nvm->dev);
331 	int ret;
332 
333 	if (!mutex_trylock(&sw->tb->lock))
334 		return restart_syscall();
335 
336 	/*
337 	 * Since writing the NVM image might require some special steps,
338 	 * for example when CSS headers are written, we cache the image
339 	 * locally here and handle the special cases when the user asks
340 	 * us to authenticate the image.
341 	 */
342 	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
343 	mutex_unlock(&sw->tb->lock);
344 
345 	return ret;
346 }
347 
348 static int tb_switch_nvm_add(struct tb_switch *sw)
349 {
350 	struct tb_nvm *nvm;
351 	int ret;
352 
353 	if (!nvm_readable(sw))
354 		return 0;
355 
356 	nvm = tb_nvm_alloc(&sw->dev);
357 	if (IS_ERR(nvm)) {
358 		ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
359 		goto err_nvm;
360 	}
361 
362 	ret = tb_nvm_read_version(nvm);
363 	if (ret)
364 		goto err_nvm;
365 
366 	/*
367 	 * If the switch is in safe-mode the only accessible portion of
368 	 * the NVM is the non-active one where userspace is expected to
369 	 * write new functional NVM.
370 	 */
371 	if (!sw->safe_mode) {
372 		ret = tb_nvm_add_active(nvm, nvm_read);
373 		if (ret)
374 			goto err_nvm;
375 	}
376 
377 	if (!sw->no_nvm_upgrade) {
378 		ret = tb_nvm_add_non_active(nvm, nvm_write);
379 		if (ret)
380 			goto err_nvm;
381 	}
382 
383 	sw->nvm = nvm;
384 	return 0;
385 
386 err_nvm:
387 	tb_sw_dbg(sw, "NVM upgrade disabled\n");
388 	sw->no_nvm_upgrade = true;
389 	if (!IS_ERR(nvm))
390 		tb_nvm_free(nvm);
391 
392 	return ret;
393 }
394 
395 static void tb_switch_nvm_remove(struct tb_switch *sw)
396 {
397 	struct tb_nvm *nvm;
398 
399 	nvm = sw->nvm;
400 	sw->nvm = NULL;
401 
402 	if (!nvm)
403 		return;
404 
405 	/* Remove authentication status in case the switch is unplugged */
406 	if (!nvm->authenticating)
407 		nvm_clear_auth_status(sw);
408 
409 	tb_nvm_free(nvm);
410 }
411 
412 /* port utility functions */
413 
414 static const char *tb_port_type(const struct tb_regs_port_header *port)
415 {
416 	switch (port->type >> 16) {
417 	case 0:
418 		switch ((u8) port->type) {
419 		case 0:
420 			return "Inactive";
421 		case 1:
422 			return "Port";
423 		case 2:
424 			return "NHI";
425 		default:
426 			return "unknown";
427 		}
428 	case 0x2:
429 		return "Ethernet";
430 	case 0x8:
431 		return "SATA";
432 	case 0xe:
433 		return "DP/HDMI";
434 	case 0x10:
435 		return "PCIe";
436 	case 0x20:
437 		return "USB";
438 	default:
439 		return "unknown";
440 	}
441 }
442 
443 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
444 {
445 	const struct tb_regs_port_header *regs = &port->config;
446 
447 	tb_dbg(tb,
448 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
449 	       regs->port_number, regs->vendor_id, regs->device_id,
450 	       regs->revision, regs->thunderbolt_version, tb_port_type(regs),
451 	       regs->type);
452 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
453 	       regs->max_in_hop_id, regs->max_out_hop_id);
454 	tb_dbg(tb, "  Max counters: %d\n", regs->max_counters);
455 	tb_dbg(tb, "  NFC Credits: %#x\n", regs->nfc_credits);
456 	tb_dbg(tb, "  Credits (total/control): %u/%u\n", port->total_credits,
457 	       port->ctl_credits);
458 }
459 
460 /**
461  * tb_port_state() - get connectedness state of a port
462  * @port: the port to check
463  *
464  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
465  *
466  * Return: Returns an enum tb_port_state on success or an error code on failure.
467  */
468 int tb_port_state(struct tb_port *port)
469 {
470 	struct tb_cap_phy phy;
471 	int res;
472 	if (port->cap_phy == 0) {
473 		tb_port_WARN(port, "does not have a PHY\n");
474 		return -EINVAL;
475 	}
476 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
477 	if (res)
478 		return res;
479 	return phy.state;
480 }
481 
482 /**
483  * tb_wait_for_port() - wait for a port to become ready
484  * @port: Port to wait
485  * @wait_if_unplugged: Wait also when port is unplugged
486  *
487  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
488  * wait_if_unplugged is set then we also wait if the port is in state
489  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
490  * switch resume). Otherwise we only wait if a device is registered but the link
491  * has not yet been established.
492  *
493  * Return: Returns an error code on failure. Returns 0 if the port is not
494  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
495  * if the port is connected and in state TB_PORT_UP.
496  */
497 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
498 {
499 	int retries = 10;
500 	int state;
501 	if (!port->cap_phy) {
502 		tb_port_WARN(port, "does not have PHY\n");
503 		return -EINVAL;
504 	}
505 	if (tb_is_upstream_port(port)) {
506 		tb_port_WARN(port, "is the upstream port\n");
507 		return -EINVAL;
508 	}
509 
510 	while (retries--) {
511 		state = tb_port_state(port);
512 		switch (state) {
513 		case TB_PORT_DISABLED:
514 			tb_port_dbg(port, "is disabled (state: 0)\n");
515 			return 0;
516 
517 		case TB_PORT_UNPLUGGED:
518 			if (wait_if_unplugged) {
519 				/* used during resume */
520 				tb_port_dbg(port,
521 					    "is unplugged (state: 7), retrying...\n");
522 				msleep(100);
523 				break;
524 			}
525 			tb_port_dbg(port, "is unplugged (state: 7)\n");
526 			return 0;
527 
528 		case TB_PORT_UP:
529 		case TB_PORT_TX_CL0S:
530 		case TB_PORT_RX_CL0S:
531 		case TB_PORT_CL1:
532 		case TB_PORT_CL2:
533 			tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
534 			return 1;
535 
536 		default:
537 			if (state < 0)
538 				return state;
539 
540 			/*
541 			 * After plug-in the state is TB_PORT_CONNECTING. Give it some
542 			 * time.
543 			 */
544 			tb_port_dbg(port,
545 				    "is connected, link is not up (state: %d), retrying...\n",
546 				    state);
547 			msleep(100);
548 		}
549 
550 	}
551 	tb_port_warn(port,
552 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
553 	return 0;
554 }
555 
556 /**
557  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
558  * @port: Port to add/remove NFC credits
559  * @credits: Credits to add/remove
560  *
561  * Change the number of NFC credits allocated to @port by @credits. To remove
562  * NFC credits pass a negative amount of credits.
563  *
564  * Return: Returns 0 on success or an error code on failure.
565  */
566 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
567 {
568 	u32 nfc_credits;
569 
570 	if (credits == 0 || port->sw->is_unplugged)
571 		return 0;
572 
573 	/*
574 	 * USB4 restricts programming NFC buffers to lane adapters only
575 	 * so skip other ports.
576 	 */
577 	if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
578 		return 0;
579 
580 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
581 	if (credits < 0)
582 		credits = max_t(int, -nfc_credits, credits);
583 
584 	nfc_credits += credits;
585 
586 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
587 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
588 
589 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
590 	port->config.nfc_credits |= nfc_credits;
591 
592 	return tb_port_write(port, &port->config.nfc_credits,
593 			     TB_CFG_PORT, ADP_CS_4, 1);
594 }
595 
596 /**
597  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
598  * @port: Port whose counters to clear
599  * @counter: Counter index to clear
600  *
601  * Return: Returns 0 on success or an error code on failure.
602  */
603 int tb_port_clear_counter(struct tb_port *port, int counter)
604 {
605 	u32 zero[3] = { 0, 0, 0 };
606 	tb_port_dbg(port, "clearing counter %d\n", counter);
607 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
608 }
609 
610 /**
611  * tb_port_unlock() - Unlock downstream port
612  * @port: Port to unlock
613  *
614  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
615  * downstream router accessible for CM.
616  */
617 int tb_port_unlock(struct tb_port *port)
618 {
619 	if (tb_switch_is_icm(port->sw))
620 		return 0;
621 	if (!tb_port_is_null(port))
622 		return -EINVAL;
623 	if (tb_switch_is_usb4(port->sw))
624 		return usb4_port_unlock(port);
625 	return 0;
626 }
627 
628 static int __tb_port_enable(struct tb_port *port, bool enable)
629 {
630 	int ret;
631 	u32 phy;
632 
633 	if (!tb_port_is_null(port))
634 		return -EINVAL;
635 
636 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
637 			   port->cap_phy + LANE_ADP_CS_1, 1);
638 	if (ret)
639 		return ret;
640 
641 	if (enable)
642 		phy &= ~LANE_ADP_CS_1_LD;
643 	else
644 		phy |= LANE_ADP_CS_1_LD;
645 
646 
647 	ret = tb_port_write(port, &phy, TB_CFG_PORT,
648 			    port->cap_phy + LANE_ADP_CS_1, 1);
649 	if (ret)
650 		return ret;
651 
652 	tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
653 	return 0;
654 }
655 
656 /**
657  * tb_port_enable() - Enable lane adapter
658  * @port: Port to enable (can be %NULL)
659  *
660  * This is used for lane 0 and 1 adapters to enable it.
661  */
662 int tb_port_enable(struct tb_port *port)
663 {
664 	return __tb_port_enable(port, true);
665 }
666 
667 /**
668  * tb_port_disable() - Disable lane adapter
669  * @port: Port to disable (can be %NULL)
670  *
671  * This is used for lane 0 and 1 adapters to disable it.
672  */
673 int tb_port_disable(struct tb_port *port)
674 {
675 	return __tb_port_enable(port, false);
676 }
677 
678 static int tb_port_reset(struct tb_port *port)
679 {
680 	if (tb_switch_is_usb4(port->sw))
681 		return port->cap_usb4 ? usb4_port_reset(port) : 0;
682 	return tb_lc_reset_port(port);
683 }
684 
685 /*
686  * tb_init_port() - initialize a port
687  *
688  * This is a helper method for tb_switch_alloc. Does not check or initialize
689  * any downstream switches.
690  *
691  * Return: Returns 0 on success or an error code on failure.
692  */
693 static int tb_init_port(struct tb_port *port)
694 {
695 	int res;
696 	int cap;
697 
698 	INIT_LIST_HEAD(&port->list);
699 
700 	/* Control adapter does not have configuration space */
701 	if (!port->port)
702 		return 0;
703 
704 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
705 	if (res) {
706 		if (res == -ENODEV) {
707 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
708 			       port->port);
709 			port->disabled = true;
710 			return 0;
711 		}
712 		return res;
713 	}
714 
715 	/* Port 0 is the switch itself and has no PHY. */
716 	if (port->config.type == TB_TYPE_PORT) {
717 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
718 
719 		if (cap > 0)
720 			port->cap_phy = cap;
721 		else
722 			tb_port_WARN(port, "non switch port without a PHY\n");
723 
724 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
725 		if (cap > 0)
726 			port->cap_usb4 = cap;
727 
728 		/*
729 		 * USB4 ports the buffers allocated for the control path
730 		 * can be read from the path config space. Legacy
731 		 * devices we use hard-coded value.
732 		 */
733 		if (port->cap_usb4) {
734 			struct tb_regs_hop hop;
735 
736 			if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
737 				port->ctl_credits = hop.initial_credits;
738 		}
739 		if (!port->ctl_credits)
740 			port->ctl_credits = 2;
741 
742 	} else {
743 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
744 		if (cap > 0)
745 			port->cap_adap = cap;
746 	}
747 
748 	port->total_credits =
749 		(port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
750 		ADP_CS_4_TOTAL_BUFFERS_SHIFT;
751 
752 	tb_dump_port(port->sw->tb, port);
753 	return 0;
754 }
755 
756 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
757 			       int max_hopid)
758 {
759 	int port_max_hopid;
760 	struct ida *ida;
761 
762 	if (in) {
763 		port_max_hopid = port->config.max_in_hop_id;
764 		ida = &port->in_hopids;
765 	} else {
766 		port_max_hopid = port->config.max_out_hop_id;
767 		ida = &port->out_hopids;
768 	}
769 
770 	/*
771 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
772 	 * reserved.
773 	 */
774 	if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
775 		min_hopid = TB_PATH_MIN_HOPID;
776 
777 	if (max_hopid < 0 || max_hopid > port_max_hopid)
778 		max_hopid = port_max_hopid;
779 
780 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
781 }
782 
783 /**
784  * tb_port_alloc_in_hopid() - Allocate input HopID from port
785  * @port: Port to allocate HopID for
786  * @min_hopid: Minimum acceptable input HopID
787  * @max_hopid: Maximum acceptable input HopID
788  *
789  * Return: HopID between @min_hopid and @max_hopid or negative errno in
790  * case of error.
791  */
792 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
793 {
794 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
795 }
796 
797 /**
798  * tb_port_alloc_out_hopid() - Allocate output HopID from port
799  * @port: Port to allocate HopID for
800  * @min_hopid: Minimum acceptable output HopID
801  * @max_hopid: Maximum acceptable output HopID
802  *
803  * Return: HopID between @min_hopid and @max_hopid or negative errno in
804  * case of error.
