1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - switch/port utility functions 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2018, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/idr.h> 11 #include <linux/nvmem-provider.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 18 #include "tb.h" 19 20 /* Switch NVM support */ 21 22 #define NVM_CSS 0x10 23 24 struct nvm_auth_status { 25 struct list_head list; 26 uuid_t uuid; 27 u32 status; 28 }; 29 30 static bool clx_enabled = true; 31 module_param_named(clx, clx_enabled, bool, 0444); 32 MODULE_PARM_DESC(clx, "allow low power states on the high-speed lanes (default: true)"); 33 34 /* 35 * Hold NVM authentication failure status per switch This information 36 * needs to stay around even when the switch gets power cycled so we 37 * keep it separately. 38 */ 39 static LIST_HEAD(nvm_auth_status_cache); 40 static DEFINE_MUTEX(nvm_auth_status_lock); 41 42 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 43 { 44 struct nvm_auth_status *st; 45 46 list_for_each_entry(st, &nvm_auth_status_cache, list) { 47 if (uuid_equal(&st->uuid, sw->uuid)) 48 return st; 49 } 50 51 return NULL; 52 } 53 54 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 55 { 56 struct nvm_auth_status *st; 57 58 mutex_lock(&nvm_auth_status_lock); 59 st = __nvm_get_auth_status(sw); 60 mutex_unlock(&nvm_auth_status_lock); 61 62 *status = st ? st->status : 0; 63 } 64 65 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 66 { 67 struct nvm_auth_status *st; 68 69 if (WARN_ON(!sw->uuid)) 70 return; 71 72 mutex_lock(&nvm_auth_status_lock); 73 st = __nvm_get_auth_status(sw); 74 75 if (!st) { 76 st = kzalloc(sizeof(*st), GFP_KERNEL); 77 if (!st) 78 goto unlock; 79 80 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 81 INIT_LIST_HEAD(&st->list); 82 list_add_tail(&st->list, &nvm_auth_status_cache); 83 } 84 85 st->status = status; 86 unlock: 87 mutex_unlock(&nvm_auth_status_lock); 88 } 89 90 static void nvm_clear_auth_status(const struct tb_switch *sw) 91 { 92 struct nvm_auth_status *st; 93 94 mutex_lock(&nvm_auth_status_lock); 95 st = __nvm_get_auth_status(sw); 96 if (st) { 97 list_del(&st->list); 98 kfree(st); 99 } 100 mutex_unlock(&nvm_auth_status_lock); 101 } 102 103 static int nvm_validate_and_write(struct tb_switch *sw) 104 { 105 unsigned int image_size, hdr_size; 106 const u8 *buf = sw->nvm->buf; 107 u16 ds_size; 108 int ret; 109 110 if (!buf) 111 return -EINVAL; 112 113 image_size = sw->nvm->buf_data_size; 114 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) 115 return -EINVAL; 116 117 /* 118 * FARB pointer must point inside the image and must at least 119 * contain parts of the digital section we will be reading here. 120 */ 121 hdr_size = (*(u32 *)buf) & 0xffffff; 122 if (hdr_size + NVM_DEVID + 2 >= image_size) 123 return -EINVAL; 124 125 /* Digital section start should be aligned to 4k page */ 126 if (!IS_ALIGNED(hdr_size, SZ_4K)) 127 return -EINVAL; 128 129 /* 130 * Read digital section size and check that it also fits inside 131 * the image. 132 */ 133 ds_size = *(u16 *)(buf + hdr_size); 134 if (ds_size >= image_size) 135 return -EINVAL; 136 137 if (!sw->safe_mode) { 138 u16 device_id; 139 140 /* 141 * Make sure the device ID in the image matches the one 142 * we read from the switch config space. 143 */ 144 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID); 145 if (device_id != sw->config.device_id) 146 return -EINVAL; 147 148 if (sw->generation < 3) { 149 /* Write CSS headers first */ 150 ret = dma_port_flash_write(sw->dma_port, 151 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS, 152 DMA_PORT_CSS_MAX_SIZE); 153 if (ret) 154 return ret; 155 } 156 157 /* Skip headers in the image */ 158 buf += hdr_size; 159 image_size -= hdr_size; 160 } 161 162 if (tb_switch_is_usb4(sw)) 163 ret = usb4_switch_nvm_write(sw, 0, buf, image_size); 164 else 165 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size); 166 if (!ret) 167 sw->nvm->flushed = true; 168 return ret; 169 } 170 171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw) 172 { 173 int ret = 0; 174 175 /* 176 * Root switch NVM upgrade requires that we disconnect the 177 * existing paths first (in case it is not in safe mode 178 * already). 