1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt Cactus Ridge driver - switch/port utility functions 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/idr.h> 10 #include <linux/nvmem-provider.h> 11 #include <linux/sizes.h> 12 #include <linux/slab.h> 13 #include <linux/vmalloc.h> 14 15 #include "tb.h" 16 17 /* Switch authorization from userspace is serialized by this lock */ 18 static DEFINE_MUTEX(switch_lock); 19 20 /* Switch NVM support */ 21 22 #define NVM_DEVID 0x05 23 #define NVM_VERSION 0x08 24 #define NVM_CSS 0x10 25 #define NVM_FLASH_SIZE 0x45 26 27 #define NVM_MIN_SIZE SZ_32K 28 #define NVM_MAX_SIZE SZ_512K 29 30 static DEFINE_IDA(nvm_ida); 31 32 struct nvm_auth_status { 33 struct list_head list; 34 uuid_t uuid; 35 u32 status; 36 }; 37 38 /* 39 * Hold NVM authentication failure status per switch This information 40 * needs to stay around even when the switch gets power cycled so we 41 * keep it separately. 42 */ 43 static LIST_HEAD(nvm_auth_status_cache); 44 static DEFINE_MUTEX(nvm_auth_status_lock); 45 46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 47 { 48 struct nvm_auth_status *st; 49 50 list_for_each_entry(st, &nvm_auth_status_cache, list) { 51 if (uuid_equal(&st->uuid, sw->uuid)) 52 return st; 53 } 54 55 return NULL; 56 } 57 58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 59 { 60 struct nvm_auth_status *st; 61 62 mutex_lock(&nvm_auth_status_lock); 63 st = __nvm_get_auth_status(sw); 64 mutex_unlock(&nvm_auth_status_lock); 65 66 *status = st ? st->status : 0; 67 } 68 69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 70 { 71 struct nvm_auth_status *st; 72 73 if (WARN_ON(!sw->uuid)) 74 return; 75 76 mutex_lock(&nvm_auth_status_lock); 77 st = __nvm_get_auth_status(sw); 78 79 if (!st) { 80 st = kzalloc(sizeof(*st), GFP_KERNEL); 81 if (!st) 82 goto unlock; 83 84 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 85 INIT_LIST_HEAD(&st->list); 86 list_add_tail(&st->list, &nvm_auth_status_cache); 87 } 88 89 st->status = status; 90 unlock: 91 mutex_unlock(&nvm_auth_status_lock); 92 } 93 94 static void nvm_clear_auth_status(const struct tb_switch *sw) 95 { 96 struct nvm_auth_status *st; 97 98 mutex_lock(&nvm_auth_status_lock); 99 st = __nvm_get_auth_status(sw); 100 if (st) { 101 list_del(&st->list); 102 kfree(st); 103 } 104 mutex_unlock(&nvm_auth_status_lock); 105 } 106 107 static int nvm_validate_and_write(struct tb_switch *sw) 108 { 109 unsigned int image_size, hdr_size; 110 const u8 *buf = sw->nvm->buf; 111 u16 ds_size; 112 int ret; 113 114 if (!buf) 115 return -EINVAL; 116 117 image_size = sw->nvm->buf_data_size; 118 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) 119 return -EINVAL; 120 121 /* 122 * FARB pointer must point inside the image and must at least 123 * contain parts of the digital section we will be reading here. 124 */ 125 hdr_size = (*(u32 *)buf) & 0xffffff; 126 if (hdr_size + NVM_DEVID + 2 >= image_size) 127 return -EINVAL; 128 129 /* Digital section start should be aligned to 4k page */ 130 if (!IS_ALIGNED(hdr_size, SZ_4K)) 131 return -EINVAL; 132 133 /* 134 * Read digital section size and check that it also fits inside 135 * the image. 136 */ 137 ds_size = *(u16 *)(buf + hdr_size); 138 if (ds_size >= image_size) 139 return -EINVAL; 140 141 if (!sw->safe_mode) { 142 u16 device_id; 143 144 /* 145 * Make sure the device ID in the image matches the one 146 * we read from the switch config space. 147 */ 148 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID); 149 if (device_id != sw->config.device_id) 150 return -EINVAL; 151 152 if (sw->generation < 3) { 153 /* Write CSS headers first */ 154 ret = dma_port_flash_write(sw->dma_port, 155 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS, 156 DMA_PORT_CSS_MAX_SIZE); 157 if (ret) 158 return ret; 159 } 160 161 /* Skip headers in the image */ 162 buf += hdr_size; 163 image_size -= hdr_size; 164 } 165 166 return dma_port_flash_write(sw->dma_port, 0, buf, image_size); 167 } 168 169 static int nvm_authenticate_host(struct tb_switch *sw) 170 { 171 int ret; 172 173 /* 174 * Root switch NVM upgrade requires that we disconnect the 175 * existing paths first (in case it is not in safe mode 176 * already). 177 */ 178 if (!sw->safe_mode) { 179 ret = tb_domain_disconnect_all_paths(sw->tb); 180 if (ret) 181 return ret; 182 /* 183 * The host controller goes away pretty soon after this if 184 * everything goes well so getting timeout is expected. 185 */ 186 ret = dma_port_flash_update_auth(sw->dma_port); 187 return ret == -ETIMEDOUT ? 0 : ret; 188 } 189 190 /* 191 * From safe mode we can get out by just power cycling the 192 * switch. 