805  */
806 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
807 {
808 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
809 }
810 
811 /**
812  * tb_port_release_in_hopid() - Release allocated input HopID from port
813  * @port: Port whose HopID to release
814  * @hopid: HopID to release
815  */
816 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
817 {
818 	ida_simple_remove(&port->in_hopids, hopid);
819 }
820 
821 /**
822  * tb_port_release_out_hopid() - Release allocated output HopID from port
823  * @port: Port whose HopID to release
824  * @hopid: HopID to release
825  */
826 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
827 {
828 	ida_simple_remove(&port->out_hopids, hopid);
829 }
830 
831 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
832 					  const struct tb_switch *sw)
833 {
834 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
835 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
836 }
837 
838 /**
839  * tb_next_port_on_path() - Return next port for given port on a path
840  * @start: Start port of the walk
841  * @end: End port of the walk
842  * @prev: Previous port (%NULL if this is the first)
843  *
844  * This function can be used to walk from one port to another if they
845  * are connected through zero or more switches. If the @prev is dual
846  * link port, the function follows that link and returns another end on
847  * that same link.
848  *
849  * If the @end port has been reached, return %NULL.
850  *
851  * Domain tb->lock must be held when this function is called.
852  */
853 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
854 				     struct tb_port *prev)
855 {
856 	struct tb_port *next;
857 
858 	if (!prev)
859 		return start;
860 
861 	if (prev->sw == end->sw) {
862 		if (prev == end)
863 			return NULL;
864 		return end;
865 	}
866 
867 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
868 		next = tb_port_at(tb_route(end->sw), prev->sw);
869 		/* Walk down the topology if next == prev */
870 		if (prev->remote &&
871 		    (next == prev || next->dual_link_port == prev))
872 			next = prev->remote;
873 	} else {
874 		if (tb_is_upstream_port(prev)) {
875 			next = prev->remote;
876 		} else {
877 			next = tb_upstream_port(prev->sw);
878 			/*
879 			 * Keep the same link if prev and next are both
880 			 * dual link ports.
881 			 */
882 			if (next->dual_link_port &&
883 			    next->link_nr != prev->link_nr) {
884 				next = next->dual_link_port;
885 			}
886 		}
887 	}
888 
889 	return next != prev ? next : NULL;
890 }
891 
892 /**
893  * tb_port_get_link_speed() - Get current link speed
894  * @port: Port to check (USB4 or CIO)
895  *
896  * Returns link speed in Gb/s or negative errno in case of failure.
897  */
898 int tb_port_get_link_speed(struct tb_port *port)
899 {
900 	u32 val, speed;
901 	int ret;
902 
903 	if (!port->cap_phy)
904 		return -EINVAL;
905 
906 	ret = tb_port_read(port, &val, TB_CFG_PORT,
907 			   port->cap_phy + LANE_ADP_CS_1, 1);
908 	if (ret)
909 		return ret;
910 
911 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
912 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
913 
914 	switch (speed) {
915 	case LANE_ADP_CS_1_CURRENT_SPEED_GEN4:
916 		return 40;
917 	case LANE_ADP_CS_1_CURRENT_SPEED_GEN3:
918 		return 20;
919 	default:
920 		return 10;
921 	}
922 }
923 
924 /**
925  * tb_port_get_link_generation() - Returns link generation
926  * @port: Lane adapter
927  *
928  * Returns link generation as number or negative errno in case of
929  * failure. Does not distinguish between Thunderbolt 1 and Thunderbolt 2
930  * links so for those always returns 2.
931  */
932 int tb_port_get_link_generation(struct tb_port *port)
933 {
934 	int ret;
935 
936 	ret = tb_port_get_link_speed(port);
937 	if (ret < 0)
938 		return ret;
939 
940 	switch (ret) {
941 	case 40:
942 		return 4;
943 	case 20:
944 		return 3;
945 	default:
946 		return 2;
947 	}
948 }
949 
950 static const char *width_name(enum tb_link_width width)
951 {
952 	switch (width) {
953 	case TB_LINK_WIDTH_SINGLE:
954 		return "symmetric, single lane";
955 	case TB_LINK_WIDTH_DUAL:
956 		return "symmetric, dual lanes";
957 	case TB_LINK_WIDTH_ASYM_TX:
958 		return "asymmetric, 3 transmitters, 1 receiver";
959 	case TB_LINK_WIDTH_ASYM_RX:
960 		return "asymmetric, 3 receivers, 1 transmitter";
961 	default:
962 		return "unknown";
963 	}
964 }
965 
966 /**
967  * tb_port_get_link_width() - Get current link width
968  * @port: Port to check (USB4 or CIO)
969  *
970  * Returns link width. Return the link width as encoded in &enum
971  * tb_link_width or negative errno in case of failure.
972  */
973 int tb_port_get_link_width(struct tb_port *port)
974 {
975 	u32 val;
976 	int ret;
977 
978 	if (!port->cap_phy)
979 		return -EINVAL;
980 
981 	ret = tb_port_read(port, &val, TB_CFG_PORT,
982 			   port->cap_phy + LANE_ADP_CS_1, 1);
983 	if (ret)
984 		return ret;
985 
986 	/* Matches the values in enum tb_link_width */
987 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
988 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
989 }
990 
991 /**
992  * tb_port_width_supported() - Is the given link width supported
993  * @port: Port to check
994  * @width: Widths to check (bitmask)
995  *
996  * Can be called to any lane adapter. Checks if given @width is
997  * supported by the hardware and returns %true if it is.
998  */
999 bool tb_port_width_supported(struct tb_port *port, unsigned int width)
1000 {
1001 	u32 phy, widths;
1002 	int ret;
1003 
1004 	if (!port->cap_phy)
1005 		return false;
1006 
1007 	if (width & (TB_LINK_WIDTH_ASYM_TX | TB_LINK_WIDTH_ASYM_RX)) {
1008 		if (tb_port_get_link_generation(port) < 4 ||
1009 		    !usb4_port_asym_supported(port))
1010 			return false;
1011 	}
1012 
1013 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
1014 			   port->cap_phy + LANE_ADP_CS_0, 1);
1015 	if (ret)
1016 		return false;
1017 
1018 	/*
1019 	 * The field encoding is the same as &enum tb_link_width (which is
1020 	 * passed to @width).
1021 	 */
1022 	widths = FIELD_GET(LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK, phy);
1023 	return widths & width;
1024 }
1025 
1026 /**
1027  * tb_port_set_link_width() - Set target link width of the lane adapter
1028  * @port: Lane adapter
1029  * @width: Target link width
1030  *
1031  * Sets the target link width of the lane adapter to @width. Does not
1032  * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
1033  *
1034  * Return: %0 in case of success and negative errno in case of error
1035  */
1036 int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width)
1037 {
1038 	u32 val;
1039 	int ret;
1040 
1041 	if (!port->cap_phy)
1042 		return -EINVAL;
1043 
1044 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1045 			   port->cap_phy + LANE_ADP_CS_1, 1);
1046 	if (ret)
1047 		return ret;
1048 
1049 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1050 	switch (width) {
1051 	case TB_LINK_WIDTH_SINGLE:
1052 		/* Gen 4 link cannot be single */
1053 		if (tb_port_get_link_generation(port) >= 4)
1054 			return -EOPNOTSUPP;
1055 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1056 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1057 		break;
1058 
1059 	case TB_LINK_WIDTH_DUAL:
1060 		if (tb_port_get_link_generation(port) >= 4)
1061 			return usb4_port_asym_set_link_width(port, width);
1062 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1063 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1064 		break;
1065 
1066 	case TB_LINK_WIDTH_ASYM_TX:
1067 	case TB_LINK_WIDTH_ASYM_RX:
1068 		return usb4_port_asym_set_link_width(port, width);
1069 
1070 	default:
1071 		return -EINVAL;
1072 	}
1073 
1074 	return tb_port_write(port, &val, TB_CFG_PORT,
1075 			     port->cap_phy + LANE_ADP_CS_1, 1);
1076 }
1077 
1078 /**
1079  * tb_port_set_lane_bonding() - Enable/disable lane bonding
1080  * @port: Lane adapter
1081  * @bonding: enable/disable bonding
1082  *
1083  * Enables or disables lane bonding. This should be called after target
1084  * link width has been set (tb_port_set_link_width()). Note in most
1085  * cases one should use tb_port_lane_bonding_enable() instead to enable
1086  * lane bonding.
1087  *
1088  * Return: %0 in case of success and negative errno in case of error
1089  */
1090 static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1091 {
1092 	u32 val;
1093 	int ret;
1094 
1095 	if (!port->cap_phy)
1096 		return -EINVAL;
1097 
1098 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1099 			   port->cap_phy + LANE_ADP_CS_1, 1);
1100 	if (ret)
1101 		return ret;
1102 
1103 	if (bonding)
1104 		val |= LANE_ADP_CS_1_LB;
1105 	else
1106 		val &= ~LANE_ADP_CS_1_LB;
1107 
1108 	return tb_port_write(port, &val, TB_CFG_PORT,
1109 			     port->cap_phy + LANE_ADP_CS_1, 1);
1110 }
1111 
1112 /**
1113  * tb_port_lane_bonding_enable() - Enable bonding on port
1114  * @port: port to enable
1115  *
1116  * Enable bonding by setting the link width of the port and the other
1117  * port in case of dual link port. Does not wait for the link to
1118  * actually reach the bonded state so caller needs to call
1119  * tb_port_wait_for_link_width() before enabling any paths through the
1120  * link to make sure the link is in expected state.
1121  *
1122  * Return: %0 in case of success and negative errno in case of error
1123  */
1124 int tb_port_lane_bonding_enable(struct tb_port *port)
1125 {
1126 	enum tb_link_width width;
1127 	int ret;
1128 
1129 	/*
1130 	 * Enable lane bonding for both links if not already enabled by
1131 	 * for example the boot firmware.
1132 	 */
1133 	width = tb_port_get_link_width(port);
1134 	if (width == TB_LINK_WIDTH_SINGLE) {
1135 		ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL);
1136 		if (ret)
1137 			goto err_lane0;
1138 	}
1139 
1140 	width = tb_port_get_link_width(port->dual_link_port);
1141 	if (width == TB_LINK_WIDTH_SINGLE) {
1142 		ret = tb_port_set_link_width(port->dual_link_port,
1143 					     TB_LINK_WIDTH_DUAL);
1144 		if (ret)
1145 			goto err_lane0;
1146 	}
1147 
1148 	/*
1149 	 * Only set bonding if the link was not already bonded. This
1150 	 * avoids the lane adapter to re-enter bonding state.
1151 	 */
1152 	if (width == TB_LINK_WIDTH_SINGLE && !tb_is_upstream_port(port)) {
1153 		ret = tb_port_set_lane_bonding(port, true);
1154 		if (ret)
1155 			goto err_lane1;
1156 	}
1157 
1158 	/*
1159 	 * When lane 0 bonding is set it will affect lane 1 too so
1160 	 * update both.
1161 	 */
1162 	port->bonded = true;
1163 	port->dual_link_port->bonded = true;
1164 
1165 	return 0;
1166 
1167 err_lane1:
1168 	tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1169 err_lane0:
1170 	tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1171 
1172 	return ret;
1173 }
1174 
1175 /**
1176  * tb_port_lane_bonding_disable() - Disable bonding on port
1177  * @port: port to disable
1178  *
1179  * Disable bonding by setting the link width of the port and the
1180  * other port in case of dual link port.
1181  */
1182 void tb_port_lane_bonding_disable(struct tb_port *port)
1183 {
1184 	tb_port_set_lane_bonding(port, false);
1185 	tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1186 	tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1187 	port->dual_link_port->bonded = false;
1188 	port->bonded = false;
1189 }
1190 
1191 /**
1192  * tb_port_wait_for_link_width() - Wait until link reaches specific width
1193  * @port: Port to wait for
1194  * @width: Expected link width (bitmask)
1195  * @timeout_msec: Timeout in ms how long to wait
1196  *
1197  * Should be used after both ends of the link have been bonded (or
1198  * bonding has been disabled) to wait until the link actually reaches
1199  * the expected state. Returns %-ETIMEDOUT if the width was not reached
1200  * within the given timeout, %0 if it did. Can be passed a mask of
1201  * expected widths and succeeds if any of the widths is reached.
1202  */
1203 int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width,
1204 				int timeout_msec)
1205 {
1206 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1207 	int ret;
1208 
1209 	/* Gen 4 link does not support single lane */
1210 	if ((width & TB_LINK_WIDTH_SINGLE) &&
1211 	    tb_port_get_link_generation(port) >= 4)
1212 		return -EOPNOTSUPP;
1213 
1214 	do {
1215 		ret = tb_port_get_link_width(port);
1216 		if (ret < 0) {
1217 			/*
1218 			 * Sometimes we get port locked error when
1219 			 * polling the lanes so we can ignore it and
1220 			 * retry.
1221 			 */
1222 			if (ret != -EACCES)
1223 				return ret;
1224 		} else if (ret & width) {
1225 			return 0;
1226 		}
1227 
1228 		usleep_range(1000, 2000);
1229 	} while (ktime_before(ktime_get(), timeout));
1230 
1231 	return -ETIMEDOUT;
1232 }
1233 
1234 static int tb_port_do_update_credits(struct tb_port *port)
1235 {
1236 	u32 nfc_credits;
1237 	int ret;
1238 
1239 	ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1240 	if (ret)
1241 		return ret;
1242 
1243 	if (nfc_credits != port->config.nfc_credits) {
1244 		u32 total;
1245 
1246 		total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1247 			ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1248 
1249 		tb_port_dbg(port, "total credits changed %u -> %u\n",
1250 			    port->total_credits, total);
1251 
1252 		port->config.nfc_credits = nfc_credits;
1253 		port->total_credits = total;
1254 	}
1255 
1256 	return 0;
1257 }
1258 
1259 /**
1260  * tb_port_update_credits() - Re-read port total credits
1261  * @port: Port to update
1262  *
1263  * After the link is bonded (or bonding was disabled) the port total
1264  * credits may change, so this function needs to be called to re-read
1265  * the credits. Updates also the second lane adapter.
