1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - switch/port utility functions 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2018, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/idr.h> 11 #include <linux/nvmem-provider.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 17 #include "tb.h" 18 19 /* Switch NVM support */ 20 21 #define NVM_CSS 0x10 22 23 struct nvm_auth_status { 24 struct list_head list; 25 uuid_t uuid; 26 u32 status; 27 }; 28 29 /* 30 * Hold NVM authentication failure status per switch This information 31 * needs to stay around even when the switch gets power cycled so we 32 * keep it separately. 33 */ 34 static LIST_HEAD(nvm_auth_status_cache); 35 static DEFINE_MUTEX(nvm_auth_status_lock); 36 37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 38 { 39 struct nvm_auth_status *st; 40 41 list_for_each_entry(st, &nvm_auth_status_cache, list) { 42 if (uuid_equal(&st->uuid, sw->uuid)) 43 return st; 44 } 45 46 return NULL; 47 } 48 49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 50 { 51 struct nvm_auth_status *st; 52 53 mutex_lock(&nvm_auth_status_lock); 54 st = __nvm_get_auth_status(sw); 55 mutex_unlock(&nvm_auth_status_lock); 56 57 *status = st ? st->status : 0; 58 } 59 60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 61 { 62 struct nvm_auth_status *st; 63 64 if (WARN_ON(!sw->uuid)) 65 return; 66 67 mutex_lock(&nvm_auth_status_lock); 68 st = __nvm_get_auth_status(sw); 69 70 if (!st) { 71 st = kzalloc(sizeof(*st), GFP_KERNEL); 72 if (!st) 73 goto unlock; 74 75 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 76 INIT_LIST_HEAD(&st->list); 77 list_add_tail(&st->list, &nvm_auth_status_cache); 78 } 79 80 st->status = status; 81 unlock: 82 mutex_unlock(&nvm_auth_status_lock); 83 } 84 85 static void nvm_clear_auth_status(const struct tb_switch *sw) 86 { 87 struct nvm_auth_status *st; 88 89 mutex_lock(&nvm_auth_status_lock); 90 st = __nvm_get_auth_status(sw); 91 if (st) { 92 list_del(&st->list); 93 kfree(st); 94 } 95 mutex_unlock(&nvm_auth_status_lock); 96 } 97 98 static int nvm_validate_and_write(struct tb_switch *sw) 99 { 100 unsigned int image_size, hdr_size; 101 const u8 *buf = sw->nvm->buf; 102 u16 ds_size; 103 int ret; 104 105 if (!buf) 106 return -EINVAL; 107 108 image_size = sw->nvm->buf_data_size; 109 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) 110 return -EINVAL; 111 112 /* 113 * FARB pointer must point inside the image and must at least 114 * contain parts of the digital section we will be reading here. 115 */ 116 hdr_size = (*(u32 *)buf) & 0xffffff; 117 if (hdr_size + NVM_DEVID + 2 >= image_size) 118 return -EINVAL; 119 120 /* Digital section start should be aligned to 4k page */ 121 if (!IS_ALIGNED(hdr_size, SZ_4K)) 122 return -EINVAL; 123 124 /* 125 * Read digital section size and check that it also fits inside 126 * the image. 127 */ 128 ds_size = *(u16 *)(buf + hdr_size); 129 if (ds_size >= image_size) 130 return -EINVAL; 131 132 if (!sw->safe_mode) { 133 u16 device_id; 134 135 /* 136 * Make sure the device ID in the image matches the one 137 * we read from the switch config space. 138 */ 139 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID); 140 if (device_id != sw->config.device_id) 141 return -EINVAL; 142 143 if (sw->generation < 3) { 144 /* Write CSS headers first */ 145 ret = dma_port_flash_write(sw->dma_port, 146 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS, 147 DMA_PORT_CSS_MAX_SIZE); 148 if (ret) 149 return ret; 150 } 151 152 /* Skip headers in the image */ 153 buf += hdr_size; 154 image_size -= hdr_size; 155 } 156 157 if (tb_switch_is_usb4(sw)) 158 ret = usb4_switch_nvm_write(sw, 0, buf, image_size); 159 else 160 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size); 161 if (!ret) 162 sw->nvm->flushed = true; 163 return ret; 164 } 165 166 static int nvm_authenticate_host_dma_port(struct tb_switch *sw) 167 { 168 int ret = 0; 169 170 /* 171 * Root switch NVM upgrade requires that we disconnect the 172 * existing paths first (in case it is not in safe mode 173 * already). 174 */ 175 if (!sw->safe_mode) { 176 u32 status; 177 178 ret = tb_domain_disconnect_all_paths(sw->tb); 179 if (ret) 180 return ret; 181 /* 182 * The host controller goes away pretty soon after this if 183 * everything goes well so getting timeout is expected. 184 */ 185 ret = dma_port_flash_update_auth(sw->dma_port); 186 if (!ret || ret == -ETIMEDOUT) 187 return 0; 188 189 /* 190 * Any error from update auth operation requires power 191 * cycling of the host router. 192 */ 193 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n"); 194 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0) 195 nvm_set_auth_status(sw, status); 196 } 197 198 /* 199 * From safe mode we can get out by just power cycling the 200 * switch. 201 */ 202 dma_port_power_cycle(sw->dma_port); 203 return ret; 204 } 205 206 static int nvm_authenticate_device_dma_port(struct tb_switch *sw) 207 { 208 int ret, retries = 10; 209 210 ret = dma_port_flash_update_auth(sw->dma_port); 211 switch (ret) { 212 case 0: 213 case -ETIMEDOUT: 214 case -EACCES: 215 case -EINVAL: 216 /* Power cycle is required */ 217 break; 218 default: 219 return ret; 220 } 221 222 /* 223 * Poll here for the authentication status. It takes some time 224 * for the device to respond (we get timeout for a while). Once 225 * we get response the device needs to be power cycled in order 226 * to the new NVM to be taken into use. 227 */ 228 do { 229 u32 status; 230 231 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 232 if (ret < 0 && ret != -ETIMEDOUT) 233 return ret; 234 if (ret > 0) { 235 if (status) { 236 tb_sw_warn(sw, "failed to authenticate NVM\n"); 237 nvm_set_auth_status(sw, status); 238 } 239 240 tb_sw_info(sw, "power cycling the switch now\n"); 241 dma_port_power_cycle(sw->dma_port); 242 return 0; 243 } 244 245 msleep(500); 246 } while (--retries); 247 248 return -ETIMEDOUT; 249 } 250 251 static void nvm_authenticate_start_dma_port(struct tb_switch *sw) 252 { 253 struct pci_dev *root_port; 254 255 /* 256 * During host router NVM upgrade we should not allow root port to 257 * go into D3cold because some root ports cannot trigger PME 258 * itself. To be on the safe side keep the root port in D0 during 259 * the whole upgrade process. 260 */ 261 root_port = pcie_find_root_port(sw->tb->nhi->pdev); 262 if (root_port) 263 pm_runtime_get_noresume(&root_port->dev); 264 } 265 266 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw) 267 { 268 struct pci_dev *root_port; 269 270 root_port = pcie_find_root_port(sw->tb->nhi->pdev); 271 if (root_port) 272 pm_runtime_put(&root_port->dev); 273 } 274 275 static inline bool nvm_readable(struct tb_switch *sw) 276 { 277 if (tb_switch_is_usb4(sw)) { 278 /* 279 * USB4 devices must support NVM operations but it is 280 * optional for hosts. Therefore we query the NVM sector 281 * size here and if it is supported assume NVM 282 * operations are implemented. 283 */ 284 return usb4_switch_nvm_sector_size(sw) > 0; 285 } 286 287 /* Thunderbolt 2 and 3 devices support NVM through DMA port */ 288 return !!sw->dma_port; 289 } 290 291 static inline bool nvm_upgradeable(struct tb_switch *sw) 292 { 293 if (sw->no_nvm_upgrade) 294 return false; 295 return nvm_readable(sw); 296 } 297 298 static inline int nvm_read(struct tb_switch *sw, unsigned int address, 299 void *buf, size_t size) 300 { 301 if (tb_switch_is_usb4(sw)) 302 return usb4_switch_nvm_read(sw, address, buf, size); 303 return dma_port_flash_read(sw->dma_port, address, buf, size); 304 } 305 306 static int nvm_authenticate(struct tb_switch *sw, bool auth_only) 307 { 308 int ret; 309 310 if (tb_switch_is_usb4(sw)) { 311 if (auth_only) { 312 ret = usb4_switch_nvm_set_offset(sw, 0); 313 if (ret) 314 return ret; 315 } 316 sw->nvm->authenticating = true; 317 return usb4_switch_nvm_authenticate(sw); 318 } else if (auth_only) { 319 return -EOPNOTSUPP; 320 } 321 322 sw->nvm->authenticating = true; 323 if (!tb_route(sw)) { 324 nvm_authenticate_start_dma_port(sw); 325 ret = nvm_authenticate_host_dma_port(sw); 326 } else { 327 ret = nvm_authenticate_device_dma_port(sw); 328 } 329 330 return ret; 331 } 332 333 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val, 334 size_t bytes) 335 { 336 struct tb_nvm *nvm = priv; 337 struct tb_switch *sw = tb_to_switch(nvm->dev); 338 int ret; 339 340 pm_runtime_get_sync(&sw->dev); 341 342 if (!mutex_trylock(&sw->tb->lock)) { 343 ret = restart_syscall(); 344 goto out; 345 } 346 347 ret = nvm_read(sw, offset, val, bytes); 348 mutex_unlock(&sw->tb->lock); 349 350 out: 351 pm_runtime_mark_last_busy(&sw->dev); 352 pm_runtime_put_autosuspend(&sw->dev); 353 354 return ret; 355 } 356 357 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val, 358 size_t bytes) 359 { 360 struct tb_nvm *nvm = priv; 361 struct tb_switch *sw = tb_to_switch(nvm->dev); 362 int ret; 363 364 if (!mutex_trylock(&sw->tb->lock)) 365 return restart_syscall(); 366 367 /* 368 * Since writing the NVM image might require some special steps, 369 * for example when CSS headers are written, we cache the image 370 * locally here and handle the special cases when the user asks 371 * us to authenticate the image. 372 */ 373 ret = tb_nvm_write_buf(nvm, offset, val, bytes); 374 mutex_unlock(&sw->tb->lock); 375 376 return ret; 377 } 378 379 static int tb_switch_nvm_add(struct tb_switch *sw) 380 { 381 struct tb_nvm *nvm; 382 u32 val; 383 int ret; 384 385 if (!nvm_readable(sw)) 386 return 0; 387 388 /* 389 * The NVM format of non-Intel hardware is not known so 390 * currently restrict NVM upgrade for Intel hardware. We may 391 * relax this in the future when we learn other NVM formats. 