179 */ 180 if (!sw->safe_mode) { 181 u32 status; 182 183 ret = tb_domain_disconnect_all_paths(sw->tb); 184 if (ret) 185 return ret; 186 /* 187 * The host controller goes away pretty soon after this if 188 * everything goes well so getting timeout is expected. 189 */ 190 ret = dma_port_flash_update_auth(sw->dma_port); 191 if (!ret || ret == -ETIMEDOUT) 192 return 0; 193 194 /* 195 * Any error from update auth operation requires power 196 * cycling of the host router. 197 */ 198 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n"); 199 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0) 200 nvm_set_auth_status(sw, status); 201 } 202 203 /* 204 * From safe mode we can get out by just power cycling the 205 * switch. 206 */ 207 dma_port_power_cycle(sw->dma_port); 208 return ret; 209 } 210 211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw) 212 { 213 int ret, retries = 10; 214 215 ret = dma_port_flash_update_auth(sw->dma_port); 216 switch (ret) { 217 case 0: 218 case -ETIMEDOUT: 219 case -EACCES: 220 case -EINVAL: 221 /* Power cycle is required */ 222 break; 223 default: 224 return ret; 225 } 226 227 /* 228 * Poll here for the authentication status. It takes some time 229 * for the device to respond (we get timeout for a while). Once 230 * we get response the device needs to be power cycled in order 231 * to the new NVM to be taken into use. 232 */ 233 do { 234 u32 status; 235 236 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 237 if (ret < 0 && ret != -ETIMEDOUT) 238 return ret; 239 if (ret > 0) { 240 if (status) { 241 tb_sw_warn(sw, "failed to authenticate NVM\n"); 242 nvm_set_auth_status(sw, status); 243 } 244 245 tb_sw_info(sw, "power cycling the switch now\n"); 246 dma_port_power_cycle(sw->dma_port); 247 return 0; 248 } 249 250 msleep(500); 251 } while (--retries); 252 253 return -ETIMEDOUT; 254 } 255 256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw) 257 { 258 struct pci_dev *root_port; 259 260 /* 261 * During host router NVM upgrade we should not allow root port to 262 * go into D3cold because some root ports cannot trigger PME 263 * itself. To be on the safe side keep the root port in D0 during 264 * the whole upgrade process. 265 */ 266 root_port = pcie_find_root_port(sw->tb->nhi->pdev); 267 if (root_port) 268 pm_runtime_get_noresume(&root_port->dev); 269 } 270 271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw) 272 { 273 struct pci_dev *root_port; 274 275 root_port = pcie_find_root_port(sw->tb->nhi->pdev); 276 if (root_port) 277 pm_runtime_put(&root_port->dev); 278 } 279 280 static inline bool nvm_readable(struct tb_switch *sw) 281 { 282 if (tb_switch_is_usb4(sw)) { 283 /* 284 * USB4 devices must support NVM operations but it is 285 * optional for hosts. Therefore we query the NVM sector 286 * size here and if it is supported assume NVM 287 * operations are implemented. 288 */ 289 return usb4_switch_nvm_sector_size(sw) > 0; 290 } 291 292 /* Thunderbolt 2 and 3 devices support NVM through DMA port */ 293 return !!sw->dma_port; 294 } 295 296 static inline bool nvm_upgradeable(struct tb_switch *sw) 297 { 298 if (sw->no_nvm_upgrade) 299 return false; 300 return nvm_readable(sw); 301 } 302 303 static inline int nvm_read(struct tb_switch *sw, unsigned int address, 304 void *buf, size_t size) 305 { 306 if (tb_switch_is_usb4(sw)) 307 return usb4_switch_nvm_read(sw, address, buf, size); 308 return dma_port_flash_read(sw->dma_port, address, buf, size); 309 } 310 311 static int nvm_authenticate(struct tb_switch *sw, bool auth_only) 312 { 313 int ret; 314 315 if (tb_switch_is_usb4(sw)) { 