1266  */
1267 int tb_port_update_credits(struct tb_port *port)
1268 {
1269 	int ret;
1270 
1271 	ret = tb_port_do_update_credits(port);
1272 	if (ret)
1273 		return ret;
1274 
1275 	if (!port->dual_link_port)
1276 		return 0;
1277 	return tb_port_do_update_credits(port->dual_link_port);
1278 }
1279 
1280 static int tb_port_start_lane_initialization(struct tb_port *port)
1281 {
1282 	int ret;
1283 
1284 	if (tb_switch_is_usb4(port->sw))
1285 		return 0;
1286 
1287 	ret = tb_lc_start_lane_initialization(port);
1288 	return ret == -EINVAL ? 0 : ret;
1289 }
1290 
1291 /*
1292  * Returns true if the port had something (router, XDomain) connected
1293  * before suspend.
1294  */
1295 static bool tb_port_resume(struct tb_port *port)
1296 {
1297 	bool has_remote = tb_port_has_remote(port);
1298 
1299 	if (port->usb4) {
1300 		usb4_port_device_resume(port->usb4);
1301 	} else if (!has_remote) {
1302 		/*
1303 		 * For disconnected downstream lane adapters start lane
1304 		 * initialization now so we detect future connects.
1305 		 *
1306 		 * For XDomain start the lane initialzation now so the
1307 		 * link gets re-established.
1308 		 *
1309 		 * This is only needed for non-USB4 ports.
1310 		 */
1311 		if (!tb_is_upstream_port(port) || port->xdomain)
1312 			tb_port_start_lane_initialization(port);
1313 	}
1314 
1315 	return has_remote || port->xdomain;
1316 }
1317 
1318 /**
1319  * tb_port_is_enabled() - Is the adapter port enabled
1320  * @port: Port to check
1321  */
1322 bool tb_port_is_enabled(struct tb_port *port)
1323 {
1324 	switch (port->config.type) {
1325 	case TB_TYPE_PCIE_UP:
1326 	case TB_TYPE_PCIE_DOWN:
1327 		return tb_pci_port_is_enabled(port);
1328 
1329 	case TB_TYPE_DP_HDMI_IN:
1330 	case TB_TYPE_DP_HDMI_OUT:
1331 		return tb_dp_port_is_enabled(port);
1332 
1333 	case TB_TYPE_USB3_UP:
1334 	case TB_TYPE_USB3_DOWN:
1335 		return tb_usb3_port_is_enabled(port);
1336 
1337 	default:
1338 		return false;
1339 	}
1340 }
1341 
1342 /**
1343  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1344  * @port: USB3 adapter port to check
1345  */
1346 bool tb_usb3_port_is_enabled(struct tb_port *port)
1347 {
1348 	u32 data;
1349 
1350 	if (tb_port_read(port, &data, TB_CFG_PORT,
1351 			 port->cap_adap + ADP_USB3_CS_0, 1))
1352 		return false;
1353 
1354 	return !!(data & ADP_USB3_CS_0_PE);
1355 }
1356 
1357 /**
1358  * tb_usb3_port_enable() - Enable USB3 adapter port
1359  * @port: USB3 adapter port to enable
1360  * @enable: Enable/disable the USB3 adapter
1361  */
1362 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1363 {
1364 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1365 			  : ADP_USB3_CS_0_V;
1366 
1367 	if (!port->cap_adap)
1368 		return -ENXIO;
1369 	return tb_port_write(port, &word, TB_CFG_PORT,
1370 			     port->cap_adap + ADP_USB3_CS_0, 1);
1371 }
1372 
1373 /**
1374  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1375  * @port: PCIe port to check
1376  */
1377 bool tb_pci_port_is_enabled(struct tb_port *port)
1378 {
1379 	u32 data;
1380 
1381 	if (tb_port_read(port, &data, TB_CFG_PORT,
1382 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1383 		return false;
1384 
1385 	return !!(data & ADP_PCIE_CS_0_PE);
1386 }
1387 
1388 /**
1389  * tb_pci_port_enable() - Enable PCIe adapter port
1390  * @port: PCIe port to enable
1391  * @enable: Enable/disable the PCIe adapter
1392  */
1393 int tb_pci_port_enable(struct tb_port *port, bool enable)
1394 {
1395 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1396 	if (!port->cap_adap)
1397 		return -ENXIO;
1398 	return tb_port_write(port, &word, TB_CFG_PORT,
1399 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1400 }
1401 
1402 /**
1403  * tb_dp_port_hpd_is_active() - Is HPD already active
1404  * @port: DP out port to check
1405  *
1406  * Checks if the DP OUT adapter port has HDP bit already set.
1407  */
1408 int tb_dp_port_hpd_is_active(struct tb_port *port)
1409 {
1410 	u32 data;
1411 	int ret;
1412 
1413 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1414 			   port->cap_adap + ADP_DP_CS_2, 1);
1415 	if (ret)
1416 		return ret;
1417 
1418 	return !!(data & ADP_DP_CS_2_HDP);
1419 }
1420 
1421 /**
1422  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1423  * @port: Port to clear HPD
1424  *
1425  * If the DP IN port has HDP set, this function can be used to clear it.
1426  */
1427 int tb_dp_port_hpd_clear(struct tb_port *port)
1428 {
1429 	u32 data;
1430 	int ret;
1431 
1432 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1433 			   port->cap_adap + ADP_DP_CS_3, 1);
1434 	if (ret)
1435 		return ret;
1436 
1437 	data |= ADP_DP_CS_3_HDPC;
1438 	return tb_port_write(port, &data, TB_CFG_PORT,
1439 			     port->cap_adap + ADP_DP_CS_3, 1);
1440 }
1441 
1442 /**
1443  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1444  * @port: DP IN/OUT port to set hops
1445  * @video: Video Hop ID
1446  * @aux_tx: AUX TX Hop ID
1447  * @aux_rx: AUX RX Hop ID
1448  *
1449  * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1450  * router DP adapters too but does not program the values as the fields
1451  * are read-only.
1452  */
1453 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1454 			unsigned int aux_tx, unsigned int aux_rx)
1455 {
1456 	u32 data[2];
1457 	int ret;
1458 
1459 	if (tb_switch_is_usb4(port->sw))
1460 		return 0;
1461 
1462 	ret = tb_port_read(port, data, TB_CFG_PORT,
1463 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1464 	if (ret)
1465 		return ret;
1466 
1467 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1468 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1469 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1470 
1471 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1472 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1473 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1474 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1475 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1476 
1477 	return tb_port_write(port, data, TB_CFG_PORT,
1478 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1479 }
1480 
1481 /**
1482  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1483  * @port: DP adapter port to check
1484  */
1485 bool tb_dp_port_is_enabled(struct tb_port *port)
1486 {
1487 	u32 data[2];
1488 
1489 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1490 			 ARRAY_SIZE(data)))
1491 		return false;
1492 
1493 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1494 }
1495 
1496 /**
1497  * tb_dp_port_enable() - Enables/disables DP paths of a port
1498  * @port: DP IN/OUT port
1499  * @enable: Enable/disable DP path
1500  *
1501  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1502  * calling this function.
1503  */
1504 int tb_dp_port_enable(struct tb_port *port, bool enable)
1505 {
1506 	u32 data[2];
1507 	int ret;
1508 
1509 	ret = tb_port_read(port, data, TB_CFG_PORT,
1510 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1511 	if (ret)
1512 		return ret;
1513 
1514 	if (enable)
1515 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1516 	else
1517 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1518 
1519 	return tb_port_write(port, data, TB_CFG_PORT,
1520 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1521 }
1522 
1523 /* switch utility functions */
1524 
1525 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1526 {
1527 	switch (sw->generation) {
1528 	case 1:
1529 		return "Thunderbolt 1";
1530 	case 2:
1531 		return "Thunderbolt 2";
1532 	case 3:
1533 		return "Thunderbolt 3";
1534 	case 4:
1535 		return "USB4";
1536 	default:
1537 		return "Unknown";
1538 	}
1539 }
1540 
1541 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1542 {
1543 	const struct tb_regs_switch_header *regs = &sw->config;
1544 
1545 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1546 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1547 	       regs->revision, regs->thunderbolt_version);
1548 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1549 	tb_dbg(tb, "  Config:\n");
1550 	tb_dbg(tb,
1551 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1552 	       regs->upstream_port_number, regs->depth,
1553 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1554 	       regs->enabled, regs->plug_events_delay);
1555 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1556 	       regs->__unknown1, regs->__unknown4);
1557 }
1558 
1559 static int tb_switch_reset_host(struct tb_switch *sw)
1560 {
1561 	if (sw->generation > 1) {
1562 		struct tb_port *port;
1563 
1564 		tb_switch_for_each_port(sw, port) {
1565 			int i, ret;
1566 
1567 			/*
1568 			 * For lane adapters we issue downstream port
1569 			 * reset and clear up path config spaces.
1570 			 *
1571 			 * For protocol adapters we disable the path and
1572 			 * clear path config space one by one (from 8 to
1573 			 * Max Input HopID of the adapter).
1574 			 */
1575 			if (tb_port_is_null(port) && !tb_is_upstream_port(port)) {
1576 				ret = tb_port_reset(port);
1577 				if (ret)
1578 					return ret;
1579 			} else if (tb_port_is_usb3_down(port) ||
1580 				   tb_port_is_usb3_up(port)) {
1581 				tb_usb3_port_enable(port, false);
1582 			} else if (tb_port_is_dpin(port) ||
1583 				   tb_port_is_dpout(port)) {
1584 				tb_dp_port_enable(port, false);
1585 			} else if (tb_port_is_pcie_down(port) ||
1586 				   tb_port_is_pcie_up(port)) {
1587 				tb_pci_port_enable(port, false);
1588 			} else {
1589 				continue;
1590 			}
1591 
1592 			/* Cleanup path config space of protocol adapter */
1593 			for (i = TB_PATH_MIN_HOPID;
1594 			     i <= port->config.max_in_hop_id; i++) {
1595 				ret = tb_path_deactivate_hop(port, i);
1596 				if (ret)
1597 					return ret;
1598 			}
1599 		}
1600 	} else {
1601 		struct tb_cfg_result res;
1602 
1603 		/* Thunderbolt 1 uses the "reset" config space packet */
1604 		res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1605 				      TB_CFG_SWITCH, 2, 2);
1606 		if (res.err)
1607 			return res.err;
1608 		res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1609 		if (res.err > 0)
1610 			return -EIO;
1611 		else if (res.err < 0)
1612 			return res.err;
1613 	}
1614 
1615 	return 0;
1616 }
1617 
1618 static int tb_switch_reset_device(struct tb_switch *sw)
1619 {
1620 	return tb_port_reset(tb_switch_downstream_port(sw));
1621 }
1622 
1623 static bool tb_switch_enumerated(struct tb_switch *sw)
1624 {
1625 	u32 val;
1626 	int ret;
1627 
1628 	/*
1629 	 * Read directly from the hardware because we use this also
1630 	 * during system sleep where sw->config.enabled is already set
1631 	 * by us.
1632 	 */
1633 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_3, 1);
1634 	if (ret)
1635 		return false;
1636 
1637 	return !!(val & ROUTER_CS_3_V);
1638 }
1639 
1640 /**
1641  * tb_switch_reset() - Perform reset to the router
1642  * @sw: Router to reset
1643  *
1644  * Issues reset to the router @sw. Can be used for any router. For host
1645  * routers, resets all the downstream ports and cleans up path config
1646  * spaces accordingly. For device routers issues downstream port reset
1647  * through the parent router, so as side effect there will be unplug
1648  * soon after this is finished.
1649  *
1650  * If the router is not enumerated does nothing.
1651  *
1652  * Returns %0 on success or negative errno in case of failure.
1653  */
1654 int tb_switch_reset(struct tb_switch *sw)
1655 {
1656 	int ret;
1657 
1658 	/*
1659 	 * We cannot access the port config spaces unless the router is
1660 	 * already enumerated. If the router is not enumerated it is
1661 	 * equal to being reset so we can skip that here.
1662 	 */
1663 	if (!tb_switch_enumerated(sw))
1664 		return 0;
1665 
1666 	tb_sw_dbg(sw, "resetting\n");
1667 
1668 	if (tb_route(sw))
1669 		ret = tb_switch_reset_device(sw);
1670 	else
1671 		ret = tb_switch_reset_host(sw);
1672 
1673 	if (ret)
1674 		tb_sw_warn(sw, "failed to reset\n");
1675 
1676 	return ret;
1677 }
1678 
1679 /**
1680  * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1681  * @sw: Router to read the offset value from
1682  * @offset: Offset in the router config space to read from
1683  * @bit: Bit mask in the offset to wait for
1684  * @value: Value of the bits to wait for
1685  * @timeout_msec: Timeout in ms how long to wait
1686  *
1687  * Wait till the specified bits in specified offset reach specified value.
1688  * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1689  * within the given timeout or a negative errno in case of failure.
1690  */
1691 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1692 			   u32 value, int timeout_msec)
1693 {
1694 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1695 
1696 	do {
1697 		u32 val;
1698 		int ret;
1699 
1700 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1701 		if (ret)
1702 			return ret;
1703 
1704 		if ((val & bit) == value)
1705 			return 0;
1706 
1707 		usleep_range(50, 100);
1708 	} while (ktime_before(ktime_get(), timeout));
1709 
1710 	return -ETIMEDOUT;
1711 }
1712 
1713 /*
1714  * tb_plug_events_active() - enable/disable plug events on a switch
1715  *
1716  * Also configures a sane plug_events_delay of 255ms.
1717  *
1718  * Return: Returns 0 on success or an error code on failure.
1719  */
1720 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1721 {
1722 	u32 data;
1723 	int res;
1724 
1725 	if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1726 		return 0;
1727 
1728 	sw->config.plug_events_delay = 0xff;
1729 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1730 	if (res)
1731 		return res;
1732 
1733 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1734 	if (res)
1735 		return res;
1736 
1737 	if (active) {
1738 		data = data & 0xFFFFFF83;
1739 		switch (sw->config.device_id) {
1740 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1741 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1742 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1743 			break;
1744 		default:
1745 			/*
1746 			 * Skip Alpine Ridge, it needs to have vendor
1747 			 * specific USB hotplug event enabled for the
1748 			 * internal xHCI to work.