392 */ 393 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL && 394 sw->config.vendor_id != 0x8087) { 395 dev_info(&sw->dev, 396 "NVM format of vendor %#x is not known, disabling NVM upgrade\n", 397 sw->config.vendor_id); 398 return 0; 399 } 400 401 nvm = tb_nvm_alloc(&sw->dev); 402 if (IS_ERR(nvm)) 403 return PTR_ERR(nvm); 404 405 /* 406 * If the switch is in safe-mode the only accessible portion of 407 * the NVM is the non-active one where userspace is expected to 408 * write new functional NVM. 409 */ 410 if (!sw->safe_mode) { 411 u32 nvm_size, hdr_size; 412 413 ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val)); 414 if (ret) 415 goto err_nvm; 416 417 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; 418 nvm_size = (SZ_1M << (val & 7)) / 8; 419 nvm_size = (nvm_size - hdr_size) / 2; 420 421 ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val)); 422 if (ret) 423 goto err_nvm; 424 425 nvm->major = val >> 16; 426 nvm->minor = val >> 8; 427 428 ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read); 429 if (ret) 430 goto err_nvm; 431 } 432 433 if (!sw->no_nvm_upgrade) { 434 ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE, 435 tb_switch_nvm_write); 436 if (ret) 437 goto err_nvm; 438 } 439 440 sw->nvm = nvm; 441 return 0; 442 443 err_nvm: 444 tb_nvm_free(nvm); 445 return ret; 446 } 447 448 static void tb_switch_nvm_remove(struct tb_switch *sw) 449 { 450 struct tb_nvm *nvm; 451 452 nvm = sw->nvm; 453 sw->nvm = NULL; 454 455 if (!nvm) 456 return; 457 458 /* Remove authentication status in case the switch is unplugged */ 459 if (!nvm->authenticating) 460 nvm_clear_auth_status(sw); 461 462 tb_nvm_free(nvm); 463 } 464 465 /* port utility functions */ 466 467 static const char *tb_port_type(const struct tb_regs_port_header *port) 468 { 469 switch (port->type >> 16) { 470 case 0: 471 switch ((u8) port->type) { 472 case 0: 473 return "Inactive"; 474 case 1: 475 return "Port"; 476 case 2: 477 return "NHI"; 478 default: 479 return "unknown"; 480 } 481 case 0x2: 482 return "Ethernet"; 483 case 0x8: 484 return "SATA"; 485 case 0xe: 486 return "DP/HDMI"; 487 case 0x10: 488 return "PCIe"; 489 case 0x20: 490 return "USB"; 491 default: 492 return "unknown"; 493 } 494 } 495 496 static void tb_dump_port(struct tb *tb, const struct tb_port *port) 497 { 498 const struct tb_regs_port_header *regs = &port->config; 499 500 tb_dbg(tb, 501 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 502 regs->port_number, regs->vendor_id, regs->device_id, 503 regs->revision, regs->thunderbolt_version, tb_port_type(regs), 504 regs->type); 505 tb_dbg(tb, " Max hop id (in/out): %d/%d\n", 506 regs->max_in_hop_id, regs->max_out_hop_id); 507 tb_dbg(tb, " Max counters: %d\n", regs->max_counters); 508 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits); 509 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits, 510 port->ctl_credits); 511 } 512 513 /** 514 * tb_port_state() - get connectedness state of a port 515 * @port: the port to check 516 * 517 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 518 * 519 * Return: Returns an enum tb_port_state on success or an error code on failure. 520 */ 521 int tb_port_state(struct tb_port *port) 522 { 523 struct tb_cap_phy phy; 524 int res; 525 if (port->cap_phy == 0) { 526 tb_port_WARN(port, "does not have a PHY\n"); 527 return -EINVAL; 528 } 529 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 530 if (res) 531 return res; 532 return phy.state; 533 } 534 535 /** 536 * tb_wait_for_port() - wait for a port to become ready 537 * @port: Port to wait 538 * @wait_if_unplugged: Wait also when port is unplugged 539 * 540 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 541 * wait_if_unplugged is set then we also wait if the port is in state 542 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 543 * switch resume). Otherwise we only wait if a device is registered but the link 544 * has not yet been established. 545 * 546 * Return: Returns an error code on failure. Returns 0 if the port is not 547 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 548 * if the port is connected and in state TB_PORT_UP. 549 */ 550 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 551 { 552 int retries = 10; 553 int state; 554 if (!port->cap_phy) { 555 tb_port_WARN(port, "does not have PHY\n"); 556 return -EINVAL; 557 } 558 if (tb_is_upstream_port(port)) { 559 tb_port_WARN(port, "is the upstream port\n"); 560 return -EINVAL; 561 } 562 563 while (retries--) { 564 state = tb_port_state(port); 565 if (state < 0) 566 return state; 567 if (state == TB_PORT_DISABLED) { 568 tb_port_dbg(port, "is disabled (state: 0)\n"); 569 return 0; 570 } 571 if (state == TB_PORT_UNPLUGGED) { 572 if (wait_if_unplugged) { 573 /* used during resume */ 574 tb_port_dbg(port, 575 "is unplugged (state: 7), retrying...\n"); 576 msleep(100); 577 continue; 578 } 579 tb_port_dbg(port, "is unplugged (state: 7)\n"); 580 return 0; 581 } 582 if (state == TB_PORT_UP) { 583 tb_port_dbg(port, "is connected, link is up (state: 2)\n"); 584 return 1; 585 } 586 587 /* 588 * After plug-in the state is TB_PORT_CONNECTING. Give it some 589 * time. 590 */ 591 tb_port_dbg(port, 592 "is connected, link is not up (state: %d), retrying...\n", 593 state); 594 msleep(100); 595 } 596 tb_port_warn(port, 597 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 598 return 0; 599 } 600 601 /** 602 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 603 * @port: Port to add/remove NFC credits 604 * @credits: Credits to add/remove 605 * 606 * Change the number of NFC credits allocated to @port by @credits. To remove 607 * NFC credits pass a negative amount of credits. 608 * 609 * Return: Returns 0 on success or an error code on failure. 610 */ 611 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 612 { 613 u32 nfc_credits; 614 615 if (credits == 0 || port->sw->is_unplugged) 616 return 0; 617 618 /* 619 * USB4 restricts programming NFC buffers to lane adapters only 620 * so skip other ports. 621 */ 622 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port)) 623 return 0; 624 625 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK; 626 nfc_credits += credits; 627 628 tb_port_dbg(port, "adding %d NFC credits to %lu", credits, 629 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK); 630 631 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK; 632 port->config.nfc_credits |= nfc_credits; 633 634 return tb_port_write(port, &port->config.nfc_credits, 635 TB_CFG_PORT, ADP_CS_4, 1); 636 } 637 638 /** 639 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 640 * @port: Port whose counters to clear 641 * @counter: Counter index to clear 642 * 643 * Return: Returns 0 on success or an error code on failure. 644 */ 645 int tb_port_clear_counter(struct tb_port *port, int counter) 646 { 647 u32 zero[3] = { 0, 0, 0 }; 648 tb_port_dbg(port, "clearing counter %d\n", counter); 649 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 650 } 651 652 /** 653 * tb_port_unlock() - Unlock downstream port 654 * @port: Port to unlock 655 * 656 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the 657 * downstream router accessible for CM. 658 */ 659 int tb_port_unlock(struct tb_port *port) 660 { 661 if (tb_switch_is_icm(port->sw)) 662 return 0; 663 if (!tb_port_is_null(port)) 664 return -EINVAL; 665 if (tb_switch_is_usb4(port->sw)) 666 return usb4_port_unlock(port); 667 return 0; 668 } 669 670 static int __tb_port_enable(struct tb_port *port, bool enable) 671 { 672 int ret; 673 u32 phy; 674 675 if (!tb_port_is_null(port)) 676 return -EINVAL; 677 678 ret = tb_port_read(port, &phy, TB_CFG_PORT, 679 port->cap_phy + LANE_ADP_CS_1, 1); 680 if (ret) 681 return ret; 682 683 if (enable) 684 phy &= ~LANE_ADP_CS_1_LD; 685 else 686 phy |= LANE_ADP_CS_1_LD; 687 688 return tb_port_write(port, &phy, TB_CFG_PORT, 689 port->cap_phy + LANE_ADP_CS_1, 1); 690 } 691 692 /** 693 * tb_port_enable() - Enable lane adapter 694 * @port: Port to enable (can be %NULL) 695 * 696 * This is used for lane 0 and 1 adapters to enable it. 697 */ 698 int tb_port_enable(struct tb_port *port) 699 { 700 return __tb_port_enable(port, true); 701 } 702 703 /** 704 * tb_port_disable() - Disable lane adapter 705 * @port: Port to disable (can be %NULL) 706 * 707 * This is used for lane 0 and 1 adapters to disable it. 708 */ 709 int tb_port_disable(struct tb_port *port) 710 { 711 return __tb_port_enable(port, false); 712 } 713 714 /* 715 * tb_init_port() - initialize a port 716 * 717 * This is a helper method for tb_switch_alloc. Does not check or initialize 718 * any downstream switches. 719 * 720 * Return: Returns 0 on success or an error code on failure. 721 */ 722 static int tb_init_port(struct tb_port *port) 723 { 724 int res; 725 int cap; 726 727 INIT_LIST_HEAD(&port->list); 728 729 /* Control adapter does not have configuration space */ 730 if (!port->port) 731 return 0; 732 733 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 734 if (res) { 735 if (res == -ENODEV) { 736 tb_dbg(port->sw->tb, " Port %d: not implemented\n", 737 port->port); 738 port->disabled = true; 739 return 0; 740 } 741 return res; 742 } 743 744 /* Port 0 is the switch itself and has no PHY. */ 745 if (port->config.type == TB_TYPE_PORT) { 746 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 747 748 if (cap > 0) 749 port->cap_phy = cap; 750 else 751 tb_port_WARN(port, "non switch port without a PHY\n"); 752 753 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4); 754 if (cap > 0) 755 port->cap_usb4 = cap; 756 757 /* 758 * USB4 ports the buffers allocated for the control path 759 * can be read from the path config space. Legacy 760 * devices we use hard-coded value. 761 */ 762 if (tb_switch_is_usb4(port->sw)) { 763 struct tb_regs_hop hop; 764 765 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2)) 766 port->ctl_credits = hop.initial_credits; 767 } 768 if (!port->ctl_credits) 769 port->ctl_credits = 2; 770 771 } else { 772 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP); 773 if (cap > 0) 774 port->cap_adap = cap; 775 } 776 777 port->total_credits = 778 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >> 779 ADP_CS_4_TOTAL_BUFFERS_SHIFT; 780 781 tb_dump_port(port->sw->tb, port); 782 return 0; 783 } 784 785 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid, 786 int max_hopid) 787 { 788 int port_max_hopid; 789 struct ida *ida; 790 791 if (in) { 792 port_max_hopid = port->config.max_in_hop_id; 793 ida = &port->in_hopids; 794 } else { 795 port_max_hopid = port->config.max_out_hop_id; 796 ida = &port->out_hopids; 797 } 798 799 /* 800 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are 801 * reserved. 802 */ 803 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID) 804 min_hopid = TB_PATH_MIN_HOPID; 805 806 if (max_hopid < 0 || max_hopid > port_max_hopid) 807 max_hopid = port_max_hopid; 808 809 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL); 810 } 811 812 /** 813 * tb_port_alloc_in_hopid() - Allocate input HopID from port 814 * @port: Port to allocate HopID for 815 * @min_hopid: Minimum acceptable input HopID 816 * @max_hopid: Maximum acceptable input HopID 817 * 818 * Return: HopID between @min_hopid and @max_hopid or negative errno in 819 * case of error. 820 */ 821 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid) 822 { 823 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid); 824 } 825 826 /** 827 * tb_port_alloc_out_hopid() - Allocate output HopID from port 828 * @port: Port to allocate HopID for 829 * @min_hopid: Minimum acceptable output HopID 830 * @max_hopid: Maximum acceptable output HopID 831 * 832 * Return: HopID between @min_hopid and @max_hopid or negative errno in 833 * case of error. 