316 if (auth_only) { 317 ret = usb4_switch_nvm_set_offset(sw, 0); 318 if (ret) 319 return ret; 320 } 321 sw->nvm->authenticating = true; 322 return usb4_switch_nvm_authenticate(sw); 323 } else if (auth_only) { 324 return -EOPNOTSUPP; 325 } 326 327 sw->nvm->authenticating = true; 328 if (!tb_route(sw)) { 329 nvm_authenticate_start_dma_port(sw); 330 ret = nvm_authenticate_host_dma_port(sw); 331 } else { 332 ret = nvm_authenticate_device_dma_port(sw); 333 } 334 335 return ret; 336 } 337 338 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val, 339 size_t bytes) 340 { 341 struct tb_nvm *nvm = priv; 342 struct tb_switch *sw = tb_to_switch(nvm->dev); 343 int ret; 344 345 pm_runtime_get_sync(&sw->dev); 346 347 if (!mutex_trylock(&sw->tb->lock)) { 348 ret = restart_syscall(); 349 goto out; 350 } 351 352 ret = nvm_read(sw, offset, val, bytes); 353 mutex_unlock(&sw->tb->lock); 354 355 out: 356 pm_runtime_mark_last_busy(&sw->dev); 357 pm_runtime_put_autosuspend(&sw->dev); 358 359 return ret; 360 } 361 362 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val, 363 size_t bytes) 364 { 365 struct tb_nvm *nvm = priv; 366 struct tb_switch *sw = tb_to_switch(nvm->dev); 367 int ret; 368 369 if (!mutex_trylock(&sw->tb->lock)) 370 return restart_syscall(); 371 372 /* 373 * Since writing the NVM image might require some special steps, 374 * for example when CSS headers are written, we cache the image 375 * locally here and handle the special cases when the user asks 376 * us to authenticate the image. 377 */ 378 ret = tb_nvm_write_buf(nvm, offset, val, bytes); 379 mutex_unlock(&sw->tb->lock); 380 381 return ret; 382 } 383 384 static int tb_switch_nvm_add(struct tb_switch *sw) 385 { 386 struct tb_nvm *nvm; 387 u32 val; 388 int ret; 389 390 if (!nvm_readable(sw)) 391 return 0; 392 393 /* 394 * The NVM format of non-Intel hardware is not known so 395 * currently restrict NVM upgrade for Intel hardware. We may 396 * relax this in the future when we learn other NVM formats. 397 */ 398 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL && 399 sw->config.vendor_id != 0x8087) { 400 dev_info(&sw->dev, 401 "NVM format of vendor %#x is not known, disabling NVM upgrade\n", 402 sw->config.vendor_id); 403 return 0; 404 } 405 406 nvm = tb_nvm_alloc(&sw->dev); 407 if (IS_ERR(nvm)) 408 return PTR_ERR(nvm); 409 410 /* 411 * If the switch is in safe-mode the only accessible portion of 412 * the NVM is the non-active one where userspace is expected to 413 * write new functional NVM. 414 */ 415 if (!sw->safe_mode) { 416 u32 nvm_size, hdr_size; 417 418 ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val)); 419 if (ret) 420 goto err_nvm; 421 422 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; 423 nvm_size = (SZ_1M << (val & 7)) / 8; 424 nvm_size = (nvm_size - hdr_size) / 2; 425 426 ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val)); 427 if (ret) 428 goto err_nvm; 429 430 nvm->major = val >> 16; 431 nvm->minor = val >> 8; 432 433 ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read); 434 if (ret) 435 goto err_nvm; 436 } 437 438 if (!sw->no_nvm_upgrade) { 439 ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE, 440 tb_switch_nvm_write); 441 if (ret) 442 goto err_nvm; 443 } 444 445 sw->nvm = nvm; 446 return 0; 447 448 err_nvm: 449 tb_nvm_free(nvm); 450 return ret; 451 } 452 453 static void tb_switch_nvm_remove(struct tb_switch *sw) 454 { 455 struct tb_nvm *nvm; 456 457 nvm = sw->nvm; 458 sw->nvm = NULL; 459 460 if (!nvm) 461 return; 462 463 /* Remove authentication status in case the switch is unplugged */ 464 if (!nvm->authenticating) 465 nvm_clear_auth_status(sw); 466 467 tb_nvm_free(nvm); 468 } 469 470 /* port utility functions */ 471 472 static const char *tb_port_type(const struct tb_regs_port_header *port) 473 { 474 switch (port->type >> 16) { 475 case 0: 476 switch ((u8) port->type) { 477 case 0: 478 return "Inactive"; 479 case 1: 480 