1749 			 */
1750 			if (!tb_switch_is_alpine_ridge(sw))
1751 				data |= TB_PLUG_EVENTS_USB_DISABLE;
1752 		}
1753 	} else {
1754 		data = data | 0x7c;
1755 	}
1756 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1757 			   sw->cap_plug_events + 1, 1);
1758 }
1759 
1760 static ssize_t authorized_show(struct device *dev,
1761 			       struct device_attribute *attr,
1762 			       char *buf)
1763 {
1764 	struct tb_switch *sw = tb_to_switch(dev);
1765 
1766 	return sysfs_emit(buf, "%u\n", sw->authorized);
1767 }
1768 
1769 static int disapprove_switch(struct device *dev, void *not_used)
1770 {
1771 	char *envp[] = { "AUTHORIZED=0", NULL };
1772 	struct tb_switch *sw;
1773 
1774 	sw = tb_to_switch(dev);
1775 	if (sw && sw->authorized) {
1776 		int ret;
1777 
1778 		/* First children */
1779 		ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1780 		if (ret)
1781 			return ret;
1782 
1783 		ret = tb_domain_disapprove_switch(sw->tb, sw);
1784 		if (ret)
1785 			return ret;
1786 
1787 		sw->authorized = 0;
1788 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1789 	}
1790 
1791 	return 0;
1792 }
1793 
1794 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1795 {
1796 	char envp_string[13];
1797 	int ret = -EINVAL;
1798 	char *envp[] = { envp_string, NULL };
1799 
1800 	if (!mutex_trylock(&sw->tb->lock))
1801 		return restart_syscall();
1802 
1803 	if (!!sw->authorized == !!val)
1804 		goto unlock;
1805 
1806 	switch (val) {
1807 	/* Disapprove switch */
1808 	case 0:
1809 		if (tb_route(sw)) {
1810 			ret = disapprove_switch(&sw->dev, NULL);
1811 			goto unlock;
1812 		}
1813 		break;
1814 
1815 	/* Approve switch */
1816 	case 1:
1817 		if (sw->key)
1818 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1819 		else
1820 			ret = tb_domain_approve_switch(sw->tb, sw);
1821 		break;
1822 
1823 	/* Challenge switch */
1824 	case 2:
1825 		if (sw->key)
1826 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1827 		break;
1828 
1829 	default:
1830 		break;
1831 	}
1832 
1833 	if (!ret) {
1834 		sw->authorized = val;
1835 		/*
1836 		 * Notify status change to the userspace, informing the new
1837 		 * value of /sys/bus/thunderbolt/devices/.../authorized.
1838 		 */
1839 		sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1840 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1841 	}
1842 
1843 unlock:
1844 	mutex_unlock(&sw->tb->lock);
1845 	return ret;
1846 }
1847 
1848 static ssize_t authorized_store(struct device *dev,
1849 				struct device_attribute *attr,
1850 				const char *buf, size_t count)
1851 {
1852 	struct tb_switch *sw = tb_to_switch(dev);
1853 	unsigned int val;
1854 	ssize_t ret;
1855 
1856 	ret = kstrtouint(buf, 0, &val);
1857 	if (ret)
1858 		return ret;
1859 	if (val > 2)
1860 		return -EINVAL;
1861 
1862 	pm_runtime_get_sync(&sw->dev);
1863 	ret = tb_switch_set_authorized(sw, val);
1864 	pm_runtime_mark_last_busy(&sw->dev);
1865 	pm_runtime_put_autosuspend(&sw->dev);
1866 
1867 	return ret ? ret : count;
1868 }
1869 static DEVICE_ATTR_RW(authorized);
1870 
1871 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1872 			 char *buf)
1873 {
1874 	struct tb_switch *sw = tb_to_switch(dev);
1875 
1876 	return sysfs_emit(buf, "%u\n", sw->boot);
1877 }
1878 static DEVICE_ATTR_RO(boot);
1879 
1880 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1881 			   char *buf)
1882 {
1883 	struct tb_switch *sw = tb_to_switch(dev);
1884 
1885 	return sysfs_emit(buf, "%#x\n", sw->device);
1886 }
1887 static DEVICE_ATTR_RO(device);
1888 
1889 static ssize_t
1890 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1891 {
1892 	struct tb_switch *sw = tb_to_switch(dev);
1893 
1894 	return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1895 }
1896 static DEVICE_ATTR_RO(device_name);
1897 
1898 static ssize_t
1899 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1900 {
1901 	struct tb_switch *sw = tb_to_switch(dev);
1902 
1903 	return sysfs_emit(buf, "%u\n", sw->generation);
1904 }
1905 static DEVICE_ATTR_RO(generation);
1906 
1907 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1908 			char *buf)
1909 {
1910 	struct tb_switch *sw = tb_to_switch(dev);
1911 	ssize_t ret;
1912 
1913 	if (!mutex_trylock(&sw->tb->lock))
1914 		return restart_syscall();
1915 
1916 	if (sw->key)
1917 		ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1918 	else
1919 		ret = sysfs_emit(buf, "\n");
1920 
1921 	mutex_unlock(&sw->tb->lock);
1922 	return ret;
1923 }
1924 
1925 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1926 			 const char *buf, size_t count)
1927 {
1928 	struct tb_switch *sw = tb_to_switch(dev);
1929 	u8 key[TB_SWITCH_KEY_SIZE];
1930 	ssize_t ret = count;
1931 	bool clear = false;
1932 
1933 	if (!strcmp(buf, "\n"))
1934 		clear = true;
1935 	else if (hex2bin(key, buf, sizeof(key)))
1936 		return -EINVAL;
1937 
1938 	if (!mutex_trylock(&sw->tb->lock))
1939 		return restart_syscall();
1940 
1941 	if (sw->authorized) {
1942 		ret = -EBUSY;
1943 	} else {
1944 		kfree(sw->key);
1945 		if (clear) {
1946 			sw->key = NULL;
1947 		} else {
1948 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1949 			if (!sw->key)
1950 				ret = -ENOMEM;
1951 		}
1952 	}
1953 
1954 	mutex_unlock(&sw->tb->lock);
1955 	return ret;
1956 }
1957 static DEVICE_ATTR(key, 0600, key_show, key_store);
1958 
1959 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1960 			  char *buf)
1961 {
1962 	struct tb_switch *sw = tb_to_switch(dev);
1963 
1964 	return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1965 }
1966 
1967 /*
1968  * Currently all lanes must run at the same speed but we expose here
1969  * both directions to allow possible asymmetric links in the future.
1970  */
1971 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1972 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1973 
1974 static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr,
1975 			     char *buf)
1976 {
1977 	struct tb_switch *sw = tb_to_switch(dev);
1978 	unsigned int width;
1979 
1980 	switch (sw->link_width) {
1981 	case TB_LINK_WIDTH_SINGLE:
1982 	case TB_LINK_WIDTH_ASYM_TX:
1983 		width = 1;
1984 		break;
1985 	case TB_LINK_WIDTH_DUAL:
1986 		width = 2;
1987 		break;
1988 	case TB_LINK_WIDTH_ASYM_RX:
1989 		width = 3;
1990 		break;
1991 	default:
1992 		WARN_ON_ONCE(1);
1993 		return -EINVAL;
1994 	}
1995 
1996 	return sysfs_emit(buf, "%u\n", width);
1997 }
1998 static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL);
1999 
2000 static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr,
2001 			     char *buf)
2002 {
2003 	struct tb_switch *sw = tb_to_switch(dev);
2004 	unsigned int width;
2005 
2006 	switch (sw->link_width) {
2007 	case TB_LINK_WIDTH_SINGLE:
2008 	case TB_LINK_WIDTH_ASYM_RX:
2009 		width = 1;
2010 		break;
2011 	case TB_LINK_WIDTH_DUAL:
2012 		width = 2;
2013 		break;
2014 	case TB_LINK_WIDTH_ASYM_TX:
2015 		width = 3;
2016 		break;
2017 	default:
2018 		WARN_ON_ONCE(1);
2019 		return -EINVAL;
2020 	}
2021 
2022 	return sysfs_emit(buf, "%u\n", width);
2023 }
2024 static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL);
2025 
2026 static ssize_t nvm_authenticate_show(struct device *dev,
2027 	struct device_attribute *attr, char *buf)
2028 {
2029 	struct tb_switch *sw = tb_to_switch(dev);
2030 	u32 status;
2031 
2032 	nvm_get_auth_status(sw, &status);
2033 	return sysfs_emit(buf, "%#x\n", status);
2034 }
2035 
2036 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
2037 				      bool disconnect)
2038 {
2039 	struct tb_switch *sw = tb_to_switch(dev);
2040 	int val, ret;
2041 
2042 	pm_runtime_get_sync(&sw->dev);
2043 
2044 	if (!mutex_trylock(&sw->tb->lock)) {
2045 		ret = restart_syscall();
2046 		goto exit_rpm;
2047 	}
2048 
2049 	if (sw->no_nvm_upgrade) {
2050 		ret = -EOPNOTSUPP;
2051 		goto exit_unlock;
2052 	}
2053 
2054 	/* If NVMem devices are not yet added */
2055 	if (!sw->nvm) {
2056 		ret = -EAGAIN;
2057 		goto exit_unlock;
2058 	}
2059 
2060 	ret = kstrtoint(buf, 10, &val);
2061 	if (ret)
2062 		goto exit_unlock;
2063 
2064 	/* Always clear the authentication status */
2065 	nvm_clear_auth_status(sw);
2066 
2067 	if (val > 0) {
2068 		if (val == AUTHENTICATE_ONLY) {
2069 			if (disconnect)
2070 				ret = -EINVAL;
2071 			else
2072 				ret = nvm_authenticate(sw, true);
2073 		} else {
2074 			if (!sw->nvm->flushed) {
2075 				if (!sw->nvm->buf) {
2076 					ret = -EINVAL;
2077 					goto exit_unlock;
2078 				}
2079 
2080 				ret = nvm_validate_and_write(sw);
2081 				if (ret || val == WRITE_ONLY)
2082 					goto exit_unlock;
2083 			}
2084 			if (val == WRITE_AND_AUTHENTICATE) {
2085 				if (disconnect)
2086 					ret = tb_lc_force_power(sw);
2087 				else
2088 					ret = nvm_authenticate(sw, false);
2089 			}
2090 		}
2091 	}
2092 
2093 exit_unlock:
2094 	mutex_unlock(&sw->tb->lock);
2095 exit_rpm:
2096 	pm_runtime_mark_last_busy(&sw->dev);
2097 	pm_runtime_put_autosuspend(&sw->dev);
2098 
2099 	return ret;
2100 }
2101 
2102 static ssize_t nvm_authenticate_store(struct device *dev,
2103 	struct device_attribute *attr, const char *buf, size_t count)
2104 {
2105 	int ret = nvm_authenticate_sysfs(dev, buf, false);
2106 	if (ret)
2107 		return ret;
2108 	return count;
2109 }
2110 static DEVICE_ATTR_RW(nvm_authenticate);
2111 
2112 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
2113 	struct device_attribute *attr, char *buf)
2114 {
2115 	return nvm_authenticate_show(dev, attr, buf);
2116 }
2117 
2118 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
2119 	struct device_attribute *attr, const char *buf, size_t count)
2120 {
2121 	int ret;
2122 
2123 	ret = nvm_authenticate_sysfs(dev, buf, true);
2124 	return ret ? ret : count;
2125 }
2126 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
2127 
2128 static ssize_t nvm_version_show(struct device *dev,
2129 				struct device_attribute *attr, char *buf)
2130 {
2131 	struct tb_switch *sw = tb_to_switch(dev);
2132 	int ret;
2133 
2134 	if (!mutex_trylock(&sw->tb->lock))
2135 		return restart_syscall();
2136 
2137 	if (sw->safe_mode)
2138 		ret = -ENODATA;
2139 	else if (!sw->nvm)
2140 		ret = -EAGAIN;
2141 	else
2142 		ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
2143 
2144 	mutex_unlock(&sw->tb->lock);
2145 
2146 	return ret;
2147 }
2148 static DEVICE_ATTR_RO(nvm_version);
2149 
2150 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
2151 			   char *buf)
2152 {
2153 	struct tb_switch *sw = tb_to_switch(dev);
2154 
2155 	return sysfs_emit(buf, "%#x\n", sw->vendor);
2156 }
2157 static DEVICE_ATTR_RO(vendor);
2158 
2159 static ssize_t
2160 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
2161 {
2162 	struct tb_switch *sw = tb_to_switch(dev);
2163 
2164 	return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
2165 }
2166 static DEVICE_ATTR_RO(vendor_name);
2167 
2168 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2169 			      char *buf)
2170 {
2171 	struct tb_switch *sw = tb_to_switch(dev);
2172 
2173 	return sysfs_emit(buf, "%pUb\n", sw->uuid);
2174 }
2175 static DEVICE_ATTR_RO(unique_id);
2176 
2177 static struct attribute *switch_attrs[] = {
2178 	&dev_attr_authorized.attr,
2179 	&dev_attr_boot.attr,
2180 	&dev_attr_device.attr,
2181 	&dev_attr_device_name.attr,
2182 	&dev_attr_generation.attr,
2183 	&dev_attr_key.attr,
2184 	&dev_attr_nvm_authenticate.attr,
2185 	&dev_attr_nvm_authenticate_on_disconnect.attr,
2186 	&dev_attr_nvm_version.attr,
2187 	&dev_attr_rx_speed.attr,
2188 	&dev_attr_rx_lanes.attr,
2189 	&dev_attr_tx_speed.attr,
2190 	&dev_attr_tx_lanes.attr,
2191 	&dev_attr_vendor.attr,
2192 	&dev_attr_vendor_name.attr,
2193 	&dev_attr_unique_id.attr,
2194 	NULL,
2195 };
2196 
2197 static umode_t switch_attr_is_visible(struct kobject *kobj,
2198 				      struct attribute *attr, int n)
2199 {
2200 	struct device *dev = kobj_to_dev(kobj);
2201 	struct tb_switch *sw = tb_to_switch(dev);
2202 
2203 	if (attr == &dev_attr_authorized.attr) {
2204 		if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2205 		    sw->tb->security_level == TB_SECURITY_DPONLY)
2206 			return 0;
2207 	} else if (attr == &dev_attr_device.attr) {
2208 		if (!sw->device)
2209 			return 0;
2210 	} else if (attr == &dev_attr_device_name.attr) {
2211 		if (!sw->device_name)
2212 			return 0;
2213 	} else if (attr == &dev_attr_vendor.attr)  {
2214 		if (!sw->vendor)
2215 			return 0;
2216 	} else if (attr == &dev_attr_vendor_name.attr)  {
2217 		if (!sw->vendor_name)
2218 			return 0;
2219 	} else if (attr == &dev_attr_key.attr) {
2220 		if (tb_route(sw) &&
2221 		    sw->tb->security_level == TB_SECURITY_SECURE &&
2222 		    sw->security_level == TB_SECURITY_SECURE)
2223 			return attr->mode;
2224 		return 0;
2225 	} else if (attr == &dev_attr_rx_speed.attr ||
2226 		   attr == &dev_attr_rx_lanes.attr ||
2227 		   attr == &dev_attr_tx_speed.attr ||