834 */ 835 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid) 836 { 837 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid); 838 } 839 840 /** 841 * tb_port_release_in_hopid() - Release allocated input HopID from port 842 * @port: Port whose HopID to release 843 * @hopid: HopID to release 844 */ 845 void tb_port_release_in_hopid(struct tb_port *port, int hopid) 846 { 847 ida_simple_remove(&port->in_hopids, hopid); 848 } 849 850 /** 851 * tb_port_release_out_hopid() - Release allocated output HopID from port 852 * @port: Port whose HopID to release 853 * @hopid: HopID to release 854 */ 855 void tb_port_release_out_hopid(struct tb_port *port, int hopid) 856 { 857 ida_simple_remove(&port->out_hopids, hopid); 858 } 859 860 static inline bool tb_switch_is_reachable(const struct tb_switch *parent, 861 const struct tb_switch *sw) 862 { 863 u64 mask = (1ULL << parent->config.depth * 8) - 1; 864 return (tb_route(parent) & mask) == (tb_route(sw) & mask); 865 } 866 867 /** 868 * tb_next_port_on_path() - Return next port for given port on a path 869 * @start: Start port of the walk 870 * @end: End port of the walk 871 * @prev: Previous port (%NULL if this is the first) 872 * 873 * This function can be used to walk from one port to another if they 874 * are connected through zero or more switches. If the @prev is dual 875 * link port, the function follows that link and returns another end on 876 * that same link. 877 * 878 * If the @end port has been reached, return %NULL. 879 * 880 * Domain tb->lock must be held when this function is called. 881 */ 882 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end, 883 struct tb_port *prev) 884 { 885 struct tb_port *next; 886 887 if (!prev) 888 return start; 889 890 if (prev->sw == end->sw) { 891 if (prev == end) 892 return NULL; 893 return end; 894 } 895 896 if (tb_switch_is_reachable(prev->sw, end->sw)) { 897 next = tb_port_at(tb_route(end->sw), prev->sw); 898 /* Walk down the topology if next == prev */ 899 if (prev->remote && 900 (next == prev || next->dual_link_port == prev)) 901 next = prev->remote; 902 } else { 903 if (tb_is_upstream_port(prev)) { 904 next = prev->remote; 905 } else { 906 next = tb_upstream_port(prev->sw); 907 /* 908 * Keep the same link if prev and next are both 909 * dual link ports. 910 */ 911 if (next->dual_link_port && 912 next->link_nr != prev->link_nr) { 913 next = next->dual_link_port; 914 } 915 } 916 } 917 918 return next != prev ? next : NULL; 919 } 920 921 /** 922 * tb_port_get_link_speed() - Get current link speed 923 * @port: Port to check (USB4 or CIO) 924 * 925 * Returns link speed in Gb/s or negative errno in case of failure. 926 */ 927 int tb_port_get_link_speed(struct tb_port *port) 928 { 929 u32 val, speed; 930 int ret; 931 932 if (!port->cap_phy) 933 return -EINVAL; 934 935 ret = tb_port_read(port, &val, TB_CFG_PORT, 936 port->cap_phy + LANE_ADP_CS_1, 1); 937 if (ret) 938 return ret; 939 940 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >> 941 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT; 942 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10; 943 } 944 945 /** 946 * tb_port_get_link_width() - Get current link width 947 * @port: Port to check (USB4 or CIO) 948 * 949 * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane) 950 * or negative errno in case of failure. 951 */ 952 int tb_port_get_link_width(struct tb_port *port) 953 { 954 u32 val; 955 int ret; 956 957 if (!port->cap_phy) 958 return -EINVAL; 959 960 ret = tb_port_read(port, &val, TB_CFG_PORT, 961 port->cap_phy + LANE_ADP_CS_1, 1); 962 if (ret) 963 return ret; 964 965 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >> 966 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT; 967 } 968 969 static bool tb_port_is_width_supported(struct tb_port *port, int width) 970 { 971 u32 phy, widths; 972 int ret; 973 974 if (!port->cap_phy) 975 return false; 976 977 ret = tb_port_read(port, &phy, TB_CFG_PORT, 978 port->cap_phy + LANE_ADP_CS_0, 1); 979 if (ret) 980 return false; 981 982 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >> 983 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT; 984 985 return !!(widths & width); 986 } 987 988 static int tb_port_set_link_width(struct tb_port *port, unsigned int width) 989 { 990 u32 val; 991 int ret; 992 993 if (!port->cap_phy) 994 return -EINVAL; 995 996 ret = tb_port_read(port, &val, TB_CFG_PORT, 997 port->cap_phy + LANE_ADP_CS_1, 1); 998 if (ret) 999 return ret; 1000 1001 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK; 1002 switch (width) { 1003 case 1: 1004 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE << 1005 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 1006 break; 1007 case 2: 1008 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL << 1009 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 1010 break; 1011 default: 1012 return -EINVAL; 1013 } 1014 1015 val |= LANE_ADP_CS_1_LB; 1016 1017 return tb_port_write(port, &val, TB_CFG_PORT, 1018 port->cap_phy + LANE_ADP_CS_1, 1); 1019 } 1020 1021 /** 1022 * tb_port_lane_bonding_enable() - Enable bonding on port 1023 * @port: port to enable 1024 * 1025 * Enable bonding by setting the link width of the port and the other 1026 * port in case of dual link port. Does not wait for the link to 1027 * actually reach the bonded state so caller needs to call 1028 * tb_port_wait_for_link_width() before enabling any paths through the 1029 * link to make sure the link is in expected state. 1030 * 1031 * Return: %0 in case of success and negative errno in case of error 1032 */ 1033 int tb_port_lane_bonding_enable(struct tb_port *port) 1034 { 1035 int ret; 1036 1037 /* 1038 * Enable lane bonding for both links if not already enabled by 1039 * for example the boot firmware. 1040 */ 1041 ret = tb_port_get_link_width(port); 1042 if (ret == 1) { 1043 ret = tb_port_set_link_width(port, 2); 1044 if (ret) 1045 return ret; 1046 } 1047 1048 ret = tb_port_get_link_width(port->dual_link_port); 1049 if (ret == 1) { 1050 ret = tb_port_set_link_width(port->dual_link_port, 2); 1051 if (ret) { 1052 tb_port_set_link_width(port, 1); 1053 return ret; 1054 } 1055 } 1056 1057 port->bonded = true; 1058 port->dual_link_port->bonded = true; 1059 1060 return 0; 1061 } 1062 1063 /** 1064 * tb_port_lane_bonding_disable() - Disable bonding on port 1065 * @port: port to disable 1066 * 1067 * Disable bonding by setting the link width of the port and the 1068 * other port in case of dual link port. 1069 * 1070 */ 1071 void tb_port_lane_bonding_disable(struct tb_port *port) 1072 { 1073 port->dual_link_port->bonded = false; 1074 port->bonded = false; 1075 1076 tb_port_set_link_width(port->dual_link_port, 1); 1077 tb_port_set_link_width(port, 1); 1078 } 1079 1080 /** 1081 * tb_port_wait_for_link_width() - Wait until link reaches specific width 1082 * @port: Port to wait for 1083 * @width: Expected link width (%1 or %2) 1084 * @timeout_msec: Timeout in ms how long to wait 1085 * 1086 * Should be used after both ends of the link have been bonded (or 1087 * bonding has been disabled) to wait until the link actually reaches 1088 * the expected state. Returns %-ETIMEDOUT if the @width was not reached 1089 * within the given timeout, %0 if it did. 1090 */ 1091 int tb_port_wait_for_link_width(struct tb_port *port, int width, 1092 int timeout_msec) 1093 { 1094 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 1095 int ret; 1096 1097 do { 1098 ret = tb_port_get_link_width(port); 1099 if (ret < 0) 1100 return ret; 1101 else if (ret == width) 1102 return 0; 1103 1104 usleep_range(1000, 2000); 1105 } while (ktime_before(ktime_get(), timeout)); 1106 1107 return -ETIMEDOUT; 1108 } 1109 1110 static int tb_port_do_update_credits(struct tb_port *port) 1111 { 1112 u32 nfc_credits; 1113 int ret; 1114 1115 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1); 1116 if (ret) 1117 return ret; 1118 1119 if (nfc_credits != port->config.nfc_credits) { 1120 u32 total; 1121 1122 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >> 1123 ADP_CS_4_TOTAL_BUFFERS_SHIFT; 1124 1125 tb_port_dbg(port, "total credits changed %u -> %u\n", 1126 port->total_credits, total); 1127 1128 port->config.nfc_credits = nfc_credits; 1129 port->total_credits = total; 1130 } 1131 1132 return 0; 1133 } 1134 1135 /** 1136 * tb_port_update_credits() - Re-read port total credits 1137 * @port: Port to update 1138 * 1139 * After the link is bonded (or bonding was disabled) the port total 1140 * credits may change, so this function needs to be called to re-read 1141 * the credits. Updates also the second lane adapter. 1142 */ 1143 int tb_port_update_credits(struct tb_port *port) 1144 { 1145 int ret; 1146 1147 ret = tb_port_do_update_credits(port); 1148 if (ret) 1149 return ret; 1150 return tb_port_do_update_credits(port->dual_link_port); 1151 } 1152 1153 static int tb_port_start_lane_initialization(struct tb_port *port) 1154 { 1155 int ret; 1156 1157 if (tb_switch_is_usb4(port->sw)) 1158 return 0; 1159 1160 ret = tb_lc_start_lane_initialization(port); 1161 return ret == -EINVAL ? 0 : ret; 1162 } 1163 1164 /* 1165 * Returns true if the port had something (router, XDomain) connected 1166 * before suspend. 1167 */ 1168 static bool tb_port_resume(struct tb_port *port) 1169 { 1170 bool has_remote = tb_port_has_remote(port); 1171 1172 if (port->usb4) { 1173 usb4_port_device_resume(port->usb4); 1174 } else if (!has_remote) { 1175 /* 1176 * For disconnected downstream lane adapters start lane 1177 * initialization now so we detect future connects. 1178 * 1179 * For XDomain start the lane initialzation now so the 1180 * link gets re-established. 1181 * 1182 * This is only needed for non-USB4 ports. 1183 */ 1184 if (!tb_is_upstream_port(port) || port->xdomain) 1185 tb_port_start_lane_initialization(port); 1186 } 1187 1188 return has_remote || port->xdomain; 1189 } 1190 1191 /** 1192 * tb_port_is_enabled() - Is the adapter port enabled 1193 * @port: Port to check 1194 */ 1195 bool tb_port_is_enabled(struct tb_port *port) 1196 { 1197 switch (port->config.type) { 1198 case TB_TYPE_PCIE_UP: 1199 case TB_TYPE_PCIE_DOWN: 1200 return tb_pci_port_is_enabled(port); 1201 1202 case TB_TYPE_DP_HDMI_IN: 1203 case TB_TYPE_DP_HDMI_OUT: 1204 return tb_dp_port_is_enabled(port); 1205 1206 case TB_TYPE_USB3_UP: 1207 case TB_TYPE_USB3_DOWN: 1208 return tb_usb3_port_is_enabled(port); 1209 1210 default: 1211 return false; 1212 } 1213 } 1214 1215 /** 1216 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled 1217 * @port: USB3 adapter port to check 1218 */ 1219 bool tb_usb3_port_is_enabled(struct tb_port *port) 1220 { 1221 u32 data; 1222 1223 if (tb_port_read(port, &data, TB_CFG_PORT, 1224 port->cap_adap + ADP_USB3_CS_0, 1)) 1225 return false; 1226 1227 return !!