return "Port"; 481 case 2: 482 return "NHI"; 483 default: 484 return "unknown"; 485 } 486 case 0x2: 487 return "Ethernet"; 488 case 0x8: 489 return "SATA"; 490 case 0xe: 491 return "DP/HDMI"; 492 case 0x10: 493 return "PCIe"; 494 case 0x20: 495 return "USB"; 496 default: 497 return "unknown"; 498 } 499 } 500 501 static void tb_dump_port(struct tb *tb, const struct tb_port *port) 502 { 503 const struct tb_regs_port_header *regs = &port->config; 504 505 tb_dbg(tb, 506 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 507 regs->port_number, regs->vendor_id, regs->device_id, 508 regs->revision, regs->thunderbolt_version, tb_port_type(regs), 509 regs->type); 510 tb_dbg(tb, " Max hop id (in/out): %d/%d\n", 511 regs->max_in_hop_id, regs->max_out_hop_id); 512 tb_dbg(tb, " Max counters: %d\n", regs->max_counters); 513 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits); 514 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits, 515 port->ctl_credits); 516 } 517 518 /** 519 * tb_port_state() - get connectedness state of a port 520 * @port: the port to check 521 * 522 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 523 * 524 * Return: Returns an enum tb_port_state on success or an error code on failure. 525 */ 526 int tb_port_state(struct tb_port *port) 527 { 528 struct tb_cap_phy phy; 529 int res; 530 if (port->cap_phy == 0) { 531 tb_port_WARN(port, "does not have a PHY\n"); 532 return -EINVAL; 533 } 534 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 535 if (res) 536 return res; 537 return phy.state; 538 } 539 540 /** 541 * tb_wait_for_port() - wait for a port to become ready 542 * @port: Port to wait 543 * @wait_if_unplugged: Wait also when port is unplugged 544 * 545 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 546 * wait_if_unplugged is set then we also wait if the port is in state 547 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 548 * switch resume). Otherwise we only wait if a device is registered but the link 549 * has not yet been established. 550 * 551 * Return: Returns an error code on failure. Returns 0 if the port is not 552 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 553 * if the port is connected and in state TB_PORT_UP. 554 */ 555 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 556 { 557 int retries = 10; 558 int state; 559 if (!port->cap_phy) { 560 tb_port_WARN(port, "does not have PHY\n"); 561 return -EINVAL; 562 } 563 if (tb_is_upstream_port(port)) { 564 tb_port_WARN(port, "is the upstream port\n"); 565 return -EINVAL; 566 } 567 568 while (retries--) { 569 state = tb_port_state(port); 570 if (state < 0) 571 return state; 572 if (state == TB_PORT_DISABLED) { 573 tb_port_dbg(port, "is disabled (state: 0)\n"); 574 return 0; 575 } 576 if (state == TB_PORT_UNPLUGGED) { 577 if (wait_if_unplugged) { 578 /* used during resume */ 579 tb_port_dbg(port, 580 "is unplugged (state: 7), retrying...\n"); 581 msleep(100); 582 continue; 583 } 584 tb_port_dbg(port, "is unplugged (state: 7)\n"); 585 return 0; 586 } 587 if (state == TB_PORT_UP) { 588 tb_port_dbg(port, "is connected, link is up (state: 2)\n"); 589 return 1; 590 } 591 592 /* 593 * After plug-in the state is TB_PORT_CONNECTING. Give it some 594 * time. 595 */ 596 tb_port_dbg(port, 597 "is connected, link is not up (state: %d), retrying...\n", 598 state); 599 msleep(100); 600 } 601 tb_port_warn(port, 602 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 603 return 0; 604 } 605 606 /** 607 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 608 * @port: Port to add/remove NFC credits 609 * @credits: Credits to add/remove 610 * 611 * Change the number of NFC credits allocated to @port by @credits. To remove 612 * NFC credits pass a negative amount of credits. 613 * 614 * Return: Returns 0 on success or an error code on failure. 