2228 		   attr == &dev_attr_tx_lanes.attr) {
2229 		if (tb_route(sw))
2230 			return attr->mode;
2231 		return 0;
2232 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
2233 		if (nvm_upgradeable(sw))
2234 			return attr->mode;
2235 		return 0;
2236 	} else if (attr == &dev_attr_nvm_version.attr) {
2237 		if (nvm_readable(sw))
2238 			return attr->mode;
2239 		return 0;
2240 	} else if (attr == &dev_attr_boot.attr) {
2241 		if (tb_route(sw))
2242 			return attr->mode;
2243 		return 0;
2244 	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2245 		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2246 			return attr->mode;
2247 		return 0;
2248 	}
2249 
2250 	return sw->safe_mode ? 0 : attr->mode;
2251 }
2252 
2253 static const struct attribute_group switch_group = {
2254 	.is_visible = switch_attr_is_visible,
2255 	.attrs = switch_attrs,
2256 };
2257 
2258 static const struct attribute_group *switch_groups[] = {
2259 	&switch_group,
2260 	NULL,
2261 };
2262 
2263 static void tb_switch_release(struct device *dev)
2264 {
2265 	struct tb_switch *sw = tb_to_switch(dev);
2266 	struct tb_port *port;
2267 
2268 	dma_port_free(sw->dma_port);
2269 
2270 	tb_switch_for_each_port(sw, port) {
2271 		ida_destroy(&port->in_hopids);
2272 		ida_destroy(&port->out_hopids);
2273 	}
2274 
2275 	kfree(sw->uuid);
2276 	kfree(sw->device_name);
2277 	kfree(sw->vendor_name);
2278 	kfree(sw->ports);
2279 	kfree(sw->drom);
2280 	kfree(sw->key);
2281 	kfree(sw);
2282 }
2283 
2284 static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2285 {
2286 	const struct tb_switch *sw = tb_to_switch(dev);
2287 	const char *type;
2288 
2289 	if (tb_switch_is_usb4(sw)) {
2290 		if (add_uevent_var(env, "USB4_VERSION=%u.0",
2291 				   usb4_switch_version(sw)))
2292 			return -ENOMEM;
2293 	}
2294 
2295 	if (!tb_route(sw)) {
2296 		type = "host";
2297 	} else {
2298 		const struct tb_port *port;
2299 		bool hub = false;
2300 
2301 		/* Device is hub if it has any downstream ports */
2302 		tb_switch_for_each_port(sw, port) {
2303 			if (!port->disabled && !tb_is_upstream_port(port) &&
2304 			     tb_port_is_null(port)) {
2305 				hub = true;
2306 				break;
2307 			}
2308 		}
2309 
2310 		type = hub ? "hub" : "device";
2311 	}
2312 
2313 	if (add_uevent_var(env, "USB4_TYPE=%s", type))
2314 		return -ENOMEM;
2315 	return 0;
2316 }
2317 
2318 /*
2319  * Currently only need to provide the callbacks. Everything else is handled
2320  * in the connection manager.
2321  */
2322 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2323 {
2324 	struct tb_switch *sw = tb_to_switch(dev);
2325 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2326 
2327 	if (cm_ops->runtime_suspend_switch)
2328 		return cm_ops->runtime_suspend_switch(sw);
2329 
2330 	return 0;
2331 }
2332 
2333 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2334 {
2335 	struct tb_switch *sw = tb_to_switch(dev);
2336 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2337 
2338 	if (cm_ops->runtime_resume_switch)
2339 		return cm_ops->runtime_resume_switch(sw);
2340 	return 0;
2341 }
2342 
2343 static const struct dev_pm_ops tb_switch_pm_ops = {
2344 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2345 			   NULL)
2346 };
2347 
2348 struct device_type tb_switch_type = {
2349 	.name = "thunderbolt_device",
2350 	.release = tb_switch_release,
2351 	.uevent = tb_switch_uevent,
2352 	.pm = &tb_switch_pm_ops,
2353 };
2354 
2355 static int tb_switch_get_generation(struct tb_switch *sw)
2356 {
2357 	if (tb_switch_is_usb4(sw))
2358 		return 4;
2359 
2360 	if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
2361 		switch (sw->config.device_id) {
2362 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2363 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2364 		case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2365 		case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2366 		case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2367 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2368 		case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2369 		case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2370 			return 1;
2371 
2372 		case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2373 		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2374 		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2375 			return 2;
2376 
2377 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2378 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2379 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2380 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2381 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2382 		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2383 		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2384 		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2385 		case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2386 		case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2387 			return 3;
2388 		}
2389 	}
2390 
2391 	/*
2392 	 * For unknown switches assume generation to be 1 to be on the
2393 	 * safe side.
2394 	 */
2395 	tb_sw_warn(sw, "unsupported switch device id %#x\n",
2396 		   sw->config.device_id);
2397 	return 1;
2398 }
2399 
2400 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2401 {
2402 	int max_depth;
2403 
2404 	if (tb_switch_is_usb4(sw) ||
2405 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2406 		max_depth = USB4_SWITCH_MAX_DEPTH;
2407 	else
2408 		max_depth = TB_SWITCH_MAX_DEPTH;
2409 
2410 	return depth > max_depth;
2411 }
2412 
2413 /**
2414  * tb_switch_alloc() - allocate a switch
2415  * @tb: Pointer to the owning domain
2416  * @parent: Parent device for this switch
2417  * @route: Route string for this switch
2418  *
2419  * Allocates and initializes a switch. Will not upload configuration to
2420  * the switch. For that you need to call tb_switch_configure()
2421  * separately. The returned switch should be released by calling
2422  * tb_switch_put().
2423  *
2424  * Return: Pointer to the allocated switch or ERR_PTR() in case of
2425  * failure.
2426  */
2427 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2428 				  u64 route)
2429 {
2430 	struct tb_switch *sw;
2431 	int upstream_port;
2432 	int i, ret, depth;
2433 
2434 	/* Unlock the downstream port so we can access the switch below */
2435 	if (route) {
2436 		struct tb_switch *parent_sw = tb_to_switch(parent);
2437 		struct tb_port *down;
2438 
2439 		down = tb_port_at(route, parent_sw);
2440 		tb_port_unlock(down);
2441 	}
2442 
2443 	depth = tb_route_length(route);
2444 
2445 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2446 	if (upstream_port < 0)
2447 		return ERR_PTR(upstream_port);
2448 
2449 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2450 	if (!sw)
2451 		return ERR_PTR(-ENOMEM);
2452 
2453 	sw->tb = tb;
2454 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2455 	if (ret)
2456 		goto err_free_sw_ports;
2457 
2458 	sw->generation = tb_switch_get_generation(sw);
2459 
2460 	tb_dbg(tb, "current switch config:\n");
2461 	tb_dump_switch(tb, sw);
2462 
2463 	/* configure switch */
2464 	sw->config.upstream_port_number = upstream_port;
2465 	sw->config.depth = depth;
2466 	sw->config.route_hi = upper_32_bits(route);
2467 	sw->config.route_lo = lower_32_bits(route);
2468 	sw->config.enabled = 0;
2469 
2470 	/* Make sure we do not exceed maximum topology limit */
2471 	if (tb_switch_exceeds_max_depth(sw, depth)) {
2472 		ret = -EADDRNOTAVAIL;
2473 		goto err_free_sw_ports;
2474 	}
2475 
2476 	/* initialize ports */
2477 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2478 				GFP_KERNEL);
2479 	if (!sw->ports) {
2480 		ret = -ENOMEM;
2481 		goto err_free_sw_ports;
2482 	}
2483 
2484 	for (i = 0; i <= sw->config.max_port_number; i++) {
2485 		/* minimum setup for tb_find_cap and tb_drom_read to work */
2486 		sw->ports[i].sw = sw;
2487 		sw->ports[i].port = i;
2488 
2489 		/* Control port does not need HopID allocation */
2490 		if (i) {
2491 			ida_init(&sw->ports[i].in_hopids);
2492 			ida_init(&sw->ports[i].out_hopids);
2493 		}
2494 	}
2495 
2496 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2497 	if (ret > 0)
2498 		sw->cap_plug_events = ret;
2499 
2500 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2501 	if (ret > 0)
2502 		sw->cap_vsec_tmu = ret;
2503 
2504 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2505 	if (ret > 0)
2506 		sw->cap_lc = ret;
2507 
2508 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2509 	if (ret > 0)
2510 		sw->cap_lp = ret;
2511 
2512 	/* Root switch is always authorized */
2513 	if (!route)
2514 		sw->authorized = true;
2515 
2516 	device_initialize(&sw->dev);
2517 	sw->dev.parent = parent;
2518 	sw->dev.bus = &tb_bus_type;
2519 	sw->dev.type = &tb_switch_type;
2520 	sw->dev.groups = switch_groups;
2521 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2522 
2523 	return sw;
2524 
2525 err_free_sw_ports:
2526 	kfree(sw->ports);
2527 	kfree(sw);
2528 
2529 	return ERR_PTR(ret);
2530 }
2531 
2532 /**
2533  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2534  * @tb: Pointer to the owning domain
2535  * @parent: Parent device for this switch
2536  * @route: Route string for this switch
2537  *
2538  * This creates a switch in safe mode. This means the switch pretty much
2539  * lacks all capabilities except DMA configuration port before it is
2540  * flashed with a valid NVM firmware.
2541  *
2542  * The returned switch must be released by calling tb_switch_put().
2543  *
2544  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2545  */
2546 struct tb_switch *
2547 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2548 {
2549 	struct tb_switch *sw;
2550 
2551 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2552 	if (!sw)
2553 		return ERR_PTR(-ENOMEM);
2554 
2555 	sw->tb = tb;
2556 	sw->config.depth = tb_route_length(route);
2557 	sw->config.route_hi = upper_32_bits(route);
2558 	sw->config.route_lo = lower_32_bits(route);
2559 	sw->safe_mode = true;
2560 
2561 	device_initialize(&sw->dev);
2562 	sw->dev.parent = parent;
2563 	sw->dev.bus = &tb_bus_type;
2564 	sw->dev.type = &tb_switch_type;
2565 	sw->dev.groups = switch_groups;
2566 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2567 
2568 	return sw;
2569 }
2570 
2571 /**
2572  * tb_switch_configure() - Uploads configuration to the switch
2573  * @sw: Switch to configure
2574  *
2575  * Call this function before the switch is added to the system. It will
2576  * upload configuration to the switch and makes it available for the
2577  * connection manager to use. Can be called to the switch again after
2578  * resume from low power states to re-initialize it.
2579  *
2580  * Return: %0 in case of success and negative errno in case of failure
2581  */
2582 int tb_switch_configure(struct tb_switch *sw)
2583 {
2584 	struct tb *tb = sw->tb;
2585 	u64 route;
2586 	int ret;
2587 
2588 	route = tb_route(sw);
2589 
2590 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2591 	       sw->config.enabled ? "restoring" : "initializing", route,
2592 	       tb_route_length(route), sw->config.upstream_port_number);
2593 
2594 	sw->config.enabled = 1;
2595 
2596 	if (tb_switch_is_usb4(sw)) {
2597 		/*
2598 		 * For USB4 devices, we need to program the CM version
2599 		 * accordingly so that it knows to expose all the
2600 		 * additional capabilities. Program it according to USB4
2601 		 * version to avoid changing existing (v1) routers behaviour.
2602 		 */
2603 		if (usb4_switch_version(sw) < 2)
2604 			sw->config.cmuv = ROUTER_CS_4_CMUV_V1;
2605 		else
2606 			sw->config.cmuv = ROUTER_CS_4_CMUV_V2;
2607 		sw->config.plug_events_delay = 0xa;
2608 
2609 		/* Enumerate the switch */
2610 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2611 				  ROUTER_CS_1, 4);
2612 		if (ret)
2613 			return ret;
2614 
2615 		ret = usb4_switch_setup(sw);
2616 	} else {
2617 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2618 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2619 				   sw->config.vendor_id);
2620 
2621 		if (!sw->cap_plug_events) {
2622 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2623 			return -ENODEV;
2624 		}
2625 
2626 		/* Enumerate the switch */
2627 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2628 				  ROUTER_CS_1, 3);
2629 	}
2630 	if (ret)
2631 		return ret;
2632 
2633 	return tb_plug_events_active(sw, true);
2634 }
2635 
2636 /**
2637  * tb_switch_configuration_valid() - Set the tunneling configuration to be valid
2638  * @sw: Router to configure
2639  *
2640  * Needs to be called before any tunnels can be setup through the
2641  * router. Can be called to any router.
2642  *
2643  * Returns %0 in success and negative errno otherwise.