(data & ADP_USB3_CS_0_PE); 1228 } 1229 1230 /** 1231 * tb_usb3_port_enable() - Enable USB3 adapter port 1232 * @port: USB3 adapter port to enable 1233 * @enable: Enable/disable the USB3 adapter 1234 */ 1235 int tb_usb3_port_enable(struct tb_port *port, bool enable) 1236 { 1237 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V) 1238 : ADP_USB3_CS_0_V; 1239 1240 if (!port->cap_adap) 1241 return -ENXIO; 1242 return tb_port_write(port, &word, TB_CFG_PORT, 1243 port->cap_adap + ADP_USB3_CS_0, 1); 1244 } 1245 1246 /** 1247 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled 1248 * @port: PCIe port to check 1249 */ 1250 bool tb_pci_port_is_enabled(struct tb_port *port) 1251 { 1252 u32 data; 1253 1254 if (tb_port_read(port, &data, TB_CFG_PORT, 1255 port->cap_adap + ADP_PCIE_CS_0, 1)) 1256 return false; 1257 1258 return !!(data & ADP_PCIE_CS_0_PE); 1259 } 1260 1261 /** 1262 * tb_pci_port_enable() - Enable PCIe adapter port 1263 * @port: PCIe port to enable 1264 * @enable: Enable/disable the PCIe adapter 1265 */ 1266 int tb_pci_port_enable(struct tb_port *port, bool enable) 1267 { 1268 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0; 1269 if (!port->cap_adap) 1270 return -ENXIO; 1271 return tb_port_write(port, &word, TB_CFG_PORT, 1272 port->cap_adap + ADP_PCIE_CS_0, 1); 1273 } 1274 1275 /** 1276 * tb_dp_port_hpd_is_active() - Is HPD already active 1277 * @port: DP out port to check 1278 * 1279 * Checks if the DP OUT adapter port has HDP bit already set. 1280 */ 1281 int tb_dp_port_hpd_is_active(struct tb_port *port) 1282 { 1283 u32 data; 1284 int ret; 1285 1286 ret = tb_port_read(port, &data, TB_CFG_PORT, 1287 port->cap_adap + ADP_DP_CS_2, 1); 1288 if (ret) 1289 return ret; 1290 1291 return !!(data & ADP_DP_CS_2_HDP); 1292 } 1293 1294 /** 1295 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port 1296 * @port: Port to clear HPD 1297 * 1298 * If the DP IN port has HDP set, this function can be used to clear it. 1299 */ 1300 int tb_dp_port_hpd_clear(struct tb_port *port) 1301 { 1302 u32 data; 1303 int ret; 1304 1305 ret = tb_port_read(port, &data, TB_CFG_PORT, 1306 port->cap_adap + ADP_DP_CS_3, 1); 1307 if (ret) 1308 return ret; 1309 1310 data |= ADP_DP_CS_3_HDPC; 1311 return tb_port_write(port, &data, TB_CFG_PORT, 1312 port->cap_adap + ADP_DP_CS_3, 1); 1313 } 1314 1315 /** 1316 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port 1317 * @port: DP IN/OUT port to set hops 1318 * @video: Video Hop ID 1319 * @aux_tx: AUX TX Hop ID 1320 * @aux_rx: AUX RX Hop ID 1321 * 1322 * Programs specified Hop IDs for DP IN/OUT port. 1323 */ 1324 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video, 1325 unsigned int aux_tx, unsigned int aux_rx) 1326 { 1327 u32 data[2]; 1328 int ret; 1329 1330 ret = tb_port_read(port, data, TB_CFG_PORT, 1331 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1332 if (ret) 1333 return ret; 1334 1335 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK; 1336 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1337 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1338 1339 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) & 1340 ADP_DP_CS_0_VIDEO_HOPID_MASK; 1341 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK; 1342 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) & 1343 ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1344 1345 return tb_port_write(port, data, TB_CFG_PORT, 1346 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1347 } 1348 1349 /** 1350 * tb_dp_port_is_enabled() - Is DP adapter port enabled 1351 * @port: DP adapter port to check 1352 */ 1353 bool tb_dp_port_is_enabled(struct tb_port *port) 1354 { 1355 u32 data[2]; 1356 1357 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0, 1358 ARRAY_SIZE(data))) 1359 return false; 1360 1361 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE)); 1362 } 1363 1364 /** 1365 * tb_dp_port_enable() - Enables/disables DP paths of a port 1366 * @port: DP IN/OUT port 1367 * @enable: Enable/disable DP path 1368 * 1369 * Once Hop IDs are programmed DP paths can be enabled or disabled by 1370 * calling this function. 1371 */ 1372 int tb_dp_port_enable(struct tb_port *port, bool enable) 1373 { 1374 u32 data[2]; 1375 int ret; 1376 1377 ret = tb_port_read(port, data, TB_CFG_PORT, 1378 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1379 if (ret) 1380 return ret; 1381 1382 if (enable) 1383 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE; 1384 else 1385 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE); 1386 1387 return tb_port_write(port, data, TB_CFG_PORT, 1388 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1389 } 1390 1391 /* switch utility functions */ 1392 1393 static const char *tb_switch_generation_name(const struct tb_switch *sw) 1394 { 1395 switch (sw->generation) { 1396 case 1: 1397 return "Thunderbolt 1"; 1398 case 2: 1399 return "Thunderbolt 2"; 1400 case 3: 1401 return "Thunderbolt 3"; 1402 case 4: 1403 return "USB4"; 1404 default: 1405 return "Unknown"; 1406 } 1407 } 1408 1409 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw) 1410 { 1411 const struct tb_regs_switch_header *regs = &sw->config; 1412 1413 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n", 1414 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id, 1415 regs->revision, regs->thunderbolt_version); 1416 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number); 1417 tb_dbg(tb, " Config:\n"); 1418 tb_dbg(tb, 1419 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 1420 regs->upstream_port_number, regs->depth, 1421 (((u64) regs->route_hi) << 32) | regs->route_lo, 1422 regs->enabled, regs->plug_events_delay); 1423 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n", 1424 regs->__unknown1, regs->__unknown4); 1425 } 1426 1427 /** 1428 * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET 1429 * @sw: Switch to reset 1430 * 1431 * Return: Returns 0 on success or an error code on failure. 1432 */ 1433 int tb_switch_reset(struct tb_switch *sw) 1434 { 1435 struct tb_cfg_result res; 1436 1437 if (sw->generation > 1) 1438 return 0; 1439 1440 tb_sw_dbg(sw, "resetting switch\n"); 1441 1442 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2, 1443 TB_CFG_SWITCH, 2, 2); 1444 if (res.err) 1445 return res.err; 1446 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw)); 1447 if (res.err > 0) 1448 return -EIO; 1449 return res.err; 1450 } 1451 1452 /* 1453 * tb_plug_events_active() - enable/disable plug events on a switch 1454 * 1455 * Also configures a sane plug_events_delay of 255ms. 1456 * 1457 * Return: Returns 0 on success or an error code on failure. 1458 */ 1459 static int tb_plug_events_active(struct tb_switch *sw, bool active) 1460 { 1461 u32 data; 1462 int res; 1463 1464 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw)) 1465 return 0; 1466 1467 sw->config.plug_events_delay = 0xff; 1468 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 1469 if (res) 1470 return res; 1471 1472 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 1473 if (res) 1474 return res; 1475 1476 if (active) { 1477 data = data & 0xFFFFFF83; 1478 switch (sw->config.device_id) { 1479 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1480 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1481 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1482 break; 1483 default: 1484 data |= 4; 1485 } 1486 } else { 1487 data = data | 0x7c; 1488 } 1489 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 1490 sw->cap_plug_events + 1, 1); 1491 } 1492 1493 static ssize_t authorized_show(struct device *dev, 1494 struct device_attribute *attr, 1495 char *buf) 1496 { 1497 struct tb_switch *sw = tb_to_switch(dev); 1498 1499 return sprintf(buf, "%u\n", sw->authorized); 1500 } 1501 1502 static int disapprove_switch(struct device *dev, void *not_used) 1503 { 1504 char *envp[] = { "AUTHORIZED=0", NULL }; 1505 struct tb_switch *sw; 1506 1507 sw = tb_to_switch(dev); 1508 if (sw && sw->authorized) { 1509 int ret; 1510 1511 /* First children */ 1512 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch); 1513 if (ret) 1514 return ret; 1515 1516 ret = tb_domain_disapprove_switch(sw->tb, sw); 1517 if (ret) 1518 return ret; 1519 1520 sw->authorized = 0; 1521 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp); 1522 } 1523 1524 return 0; 1525 } 1526 1527 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 1528 { 1529 char envp_string[13]; 1530 int ret = -EINVAL; 1531 char *envp[] = { envp_string, NULL }; 1532 1533 if (!mutex_trylock(&sw->tb->lock)) 1534 return restart_syscall(); 1535 1536 if (!!sw->authorized == !!val) 1537 goto unlock; 1538 1539 switch (val) { 1540 /* Disapprove switch */ 1541 case 0: 1542 if (tb_route(sw)) { 1543 ret = disapprove_switch(&sw->dev, NULL); 1544 goto unlock; 1545 } 1546 break; 1547 1548 /* Approve switch */ 1549 case 1: 1550 if (sw->key) 1551 ret = tb_domain_approve_switch_key(sw->tb, sw); 1552 else 1553 ret = tb_domain_approve_switch(sw->tb, sw); 1554 break; 1555 1556 /* Challenge switch */ 1557 case 2: 1558 if (sw->key) 1559 ret = tb_domain_challenge_switch_key(sw->tb, sw); 1560 break; 1561 1562 default: 1563 break; 1564 } 1565 1566 if (!ret) { 1567 sw->authorized = val; 1568 /* 1569 * Notify status change to the userspace, informing the new 1570 * value of /sys/bus/thunderbolt/devices/.../authorized. 1571 */ 1572 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized); 1573 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp); 1574 } 1575 1576 unlock: 1577 mutex_unlock(&sw->tb->lock); 1578 return ret; 1579 } 1580 1581 static ssize_t authorized_store(struct device *dev, 1582 struct device_attribute *attr, 1583 const char *buf, size_t count) 1584 { 1585 struct tb_switch *sw = tb_to_switch(dev); 1586 unsigned int val; 1587 ssize_t ret; 1588 1589 ret = kstrtouint(buf, 0, &val); 1590 if (ret) 1591 return ret; 1592 if (val > 2) 1593 return -EINVAL; 1594 1595 pm_runtime_get_sync(&sw->dev); 1596 ret = tb_switch_set_authorized(sw, val); 1597 pm_runtime_mark_last_busy(&sw->dev); 1598 pm_runtime_put_autosuspend(&sw->dev); 1599 1600 return ret ? ret : count; 1601 } 1602 static DEVICE_ATTR_RW(authorized); 1603 1604 static ssize_t boot_show(struct device *dev, struct device_attribute *attr, 1605 char *buf) 1606 { 1607 struct tb_switch *sw = tb_to_switch(dev); 1608 1609 return sprintf(buf, "%u\n", sw->boot); 1610 } 1611 static DEVICE_ATTR_RO(boot); 1612 1613 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 1614 char *buf) 1615 { 1616 struct tb_switch *sw = tb_to_switch(dev); 1617 1618 return sprintf(buf, "%#x\n", sw->device); 1619 } 1620 static DEVICE_ATTR_RO(device); 1621 1622 static ssize_t 1623 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1624 { 1625 struct tb_switch *sw = tb_to_switch(dev); 1626 1627 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : ""); 1628 } 1629 static DEVICE_ATTR_RO(device_name); 1630 1631 static ssize_t 1632 generation_show(struct device *dev, struct device_attribute *attr, char *buf) 1633 { 1634 struct tb_switch *sw = tb_to_switch(dev); 1635 1636 return