615 */ 616 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 617 { 618 u32 nfc_credits; 619 620 if (credits == 0 || port->sw->is_unplugged) 621 return 0; 622 623 /* 624 * USB4 restricts programming NFC buffers to lane adapters only 625 * so skip other ports. 626 */ 627 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port)) 628 return 0; 629 630 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK; 631 if (credits < 0) 632 credits = max_t(int, -nfc_credits, credits); 633 634 nfc_credits += credits; 635 636 tb_port_dbg(port, "adding %d NFC credits to %lu", credits, 637 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK); 638 639 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK; 640 port->config.nfc_credits |= nfc_credits; 641 642 return tb_port_write(port, &port->config.nfc_credits, 643 TB_CFG_PORT, ADP_CS_4, 1); 644 } 645 646 /** 647 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 648 * @port: Port whose counters to clear 649 * @counter: Counter index to clear 650 * 651 * Return: Returns 0 on success or an error code on failure. 652 */ 653 int tb_port_clear_counter(struct tb_port *port, int counter) 654 { 655 u32 zero[3] = { 0, 0, 0 }; 656 tb_port_dbg(port, "clearing counter %d\n", counter); 657 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 658 } 659 660 /** 661 * tb_port_unlock() - Unlock downstream port 662 * @port: Port to unlock 663 * 664 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the 665 * downstream router accessible for CM. 666 */ 667 int tb_port_unlock(struct tb_port *port) 668 { 669 if (tb_switch_is_icm(port->sw)) 670 return 0; 671 if (!tb_port_is_null(port)) 672 return -EINVAL; 673 if (tb_switch_is_usb4(port->sw)) 674 return usb4_port_unlock(port); 675 return 0; 676 } 677 678 static int __tb_port_enable(struct tb_port *port, bool enable) 679 { 680 int ret; 681 u32 phy; 682 683 if (!tb_port_is_null(port)) 684 return -EINVAL; 685 686 ret = tb_port_read(port, &phy, TB_CFG_PORT, 687 port->cap_phy + LANE_ADP_CS_1, 1); 688 if (ret) 689 return ret; 690 691 if (enable) 692 phy &= ~LANE_ADP_CS_1_LD; 693 else 694 phy |= LANE_ADP_CS_1_LD; 695 696 697 ret = tb_port_write(port, &phy, TB_CFG_PORT, 698 port->cap_phy + LANE_ADP_CS_1, 1); 699 if (ret) 700 return ret; 701 702 tb_port_dbg(port, "lane %sabled\n", enable ? "en" : "dis"); 703 return 0; 704 } 705 706 /** 707 * tb_port_enable() - Enable lane adapter 708 * @port: Port to enable (can be %NULL) 709 * 710 * This is used for lane 0 and 1 adapters to enable it. 711 */ 712 int tb_port_enable(struct tb_port *port) 713 { 714 return __tb_port_enable(port, true); 715 } 716 717 /** 718 * tb_port_disable() - Disable lane adapter 719 * @port: Port to disable (can be %NULL) 720 * 721 * This is used for lane 0 and 1 adapters to disable it. 722 */ 723 int tb_port_disable(struct tb_port *port) 724 { 725 return __tb_port_enable(port, false); 726 } 727 728 /* 729 * tb_init_port() - initialize a port 730 * 731 * This is a helper method for tb_switch_alloc. Does not check or initialize 732 * any downstream switches. 733 * 734 * Return: Returns 0 on success or an error code on failure. 735 */ 736 static int tb_init_port(struct tb_port *port) 737 { 738 int res; 739 int cap; 740 741 INIT_LIST_HEAD(&port->list); 742 743 /* Control adapter does not have configuration space */ 744 if (!port->port) 745 return 0; 746 747 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 748 if (res) { 749 if (res == -ENODEV) { 750 tb_dbg(port->sw->tb, " Port %d: not implemented\n", 751 port->port); 752 port->disabled = true; 753 return 0; 754 } 755 return res; 756 } 757 758 /* Port 0 is the switch itself and has no PHY. */ 759 if (port->config.type == TB_TYPE_PORT) { 760 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 761 762 if (cap > 0) 763 port->cap_phy = cap; 764 else 765 tb_port_WARN(port, "non switch port without a PHY\n"); 766 767 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4); 768 if (cap > 0) 769 port->cap_usb4 = cap; 770 771 /* 772 * USB4 ports the buffers allocated for the control path 773 * can be read from the path config space. Legacy 774 * devices we use hard-coded value. 