193 */ 194 dma_port_power_cycle(sw->dma_port); 195 return 0; 196 } 197 198 static int nvm_authenticate_device(struct tb_switch *sw) 199 { 200 int ret, retries = 10; 201 202 ret = dma_port_flash_update_auth(sw->dma_port); 203 if (ret && ret != -ETIMEDOUT) 204 return ret; 205 206 /* 207 * Poll here for the authentication status. It takes some time 208 * for the device to respond (we get timeout for a while). Once 209 * we get response the device needs to be power cycled in order 210 * to the new NVM to be taken into use. 211 */ 212 do { 213 u32 status; 214 215 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 216 if (ret < 0 && ret != -ETIMEDOUT) 217 return ret; 218 if (ret > 0) { 219 if (status) { 220 tb_sw_warn(sw, "failed to authenticate NVM\n"); 221 nvm_set_auth_status(sw, status); 222 } 223 224 tb_sw_info(sw, "power cycling the switch now\n"); 225 dma_port_power_cycle(sw->dma_port); 226 return 0; 227 } 228 229 msleep(500); 230 } while (--retries); 231 232 return -ETIMEDOUT; 233 } 234 235 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val, 236 size_t bytes) 237 { 238 struct tb_switch *sw = priv; 239 240 return dma_port_flash_read(sw->dma_port, offset, val, bytes); 241 } 242 243 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val, 244 size_t bytes) 245 { 246 struct tb_switch *sw = priv; 247 int ret = 0; 248 249 if (mutex_lock_interruptible(&switch_lock)) 250 return -ERESTARTSYS; 251 252 /* 253 * Since writing the NVM image might require some special steps, 254 * for example when CSS headers are written, we cache the image 255 * locally here and handle the special cases when the user asks 256 * us to authenticate the image. 257 */ 258 if (!sw->nvm->buf) { 259 sw->nvm->buf = vmalloc(NVM_MAX_SIZE); 260 if (!sw->nvm->buf) { 261 ret = -ENOMEM; 262 goto unlock; 263 } 264 } 265 266 sw->nvm->buf_data_size = offset + bytes; 267 memcpy(sw->nvm->buf + offset, val, bytes); 268 269 unlock: 270 mutex_unlock(&switch_lock); 271 272 return ret; 273 } 274 275 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id, 276 size_t size, bool active) 277 { 278 struct nvmem_config config; 279 280 memset(&config, 0, sizeof(config)); 281 282 if (active) { 283 config.name = "nvm_active"; 284 config.reg_read = tb_switch_nvm_read; 285 config.read_only = true; 286 } else { 287 config.name = "nvm_non_active"; 288 config.reg_write = tb_switch_nvm_write; 289 config.root_only = true; 290 } 291 292 config.id = id; 293 config.stride = 4; 294 config.word_size = 4; 295 config.size = size; 296 config.dev = &sw->dev; 297 config.owner = THIS_MODULE; 298 config.priv = sw; 299 300 return nvmem_register(&config); 301 } 302 303 static int tb_switch_nvm_add(struct tb_switch *sw) 304 { 305 struct nvmem_device *nvm_dev; 306 struct tb_switch_nvm *nvm; 307 u32 val; 308 int ret; 309 310 if (!sw->dma_port) 311 return 0; 312 313 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 314 if (!nvm) 315 return -ENOMEM; 316 317 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL); 318 319 /* 320 * If the switch is in safe-mode the only accessible portion of 321 * the NVM is the non-active one where userspace is expected to 322 * write new functional NVM. 323 */ 324 if (!sw->safe_mode) { 325 u32 nvm_size, hdr_size; 326 327 ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val, 328 sizeof(val)); 329 if (ret) 330 goto err_ida; 331 332 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; 333 nvm_size = (SZ_1M << (val & 7)) / 8; 334 nvm_size = (nvm_size - hdr_size) / 2; 335 336 ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val, 337 sizeof(val)); 338 if (ret) 339 goto err_ida; 340 341 nvm->major = val >> 16; 342 nvm->minor = val >> 8; 343 344 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true); 345 if (IS_ERR(nvm_dev)) { 346 ret = PTR_ERR(nvm_dev); 347 goto err_ida; 348 } 349 nvm->active = nvm_dev; 350 } 351 352 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false); 353 if (IS_ERR(nvm_dev)) { 354 ret = PTR_ERR(nvm_dev); 355 goto err_nvm_active; 356 } 357 nvm->non_active = nvm_dev; 358 359 mutex_lock(&switch_lock); 360 sw->nvm = nvm; 361 mutex_unlock(&switch_lock); 362 363 return 0; 364 365 err_nvm_active: 366 if (nvm->active) 367 nvmem_unregister(nvm->active); 368 err_ida: 369 ida_simple_remove(&nvm_ida, nvm->id); 370 kfree(nvm); 371 372 return ret; 373 } 374 375 static void tb_switch_nvm_remove(struct tb_switch *sw) 376 { 377 struct tb_switch_nvm *nvm; 378 379 mutex_lock(&switch_lock); 380 nvm = sw->nvm; 381 sw->nvm = NULL; 382 mutex_unlock(&switch_lock); 383 384 if (!nvm) 385 return; 386 387 /* Remove authentication status in case the switch is unplugged */ 388 if (!nvm->authenticating) 389 nvm_clear_auth_status(sw); 390 391 nvmem_unregister(nvm->non_active); 392 if (nvm->active) 393 nvmem_unregister(nvm->active); 394 ida_simple_remove(&nvm_ida, nvm->id); 395 vfree(nvm->buf); 396 kfree(nvm); 397 } 398 399 /* port utility functions */ 400 401 static const char *tb_port_type(struct tb_regs_port_header *port) 402 { 403 switch (port->type >> 16) { 404 case 0: 405 switch ((u8) port->type) { 406 case 0: 407 return "Inactive"; 408 case 1: 409 return "Port"; 410 case 2: 411 return "NHI"; 412 default: 413 return "unknown"; 414 } 415 case 0x2: 416 return "Ethernet"; 417 case 0x8: 418 return "SATA"; 419 case 0xe: 420 return "DP/HDMI"; 421 case 0x10: 422 return "PCIe"; 423 case 0x20: 424 return "USB"; 425 default: 426 return "unknown"; 427 } 428 } 429 430 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port) 431 { 432 tb_info(tb, 433 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 434 port->port_number, port->vendor_id, port->device_id, 435 port->revision, port->thunderbolt_version, tb_port_type(port), 436 port->type); 437 tb_info(tb, " Max hop id (in/out): %d/%d\n", 438 port->max_in_hop_id, port->max_out_hop_id); 439 tb_info(tb, " Max counters: %d\n", port->max_counters); 440 tb_info(tb, " NFC Credits: %#x\n", port->nfc_credits); 441 } 442 443 /** 444 * tb_port_state() - get connectedness state of a port 445 * 446 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 447 * 448 * Return: Returns an enum tb_port_state on success or an error code on failure. 