sprintf(buf, "%u\n", sw->generation); 1637 } 1638 static DEVICE_ATTR_RO(generation); 1639 1640 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 1641 char *buf) 1642 { 1643 struct tb_switch *sw = tb_to_switch(dev); 1644 ssize_t ret; 1645 1646 if (!mutex_trylock(&sw->tb->lock)) 1647 return restart_syscall(); 1648 1649 if (sw->key) 1650 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 1651 else 1652 ret = sprintf(buf, "\n"); 1653 1654 mutex_unlock(&sw->tb->lock); 1655 return ret; 1656 } 1657 1658 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 1659 const char *buf, size_t count) 1660 { 1661 struct tb_switch *sw = tb_to_switch(dev); 1662 u8 key[TB_SWITCH_KEY_SIZE]; 1663 ssize_t ret = count; 1664 bool clear = false; 1665 1666 if (!strcmp(buf, "\n")) 1667 clear = true; 1668 else if (hex2bin(key, buf, sizeof(key))) 1669 return -EINVAL; 1670 1671 if (!mutex_trylock(&sw->tb->lock)) 1672 return restart_syscall(); 1673 1674 if (sw->authorized) { 1675 ret = -EBUSY; 1676 } else { 1677 kfree(sw->key); 1678 if (clear) { 1679 sw->key = NULL; 1680 } else { 1681 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 1682 if (!sw->key) 1683 ret = -ENOMEM; 1684 } 1685 } 1686 1687 mutex_unlock(&sw->tb->lock); 1688 return ret; 1689 } 1690 static DEVICE_ATTR(key, 0600, key_show, key_store); 1691 1692 static ssize_t speed_show(struct device *dev, struct device_attribute *attr, 1693 char *buf) 1694 { 1695 struct tb_switch *sw = tb_to_switch(dev); 1696 1697 return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed); 1698 } 1699 1700 /* 1701 * Currently all lanes must run at the same speed but we expose here 1702 * both directions to allow possible asymmetric links in the future. 1703 */ 1704 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL); 1705 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL); 1706 1707 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr, 1708 char *buf) 1709 { 1710 struct tb_switch *sw = tb_to_switch(dev); 1711 1712 return sprintf(buf, "%u\n", sw->link_width); 1713 } 1714 1715 /* 1716 * Currently link has same amount of lanes both directions (1 or 2) but 1717 * expose them separately to allow possible asymmetric links in the future. 1718 */ 1719 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL); 1720 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL); 1721 1722 static ssize_t nvm_authenticate_show(struct device *dev, 1723 struct device_attribute *attr, char *buf) 1724 { 1725 struct tb_switch *sw = tb_to_switch(dev); 1726 u32 status; 1727 1728 nvm_get_auth_status(sw, &status); 1729 return sprintf(buf, "%#x\n", status); 1730 } 1731 1732 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf, 1733 bool disconnect) 1734 { 1735 struct tb_switch *sw = tb_to_switch(dev); 1736 int val, ret; 1737 1738 pm_runtime_get_sync(&sw->dev); 1739 1740 if (!mutex_trylock(&sw->tb->lock)) { 1741 ret = restart_syscall(); 1742 goto exit_rpm; 1743 } 1744 1745 /* If NVMem devices are not yet added */ 1746 if (!sw->nvm) { 1747 ret = -EAGAIN; 1748 goto exit_unlock; 1749 } 1750 1751 ret = kstrtoint(buf, 10, &val); 1752 if (ret) 1753 goto exit_unlock; 1754 1755 /* Always clear the authentication status */ 1756 nvm_clear_auth_status(sw); 1757 1758 if (val > 0) { 1759 if (val == AUTHENTICATE_ONLY) { 1760 if (disconnect) 1761 ret = -EINVAL; 1762 else 1763 ret = nvm_authenticate(sw, true); 1764 } else { 1765 if (!sw->nvm->flushed) { 1766 if (!sw->nvm->buf) { 1767 ret = -EINVAL; 1768 goto exit_unlock; 1769 } 1770 1771 ret = nvm_validate_and_write(sw); 1772 if (ret || val == WRITE_ONLY) 1773 goto exit_unlock; 1774 } 1775 if (val == WRITE_AND_AUTHENTICATE) { 1776 if (disconnect) 1777 ret = tb_lc_force_power(sw); 1778 else 1779 ret = nvm_authenticate(sw, false); 1780 } 1781 } 1782 } 1783 1784 exit_unlock: 1785 mutex_unlock(&sw->tb->lock); 1786 exit_rpm: 1787 pm_runtime_mark_last_busy(&sw->dev); 1788 pm_runtime_put_autosuspend(&sw->dev); 1789 1790 return ret; 1791 } 1792 1793 static ssize_t nvm_authenticate_store(struct device *dev, 1794 struct device_attribute *attr, const char *buf, size_t count) 1795 { 1796 int ret = nvm_authenticate_sysfs(dev, buf, false); 1797 if (ret) 1798 return ret; 1799 return count; 1800 } 1801 static DEVICE_ATTR_RW(nvm_authenticate); 1802 1803 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev, 1804 struct device_attribute *attr, char *buf) 1805 { 1806 return nvm_authenticate_show(dev, attr, buf); 1807 } 1808 1809 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev, 1810 struct device_attribute *attr, const char *buf, size_t count) 1811 { 1812 int ret; 1813 1814 ret = nvm_authenticate_sysfs(dev, buf, true); 1815 return ret ? ret : count; 1816 } 1817 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect); 1818 1819 static ssize_t nvm_version_show(struct device *dev, 1820 struct device_attribute *attr, char *buf) 1821 { 1822 struct tb_switch *sw = tb_to_switch(dev); 1823 int ret; 1824 1825 if (!mutex_trylock(&sw->tb->lock)) 1826 return restart_syscall(); 1827 1828 if (sw->safe_mode) 1829 ret = -ENODATA; 1830 else if (!sw->nvm) 1831 ret = -EAGAIN; 1832 else 1833 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 1834 1835 mutex_unlock(&sw->tb->lock); 1836 1837 return ret; 1838 } 1839 static DEVICE_ATTR_RO(nvm_version); 1840 1841 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 1842 char *buf) 1843 { 1844 struct tb_switch *sw = tb_to_switch(dev); 1845 1846 return sprintf(buf, "%#x\n", sw->vendor); 1847 } 1848 static DEVICE_ATTR_RO(vendor); 1849 1850 static ssize_t 1851 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1852 { 1853 struct tb_switch *sw = tb_to_switch(dev); 1854 1855 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : ""); 1856 } 1857 static DEVICE_ATTR_RO(vendor_name); 1858 1859 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 1860 char *buf) 1861 { 1862 struct tb_switch *sw = tb_to_switch(dev); 1863 1864 return sprintf(buf, "%pUb\n", sw->uuid); 1865 } 1866 static DEVICE_ATTR_RO(unique_id); 1867 1868 static struct attribute *switch_attrs[] = { 1869 &dev_attr_authorized.attr, 1870 &dev_attr_boot.attr, 1871 &dev_attr_device.attr, 1872 &dev_attr_device_name.attr, 1873 &dev_attr_generation.attr, 1874 &dev_attr_key.attr, 1875 &dev_attr_nvm_authenticate.attr, 1876 &dev_attr_nvm_authenticate_on_disconnect.attr, 1877 &dev_attr_nvm_version.attr, 1878 &dev_attr_rx_speed.attr, 1879 &dev_attr_rx_lanes.attr, 1880 &dev_attr_tx_speed.attr, 1881 &dev_attr_tx_lanes.attr, 1882 &dev_attr_vendor.attr, 1883 &dev_attr_vendor_name.attr, 1884 &dev_attr_unique_id.attr, 1885 NULL, 1886 }; 1887 1888 static umode_t switch_attr_is_visible(struct kobject *kobj, 1889 struct attribute *attr, int n) 1890 { 1891 struct device *dev = kobj_to_dev(kobj); 1892 struct tb_switch *sw = tb_to_switch(dev); 1893 1894 if (attr == &dev_attr_authorized.attr) { 1895 if (sw->tb->security_level == TB_SECURITY_NOPCIE || 1896 sw->tb->security_level == TB_SECURITY_DPONLY) 1897 return 0; 1898 } else if (attr == &dev_attr_device.attr) { 1899 if (!sw->device) 1900 return 0; 1901 } else if (attr == &dev_attr_device_name.attr) { 1902 if (!sw->device_name) 1903 return 0; 1904 } else if (attr == &dev_attr_vendor.attr) { 1905 if (!sw->vendor) 1906 return 0; 1907 } else if (attr == &dev_attr_vendor_name.attr) { 1908 if (!sw->vendor_name) 1909 return 0; 1910 } else if (attr == &dev_attr_key.attr) { 1911 if (tb_route(sw) && 1912 sw->tb->security_level == TB_SECURITY_SECURE && 1913 sw->security_level == TB_SECURITY_SECURE) 1914 return attr->mode; 1915 return 0; 1916 } else if (attr == &dev_attr_rx_speed.attr || 1917 attr == &dev_attr_rx_lanes.attr || 1918 attr == &dev_attr_tx_speed.attr || 1919 attr == &dev_attr_tx_lanes.attr) { 1920 if (tb_route(sw)) 1921 return attr->mode; 1922 return 0; 1923 } else if (attr == &dev_attr_nvm_authenticate.attr) { 1924 if (nvm_upgradeable(sw)) 1925 return attr->mode; 1926 return 0; 1927 } else if (attr == &dev_attr_nvm_version.attr) { 1928 if (nvm_readable(sw)) 1929 return attr->mode; 1930 return 0; 1931 } else if (attr == &dev_attr_boot.attr) { 1932 if (tb_route(sw)) 1933 return attr->mode; 1934 return 0; 1935 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) { 1936 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER) 1937 return attr->mode; 1938 return 0; 1939 } 1940 1941 return sw->safe_mode ? 0 : attr->mode; 1942 } 1943 1944 static const struct attribute_group switch_group = { 1945 .is_visible = switch_attr_is_visible, 1946 .attrs = switch_attrs, 1947 }; 1948 1949 static const struct attribute_group *switch_groups[] = { 1950 &switch_group, 1951 NULL, 1952 }; 1953 1954 static void tb_switch_release(struct device *dev) 1955 { 1956 struct tb_switch *sw = tb_to_switch(dev); 1957 struct tb_port *port; 1958 1959 dma_port_free(sw->dma_port); 1960 1961 tb_switch_for_each_port(sw, port) { 1962 ida_destroy(&port->in_hopids); 1963 ida_destroy(&port->out_hopids); 1964 } 1965 1966 kfree(sw->uuid); 1967 kfree(sw->device_name); 1968 kfree(sw->vendor_name); 1969 kfree(sw->ports); 1970 kfree(sw->drom); 1971 kfree(sw->key); 1972 kfree(sw); 1973 } 1974 1975 static int tb_switch_uevent(struct device *dev, struct kobj_uevent_env *env) 1976 { 1977 struct tb_switch *sw = tb_to_switch(dev); 1978 const char *type; 1979 1980 if (sw->config.thunderbolt_version == USB4_VERSION_1_0) { 1981 if (add_uevent_var(env, "USB4_VERSION=1.0")) 1982 return -ENOMEM; 1983 } 1984 1985 if (!tb_route(sw)) { 1986 type = "host"; 1987 } else { 1988 const struct tb_port *port; 1989 bool hub = false; 1990 1991 /* Device is hub if it has any downstream ports */ 1992 tb_switch_for_each_port(sw, port) { 1993 if (!port->disabled && !tb_is_upstream_port(port) && 1994 tb_port_is_null(port)) { 1995 hub = true; 1996 break; 1997 } 1998 } 1999 2000 type = hub ? "hub" : "device"; 2001 } 2002 2003 if (add_uevent_var(env, "USB4_TYPE=%s", type)) 2004 return -ENOMEM; 2005 return 0; 2006 } 2007 2008 /* 2009 * Currently only need to provide the callbacks. Everything else is handled 2010 * in the connection manager. 