775 */ 776 if (tb_switch_is_usb4(port->sw)) { 777 struct tb_regs_hop hop; 778 779 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2)) 780 port->ctl_credits = hop.initial_credits; 781 } 782 if (!port->ctl_credits) 783 port->ctl_credits = 2; 784 785 } else { 786 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP); 787 if (cap > 0) 788 port->cap_adap = cap; 789 } 790 791 port->total_credits = 792 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >> 793 ADP_CS_4_TOTAL_BUFFERS_SHIFT; 794 795 tb_dump_port(port->sw->tb, port); 796 return 0; 797 } 798 799 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid, 800 int max_hopid) 801 { 802 int port_max_hopid; 803 struct ida *ida; 804 805 if (in) { 806 port_max_hopid = port->config.max_in_hop_id; 807 ida = &port->in_hopids; 808 } else { 809 port_max_hopid = port->config.max_out_hop_id; 810 ida = &port->out_hopids; 811 } 812 813 /* 814 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are 815 * reserved. 816 */ 817 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID) 818 min_hopid = TB_PATH_MIN_HOPID; 819 820 if (max_hopid < 0 || max_hopid > port_max_hopid) 821 max_hopid = port_max_hopid; 822 823 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL); 824 } 825 826 /** 827 * tb_port_alloc_in_hopid() - Allocate input HopID from port 828 * @port: Port to allocate HopID for 829 * @min_hopid: Minimum acceptable input HopID 830 * @max_hopid: Maximum acceptable input HopID 831 * 832 * Return: HopID between @min_hopid and @max_hopid or negative errno in 833 * case of error. 834 */ 835 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid) 836 { 837 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid); 838 } 839 840 /** 841 * tb_port_alloc_out_hopid() - Allocate output HopID from port 842 * @port: Port to allocate HopID for 843 * @min_hopid: Minimum acceptable output HopID 844 * @max_hopid: Maximum acceptable output HopID 845 * 846 * Return: HopID between @min_hopid and @max_hopid or negative errno in 847 * case of error. 848 */ 849 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid) 850 { 851 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid); 852 } 853 854 /** 855 * tb_port_release_in_hopid() - Release allocated input HopID from port 856 * @port: Port whose HopID to release 857 * @hopid: HopID to release 858 */ 859 void tb_port_release_in_hopid(struct tb_port *port, int hopid) 860 { 861 ida_simple_remove(&port->in_hopids, hopid); 862 } 863 864 /** 865 * tb_port_release_out_hopid() - Release allocated output HopID from port 866 * @port: Port whose HopID to release 867 * @hopid: HopID to release 868 */ 869 void tb_port_release_out_hopid(struct tb_port *port, int hopid) 870 { 871 ida_simple_remove(&port->out_hopids, hopid); 872 } 873 874 static inline bool tb_switch_is_reachable(const struct tb_switch *parent, 875 const struct tb_switch *sw) 876 { 877 u64 mask = (1ULL << parent->config.depth * 8) - 1; 878 return (tb_route(parent) & mask) == (tb_route(sw) & mask); 879 } 880 881 /** 882 * tb_next_port_on_path() - Return next port for given port on a path 883 * @start: Start port of the walk 884 * @end: End port of the walk 885 * @prev: Previous port (%NULL if this is the first) 886 * 887 * This function can be used to walk from one port to another if they 888 * are connected through zero or more switches. If the @prev is dual 889 * link port, the function follows that link and returns another end on 890 * that same link. 891 * 892 * If the @end port has been reached, return %NULL. 893 * 894 * Domain tb->lock must be held when this function is called. 