449 */ 450 static int tb_port_state(struct tb_port *port) 451 { 452 struct tb_cap_phy phy; 453 int res; 454 if (port->cap_phy == 0) { 455 tb_port_WARN(port, "does not have a PHY\n"); 456 return -EINVAL; 457 } 458 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 459 if (res) 460 return res; 461 return phy.state; 462 } 463 464 /** 465 * tb_wait_for_port() - wait for a port to become ready 466 * 467 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 468 * wait_if_unplugged is set then we also wait if the port is in state 469 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 470 * switch resume). Otherwise we only wait if a device is registered but the link 471 * has not yet been established. 472 * 473 * Return: Returns an error code on failure. Returns 0 if the port is not 474 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 475 * if the port is connected and in state TB_PORT_UP. 476 */ 477 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 478 { 479 int retries = 10; 480 int state; 481 if (!port->cap_phy) { 482 tb_port_WARN(port, "does not have PHY\n"); 483 return -EINVAL; 484 } 485 if (tb_is_upstream_port(port)) { 486 tb_port_WARN(port, "is the upstream port\n"); 487 return -EINVAL; 488 } 489 490 while (retries--) { 491 state = tb_port_state(port); 492 if (state < 0) 493 return state; 494 if (state == TB_PORT_DISABLED) { 495 tb_port_info(port, "is disabled (state: 0)\n"); 496 return 0; 497 } 498 if (state == TB_PORT_UNPLUGGED) { 499 if (wait_if_unplugged) { 500 /* used during resume */ 501 tb_port_info(port, 502 "is unplugged (state: 7), retrying...\n"); 503 msleep(100); 504 continue; 505 } 506 tb_port_info(port, "is unplugged (state: 7)\n"); 507 return 0; 508 } 509 if (state == TB_PORT_UP) { 510 tb_port_info(port, 511 "is connected, link is up (state: 2)\n"); 512 return 1; 513 } 514 515 /* 516 * After plug-in the state is TB_PORT_CONNECTING. Give it some 517 * time. 518 */ 519 tb_port_info(port, 520 "is connected, link is not up (state: %d), retrying...\n", 521 state); 522 msleep(100); 523 } 524 tb_port_warn(port, 525 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 526 return 0; 527 } 528 529 /** 530 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 531 * 532 * Change the number of NFC credits allocated to @port by @credits. To remove 533 * NFC credits pass a negative amount of credits. 534 * 535 * Return: Returns 0 on success or an error code on failure. 536 */ 537 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 538 { 539 if (credits == 0) 540 return 0; 541 tb_port_info(port, 542 "adding %#x NFC credits (%#x -> %#x)", 543 credits, 544 port->config.nfc_credits, 545 port->config.nfc_credits + credits); 546 port->config.nfc_credits += credits; 547 return tb_port_write(port, &port->config.nfc_credits, 548 TB_CFG_PORT, 4, 1); 549 } 550 551 /** 552 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 553 * 554 * Return: Returns 0 on success or an error code on failure. 555 */ 556 int tb_port_clear_counter(struct tb_port *port, int counter) 557 { 558 u32 zero[3] = { 0, 0, 0 }; 559 tb_port_info(port, "clearing counter %d\n", counter); 560 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 561 } 562 563 /** 564 * tb_init_port() - initialize a port 565 * 566 * This is a helper method for tb_switch_alloc. Does not check or initialize 567 * any downstream switches. 568 * 569 * Return: Returns 0 on success or an error code on failure. 570 */ 571 static int tb_init_port(struct tb_port *port) 572 { 573 int res; 574 int cap; 575 576 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 577 if (res) 578 return res; 579 580 /* Port 0 is the switch itself and has no PHY. */ 581 if (port->config.type == TB_TYPE_PORT && port->port != 0) { 582 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 583 584 if (cap > 0) 585 port->cap_phy = cap; 586 else 587 tb_port_WARN(port, "non switch port without a PHY\n"); 588 } 589 590 tb_dump_port(port->sw->tb, &port->config); 591 592 /* TODO: Read dual link port, DP port and more from EEPROM. */ 593 return 0; 594 595 } 596 597 /* switch utility functions */ 598 599 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw) 600 { 601 tb_info(tb, 602 " Switch: %x:%x (Revision: %d, TB Version: %d)\n", 603 sw->vendor_id, sw->device_id, sw->revision, 604 sw->thunderbolt_version); 605 tb_info(tb, " Max Port Number: %d\n", sw->max_port_number); 606 tb_info(tb, " Config:\n"); 607 tb_info(tb, 608 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 609 sw->upstream_port_number, sw->depth, 610 (((u64) sw->route_hi) << 32) | sw->route_lo, 611 sw->enabled, sw->plug_events_delay); 612 tb_info(tb, 613 " unknown1: %#x unknown4: %#x\n", 614 sw->__unknown1, sw->__unknown4); 615 } 616 617 /** 618 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET 619 * 620 * Return: Returns 0 on success or an error code on failure. 