2011 */ 2012 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev) 2013 { 2014 struct tb_switch *sw = tb_to_switch(dev); 2015 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 2016 2017 if (cm_ops->runtime_suspend_switch) 2018 return cm_ops->runtime_suspend_switch(sw); 2019 2020 return 0; 2021 } 2022 2023 static int __maybe_unused tb_switch_runtime_resume(struct device *dev) 2024 { 2025 struct tb_switch *sw = tb_to_switch(dev); 2026 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 2027 2028 if (cm_ops->runtime_resume_switch) 2029 return cm_ops->runtime_resume_switch(sw); 2030 return 0; 2031 } 2032 2033 static const struct dev_pm_ops tb_switch_pm_ops = { 2034 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume, 2035 NULL) 2036 }; 2037 2038 struct device_type tb_switch_type = { 2039 .name = "thunderbolt_device", 2040 .release = tb_switch_release, 2041 .uevent = tb_switch_uevent, 2042 .pm = &tb_switch_pm_ops, 2043 }; 2044 2045 static int tb_switch_get_generation(struct tb_switch *sw) 2046 { 2047 switch (sw->config.device_id) { 2048 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 2049 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 2050 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 2051 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 2052 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 2053 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 2054 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 2055 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 2056 return 1; 2057 2058 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 2059 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 2060 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 2061 return 2; 2062 2063 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 2064 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 2065 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 2066 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 2067 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 2068 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: 2069 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: 2070 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: 2071 case PCI_DEVICE_ID_INTEL_ICL_NHI0: 2072 case PCI_DEVICE_ID_INTEL_ICL_NHI1: 2073 return 3; 2074 2075 default: 2076 if (tb_switch_is_usb4(sw)) 2077 return 4; 2078 2079 /* 2080 * For unknown switches assume generation to be 1 to be 2081 * on the safe side. 2082 */ 2083 tb_sw_warn(sw, "unsupported switch device id %#x\n", 2084 sw->config.device_id); 2085 return 1; 2086 } 2087 } 2088 2089 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth) 2090 { 2091 int max_depth; 2092 2093 if (tb_switch_is_usb4(sw) || 2094 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch))) 2095 max_depth = USB4_SWITCH_MAX_DEPTH; 2096 else 2097 max_depth = TB_SWITCH_MAX_DEPTH; 2098 2099 return depth > max_depth; 2100 } 2101 2102 /** 2103 * tb_switch_alloc() - allocate a switch 2104 * @tb: Pointer to the owning domain 2105 * @parent: Parent device for this switch 2106 * @route: Route string for this switch 2107 * 2108 * Allocates and initializes a switch. Will not upload configuration to 2109 * the switch. For that you need to call tb_switch_configure() 2110 * separately. The returned switch should be released by calling 2111 * tb_switch_put(). 2112 * 2113 * Return: Pointer to the allocated switch or ERR_PTR() in case of 2114 * failure. 2115 */ 2116 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 2117 u64 route) 2118 { 2119 struct tb_switch *sw; 2120 int upstream_port; 2121 int i, ret, depth; 2122 2123 /* Unlock the downstream port so we can access the switch below */ 2124 if (route) { 2125 struct tb_switch *parent_sw = tb_to_switch(parent); 2126 struct tb_port *down; 2127 2128 down = tb_port_at(route, parent_sw); 2129 tb_port_unlock(down); 2130 } 2131 2132 depth = tb_route_length(route); 2133 2134 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 2135 if (upstream_port < 0) 2136 return ERR_PTR(upstream_port); 2137 2138 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 2139 if (!sw) 2140 return ERR_PTR(-ENOMEM); 2141 2142 sw->tb = tb; 2143 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5); 2144 if (ret) 2145 goto err_free_sw_ports; 2146 2147 sw->generation = tb_switch_get_generation(sw); 2148 2149 tb_dbg(tb, "current switch config:\n"); 2150 tb_dump_switch(tb, sw); 2151 2152 /* configure switch */ 2153 sw->config.upstream_port_number = upstream_port; 2154 sw->config.depth = depth; 2155 sw->config.route_hi = upper_32_bits(route); 2156 sw->config.route_lo = lower_32_bits(route); 2157 sw->config.enabled = 0; 2158 2159 /* Make sure we do not exceed maximum topology limit */ 2160 if (tb_switch_exceeds_max_depth(sw, depth)) { 2161 ret = -EADDRNOTAVAIL; 2162 goto err_free_sw_ports; 2163 } 2164 2165 /* initialize ports */ 2166 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 2167 GFP_KERNEL); 2168 if (!sw->ports) { 2169 ret = -ENOMEM; 2170 goto err_free_sw_ports; 2171 } 2172 2173 for (i = 0; i <= sw->config.max_port_number; i++) { 2174 /* minimum setup for tb_find_cap and tb_drom_read to work */ 2175 sw->ports[i].sw = sw; 2176 sw->ports[i].port = i; 2177 2178 /* Control port does not need HopID allocation */ 2179 if (i) { 2180 ida_init(&sw->ports[i].in_hopids); 2181 ida_init(&sw->ports[i].out_hopids); 2182 } 2183 } 2184 2185 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 2186 if (ret > 0) 2187 sw->cap_plug_events = ret; 2188 2189 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 2190 if (ret > 0) 2191 sw->cap_lc = ret; 2192 2193 /* Root switch is always authorized */ 2194 if (!route) 2195 sw->authorized = true; 2196 2197 device_initialize(&sw->dev); 2198 sw->dev.parent = parent; 2199 sw->dev.bus = &tb_bus_type; 2200 sw->dev.type = &tb_switch_type; 2201 sw->dev.groups = switch_groups; 2202 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 2203 2204 return sw; 2205 2206 err_free_sw_ports: 2207 kfree(sw->ports); 2208 kfree(sw); 2209 2210 return ERR_PTR(ret); 2211 } 2212 2213 /** 2214 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 2215 * @tb: Pointer to the owning domain 2216 * @parent: Parent device for this switch 2217 * @route: Route string for this switch 2218 * 2219 * This creates a switch in safe mode. This means the switch pretty much 2220 * lacks all capabilities except DMA configuration port before it is 2221 * flashed with a valid NVM firmware. 2222 * 2223 * The returned switch must be released by calling tb_switch_put(). 2224 * 2225 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure 2226 */ 2227 struct tb_switch * 2228 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 2229 { 2230 struct tb_switch *sw; 2231 2232 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 2233 if (!sw) 2234 return ERR_PTR(-ENOMEM); 2235 2236 sw->tb = tb; 2237 sw->config.depth = tb_route_length(route); 2238 sw->config.route_hi = upper_32_bits(route); 2239 sw->config.route_lo = lower_32_bits(route); 2240 sw->safe_mode = true; 2241 2242 device_initialize(&sw->dev); 2243 sw->dev.parent = parent; 2244 sw->dev.bus = &tb_bus_type; 2245 sw->dev.type = &tb_switch_type; 2246 sw->dev.groups = switch_groups; 2247 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 2248 2249 return sw; 2250 } 2251 2252 /** 2253 * tb_switch_configure() - Uploads configuration to the switch 2254 * @sw: Switch to configure 2255 * 2256 * Call this function before the switch is added to the system. It will 2257 * upload configuration to the switch and makes it available for the 2258 * connection manager to use. Can be called to the switch again after 2259 * resume from low power states to re-initialize it. 2260 * 2261 * Return: %0 in case of success and negative errno in case of failure 2262 */ 2263 int tb_switch_configure(struct tb_switch *sw) 2264 { 2265 struct tb *tb = sw->tb; 2266 u64 route; 2267 int ret; 2268 2269 route = tb_route(sw); 2270 2271 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n", 2272 sw->config.enabled ? "restoring" : "initializing", route, 2273 tb_route_length(route), sw->config.upstream_port_number); 2274 2275 sw->config.enabled = 1; 2276 2277 if (tb_switch_is_usb4(sw)) { 2278 /* 2279 * For USB4 devices, we need to program the CM version 2280 * accordingly so that it knows to expose all the 2281 * additional capabilities. 2282 */ 2283 sw->config.cmuv = USB4_VERSION_1_0; 2284 2285 /* Enumerate the switch */ 2286 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2287 ROUTER_CS_1, 4); 2288 if (ret) 2289 return ret; 2290 2291 ret = usb4_switch_setup(sw); 2292 } else { 2293 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 2294 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 2295 sw->config.vendor_id); 2296 2297 if (!sw->cap_plug_events) { 2298 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 2299 return -ENODEV; 2300 } 2301 2302 /* Enumerate the switch */ 2303 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2304 ROUTER_CS_1, 3); 2305 } 2306 if (ret) 2307 return ret; 2308 2309 return tb_plug_events_active(sw, true); 2310 } 2311 2312 static int tb_switch_set_uuid(struct tb_switch *sw) 2313 { 2314 bool uid = false; 2315 u32 uuid[4]; 2316 int ret; 2317 2318 if (sw->uuid) 2319 return 0; 2320 2321 if (tb_switch_is_usb4(sw)) { 2322 ret = usb4_switch_read_uid(sw, &sw->uid); 2323 if (ret) 2324 return ret; 2325 uid = true; 2326 } else { 2327 /* 2328 * The newer controllers include fused UUID as part of 2329 * link controller specific registers 2330 */ 2331 ret = tb_lc_read_uuid(sw, uuid); 2332 if (ret) { 2333 if (ret != -EINVAL) 2334 return ret; 2335 uid = true; 2336 } 2337 } 2338 2339 if (uid) { 2340 /* 2341 * ICM generates UUID based on UID and fills the upper 2342 * two words with ones. This is not strictly following 2343 * UUID format but we want to be compatible with it so 2344 * we do the same here. 2345 */ 2346 uuid[0] = sw->uid & 0xffffffff; 2347 uuid[1] = (sw->uid >> 32) & 0xffffffff; 2348 uuid[2] = 0xffffffff; 2349 uuid[3] = 0xffffffff; 2350 } 2351 2352 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 2353 if (!sw->uuid) 2354 return -ENOMEM; 2355 return 0; 2356 } 2357 2358 static int tb_switch_add_dma_port(struct tb_switch *sw) 2359 { 2360 u32 status; 2361 int ret; 2362 2363 switch (sw->generation) { 2364 case 2: 2365 /* Only root switch can be upgraded */ 2366 if (tb_route(sw)) 2367 return 0; 2368 2369 fallthrough; 2370 case 3: 2371 case 4: 2372 ret = tb_switch_set_uuid(sw); 2373 if (ret) 2374 return ret; 2375 break; 2376 2377 default: 2378 /* 2379 * DMA port is the only thing available when the switch 2380 * is in safe mode. 2381 */ 2382 if (!sw->safe_mode) 2383 return 0; 2384 break; 2385 } 2386 2387 if (sw->no_nvm_upgrade) 2388 return 0; 2389 2390 if (tb_switch_is_usb4(sw)) { 2391 ret = usb4_switch_nvm_authenticate_status(sw, &status); 2392 if (ret) 2393 return ret; 2394 2395 if (status) { 2396 tb_sw_info(sw, "switch flash authentication failed\n"); 2397 nvm_set_auth_status(sw, status); 2398 } 2399 2400 return 0; 2401 } 2402 2403 /* Root switch DMA port requires running firmware */ 2404 if (!tb_route(sw) && !tb_switch_is_icm(sw)) 2405 return 0; 2406 2407 sw->dma_port = dma_port_alloc(sw); 2408 if (!sw->dma_port) 2409 return 0; 2410 2411 /* 2412 * If there is status already set then authentication failed 2413 * when the dma_port_flash_update_auth() returned. Power cycling 2414 * is not needed (it was done already) so only thing we do here 2415 * is to unblock runtime PM of the root port. 2416 */ 2417 nvm_get_auth_status(sw, &status); 2418 if (status) { 2419 if (!tb_route(sw)) 2420 nvm_authenticate_complete_dma_port(sw); 2421 return 0; 2422 } 2423 2424 /* 2425 * Check status of the previous flash authentication. If there 2426 * is one we need to power cycle the switch in any case to make 2427 * it functional again. 