2644  */
2645 int tb_switch_configuration_valid(struct tb_switch *sw)
2646 {
2647 	if (tb_switch_is_usb4(sw))
2648 		return usb4_switch_configuration_valid(sw);
2649 	return 0;
2650 }
2651 
2652 static int tb_switch_set_uuid(struct tb_switch *sw)
2653 {
2654 	bool uid = false;
2655 	u32 uuid[4];
2656 	int ret;
2657 
2658 	if (sw->uuid)
2659 		return 0;
2660 
2661 	if (tb_switch_is_usb4(sw)) {
2662 		ret = usb4_switch_read_uid(sw, &sw->uid);
2663 		if (ret)
2664 			return ret;
2665 		uid = true;
2666 	} else {
2667 		/*
2668 		 * The newer controllers include fused UUID as part of
2669 		 * link controller specific registers
2670 		 */
2671 		ret = tb_lc_read_uuid(sw, uuid);
2672 		if (ret) {
2673 			if (ret != -EINVAL)
2674 				return ret;
2675 			uid = true;
2676 		}
2677 	}
2678 
2679 	if (uid) {
2680 		/*
2681 		 * ICM generates UUID based on UID and fills the upper
2682 		 * two words with ones. This is not strictly following
2683 		 * UUID format but we want to be compatible with it so
2684 		 * we do the same here.
2685 		 */
2686 		uuid[0] = sw->uid & 0xffffffff;
2687 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2688 		uuid[2] = 0xffffffff;
2689 		uuid[3] = 0xffffffff;
2690 	}
2691 
2692 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2693 	if (!sw->uuid)
2694 		return -ENOMEM;
2695 	return 0;
2696 }
2697 
2698 static int tb_switch_add_dma_port(struct tb_switch *sw)
2699 {
2700 	u32 status;
2701 	int ret;
2702 
2703 	switch (sw->generation) {
2704 	case 2:
2705 		/* Only root switch can be upgraded */
2706 		if (tb_route(sw))
2707 			return 0;
2708 
2709 		fallthrough;
2710 	case 3:
2711 	case 4:
2712 		ret = tb_switch_set_uuid(sw);
2713 		if (ret)
2714 			return ret;
2715 		break;
2716 
2717 	default:
2718 		/*
2719 		 * DMA port is the only thing available when the switch
2720 		 * is in safe mode.
2721 		 */
2722 		if (!sw->safe_mode)
2723 			return 0;
2724 		break;
2725 	}
2726 
2727 	if (sw->no_nvm_upgrade)
2728 		return 0;
2729 
2730 	if (tb_switch_is_usb4(sw)) {
2731 		ret = usb4_switch_nvm_authenticate_status(sw, &status);
2732 		if (ret)
2733 			return ret;
2734 
2735 		if (status) {
2736 			tb_sw_info(sw, "switch flash authentication failed\n");
2737 			nvm_set_auth_status(sw, status);
2738 		}
2739 
2740 		return 0;
2741 	}
2742 
2743 	/* Root switch DMA port requires running firmware */
2744 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2745 		return 0;
2746 
2747 	sw->dma_port = dma_port_alloc(sw);
2748 	if (!sw->dma_port)
2749 		return 0;
2750 
2751 	/*
2752 	 * If there is status already set then authentication failed
2753 	 * when the dma_port_flash_update_auth() returned. Power cycling
2754 	 * is not needed (it was done already) so only thing we do here
2755 	 * is to unblock runtime PM of the root port.
2756 	 */
2757 	nvm_get_auth_status(sw, &status);
2758 	if (status) {
2759 		if (!tb_route(sw))
2760 			nvm_authenticate_complete_dma_port(sw);
2761 		return 0;
2762 	}
2763 
2764 	/*
2765 	 * Check status of the previous flash authentication. If there
2766 	 * is one we need to power cycle the switch in any case to make
2767 	 * it functional again.
2768 	 */
2769 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2770 	if (ret <= 0)
2771 		return ret;
2772 
2773 	/* Now we can allow root port to suspend again */
2774 	if (!tb_route(sw))
2775 		nvm_authenticate_complete_dma_port(sw);
2776 
2777 	if (status) {
2778 		tb_sw_info(sw, "switch flash authentication failed\n");
2779 		nvm_set_auth_status(sw, status);
2780 	}
2781 
2782 	tb_sw_info(sw, "power cycling the switch now\n");
2783 	dma_port_power_cycle(sw->dma_port);
2784 
2785 	/*
2786 	 * We return error here which causes the switch adding failure.
2787 	 * It should appear back after power cycle is complete.
2788 	 */
2789 	return -ESHUTDOWN;
2790 }
2791 
2792 static void tb_switch_default_link_ports(struct tb_switch *sw)
2793 {
2794 	int i;
2795 
2796 	for (i = 1; i <= sw->config.max_port_number; i++) {
2797 		struct tb_port *port = &sw->ports[i];
2798 		struct tb_port *subordinate;
2799 
2800 		if (!tb_port_is_null(port))
2801 			continue;
2802 
2803 		/* Check for the subordinate port */
2804 		if (i == sw->config.max_port_number ||
2805 		    !tb_port_is_null(&sw->ports[i + 1]))
2806 			continue;
2807 
2808 		/* Link them if not already done so (by DROM) */
2809 		subordinate = &sw->ports[i + 1];
2810 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2811 			port->link_nr = 0;
2812 			port->dual_link_port = subordinate;
2813 			subordinate->link_nr = 1;
2814 			subordinate->dual_link_port = port;
2815 
2816 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2817 				  port->port, subordinate->port);
2818 		}
2819 	}
2820 }
2821 
2822 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2823 {
2824 	const struct tb_port *up = tb_upstream_port(sw);
2825 
2826 	if (!up->dual_link_port || !up->dual_link_port->remote)
2827 		return false;
2828 
2829 	if (tb_switch_is_usb4(sw))
2830 		return usb4_switch_lane_bonding_possible(sw);
2831 	return tb_lc_lane_bonding_possible(sw);
2832 }
2833 
2834 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2835 {
2836 	struct tb_port *up;
2837 	bool change = false;
2838 	int ret;
2839 
2840 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2841 		return 0;
2842 
2843 	up = tb_upstream_port(sw);
2844 
2845 	ret = tb_port_get_link_speed(up);
2846 	if (ret < 0)
2847 		return ret;
2848 	if (sw->link_speed != ret)
2849 		change = true;
2850 	sw->link_speed = ret;
2851 
2852 	ret = tb_port_get_link_width(up);
2853 	if (ret < 0)
2854 		return ret;
2855 	if (sw->link_width != ret)
2856 		change = true;
2857 	sw->link_width = ret;
2858 
2859 	/* Notify userspace that there is possible link attribute change */
2860 	if (device_is_registered(&sw->dev) && change)
2861 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2862 
2863 	return 0;
2864 }
2865 
2866 /* Must be called after tb_switch_update_link_attributes() */
2867 static void tb_switch_link_init(struct tb_switch *sw)
2868 {
2869 	struct tb_port *up, *down;
2870 	bool bonded;
2871 
2872 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2873 		return;
2874 
2875 	tb_sw_dbg(sw, "current link speed %u.0 Gb/s\n", sw->link_speed);
2876 	tb_sw_dbg(sw, "current link width %s\n", width_name(sw->link_width));
2877 
2878 	bonded = sw->link_width >= TB_LINK_WIDTH_DUAL;
2879 
2880 	/*
2881 	 * Gen 4 links come up as bonded so update the port structures
2882 	 * accordingly.
2883 	 */
2884 	up = tb_upstream_port(sw);
2885 	down = tb_switch_downstream_port(sw);
2886 
2887 	up->bonded = bonded;
2888 	if (up->dual_link_port)
2889 		up->dual_link_port->bonded = bonded;
2890 	tb_port_update_credits(up);
2891 
2892 	down->bonded = bonded;
2893 	if (down->dual_link_port)
2894 		down->dual_link_port->bonded = bonded;
2895 	tb_port_update_credits(down);
2896 }
2897 
2898 /**
2899  * tb_switch_lane_bonding_enable() - Enable lane bonding
2900  * @sw: Switch to enable lane bonding
2901  *
2902  * Connection manager can call this function to enable lane bonding of a
2903  * switch. If conditions are correct and both switches support the feature,
2904  * lanes are bonded. It is safe to call this to any switch.
2905  */
2906 static int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2907 {
2908 	struct tb_port *up, *down;
2909 	unsigned int width;
2910 	int ret;
2911 
2912 	if (!tb_switch_lane_bonding_possible(sw))
2913 		return 0;
2914 
2915 	up = tb_upstream_port(sw);
2916 	down = tb_switch_downstream_port(sw);
2917 
2918 	if (!tb_port_width_supported(up, TB_LINK_WIDTH_DUAL) ||
2919 	    !tb_port_width_supported(down, TB_LINK_WIDTH_DUAL))
2920 		return 0;
2921 
2922 	/*
2923 	 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2924 	 * CL0 and check just for lane 1.
2925 	 */
2926 	if (tb_wait_for_port(down->dual_link_port, false) <= 0)
2927 		return -ENOTCONN;
2928 
2929 	ret = tb_port_lane_bonding_enable(up);
2930 	if (ret) {
2931 		tb_port_warn(up, "failed to enable lane bonding\n");
2932 		return ret;
2933 	}
2934 
2935 	ret = tb_port_lane_bonding_enable(down);
2936 	if (ret) {
2937 		tb_port_warn(down, "failed to enable lane bonding\n");
2938 		tb_port_lane_bonding_disable(up);
2939 		return ret;
2940 	}
2941 
2942 	/* Any of the widths are all bonded */
2943 	width = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX |
2944 		TB_LINK_WIDTH_ASYM_RX;
2945 
2946 	return tb_port_wait_for_link_width(down, width, 100);
2947 }
2948 
2949 /**
2950  * tb_switch_lane_bonding_disable() - Disable lane bonding
2951  * @sw: Switch whose lane bonding to disable
2952  *
2953  * Disables lane bonding between @sw and parent. This can be called even
2954  * if lanes were not bonded originally.
2955  */
2956 static int tb_switch_lane_bonding_disable(struct tb_switch *sw)
2957 {
2958 	struct tb_port *up, *down;
2959 	int ret;
2960 
2961 	up = tb_upstream_port(sw);
2962 	if (!up->bonded)
2963 		return 0;
2964 
2965 	/*
2966 	 * If the link is Gen 4 there is no way to switch the link to
2967 	 * two single lane links so avoid that here. Also don't bother
2968 	 * if the link is not up anymore (sw is unplugged).
2969 	 */
2970 	ret = tb_port_get_link_generation(up);
2971 	if (ret < 0)
2972 		return ret;
2973 	if (ret >= 4)
2974 		return -EOPNOTSUPP;
2975 
2976 	down = tb_switch_downstream_port(sw);
2977 	tb_port_lane_bonding_disable(up);
2978 	tb_port_lane_bonding_disable(down);
2979 
2980 	/*
2981 	 * It is fine if we get other errors as the router might have
2982 	 * been unplugged.
2983 	 */
2984 	return tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100);
2985 }
2986 
2987 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
2988 static int tb_switch_asym_enable(struct tb_switch *sw, enum tb_link_width width)
2989 {
2990 	struct tb_port *up, *down, *port;
2991 	enum tb_link_width down_width;
2992 	int ret;
2993 
2994 	up = tb_upstream_port(sw);
2995 	down = tb_switch_downstream_port(sw);
2996 
2997 	if (width == TB_LINK_WIDTH_ASYM_TX) {
2998 		down_width = TB_LINK_WIDTH_ASYM_RX;
2999 		port = down;
3000 	} else {
3001 		down_width = TB_LINK_WIDTH_ASYM_TX;
3002 		port = up;
3003 	}
3004 
3005 	ret = tb_port_set_link_width(up, width);
3006 	if (ret)
3007 		return ret;
3008 
3009 	ret = tb_port_set_link_width(down, down_width);
3010 	if (ret)
3011 		return ret;
3012 
3013 	/*
3014 	 * Initiate the change in the router that one of its TX lanes is
3015 	 * changing to RX but do so only if there is an actual change.
3016 	 */
3017 	if (sw->link_width != width) {
3018 		ret = usb4_port_asym_start(port);
3019 		if (ret)
3020 			return ret;
3021 
3022 		ret = tb_port_wait_for_link_width(up, width, 100);
3023 		if (ret)
3024 			return ret;
3025 	}
3026 
3027 	return 0;
3028 }
3029 
3030 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
3031 static int tb_switch_asym_disable(struct tb_switch *sw)
3032 {
3033 	struct tb_port *up, *down;
3034 	int ret;
3035 
3036 	up = tb_upstream_port(sw);
3037 	down = tb_switch_downstream_port(sw);
3038 
3039 	ret = tb_port_set_link_width(up, TB_LINK_WIDTH_DUAL);
3040 	if (ret)
3041 		return ret;
3042 
3043 	ret = tb_port_set_link_width(down, TB_LINK_WIDTH_DUAL);
3044 	if (ret)
3045 		return ret;
3046 
3047 	/*
3048 	 * Initiate the change in the router that has three TX lanes and
3049 	 * is changing one of its TX lanes to RX but only if there is a
3050 	 * change in the link width.
3051 	 */
3052 	if (sw->link_width > TB_LINK_WIDTH_DUAL) {
3053 		if (sw->link_width == TB_LINK_WIDTH_ASYM_TX)
3054 			ret = usb4_port_asym_start(up);
3055 		else
3056 			ret = usb4_port_asym_start(down);
3057 		if (ret)
3058 			return ret;
3059 
3060 		ret = tb_port_wait_for_link_width(up, TB_LINK_WIDTH_DUAL, 100);
3061 		if (ret)
3062 			return ret;
3063 	}
3064 
3065 	return 0;
3066 }
3067 
3068 /**
3069  * tb_switch_set_link_width() - Configure router link width
3070  * @sw: Router to configure
3071  * @width: The new link width
3072  *
3073  * Set device router link width to @width from router upstream port
3074  * perspective. Supports also asymmetric links if the routers boths side
3075  * of the link supports it.