621 */ 622 int tb_switch_reset(struct tb *tb, u64 route) 623 { 624 struct tb_cfg_result res; 625 struct tb_regs_switch_header header = { 626 header.route_hi = route >> 32, 627 header.route_lo = route, 628 header.enabled = true, 629 }; 630 tb_info(tb, "resetting switch at %llx\n", route); 631 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route, 632 0, 2, 2, 2); 633 if (res.err) 634 return res.err; 635 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT); 636 if (res.err > 0) 637 return -EIO; 638 return res.err; 639 } 640 641 struct tb_switch *get_switch_at_route(struct tb_switch *sw, u64 route) 642 { 643 u8 next_port = route; /* 644 * Routes use a stride of 8 bits, 645 * eventhough a port index has 6 bits at most. 646 * */ 647 if (route == 0) 648 return sw; 649 if (next_port > sw->config.max_port_number) 650 return NULL; 651 if (tb_is_upstream_port(&sw->ports[next_port])) 652 return NULL; 653 if (!sw->ports[next_port].remote) 654 return NULL; 655 return get_switch_at_route(sw->ports[next_port].remote->sw, 656 route >> TB_ROUTE_SHIFT); 657 } 658 659 /** 660 * tb_plug_events_active() - enable/disable plug events on a switch 661 * 662 * Also configures a sane plug_events_delay of 255ms. 663 * 664 * Return: Returns 0 on success or an error code on failure. 665 */ 666 static int tb_plug_events_active(struct tb_switch *sw, bool active) 667 { 668 u32 data; 669 int res; 670 671 if (!sw->config.enabled) 672 return 0; 673 674 sw->config.plug_events_delay = 0xff; 675 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 676 if (res) 677 return res; 678 679 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 680 if (res) 681 return res; 682 683 if (active) { 684 data = data & 0xFFFFFF83; 685 switch (sw->config.device_id) { 686 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 687 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 688 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 689 break; 690 default: 691 data |= 4; 692 } 693 } else { 694 data = data | 0x7c; 695 } 696 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 697 sw->cap_plug_events + 1, 1); 698 } 699 700 static ssize_t authorized_show(struct device *dev, 701 struct device_attribute *attr, 702 char *buf) 703 { 704 struct tb_switch *sw = tb_to_switch(dev); 705 706 return sprintf(buf, "%u\n", sw->authorized); 707 } 708 709 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 710 { 711 int ret = -EINVAL; 712 713 if (mutex_lock_interruptible(&switch_lock)) 714 return -ERESTARTSYS; 715 716 if (sw->authorized) 717 goto unlock; 718 719 switch (val) { 720 /* Approve switch */ 721 case 1: 722 if (sw->key) 723 ret = tb_domain_approve_switch_key(sw->tb, sw); 724 else 725 ret = tb_domain_approve_switch(sw->tb, sw); 726 break; 727 728 /* Challenge switch */ 729 case 2: 730 if (sw->key) 731 ret = tb_domain_challenge_switch_key(sw->tb, sw); 732 break; 733 734 default: 735 break; 736 } 737 738 if (!ret) { 739 sw->authorized = val; 740 /* Notify status change to the userspace */ 741 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 742 } 743 744 unlock: 745 mutex_unlock(&switch_lock); 746 return ret; 747 } 748 749 static ssize_t authorized_store(struct device *dev, 750 struct device_attribute *attr, 751 const char *buf, size_t count) 752 { 753 struct tb_switch *sw = tb_to_switch(dev); 754 unsigned int val; 755 ssize_t ret; 756 757 ret = kstrtouint(buf, 0, &val); 758 if (ret) 759 return ret; 760 if (val > 2) 761 return -EINVAL; 762 763 ret = tb_switch_set_authorized(sw, val); 764 765 return ret ? ret : count; 766 } 767 static DEVICE_ATTR_RW(authorized); 768 769 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 770 char *buf) 771 { 772 struct tb_switch *sw = tb_to_switch(dev); 773 774 return sprintf(buf, "%#x\n", sw->device); 775 } 776 static DEVICE_ATTR_RO(device); 777 778 static ssize_t 779 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 780 { 781 struct tb_switch *sw = tb_to_switch(dev); 782 783 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : ""); 784 } 785 static DEVICE_ATTR_RO(device_name); 786 787 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 788 char *buf) 789 { 790 struct tb_switch *sw = tb_to_switch(dev); 791 ssize_t ret; 792 793 if (mutex_lock_interruptible(&switch_lock)) 794 return -ERESTARTSYS; 795 796 if (sw->key) 797 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 798 else 799 ret = sprintf(buf, "\n"); 800 801 mutex_unlock(&switch_lock); 802 return ret; 803 } 804 