2428 */ 2429 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 2430 if (ret <= 0) 2431 return ret; 2432 2433 /* Now we can allow root port to suspend again */ 2434 if (!tb_route(sw)) 2435 nvm_authenticate_complete_dma_port(sw); 2436 2437 if (status) { 2438 tb_sw_info(sw, "switch flash authentication failed\n"); 2439 nvm_set_auth_status(sw, status); 2440 } 2441 2442 tb_sw_info(sw, "power cycling the switch now\n"); 2443 dma_port_power_cycle(sw->dma_port); 2444 2445 /* 2446 * We return error here which causes the switch adding failure. 2447 * It should appear back after power cycle is complete. 2448 */ 2449 return -ESHUTDOWN; 2450 } 2451 2452 static void tb_switch_default_link_ports(struct tb_switch *sw) 2453 { 2454 int i; 2455 2456 for (i = 1; i <= sw->config.max_port_number; i++) { 2457 struct tb_port *port = &sw->ports[i]; 2458 struct tb_port *subordinate; 2459 2460 if (!tb_port_is_null(port)) 2461 continue; 2462 2463 /* Check for the subordinate port */ 2464 if (i == sw->config.max_port_number || 2465 !tb_port_is_null(&sw->ports[i + 1])) 2466 continue; 2467 2468 /* Link them if not already done so (by DROM) */ 2469 subordinate = &sw->ports[i + 1]; 2470 if (!port->dual_link_port && !subordinate->dual_link_port) { 2471 port->link_nr = 0; 2472 port->dual_link_port = subordinate; 2473 subordinate->link_nr = 1; 2474 subordinate->dual_link_port = port; 2475 2476 tb_sw_dbg(sw, "linked ports %d <-> %d\n", 2477 port->port, subordinate->port); 2478 } 2479 } 2480 } 2481 2482 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw) 2483 { 2484 const struct tb_port *up = tb_upstream_port(sw); 2485 2486 if (!up->dual_link_port || !up->dual_link_port->remote) 2487 return false; 2488 2489 if (tb_switch_is_usb4(sw)) 2490 return usb4_switch_lane_bonding_possible(sw); 2491 return tb_lc_lane_bonding_possible(sw); 2492 } 2493 2494 static int tb_switch_update_link_attributes(struct tb_switch *sw) 2495 { 2496 struct tb_port *up; 2497 bool change = false; 2498 int ret; 2499 2500 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2501 return 0; 2502 2503 up = tb_upstream_port(sw); 2504 2505 ret = tb_port_get_link_speed(up); 2506 if (ret < 0) 2507 return ret; 2508 if (sw->link_speed != ret) 2509 change = true; 2510 sw->link_speed = ret; 2511 2512 ret = tb_port_get_link_width(up); 2513 if (ret < 0) 2514 return ret; 2515 if (sw->link_width != ret) 2516 change = true; 2517 sw->link_width = ret; 2518 2519 /* Notify userspace that there is possible link attribute change */ 2520 if (device_is_registered(&sw->dev) && change) 2521 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 2522 2523 return 0; 2524 } 2525 2526 /** 2527 * tb_switch_lane_bonding_enable() - Enable lane bonding 2528 * @sw: Switch to enable lane bonding 2529 * 2530 * Connection manager can call this function to enable lane bonding of a 2531 * switch. If conditions are correct and both switches support the feature, 2532 * lanes are bonded. It is safe to call this to any switch. 2533 */ 2534 int tb_switch_lane_bonding_enable(struct tb_switch *sw) 2535 { 2536 struct tb_switch *parent = tb_to_switch(sw->dev.parent); 2537 struct tb_port *up, *down; 2538 u64 route = tb_route(sw); 2539 int ret; 2540 2541 if (!route) 2542 return 0; 2543 2544 if (!tb_switch_lane_bonding_possible(sw)) 2545 return 0; 2546 2547 up = tb_upstream_port(sw); 2548 down = tb_port_at(route, parent); 2549 2550 if (!tb_port_is_width_supported(up, 2) || 2551 !tb_port_is_width_supported(down, 2)) 2552 return 0; 2553 2554 ret = tb_port_lane_bonding_enable(up); 2555 if (ret) { 2556 tb_port_warn(up, "failed to enable lane bonding\n"); 2557 return ret; 2558 } 2559 2560 ret = tb_port_lane_bonding_enable(down); 2561 if (ret) { 2562 tb_port_warn(down, "failed to enable lane bonding\n"); 2563 tb_port_lane_bonding_disable(up); 2564 return ret; 2565 } 2566 2567 ret = tb_port_wait_for_link_width(down, 2, 100); 2568 if (ret) { 2569 tb_port_warn(down, "timeout enabling lane bonding\n"); 2570 return ret; 2571 } 2572 2573 tb_port_update_credits(down); 2574 tb_port_update_credits(up); 2575 tb_switch_update_link_attributes(sw); 2576 2577 tb_sw_dbg(sw, "lane bonding enabled\n"); 2578 return ret; 2579 } 2580 2581 /** 2582 * tb_switch_lane_bonding_disable() - Disable lane bonding 2583 * @sw: Switch whose lane bonding to disable 2584 * 2585 * Disables lane bonding between @sw and parent. This can be called even 2586 * if lanes were not bonded originally. 2587 */ 2588 void tb_switch_lane_bonding_disable(struct tb_switch *sw) 2589 { 2590 struct tb_switch *parent = tb_to_switch(sw->dev.parent); 2591 struct tb_port *up, *down; 2592 2593 if (!tb_route(sw)) 2594 return; 2595 2596 up = tb_upstream_port(sw); 2597 if (!up->bonded) 2598 return; 2599 2600 down = tb_port_at(tb_route(sw), parent); 2601 2602 tb_port_lane_bonding_disable(up); 2603 tb_port_lane_bonding_disable(down); 2604 2605 /* 2606 * It is fine if we get other errors as the router might have 2607 * been unplugged. 2608 */ 2609 if (tb_port_wait_for_link_width(down, 1, 100) == -ETIMEDOUT) 2610 tb_sw_warn(sw, "timeout disabling lane bonding\n"); 2611 2612 tb_port_update_credits(down); 2613 tb_port_update_credits(up); 2614 tb_switch_update_link_attributes(sw); 2615 2616 tb_sw_dbg(sw, "lane bonding disabled\n"); 2617 } 2618 2619 /** 2620 * tb_switch_configure_link() - Set link configured 2621 * @sw: Switch whose link is configured 2622 * 2623 * Sets the link upstream from @sw configured (from both ends) so that 2624 * it will not be disconnected when the domain exits sleep. Can be 2625 * called for any switch. 2626 * 2627 * It is recommended that this is called after lane bonding is enabled. 2628 * 2629 * Returns %0 on success and negative errno in case of error. 2630 */ 2631 int tb_switch_configure_link(struct tb_switch *sw) 2632 { 2633 struct tb_port *up, *down; 2634 int ret; 2635 2636 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2637 return 0; 2638 2639 up = tb_upstream_port(sw); 2640 if (tb_switch_is_usb4(up->sw)) 2641 ret = usb4_port_configure(up); 2642 else 2643 ret = tb_lc_configure_port(up); 2644 if (ret) 2645 return ret; 2646 2647 down = up->remote; 2648 if (tb_switch_is_usb4(down->sw)) 2649 return usb4_port_configure(down); 2650 return tb_lc_configure_port(down); 2651 } 2652 2653 /** 2654 * tb_switch_unconfigure_link() - Unconfigure link 2655 * @sw: Switch whose link is unconfigured 2656 * 2657 * Sets the link unconfigured so the @sw will be disconnected if the 2658 * domain exists sleep. 2659 */ 2660 void tb_switch_unconfigure_link(struct tb_switch *sw) 2661 { 2662 struct tb_port *up, *down; 2663 2664 if (sw->is_unplugged) 2665 return; 2666 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2667 return; 2668 2669 up = tb_upstream_port(sw); 2670 if (tb_switch_is_usb4(up->sw)) 2671 usb4_port_unconfigure(up); 2672 else 2673 tb_lc_unconfigure_port(up); 2674 2675 down = up->remote; 2676 if (tb_switch_is_usb4(down->sw)) 2677 usb4_port_unconfigure(down); 2678 else 2679 tb_lc_unconfigure_port(down); 2680 } 2681 2682 static void tb_switch_credits_init(struct tb_switch *sw) 2683 { 2684 if (tb_switch_is_icm(sw)) 2685 return; 2686 if (!tb_switch_is_usb4(sw)) 2687 return; 2688 if (usb4_switch_credits_init(sw)) 2689 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n"); 2690 } 2691 2692 /** 2693 * tb_switch_add() - Add a switch to the domain 2694 * @sw: Switch to add 2695 * 2696 * This is the last step in adding switch to the domain. It will read 2697 * identification information from DROM and initializes ports so that 2698 * they can be used to connect other switches. The switch will be 2699 * exposed to the userspace when this function successfully returns. To 2700 * remove and release the switch, call tb_switch_remove(). 2701 * 2702 * Return: %0 in case of success and negative errno in case of failure 2703 */ 2704 int tb_switch_add(struct tb_switch *sw) 2705 { 2706 int i, ret; 2707 2708 /* 2709 * Initialize DMA control port now before we read DROM. Recent 2710 * host controllers have more complete DROM on NVM that includes 2711 * vendor and model identification strings which we then expose 2712 * to the userspace. NVM can be accessed through DMA 2713 * configuration based mailbox. 2714 */ 2715 ret = tb_switch_add_dma_port(sw); 2716 if (ret) { 2717 dev_err(&sw->dev, "failed to add DMA port\n"); 2718 return ret; 2719 } 2720 2721 if (!sw->safe_mode) { 2722 tb_switch_credits_init(sw); 2723 2724 /* read drom */ 2725 ret = tb_drom_read(sw); 2726 if (ret) { 2727 dev_err(&sw->dev, "reading DROM failed\n"); 2728 return ret; 2729 } 2730 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid); 2731 2732 tb_check_quirks(sw); 2733 2734 ret = tb_switch_set_uuid(sw); 2735 if (ret) { 2736 dev_err(&sw->dev, "failed to set UUID\n"); 2737 return ret; 2738 } 2739 2740 for (i = 0; i <= sw->config.max_port_number; i++) { 2741 if (sw->ports[i].disabled) { 2742 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n"); 2743 continue; 2744 } 2745 ret = tb_init_port(&sw->ports[i]); 2746 if (ret) { 2747 dev_err(&sw->dev, "failed to initialize port %d\n", i); 2748 return ret; 2749 } 2750 } 2751 2752 tb_switch_default_link_ports(sw); 2753 2754 ret = tb_switch_update_link_attributes(sw); 2755 if (ret) 2756 return ret; 2757 2758 ret = tb_switch_tmu_init(sw); 2759 if (ret) 2760 return ret; 2761 } 2762 2763 ret = device_add(&sw->dev); 2764 if (ret) { 2765 dev_err(&sw->dev, "failed to add device: %d\n", ret); 2766 return ret; 2767 } 2768 2769 if (tb_route(sw)) { 2770 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n", 2771 sw->vendor, sw->device); 2772 if (sw->vendor_name && sw->device_name) 2773 dev_info(&sw->dev, "%s %s\n", sw->vendor_name, 2774 sw->device_name); 2775 } 2776 2777 ret = usb4_switch_add_ports(sw); 2778 if (ret) { 2779 dev_err(&sw->dev, "failed to add USB4 ports\n"); 2780 goto err_del; 2781 } 2782 2783 ret = tb_switch_nvm_add(sw); 2784 if (ret) { 2785 dev_err(&sw->dev, "failed to add NVM devices\n"); 2786 goto err_ports; 2787 } 2788 2789 /* 2790 * Thunderbolt routers do not generate wakeups themselves but 2791 * they forward wakeups from tunneled protocols, so enable it 2792 * here. 2793 */ 2794 device_init_wakeup(&sw->dev, true); 2795 2796 pm_runtime_set_active(&sw->dev); 2797 if (sw->rpm) { 2798 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY); 2799 pm_runtime_use_autosuspend(&sw->dev); 2800 pm_runtime_mark_last_busy(&sw->dev); 2801 pm_runtime_enable(&sw->dev); 2802 pm_request_autosuspend(&sw->dev); 2803 } 2804 2805 tb_switch_debugfs_init(sw); 