3076  *
3077  * Does nothing for host router.
3078  *
3079  * Returns %0 in case of success, negative errno otherwise.
3080  */
3081 int tb_switch_set_link_width(struct tb_switch *sw, enum tb_link_width width)
3082 {
3083 	struct tb_port *up, *down;
3084 	int ret = 0;
3085 
3086 	if (!tb_route(sw))
3087 		return 0;
3088 
3089 	up = tb_upstream_port(sw);
3090 	down = tb_switch_downstream_port(sw);
3091 
3092 	switch (width) {
3093 	case TB_LINK_WIDTH_SINGLE:
3094 		ret = tb_switch_lane_bonding_disable(sw);
3095 		break;
3096 
3097 	case TB_LINK_WIDTH_DUAL:
3098 		if (sw->link_width == TB_LINK_WIDTH_ASYM_TX ||
3099 		    sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
3100 			ret = tb_switch_asym_disable(sw);
3101 			if (ret)
3102 				break;
3103 		}
3104 		ret = tb_switch_lane_bonding_enable(sw);
3105 		break;
3106 
3107 	case TB_LINK_WIDTH_ASYM_TX:
3108 	case TB_LINK_WIDTH_ASYM_RX:
3109 		ret = tb_switch_asym_enable(sw, width);
3110 		break;
3111 	}
3112 
3113 	switch (ret) {
3114 	case 0:
3115 		break;
3116 
3117 	case -ETIMEDOUT:
3118 		tb_sw_warn(sw, "timeout changing link width\n");
3119 		return ret;
3120 
3121 	case -ENOTCONN:
3122 	case -EOPNOTSUPP:
3123 	case -ENODEV:
3124 		return ret;
3125 
3126 	default:
3127 		tb_sw_dbg(sw, "failed to change link width: %d\n", ret);
3128 		return ret;
3129 	}
3130 
3131 	tb_port_update_credits(down);
3132 	tb_port_update_credits(up);
3133 
3134 	tb_switch_update_link_attributes(sw);
3135 
3136 	tb_sw_dbg(sw, "link width set to %s\n", width_name(width));
3137 	return ret;
3138 }
3139 
3140 /**
3141  * tb_switch_configure_link() - Set link configured
3142  * @sw: Switch whose link is configured
3143  *
3144  * Sets the link upstream from @sw configured (from both ends) so that
3145  * it will not be disconnected when the domain exits sleep. Can be
3146  * called for any switch.
3147  *
3148  * It is recommended that this is called after lane bonding is enabled.
3149  *
3150  * Returns %0 on success and negative errno in case of error.
3151  */
3152 int tb_switch_configure_link(struct tb_switch *sw)
3153 {
3154 	struct tb_port *up, *down;
3155 	int ret;
3156 
3157 	if (!tb_route(sw) || tb_switch_is_icm(sw))
3158 		return 0;
3159 
3160 	up = tb_upstream_port(sw);
3161 	if (tb_switch_is_usb4(up->sw))
3162 		ret = usb4_port_configure(up);
3163 	else
3164 		ret = tb_lc_configure_port(up);
3165 	if (ret)
3166 		return ret;
3167 
3168 	down = up->remote;
3169 	if (tb_switch_is_usb4(down->sw))
3170 		return usb4_port_configure(down);
3171 	return tb_lc_configure_port(down);
3172 }
3173 
3174 /**
3175  * tb_switch_unconfigure_link() - Unconfigure link
3176  * @sw: Switch whose link is unconfigured
3177  *
3178  * Sets the link unconfigured so the @sw will be disconnected if the
3179  * domain exists sleep.
3180  */
3181 void tb_switch_unconfigure_link(struct tb_switch *sw)
3182 {
3183 	struct tb_port *up, *down;
3184 
3185 	if (!tb_route(sw) || tb_switch_is_icm(sw))
3186 		return;
3187 
3188 	/*
3189 	 * Unconfigure downstream port so that wake-on-connect can be
3190 	 * configured after router unplug. No need to unconfigure upstream port
3191 	 * since its router is unplugged.
3192 	 */
3193 	up = tb_upstream_port(sw);
3194 	down = up->remote;
3195 	if (tb_switch_is_usb4(down->sw))
3196 		usb4_port_unconfigure(down);
3197 	else
3198 		tb_lc_unconfigure_port(down);
3199 
3200 	if (sw->is_unplugged)
3201 		return;
3202 
3203 	up = tb_upstream_port(sw);
3204 	if (tb_switch_is_usb4(up->sw))
3205 		usb4_port_unconfigure(up);
3206 	else
3207 		tb_lc_unconfigure_port(up);
3208 }
3209 
3210 static void tb_switch_credits_init(struct tb_switch *sw)
3211 {
3212 	if (tb_switch_is_icm(sw))
3213 		return;
3214 	if (!tb_switch_is_usb4(sw))
3215 		return;
3216 	if (usb4_switch_credits_init(sw))
3217 		tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
3218 }
3219 
3220 static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
3221 {
3222 	struct tb_port *port;
3223 
3224 	if (tb_switch_is_icm(sw))
3225 		return 0;
3226 
3227 	tb_switch_for_each_port(sw, port) {
3228 		int res;
3229 
3230 		if (!port->cap_usb4)
3231 			continue;
3232 
3233 		res = usb4_port_hotplug_enable(port);
3234 		if (res)
3235 			return res;
3236 	}
3237 	return 0;
3238 }
3239 
3240 /**
3241  * tb_switch_add() - Add a switch to the domain
3242  * @sw: Switch to add
3243  *
3244  * This is the last step in adding switch to the domain. It will read
3245  * identification information from DROM and initializes ports so that
3246  * they can be used to connect other switches. The switch will be
3247  * exposed to the userspace when this function successfully returns. To
3248  * remove and release the switch, call tb_switch_remove().
3249  *
3250  * Return: %0 in case of success and negative errno in case of failure
3251  */
3252 int tb_switch_add(struct tb_switch *sw)
3253 {
3254 	int i, ret;
3255 
3256 	/*
3257 	 * Initialize DMA control port now before we read DROM. Recent
3258 	 * host controllers have more complete DROM on NVM that includes
3259 	 * vendor and model identification strings which we then expose
3260 	 * to the userspace. NVM can be accessed through DMA
3261 	 * configuration based mailbox.
3262 	 */
3263 	ret = tb_switch_add_dma_port(sw);
3264 	if (ret) {
3265 		dev_err(&sw->dev, "failed to add DMA port\n");
3266 		return ret;
3267 	}
3268 
3269 	if (!sw->safe_mode) {
3270 		tb_switch_credits_init(sw);
3271 
3272 		/* read drom */
3273 		ret = tb_drom_read(sw);
3274 		if (ret)
3275 			dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
3276 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
3277 
3278 		ret = tb_switch_set_uuid(sw);
3279 		if (ret) {
3280 			dev_err(&sw->dev, "failed to set UUID\n");
3281 			return ret;
3282 		}
3283 
3284 		for (i = 0; i <= sw->config.max_port_number; i++) {
3285 			if (sw->ports[i].disabled) {
3286 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
3287 				continue;
3288 			}
3289 			ret = tb_init_port(&sw->ports[i]);
3290 			if (ret) {
3291 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
3292 				return ret;
3293 			}
3294 		}
3295 
3296 		tb_check_quirks(sw);
3297 
3298 		tb_switch_default_link_ports(sw);
3299 
3300 		ret = tb_switch_update_link_attributes(sw);
3301 		if (ret)
3302 			return ret;
3303 
3304 		tb_switch_link_init(sw);
3305 
3306 		ret = tb_switch_clx_init(sw);
3307 		if (ret)
3308 			return ret;
3309 
3310 		ret = tb_switch_tmu_init(sw);
3311 		if (ret)
3312 			return ret;
3313 	}
3314 
3315 	ret = tb_switch_port_hotplug_enable(sw);
3316 	if (ret)
3317 		return ret;
3318 
3319 	ret = device_add(&sw->dev);
3320 	if (ret) {
3321 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
3322 		return ret;
3323 	}
3324 
3325 	if (tb_route(sw)) {
3326 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
3327 			 sw->vendor, sw->device);
3328 		if (sw->vendor_name && sw->device_name)
3329 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
3330 				 sw->device_name);
3331 	}
3332 
3333 	ret = usb4_switch_add_ports(sw);
3334 	if (ret) {
3335 		dev_err(&sw->dev, "failed to add USB4 ports\n");
3336 		goto err_del;
3337 	}
3338 
3339 	ret = tb_switch_nvm_add(sw);
3340 	if (ret) {
3341 		dev_err(&sw->dev, "failed to add NVM devices\n");
3342 		goto err_ports;
3343 	}
3344 
3345 	/*
3346 	 * Thunderbolt routers do not generate wakeups themselves but
3347 	 * they forward wakeups from tunneled protocols, so enable it
3348 	 * here.
3349 	 */
3350 	device_init_wakeup(&sw->dev, true);
3351 
3352 	pm_runtime_set_active(&sw->dev);
3353 	if (sw->rpm) {
3354 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3355 		pm_runtime_use_autosuspend(&sw->dev);
3356 		pm_runtime_mark_last_busy(&sw->dev);
3357 		pm_runtime_enable(&sw->dev);
3358 		pm_request_autosuspend(&sw->dev);
3359 	}
3360 
3361 	tb_switch_debugfs_init(sw);
3362 	return 0;
3363 
3364 err_ports:
3365 	usb4_switch_remove_ports(sw);
3366 err_del:
3367 	device_del(&sw->dev);
3368 
3369 	return ret;
3370 }
3371 
3372 /**
3373  * tb_switch_remove() - Remove and release a switch
3374  * @sw: Switch to remove
3375  *
3376  * This will remove the switch from the domain and release it after last
3377  * reference count drops to zero. If there are switches connected below
3378  * this switch, they will be removed as well.
3379  */
3380 void tb_switch_remove(struct tb_switch *sw)
3381 {
3382 	struct tb_port *port;
3383 
3384 	tb_switch_debugfs_remove(sw);
3385 
3386 	if (sw->rpm) {
3387 		pm_runtime_get_sync(&sw->dev);
3388 		pm_runtime_disable(&sw->dev);
3389 	}
3390 
3391 	/* port 0 is the switch itself and never has a remote */
3392 	tb_switch_for_each_port(sw, port) {
3393 		if (tb_port_has_remote(port)) {
3394 			tb_switch_remove(port->remote->sw);
3395 			port->remote = NULL;
3396 		} else if (port->xdomain) {
3397 			port->xdomain->is_unplugged = true;
3398 			tb_xdomain_remove(port->xdomain);
3399 			port->xdomain = NULL;
3400 		}
3401 
3402 		/* Remove any downstream retimers */
3403 		tb_retimer_remove_all(port);
3404 	}
3405 
3406 	if (!sw->is_unplugged)
3407 		tb_plug_events_active(sw, false);
3408 
3409 	tb_switch_nvm_remove(sw);
3410 	usb4_switch_remove_ports(sw);
3411 
3412 	if (tb_route(sw))
3413 		dev_info(&sw->dev, "device disconnected\n");
3414 	device_unregister(&sw->dev);
3415 }
3416 
3417 /**
3418  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3419  * @sw: Router to mark unplugged
3420  */
3421 void tb_sw_set_unplugged(struct tb_switch *sw)
3422 {
3423 	struct tb_port *port;
3424 
3425 	if (sw == sw->tb->root_switch) {
3426 		tb_sw_WARN(sw, "cannot unplug root switch\n");
3427 		return;
3428 	}
3429 	if (sw->is_unplugged) {
3430 		tb_sw_WARN(sw, "is_unplugged already set\n");
3431 		return;
3432 	}
3433 	sw->is_unplugged = true;
3434 	tb_switch_for_each_port(sw, port) {
3435 		if (tb_port_has_remote(port))
3436 			tb_sw_set_unplugged(port->remote->sw);
3437 		else if (port->xdomain)
3438 			port->xdomain->is_unplugged = true;
3439 	}
3440 }
3441 
3442 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3443 {
3444 	if (flags)
3445 		tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3446 	else
3447 		tb_sw_dbg(sw, "disabling wakeup\n");
3448 
3449 	if (tb_switch_is_usb4(sw))
3450 		return usb4_switch_set_wake(sw, flags);
3451 	return tb_lc_set_wake(sw, flags);
3452 }
3453 
3454 static void tb_switch_check_wakes(struct tb_switch *sw)
3455 {
3456 	if (device_may_wakeup(&sw->dev)) {
3457 		if (tb_switch_is_usb4(sw))
3458 			usb4_switch_check_wakes(sw);
3459 	}
3460 }
3461 
3462 /**
3463  * tb_switch_resume() - Resume a switch after sleep
3464  * @sw: Switch to resume
3465  * @runtime: Is this resume from runtime suspend or system sleep
3466  *
3467  * Resumes and re-enumerates router (and all its children), if still plugged
3468  * after suspend. Don't enumerate device router whose UID was changed during
3469  * suspend. If this is resume from system sleep, notifies PM core about the
3470  * wakes occurred during suspend. Disables all wakes, except USB4 wake of
3471  * upstream port for USB4 routers that shall be always enabled.
3472  */
3473 int tb_switch_resume(struct tb_switch *sw, bool runtime)
3474 {
3475 	struct tb_port *port;
3476 	int err;
3477 
3478 	tb_sw_dbg(sw, "resuming switch\n");
3479 
3480 	/*
3481 	 * Check for UID of the connected switches except for root
3482 	 * switch which we assume cannot be removed.
3483 	 */
3484 	if (tb_route(sw)) {
3485 		u64 uid;
3486 
3487 		/*
3488 		 * Check first that we can still read the switch config
3489 		 * space. It may be that there is now another domain
3490 		 * connected.