805 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 806 const char *buf, size_t count) 807 { 808 struct tb_switch *sw = tb_to_switch(dev); 809 u8 key[TB_SWITCH_KEY_SIZE]; 810 ssize_t ret = count; 811 bool clear = false; 812 813 if (!strcmp(buf, "\n")) 814 clear = true; 815 else if (hex2bin(key, buf, sizeof(key))) 816 return -EINVAL; 817 818 if (mutex_lock_interruptible(&switch_lock)) 819 return -ERESTARTSYS; 820 821 if (sw->authorized) { 822 ret = -EBUSY; 823 } else { 824 kfree(sw->key); 825 if (clear) { 826 sw->key = NULL; 827 } else { 828 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 829 if (!sw->key) 830 ret = -ENOMEM; 831 } 832 } 833 834 mutex_unlock(&switch_lock); 835 return ret; 836 } 837 static DEVICE_ATTR(key, 0600, key_show, key_store); 838 839 static ssize_t nvm_authenticate_show(struct device *dev, 840 struct device_attribute *attr, char *buf) 841 { 842 struct tb_switch *sw = tb_to_switch(dev); 843 u32 status; 844 845 nvm_get_auth_status(sw, &status); 846 return sprintf(buf, "%#x\n", status); 847 } 848 849 static ssize_t nvm_authenticate_store(struct device *dev, 850 struct device_attribute *attr, const char *buf, size_t count) 851 { 852 struct tb_switch *sw = tb_to_switch(dev); 853 bool val; 854 int ret; 855 856 if (mutex_lock_interruptible(&switch_lock)) 857 return -ERESTARTSYS; 858 859 /* If NVMem devices are not yet added */ 860 if (!sw->nvm) { 861 ret = -EAGAIN; 862 goto exit_unlock; 863 } 864 865 ret = kstrtobool(buf, &val); 866 if (ret) 867 goto exit_unlock; 868 869 /* Always clear the authentication status */ 870 nvm_clear_auth_status(sw); 871 872 if (val) { 873 ret = nvm_validate_and_write(sw); 874 if (ret) 875 goto exit_unlock; 876 877 sw->nvm->authenticating = true; 878 879 if (!tb_route(sw)) 880 ret = nvm_authenticate_host(sw); 881 else 882 ret = nvm_authenticate_device(sw); 883 } 884 885 exit_unlock: 886 mutex_unlock(&switch_lock); 887 888 if (ret) 889 return ret; 890 return count; 891 } 892 static DEVICE_ATTR_RW(nvm_authenticate); 893 894 static ssize_t nvm_version_show(struct device *dev, 895 struct device_attribute *attr, char *buf) 896 { 897 struct tb_switch *sw = tb_to_switch(dev); 898 int ret; 899 900 if (mutex_lock_interruptible(&switch_lock)) 901 return -ERESTARTSYS; 902 903 if (sw->safe_mode) 904 ret = -ENODATA; 905 else if (!sw->nvm) 906 ret = -EAGAIN; 907 else 908 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 909 910 mutex_unlock(&switch_lock); 911 912 return ret; 913 } 914 static DEVICE_ATTR_RO(nvm_version); 915 916 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 917 char *buf) 918 { 919 struct tb_switch *sw = tb_to_switch(dev); 920 921 return sprintf(buf, "%#x\n", sw->vendor); 922 } 923 static DEVICE_ATTR_RO(vendor); 924 925 static ssize_t 926 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 927 { 928 struct tb_switch *sw = tb_to_switch(dev); 929 930 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : ""); 931 } 932 static DEVICE_ATTR_RO(vendor_name); 933 934 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 935 char *buf) 936 { 937 struct tb_switch *sw = tb_to_switch(dev); 938 939 return sprintf(buf, "%pUb\n", sw->uuid); 940 } 941 static DEVICE_ATTR_RO(unique_id); 942 943 static struct attribute *switch_attrs[] = { 944 &dev_attr_authorized.attr, 945 &dev_attr_device.attr, 946 &dev_attr_device_name.attr, 947 &dev_attr_key.attr, 948 &dev_attr_nvm_authenticate.attr, 949 &dev_attr_nvm_version.attr, 950 &dev_attr_vendor.attr, 951 &dev_attr_vendor_name.attr, 952 &dev_attr_unique_id.attr, 953 NULL, 954 }; 955 956 static umode_t switch_attr_is_visible(struct kobject *kobj, 957 struct attribute *attr, int n) 958 { 959 struct device *dev = container_of(kobj, struct device, kobj); 960 struct tb_switch *sw = tb_to_switch(dev); 961 962 if (attr == &dev_attr_key.attr) { 963 if (tb_route(sw) && 964 sw->tb->security_level == TB_SECURITY_SECURE && 965 sw->security_level == TB_SECURITY_SECURE) 966 return attr->mode; 967 return 0; 968 } else if (attr == &dev_attr_nvm_authenticate.attr || 969 attr == &dev_attr_nvm_version.attr) { 970 if (sw->dma_port) 971 return attr->mode; 972 return 0; 973 } 974 975 return sw->safe_mode ? 0 : attr->mode; 976 } 977 978 static struct attribute_group switch_group = { 979 .is_visible = switch_attr_is_visible, 980 .attrs = switch_attrs, 981 }; 982 983 static const struct attribute_group *switch_groups[] = { 984 &switch_group, 985 NULL, 986 }; 987 988 static void tb_switch_release(struct device *dev) 989 { 990 struct tb_switch *sw = tb_to_switch(dev); 991 992 dma_port_free(sw->dma_port); 993 994 kfree(sw->uuid); 995 kfree(sw->device_name); 996 kfree(sw->vendor_name); 997 kfree(sw->ports); 998 kfree(sw->drom); 999 kfree(sw->key); 1000 kfree(sw); 1001 } 1002 1003 struct device_type tb_switch_type = { 1004 .name = "thunderbolt_device", 1005 .release = tb_switch_release, 1006 }; 1007 1008 static int tb_switch_get_generation(struct tb_switch *sw) 1009 { 1010 switch (sw->config.device_id) { 1011 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1012 