2806 return 0; 2807 2808 err_ports: 2809 usb4_switch_remove_ports(sw); 2810 err_del: 2811 device_del(&sw->dev); 2812 2813 return ret; 2814 } 2815 2816 /** 2817 * tb_switch_remove() - Remove and release a switch 2818 * @sw: Switch to remove 2819 * 2820 * This will remove the switch from the domain and release it after last 2821 * reference count drops to zero. If there are switches connected below 2822 * this switch, they will be removed as well. 2823 */ 2824 void tb_switch_remove(struct tb_switch *sw) 2825 { 2826 struct tb_port *port; 2827 2828 tb_switch_debugfs_remove(sw); 2829 2830 if (sw->rpm) { 2831 pm_runtime_get_sync(&sw->dev); 2832 pm_runtime_disable(&sw->dev); 2833 } 2834 2835 /* port 0 is the switch itself and never has a remote */ 2836 tb_switch_for_each_port(sw, port) { 2837 if (tb_port_has_remote(port)) { 2838 tb_switch_remove(port->remote->sw); 2839 port->remote = NULL; 2840 } else if (port->xdomain) { 2841 tb_xdomain_remove(port->xdomain); 2842 port->xdomain = NULL; 2843 } 2844 2845 /* Remove any downstream retimers */ 2846 tb_retimer_remove_all(port); 2847 } 2848 2849 if (!sw->is_unplugged) 2850 tb_plug_events_active(sw, false); 2851 2852 tb_switch_nvm_remove(sw); 2853 usb4_switch_remove_ports(sw); 2854 2855 if (tb_route(sw)) 2856 dev_info(&sw->dev, "device disconnected\n"); 2857 device_unregister(&sw->dev); 2858 } 2859 2860 /** 2861 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 2862 * @sw: Router to mark unplugged 2863 */ 2864 void tb_sw_set_unplugged(struct tb_switch *sw) 2865 { 2866 struct tb_port *port; 2867 2868 if (sw == sw->tb->root_switch) { 2869 tb_sw_WARN(sw, "cannot unplug root switch\n"); 2870 return; 2871 } 2872 if (sw->is_unplugged) { 2873 tb_sw_WARN(sw, "is_unplugged already set\n"); 2874 return; 2875 } 2876 sw->is_unplugged = true; 2877 tb_switch_for_each_port(sw, port) { 2878 if (tb_port_has_remote(port)) 2879 tb_sw_set_unplugged(port->remote->sw); 2880 else if (port->xdomain) 2881 port->xdomain->is_unplugged = true; 2882 } 2883 } 2884 2885 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags) 2886 { 2887 if (flags) 2888 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags); 2889 else 2890 tb_sw_dbg(sw, "disabling wakeup\n"); 2891 2892 if (tb_switch_is_usb4(sw)) 2893 return usb4_switch_set_wake(sw, flags); 2894 return tb_lc_set_wake(sw, flags); 2895 } 2896 2897 int tb_switch_resume(struct tb_switch *sw) 2898 { 2899 struct tb_port *port; 2900 int err; 2901 2902 tb_sw_dbg(sw, "resuming switch\n"); 2903 2904 /* 2905 * Check for UID of the connected switches except for root 2906 * switch which we assume cannot be removed. 2907 */ 2908 if (tb_route(sw)) { 2909 u64 uid; 2910 2911 /* 2912 * Check first that we can still read the switch config 2913 * space. It may be that there is now another domain 2914 * connected. 2915 */ 2916 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw)); 2917 if (err < 0) { 2918 tb_sw_info(sw, "switch not present anymore\n"); 2919 return err; 2920 } 2921 2922 if (tb_switch_is_usb4(sw)) 2923 err = usb4_switch_read_uid(sw, &uid); 2924 else 2925 err = tb_drom_read_uid_only(sw, &uid); 2926 if (err) { 2927 tb_sw_warn(sw, "uid read failed\n"); 2928 return err; 2929 } 2930 if (sw->uid != uid) { 2931 tb_sw_info(sw, 2932 "changed while suspended (uid %#llx -> %#llx)\n", 2933 sw->uid, uid); 2934 return -ENODEV; 2935 } 2936 } 2937 2938 err = tb_switch_configure(sw); 2939 if (err) 2940 return err; 2941 2942 /* Disable wakes */ 2943 tb_switch_set_wake(sw, 0); 2944 2945 err = tb_switch_tmu_init(sw); 2946 if (err) 2947 return err; 2948 2949 /* check for surviving downstream switches */ 2950 tb_switch_for_each_port(sw, port) { 2951 if (!tb_port_is_null(port)) 2952 continue; 2953 2954 if (!tb_port_resume(port)) 2955 continue; 2956 2957 if (tb_wait_for_port(port, true) <= 0) { 2958 tb_port_warn(port, 2959 "lost during suspend, disconnecting\n"); 2960 if (tb_port_has_remote(port)) 2961 tb_sw_set_unplugged(port->remote->sw); 2962 else if (port->xdomain) 2963 port->xdomain->is_unplugged = true; 2964 } else { 2965 /* 2966 * Always unlock the port so the downstream 2967 * switch/domain is accessible. 2968 */ 2969 if (tb_port_unlock(port)) 2970 tb_port_warn(port, "failed to unlock port\n"); 2971 if (port->remote && tb_switch_resume(port->remote->sw)) { 2972 tb_port_warn(port, 2973 "lost during suspend, disconnecting\n"); 2974 tb_sw_set_unplugged(port->remote->sw); 2975 } 2976 } 2977 } 2978 return 0; 2979 } 2980 2981 /** 2982 * tb_switch_suspend() - Put a switch to sleep 2983 * @sw: Switch to suspend 2984 * @runtime: Is this runtime suspend or system sleep 2985 * 2986 * Suspends router and all its children. Enables wakes according to 2987 * value of @runtime and then sets sleep bit for the router. If @sw is 2988 * host router the domain is ready to go to sleep once this function 2989 * returns. 2990 */ 2991 void tb_switch_suspend(struct tb_switch *sw, bool runtime) 2992 { 2993 unsigned int flags = 0; 2994 struct tb_port *port; 2995 int err; 2996 2997 tb_sw_dbg(sw, "suspending switch\n"); 2998 2999 err = tb_plug_events_active(sw, false); 3000 if (err) 3001 return; 3002 3003 tb_switch_for_each_port(sw, port) { 3004 if (tb_port_has_remote(port)) 3005 tb_switch_suspend(port->remote->sw, runtime); 3006 } 3007 3008 if (runtime) { 3009 /* Trigger wake when something is plugged in/out */ 3010 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT; 3011 flags |= TB_WAKE_ON_USB4; 3012 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP; 3013 } else if (device_may_wakeup(&sw->dev)) { 3014 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE; 3015 } 3016 3017 tb_switch_set_wake(sw, flags); 3018 3019 if (tb_switch_is_usb4(sw)) 3020 usb4_switch_set_sleep(sw); 3021 else 3022 tb_lc_set_sleep(sw); 3023 } 3024 3025 /** 3026 * tb_switch_query_dp_resource() - Query availability of DP resource 3027 * @sw: Switch whose DP resource is queried 3028 * @in: DP IN port 3029 * 3030 * Queries availability of DP resource for DP tunneling using switch 3031 * specific means. Returns %true if resource is available. 3032 */ 3033 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) 3034 { 3035 if (tb_switch_is_usb4(sw)) 3036 return usb4_switch_query_dp_resource(sw, in); 3037 return tb_lc_dp_sink_query(sw, in); 3038 } 3039 3040 /** 3041 * tb_switch_alloc_dp_resource() - Allocate available DP resource 3042 * @sw: Switch whose DP resource is allocated 3043 * @in: DP IN port 3044 * 3045 * Allocates DP resource for DP tunneling. The resource must be 3046 * available for this to succeed (see tb_switch_query_dp_resource()). 3047 * Returns %0 in success and negative errno otherwise. 3048 */ 3049 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 3050 { 3051 if (tb_switch_is_usb4(sw)) 3052 return usb4_switch_alloc_dp_resource(sw, in); 3053 return tb_lc_dp_sink_alloc(sw, in); 3054 } 3055 3056 /** 3057 * tb_switch_dealloc_dp_resource() - De-allocate DP resource 3058 * @sw: Switch whose DP resource is de-allocated 3059 * @in: DP IN port 3060 * 3061 * De-allocates DP resource that was previously allocated for DP 3062 * tunneling. 3063 */ 3064 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 3065 { 3066 int ret; 3067 3068 if (tb_switch_is_usb4(sw)) 3069 ret = usb4_switch_dealloc_dp_resource(sw, in); 3070 else 3071 ret = tb_lc_dp_sink_dealloc(sw, in); 3072 3073 if (ret) 3074 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n", 3075 in->port); 3076 } 3077 3078 struct tb_sw_lookup { 3079 struct tb *tb; 3080 u8 link; 3081 u8 depth; 3082 const uuid_t *uuid; 3083 u64 route; 3084 }; 3085 3086 static int tb_switch_match(struct device *dev, const void *data) 3087 { 3088 struct tb_switch *sw = tb_to_switch(dev); 3089 const struct tb_sw_lookup *lookup = data; 3090 3091 if (!sw) 3092 return 0; 3093 if (sw->tb != lookup->tb) 3094 return 0; 3095 3096 if (lookup->uuid) 3097 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 3098 3099 if (lookup->route) { 3100 return sw->config.route_lo == lower_32_bits(lookup->route) && 3101 sw->config.route_hi == upper_32_bits(lookup->route); 3102 } 3103 3104 /* Root switch is matched only by depth */ 3105 if (!lookup->depth) 3106 return !sw->depth; 3107 3108 return sw->link == lookup->link && sw->depth == lookup->depth; 3109 } 3110 3111 /** 3112 * tb_switch_find_by_link_depth() - Find switch by link and depth 3113 * @tb: Domain the switch belongs 3114 * @link: Link number the switch is connected 3115 * @depth: Depth of the switch in link 3116 * 3117 * Returned switch has reference count increased so the caller needs to 3118 * call tb_switch_put() when done with the switch. 3119 */ 3120 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 3121 { 3122 struct tb_sw_lookup lookup; 3123 struct device *dev; 3124 3125 memset(&lookup, 0, sizeof(lookup)); 3126 lookup.tb = tb; 3127 lookup.link = link; 3128 lookup.depth = depth; 3129 3130 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3131 if (dev) 3132 return tb_to_switch(dev); 3133 3134 return NULL; 3135 } 3136 3137 /** 3138 * tb_switch_find_by_uuid() - Find switch by UUID 3139 * @tb: Domain the switch belongs 3140 * @uuid: UUID to look for 3141 * 3142 * Returned switch has reference count increased so the caller needs to 3143 * call tb_switch_put() when done with the switch. 3144 */ 3145 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) 3146 { 3147 struct tb_sw_lookup lookup; 3148 struct device *dev; 3149 3150 memset(&lookup, 0, sizeof(lookup)); 3151 lookup.tb = tb; 3152 lookup.uuid = uuid; 3153 3154 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3155 if (dev) 3156 return tb_to_switch(dev); 3157 3158 return NULL; 3159 } 3160 3161 /** 3162 * tb_switch_find_by_route() - Find switch by route string 3163 * @tb: Domain the switch belongs 3164 * @route: Route string to look for 3165 * 3166 * Returned switch has reference count increased so the caller needs to 3167 * call tb_switch_put() when done with the switch. 3168 */ 3169 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route) 3170 { 3171 struct tb_sw_lookup lookup; 3172 struct device *dev; 3173 3174 if (!route) 3175 return tb_switch_get(tb->root_switch); 3176 3177 memset(&lookup, 0, sizeof(lookup)); 3178 lookup.tb = tb; 3179 lookup.route = route; 3180 3181 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3182 if (dev) 3183 return tb_to_switch(dev); 3184 3185 return NULL; 3186 } 3187 3188 /** 3189 * tb_switch_find_port() - return the first port of @type on @sw or NULL 3190 * @sw: Switch to find the port from 3191 * @type: Port type to look for 3192 */ 3193 struct tb_port *tb_switch_find_port(struct tb_switch *sw, 3194 enum tb_port_type type) 3195 { 3196 struct tb_port *port; 3197 3198 tb_switch_for_each_port(sw, port) { 3199 if (port->config.type == type) 3200 return port; 3201 } 3202 3203 return NULL; 3204 } 3205