3491 		 */
3492 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3493 		if (err < 0) {
3494 			tb_sw_info(sw, "switch not present anymore\n");
3495 			return err;
3496 		}
3497 
3498 		/* We don't have any way to confirm this was the same device */
3499 		if (!sw->uid)
3500 			return -ENODEV;
3501 
3502 		if (tb_switch_is_usb4(sw))
3503 			err = usb4_switch_read_uid(sw, &uid);
3504 		else
3505 			err = tb_drom_read_uid_only(sw, &uid);
3506 		if (err) {
3507 			tb_sw_warn(sw, "uid read failed\n");
3508 			return err;
3509 		}
3510 		if (sw->uid != uid) {
3511 			tb_sw_info(sw,
3512 				"changed while suspended (uid %#llx -> %#llx)\n",
3513 				sw->uid, uid);
3514 			return -ENODEV;
3515 		}
3516 	}
3517 
3518 	err = tb_switch_configure(sw);
3519 	if (err)
3520 		return err;
3521 
3522 	if (!runtime)
3523 		tb_switch_check_wakes(sw);
3524 
3525 	/* Disable wakes */
3526 	tb_switch_set_wake(sw, 0);
3527 
3528 	err = tb_switch_tmu_init(sw);
3529 	if (err)
3530 		return err;
3531 
3532 	/* check for surviving downstream switches */
3533 	tb_switch_for_each_port(sw, port) {
3534 		if (!tb_port_is_null(port))
3535 			continue;
3536 
3537 		if (!tb_port_resume(port))
3538 			continue;
3539 
3540 		if (tb_wait_for_port(port, true) <= 0) {
3541 			tb_port_warn(port,
3542 				     "lost during suspend, disconnecting\n");
3543 			if (tb_port_has_remote(port))
3544 				tb_sw_set_unplugged(port->remote->sw);
3545 			else if (port->xdomain)
3546 				port->xdomain->is_unplugged = true;
3547 		} else {
3548 			/*
3549 			 * Always unlock the port so the downstream
3550 			 * switch/domain is accessible.
3551 			 */
3552 			if (tb_port_unlock(port))
3553 				tb_port_warn(port, "failed to unlock port\n");
3554 			if (port->remote &&
3555 			    tb_switch_resume(port->remote->sw, runtime)) {
3556 				tb_port_warn(port,
3557 					     "lost during suspend, disconnecting\n");
3558 				tb_sw_set_unplugged(port->remote->sw);
3559 			}
3560 		}
3561 	}
3562 	return 0;
3563 }
3564 
3565 /**
3566  * tb_switch_suspend() - Put a switch to sleep
3567  * @sw: Switch to suspend
3568  * @runtime: Is this runtime suspend or system sleep
3569  *
3570  * Suspends router and all its children. Enables wakes according to
3571  * value of @runtime and then sets sleep bit for the router. If @sw is
3572  * host router the domain is ready to go to sleep once this function
3573  * returns.
3574  */
3575 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3576 {
3577 	unsigned int flags = 0;
3578 	struct tb_port *port;
3579 	int err;
3580 
3581 	tb_sw_dbg(sw, "suspending switch\n");
3582 
3583 	/*
3584 	 * Actually only needed for Titan Ridge but for simplicity can be
3585 	 * done for USB4 device too as CLx is re-enabled at resume.
3586 	 */
3587 	tb_switch_clx_disable(sw);
3588 
3589 	err = tb_plug_events_active(sw, false);
3590 	if (err)
3591 		return;
3592 
3593 	tb_switch_for_each_port(sw, port) {
3594 		if (tb_port_has_remote(port))
3595 			tb_switch_suspend(port->remote->sw, runtime);
3596 	}
3597 
3598 	if (runtime) {
3599 		/* Trigger wake when something is plugged in/out */
3600 		flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3601 		flags |= TB_WAKE_ON_USB4;
3602 		flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3603 	} else if (device_may_wakeup(&sw->dev)) {
3604 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3605 	}
3606 
3607 	tb_switch_set_wake(sw, flags);
3608 
3609 	if (tb_switch_is_usb4(sw))
3610 		usb4_switch_set_sleep(sw);
3611 	else
3612 		tb_lc_set_sleep(sw);
3613 }
3614 
3615 /**
3616  * tb_switch_query_dp_resource() - Query availability of DP resource
3617  * @sw: Switch whose DP resource is queried
3618  * @in: DP IN port
3619  *
3620  * Queries availability of DP resource for DP tunneling using switch
3621  * specific means. Returns %true if resource is available.
3622  */
3623 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3624 {
3625 	if (tb_switch_is_usb4(sw))
3626 		return usb4_switch_query_dp_resource(sw, in);
3627 	return tb_lc_dp_sink_query(sw, in);
3628 }
3629 
3630 /**
3631  * tb_switch_alloc_dp_resource() - Allocate available DP resource
3632  * @sw: Switch whose DP resource is allocated
3633  * @in: DP IN port
3634  *
3635  * Allocates DP resource for DP tunneling. The resource must be
3636  * available for this to succeed (see tb_switch_query_dp_resource()).
3637  * Returns %0 in success and negative errno otherwise.
3638  */
3639 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3640 {
3641 	int ret;
3642 
3643 	if (tb_switch_is_usb4(sw))
3644 		ret = usb4_switch_alloc_dp_resource(sw, in);
3645 	else
3646 		ret = tb_lc_dp_sink_alloc(sw, in);
3647 
3648 	if (ret)
3649 		tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3650 			   in->port);
3651 	else
3652 		tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3653 
3654 	return ret;
3655 }
3656 
3657 /**
3658  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3659  * @sw: Switch whose DP resource is de-allocated
3660  * @in: DP IN port
3661  *
3662  * De-allocates DP resource that was previously allocated for DP
3663  * tunneling.
3664  */
3665 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3666 {
3667 	int ret;
3668 
3669 	if (tb_switch_is_usb4(sw))
3670 		ret = usb4_switch_dealloc_dp_resource(sw, in);
3671 	else
3672 		ret = tb_lc_dp_sink_dealloc(sw, in);
3673 
3674 	if (ret)
3675 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3676 			   in->port);
3677 	else
3678 		tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3679 }
3680 
3681 struct tb_sw_lookup {
3682 	struct tb *tb;
3683 	u8 link;
3684 	u8 depth;
3685 	const uuid_t *uuid;
3686 	u64 route;
3687 };
3688 
3689 static int tb_switch_match(struct device *dev, const void *data)
3690 {
3691 	struct tb_switch *sw = tb_to_switch(dev);
3692 	const struct tb_sw_lookup *lookup = data;
3693 
3694 	if (!sw)
3695 		return 0;
3696 	if (sw->tb != lookup->tb)
3697 		return 0;
3698 
3699 	if (lookup->uuid)
3700 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3701 
3702 	if (lookup->route) {
3703 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
3704 		       sw->config.route_hi == upper_32_bits(lookup->route);
3705 	}
3706 
3707 	/* Root switch is matched only by depth */
3708 	if (!lookup->depth)
3709 		return !sw->depth;
3710 
3711 	return sw->link == lookup->link && sw->depth == lookup->depth;
3712 }
3713 
3714 /**
3715  * tb_switch_find_by_link_depth() - Find switch by link and depth
3716  * @tb: Domain the switch belongs
3717  * @link: Link number the switch is connected
3718  * @depth: Depth of the switch in link
3719  *
3720  * Returned switch has reference count increased so the caller needs to
3721  * call tb_switch_put() when done with the switch.
3722  */
3723 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3724 {
3725 	struct tb_sw_lookup lookup;
3726 	struct device *dev;
3727 
3728 	memset(&lookup, 0, sizeof(lookup));
3729 	lookup.tb = tb;
3730 	lookup.link = link;
3731 	lookup.depth = depth;
3732 
3733 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3734 	if (dev)
3735 		return tb_to_switch(dev);
3736 
3737 	return NULL;
3738 }
3739 
3740 /**
3741  * tb_switch_find_by_uuid() - Find switch by UUID
3742  * @tb: Domain the switch belongs
3743  * @uuid: UUID to look for
3744  *
3745  * Returned switch has reference count increased so the caller needs to
3746  * call tb_switch_put() when done with the switch.
3747  */
3748 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3749 {
3750 	struct tb_sw_lookup lookup;
3751 	struct device *dev;
3752 
3753 	memset(&lookup, 0, sizeof(lookup));
3754 	lookup.tb = tb;
3755 	lookup.uuid = uuid;
3756 
3757 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3758 	if (dev)
3759 		return tb_to_switch(dev);
3760 
3761 	return NULL;
3762 }
3763 
3764 /**
3765  * tb_switch_find_by_route() - Find switch by route string
3766  * @tb: Domain the switch belongs
3767  * @route: Route string to look for
3768  *
3769  * Returned switch has reference count increased so the caller needs to
3770  * call tb_switch_put() when done with the switch.
3771  */
3772 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3773 {
3774 	struct tb_sw_lookup lookup;
3775 	struct device *dev;
3776 
3777 	if (!route)
3778 		return tb_switch_get(tb->root_switch);
3779 
3780 	memset(&lookup, 0, sizeof(lookup));
3781 	lookup.tb = tb;
3782 	lookup.route = route;
3783 
3784 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3785 	if (dev)
3786 		return tb_to_switch(dev);
3787 
3788 	return NULL;
3789 }
3790 
3791 /**
3792  * tb_switch_find_port() - return the first port of @type on @sw or NULL
3793  * @sw: Switch to find the port from
3794  * @type: Port type to look for
3795  */
3796 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3797 				    enum tb_port_type type)
3798 {
3799 	struct tb_port *port;
3800 
3801 	tb_switch_for_each_port(sw, port) {
3802 		if (port->config.type == type)
3803 			return port;
3804 	}
3805 
3806 	return NULL;
3807 }
3808 
3809 /*
3810  * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3811  * device. For now used only for Titan Ridge.
3812  */
3813 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3814 				       unsigned int pcie_offset, u32 value)
3815 {
3816 	u32 offset, command, val;
3817 	int ret;
3818 
3819 	if (sw->generation != 3)
3820 		return -EOPNOTSUPP;
3821 
3822 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3823 	ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3824 	if (ret)
3825 		return ret;
3826 
3827 	command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3828 	command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3829 	command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3830 	command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3831 			<< TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3832 	command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3833 
3834 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3835 
3836 	ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3837 	if (ret)
3838 		return ret;
3839 
3840 	ret = tb_switch_wait_for_bit(sw, offset,
3841 				     TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3842 	if (ret)
3843 		return ret;
3844 
3845 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3846 	if (ret)
3847 		return ret;
3848 
3849 	if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3850 		return -ETIMEDOUT;
3851 
3852 	return 0;
3853 }
3854 
3855 /**
3856  * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3857  * @sw: Router to enable PCIe L1
3858  *
3859  * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3860  * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3861  * was configured. Due to Intel platforms limitation, shall be called only
3862  * for first hop switch.
3863  */
3864 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3865 {
3866 	struct tb_switch *parent = tb_switch_parent(sw);
3867 	int ret;
3868 
3869 	if (!tb_route(sw))
3870 		return 0;
3871 
3872 	if (!tb_switch_is_titan_ridge(sw))
3873 		return 0;
3874 
3875 	/* Enable PCIe L1 enable only for first hop router (depth = 1) */
3876 	if (tb_route(parent))
3877 		return 0;
3878 
3879 	/* Write to downstream PCIe bridge #5 aka Dn4 */
3880 	ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3881 	if (ret)
3882 		return ret;
3883 
3884 	/* Write to Upstream PCIe bridge #0 aka Up0 */
3885 	return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3886 }
3887 
3888 /**
3889  * tb_switch_xhci_connect() - Connect internal xHCI
3890  * @sw: Router whose xHCI to connect
3891  *
3892  * Can be called to any router. For Alpine Ridge and Titan Ridge
3893  * performs special flows that bring the xHCI functional for any device
3894  * connected to the type-C port. Call only after PCIe tunnel has been
3895  * established. The function only does the connect if not done already
3896  * so can be called several times for the same router.
3897  */
3898 int tb_switch_xhci_connect(struct tb_switch *sw)
3899 {
3900 	struct tb_port *port1, *port3;
3901 	int ret;
3902 
3903 	if (sw->generation != 3)
3904 		return 0;
3905 
3906 	port1 = &sw->ports[1];
3907 	port3 = &sw->ports[3];
3908 
3909 	if (tb_switch_is_alpine_ridge(sw)) {
3910 		bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3911 
3912 		usb_port1 = tb_lc_is_usb_plugged(port1);
3913 		usb_port3 = tb_lc_is_usb_plugged(port3);
3914 		xhci_port1 = tb_lc_is_xhci_connected(port1);
3915 		xhci_port3 = tb_lc_is_xhci_connected(port3);
3916 
3917 		/* Figure out correct USB port to connect */
3918 		if (usb_port1 && !xhci_port1) {
3919 			ret = tb_lc_xhci_connect(port1);
3920 			if (ret)
3921 				return ret;
3922 		}
3923 		if (usb_port3 && !xhci_port3)
3924 			return tb_lc_xhci_connect(port3);
3925 	} else if (tb_switch_is_titan_ridge(sw)) {
3926 		ret = tb_lc_xhci_connect(port1);
3927 		if (ret)
3928 			return ret;
3929 		return tb_lc_xhci_connect(port3);
3930 	}
3931 
3932 	return 0;
3933 }
3934 
3935 /**
3936  * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3937  * @sw: Router whose xHCI to disconnect
3938  *
3939  * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3940  * ports.
3941  */
3942 void tb_switch_xhci_disconnect(struct tb_switch *sw)
3943 {
3944 	if (sw->generation == 3) {
3945 		struct tb_port *port1 = &sw->ports[1];
3946 		struct tb_port *port3 = &sw->ports[3];
3947 
3948 		tb_lc_xhci_disconnect(port1);
3949 		tb_port_dbg(port1, "disconnected xHCI\n");
3950 		tb_lc_xhci_disconnect(port3);
3951 		tb_port_dbg(port3, "disconnected xHCI\n");
3952 	}
3953 }
3954