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1013 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 1014 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 1015 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 1016 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1017 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 1018 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 1019 return 1; 1020 1021 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 1022 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 1023 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 1024 return 2; 1025 1026 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 1027 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 1028 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 1029 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 1030 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 1031 return 3; 1032 1033 default: 1034 /* 1035 * For unknown switches assume generation to be 1 to be 1036 * on the safe side. 1037 */ 1038 tb_sw_warn(sw, "unsupported switch device id %#x\n", 1039 sw->config.device_id); 1040 return 1; 1041 } 1042 } 1043 1044 /** 1045 * tb_switch_alloc() - allocate a switch 1046 * @tb: Pointer to the owning domain 1047 * @parent: Parent device for this switch 1048 * @route: Route string for this switch 1049 * 1050 * Allocates and initializes a switch. Will not upload configuration to 1051 * the switch. For that you need to call tb_switch_configure() 1052 * separately. The returned switch should be released by calling 1053 * tb_switch_put(). 1054 * 1055 * Return: Pointer to the allocated switch or %NULL in case of failure 1056 */ 1057 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 1058 u64 route) 1059 { 1060 int i; 1061 int cap; 1062 struct tb_switch *sw; 1063 int upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 1064 if (upstream_port < 0) 1065 return NULL; 1066 1067 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1068 if (!sw) 1069 return NULL; 1070 1071 sw->tb = tb; 1072 if (tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5)) 1073 goto err_free_sw_ports; 1074 1075 tb_info(tb, "current switch config:\n"); 1076 tb_dump_switch(tb, &sw->config); 1077 1078 /* configure switch */ 1079 sw->config.upstream_port_number = upstream_port; 1080 sw->config.depth = tb_route_length(route); 1081 sw->config.route_lo = route; 1082 sw->config.route_hi = route >> 32; 1083 sw->config.enabled = 0; 1084 1085 /* initialize ports */ 1086 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 1087 GFP_KERNEL); 1088 if (!sw->ports) 1089 goto err_free_sw_ports; 1090 1091 for (i = 0; i <= sw->config.max_port_number; i++) { 1092 /* minimum setup for tb_find_cap and tb_drom_read to work */ 1093 sw->ports[i].sw = sw; 1094 sw->ports[i].port = i; 1095 } 1096 1097 sw->generation = tb_switch_get_generation(sw); 1098 1099 cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 1100 if (cap < 0) { 1101 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 1102 goto err_free_sw_ports; 1103 } 1104 sw->cap_plug_events = cap; 1105 1106 /* Root switch is always authorized */ 1107 if (!route) 1108 sw->authorized = true; 1109 1110 device_initialize(&sw->dev); 1111 sw->dev.parent = parent; 1112 sw->dev.bus = &tb_bus_type; 1113 sw->dev.type = &tb_switch_type; 1114 sw->dev.groups = switch_groups; 1115 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1116 1117 return sw; 1118 1119 err_free_sw_ports: 1120 kfree(sw->ports); 1121 kfree(sw); 1122 1123 return NULL; 1124 } 1125 1126 /** 1127 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 1128 * @tb: Pointer to the owning domain 1129 * @parent: Parent device for this switch 1130 * @route: Route string for this switch 1131 * 1132 * This creates a switch in safe mode. This means the switch pretty much 1133 * lacks all capabilities except DMA configuration port before it is 1134 * flashed with a valid NVM firmware. 1135 * 1136 * The returned switch must be released by calling tb_switch_put(). 1137 * 1138 * Return: Pointer to the allocated switch or %NULL in case of failure 1139 */ 1140 struct tb_switch * 1141 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 1142 { 1143 struct tb_switch *sw; 1144 1145 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1146 if (!sw) 1147 return NULL; 1148 1149 sw->tb = tb; 1150 sw->config.depth = tb_route_length(route); 1151 sw->config.route_hi = upper_32_bits(route); 1152 sw->config.route_lo = lower_32_bits(route); 1153 sw->safe_mode = true; 1154 1155 device_initialize(&sw->dev); 1156 sw->dev.parent = parent; 1157 sw->dev.bus = &tb_bus_type; 1158 sw->dev.type = &tb_switch_type; 1159 sw->dev.groups = switch_groups; 1160 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1161 1162 return sw; 1163 } 1164 1165 /** 1166 * tb_switch_configure() - Uploads configuration to the switch 1167 * @sw: Switch to configure 1168 * 1169 * Call this function before the switch is added to the system. It will 1170 * upload configuration to the switch and makes it available for the 1171 * connection manager to use. 1172 * 1173 * Return: %0 in case of success and negative errno in case of failure 1174 */ 1175 int tb_switch_configure(struct tb_switch *sw) 1176 { 1177 struct tb *tb = sw->tb; 1178 u64 route; 1179 int ret; 1180 1181 route = tb_route(sw); 1182 tb_info(tb, 1183 "initializing Switch at %#llx (depth: %d, up port: %d)\n", 1184 route, tb_route_length(route), sw->config.upstream_port_number); 1185 1186 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 1187 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 1188 sw->config.vendor_id); 1189 1190 sw->config.enabled = 1; 1191 1192 /* upload configuration */ 1193 ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3); 1194 if (ret) 1195 return ret; 1196 1197 return tb_plug_events_active(sw, true); 1198 } 1199 1200 static void tb_switch_set_uuid(struct tb_switch *sw) 1201 { 1202 u32 uuid[4]; 1203 int cap; 1204 1205 if (sw->uuid) 1206 return; 1207 1208 /* 1209 * The newer controllers include fused UUID as part of link 1210 * controller specific registers 1211 */ 1212 cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 1213 if (cap > 0) { 1214 tb_sw_read(sw, uuid, TB_CFG_SWITCH, cap + 3, 4); 1215 } else { 1216 /* 1217 * ICM generates UUID based on UID and fills the upper 1218 * two words with ones. This is not strictly following 1219 * UUID format but we want to be compatible with it so 1220 * we do the same here. 1221 */ 1222 uuid[0] = sw->uid & 0xffffffff; 1223 uuid[1] = (sw->uid >> 32) & 0xffffffff; 1224 uuid[2] = 0xffffffff; 1225 uuid[3] = 0xffffffff; 1226 } 1227 1228 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 1229 } 1230 1231 static int tb_switch_add_dma_port(struct tb_switch *sw) 1232 { 1233 u32 status; 1234 int ret; 1235 1236 switch (sw->generation) { 1237 case 3: 1238 break; 1239 1240 case 2: 1241 /* Only root switch can be upgraded */ 1242 if (tb_route(sw)) 1243 return 0; 1244 break; 1245 1246 default: 1247 /* 1248 * DMA port is the only thing available when the switch 1249 * is in safe mode. 1250 */ 1251 if (!sw->safe_mode) 1252 return 0; 1253 break; 1254 } 1255 1256 if (sw->no_nvm_upgrade) 1257 return 0; 1258 1259 sw->dma_port = dma_port_alloc(sw); 1260 if (!sw->dma_port) 1261 return 0; 1262 1263 /* 1264 * Check status of the previous flash authentication. If there 1265 * is one we need to power cycle the switch in any case to make 1266 * it functional again. 1267 */ 1268 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 1269 if (ret <= 0) 1270 return ret; 1271 1272 if (status) { 1273 tb_sw_info(sw, "switch flash authentication failed\n"); 1274 tb_switch_set_uuid(sw); 1275 nvm_set_auth_status(sw, status); 1276 } 1277 1278 tb_sw_info(sw, "power cycling the switch now\n"); 1279 dma_port_power_cycle(sw->dma_port); 1280 1281 /* 1282 * We return error here which causes the switch adding failure. 1283 * It should appear back after power cycle is complete. 1284 */ 1285 return -ESHUTDOWN; 1286 } 1287 1288 /** 1289 * tb_switch_add() - Add a switch to the domain 1290 * @sw: Switch to add 1291 * 1292 * This is the last step in adding switch to the domain. It will read 1293 * identification information from DROM and initializes ports so that 1294 * they can be used to connect other switches. The switch will be 1295 * exposed to the userspace when this function successfully returns. To 1296 * remove and release the switch, call tb_switch_remove(). 1297 * 1298 * Return: %0 in case of success and negative errno in case of failure 1299 */ 1300 int tb_switch_add(struct tb_switch *sw) 1301 { 1302 int i, ret; 1303 1304 /* 1305 * Initialize DMA control port now before we read DROM. Recent 1306 * host controllers have more complete DROM on NVM that includes 1307 * vendor and model identification strings which we then expose 1308 * to the userspace. NVM can be accessed through DMA 1309 * configuration based mailbox. 1310 */ 1311 ret = tb_switch_add_dma_port(sw); 1312 if (ret) 1313 return ret; 1314 1315 if (!sw->safe_mode) { 1316 /* read drom */ 1317 ret = tb_drom_read(sw); 1318 if (ret) { 1319 tb_sw_warn(sw, "tb_eeprom_read_rom failed\n"); 1320 return ret; 1321 } 1322 tb_sw_info(sw, "uid: %#llx\n", sw->uid); 1323 1324 tb_switch_set_uuid(sw); 1325 1326 for (i = 0; i <= sw->config.max_port_number; i++) { 1327 if (sw->ports[i].disabled) { 1328 tb_port_info(&sw->ports[i], "disabled by eeprom\n"); 1329 continue; 1330 } 1331 ret = tb_init_port(&sw->ports[i]); 1332 if (ret) 1333 return ret; 1334 } 1335 } 1336 1337 ret = device_add(&sw->dev); 1338 if (ret) 1339 return ret; 1340 1341 ret = tb_switch_nvm_add(sw); 1342 if (ret) 1343 device_del(&sw->dev); 1344 1345 return ret; 1346 } 1347 1348 /** 1349 * tb_switch_remove() - Remove and release a switch 1350 * @sw: Switch to remove 1351 * 1352 * This will remove the switch from the domain and release it after last 1353 * reference count drops to zero. If there are switches connected below 1354 * this switch, they will be removed as well. 1355 */ 1356 void tb_switch_remove(struct tb_switch *sw) 1357 { 1358 int i; 1359 1360 /* port 0 is the switch itself and never has a remote */ 1361 for (i = 1; i <= sw->config.max_port_number; i++) { 1362 if (tb_is_upstream_port(&sw->ports[i])) 1363 continue; 1364 if (sw->ports[i].remote) 1365 tb_switch_remove(sw->ports[i].remote->sw); 1366 sw->ports[i].remote = NULL; 1367 if (sw->ports[i].xdomain) 1368 tb_xdomain_remove(sw->ports[i].xdomain); 1369 sw->ports[i].xdomain = NULL; 1370 } 1371 1372 if (!sw->is_unplugged) 1373 tb_plug_events_active(sw, false); 1374 1375 tb_switch_nvm_remove(sw); 1376 device_unregister(&sw->dev); 1377 } 1378 1379 /** 1380 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 1381 */ 1382 void tb_sw_set_unplugged(struct tb_switch *sw) 1383 { 1384 int i; 1385 if (sw == sw->tb->root_switch) { 1386 tb_sw_WARN(sw, "cannot unplug root switch\n"); 1387 return; 1388 } 1389 if (sw->is_unplugged) { 1390 tb_sw_WARN(sw, "is_unplugged already set\n"); 1391 return; 1392 } 1393 sw->is_unplugged = true; 1394 for (i = 0; i <= sw->config.max_port_number; i++) { 1395 if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote) 1396 tb_sw_set_unplugged(sw->ports[i].remote->sw); 1397 } 1398 } 1399 1400 int tb_switch_resume(struct tb_switch *sw) 1401 { 1402 int i, err; 1403 tb_sw_info(sw, "resuming switch\n"); 1404 1405 /* 1406 * Check for UID of the connected switches except for root 1407 * switch which we assume cannot be removed. 1408 */ 1409 if (tb_route(sw)) { 1410 u64 uid; 1411 1412 err = tb_drom_read_uid_only(sw, &uid); 1413 if (err) { 1414 tb_sw_warn(sw, "uid read failed\n"); 1415 return err; 1416 } 1417 if (sw->uid != uid) { 1418 tb_sw_info(sw, 1419 "changed while suspended (uid %#llx -> %#llx)\n", 1420 sw->uid, uid); 1421 return -ENODEV; 1422 } 1423 } 1424 1425 /* upload configuration */ 1426 err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3); 1427 if (err) 1428 return err; 1429 1430 err = tb_plug_events_active(sw, true); 1431 if (err) 1432 return err; 1433 1434 /* check for surviving downstream switches */ 1435 for (i = 1; i <= sw->config.max_port_number; i++) { 1436 struct tb_port *port = &sw->ports[i]; 1437 if (tb_is_upstream_port(port)) 1438 continue; 1439 if (!port->remote) 1440 continue; 1441 if (tb_wait_for_port(port, true) <= 0 1442 || tb_switch_resume(port->remote->sw)) { 1443 tb_port_warn(port, 1444 "lost during suspend, disconnecting\n"); 1445 tb_sw_set_unplugged(port->remote->sw); 1446 } 1447 } 1448 return 0; 1449 } 1450 1451 void tb_switch_suspend(struct tb_switch *sw) 1452 { 1453 int i, err; 1454 err = tb_plug_events_active(sw, false); 1455 if (err) 1456 return; 1457 1458 for (i = 1; i <= sw->config.max_port_number; i++) { 1459 if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote) 1460 tb_switch_suspend(sw->ports[i].remote->sw); 1461 } 1462 /* 1463 * TODO: invoke tb_cfg_prepare_to_sleep here? does not seem to have any 1464 * effect? 1465 */ 1466 } 1467 1468 struct tb_sw_lookup { 1469 struct tb *tb; 1470 u8 link; 1471 u8 depth; 1472 const uuid_t *uuid; 1473 }; 1474 1475 static int tb_switch_match(struct device *dev, void *data) 1476 { 1477 struct tb_switch *sw = tb_to_switch(dev); 1478 struct tb_sw_lookup *lookup = data; 1479 1480 if (!sw) 1481 return 0; 1482 if (sw->tb != lookup->tb) 1483 return 0; 1484 1485 if (lookup->uuid) 1486 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 1487 1488 /* Root switch is matched only by depth */ 1489 if (!lookup->depth) 1490 return !sw->depth; 1491 1492 return sw->link == lookup->link && sw->depth == lookup->depth; 1493 } 1494 1495 /** 1496 * tb_switch_find_by_link_depth() - Find switch by link and depth 1497 * @tb: Domain the switch belongs 1498 * @link: Link number the switch is connected 1499 * @depth: Depth of the switch in link 1500 * 1501 * Returned switch has reference count increased so the caller needs to 1502 * call tb_switch_put() when done with the switch. 1503 */ 1504 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 1505 { 1506 struct tb_sw_lookup lookup; 1507 struct device *dev; 1508 1509 memset(&lookup, 0, sizeof(lookup)); 1510 lookup.tb = tb; 1511 lookup.link = link; 1512 lookup.depth = depth; 1513 1514 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 1515 if (dev) 1516 return tb_to_switch(dev); 1517 1518 return NULL; 1519 } 1520 1521 /** 1522 * tb_switch_find_by_link_depth() - Find switch by UUID 1523 * @tb: Domain the switch belongs 1524 * @uuid: UUID to look for 1525 * 1526 * Returned switch has reference count increased so the caller needs to 1527 * call tb_switch_put() when done with the switch. 1528 */ 1529 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) 1530 { 1531 struct tb_sw_lookup lookup; 1532 struct device *dev; 1533 1534 memset(&lookup, 0, sizeof(lookup)); 1535 lookup.tb = tb; 1536 lookup.uuid = uuid; 1537 1538 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 1539 if (dev) 1540 return tb_to_switch(dev); 1541 1542 return NULL; 1543 } 1544 1545 void tb_switch_exit(void) 1546 { 1547 ida_destroy(&nvm_ida); 1548 } 1549