895 */ 896 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end, 897 struct tb_port *prev) 898 { 899 struct tb_port *next; 900 901 if (!prev) 902 return start; 903 904 if (prev->sw == end->sw) { 905 if (prev == end) 906 return NULL; 907 return end; 908 } 909 910 if (tb_switch_is_reachable(prev->sw, end->sw)) { 911 next = tb_port_at(tb_route(end->sw), prev->sw); 912 /* Walk down the topology if next == prev */ 913 if (prev->remote && 914 (next == prev || next->dual_link_port == prev)) 915 next = prev->remote; 916 } else { 917 if (tb_is_upstream_port(prev)) { 918 next = prev->remote; 919 } else { 920 next = tb_upstream_port(prev->sw); 921 /* 922 * Keep the same link if prev and next are both 923 * dual link ports. 924 */ 925 if (next->dual_link_port && 926 next->link_nr != prev->link_nr) { 927 next = next->dual_link_port; 928 } 929 } 930 } 931 932 return next != prev ? next : NULL; 933 } 934 935 /** 936 * tb_port_get_link_speed() - Get current link speed 937 * @port: Port to check (USB4 or CIO) 938 * 939 * Returns link speed in Gb/s or negative errno in case of failure. 940 */ 941 int tb_port_get_link_speed(struct tb_port *port) 942 { 943 u32 val, speed; 944 int ret; 945 946 if (!port->cap_phy) 947 return -EINVAL; 948 949 ret = tb_port_read(port, &val, TB_CFG_PORT, 950 port->cap_phy + LANE_ADP_CS_1, 1); 951 if (ret) 952 return ret; 953 954 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >> 955 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT; 956 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10; 957 } 958 959 /** 960 * tb_port_get_link_width() - Get current link width 961 * @port: Port to check (USB4 or CIO) 962 * 963 * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane) 964 * or negative errno in case of failure. 965 */ 966 int tb_port_get_link_width(struct tb_port *port) 967 { 968 u32 val; 969 int ret; 970 971 if (!port->cap_phy) 972 return -EINVAL; 973 974 ret = tb_port_read(port, &val, TB_CFG_PORT, 975 port->cap_phy + LANE_ADP_CS_1, 1); 976 if (ret) 977 return ret; 978 979 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >> 980 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT; 981 } 982 983 static bool tb_port_is_width_supported(struct tb_port *port, int width) 984 { 985 u32 phy, widths; 986 int ret; 987 988 if (!port->cap_phy) 989 return false; 990 991 ret = tb_port_read(port, &phy, TB_CFG_PORT, 992 port->cap_phy + LANE_ADP_CS_0, 1); 993 if (ret) 994 return false; 995 996 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >> 997 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT; 998 999 return !!(widths & width); 1000 } 1001 1002 /** 1003 * tb_port_set_link_width() - Set target link width of the lane adapter 1004 * @port: Lane adapter 1005 * @width: Target link width (%1 or %2) 1006 * 1007 * Sets the target link width of the lane adapter to @width. Does not 1008 * enable/disable lane bonding. For that call tb_port_set_lane_bonding(). 1009 * 1010 * Return: %0 in case of success and negative errno in case of error 1011 */ 1012 int tb_port_set_link_width(struct tb_port *port, unsigned int width) 1013 { 1014 u32 val; 1015 int ret; 1016 1017 if (!port->cap_phy) 1018 return -EINVAL; 1019 1020 ret = tb_port_read(port, &val, TB_CFG_PORT, 1021 port->cap_phy + LANE_ADP_CS_1, 1); 1022 if (ret) 1023 return ret; 1024 1025 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK; 1026 switch (width) { 1027 case 1: 1028 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE << 1029 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 1030 break; 1031 case 2: 1032 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL << 1033 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 1034 break; 1035 default: 1036 return -EINVAL; 1037 } 1038 1039 return tb_port_write(port, &val, TB_CFG_PORT, 1040 port->cap_phy + LANE_ADP_CS_1, 1); 1041 } 1042 1043 /** 1044 * tb_port_set_lane_bonding() - Enable/disable lane bonding 1045 * @port: Lane adapter 1046 * @bonding: enable/disable bonding 1047 * 1048 * Enables or disables lane bonding. This should be called after target 1049 * link width has been set (tb_port_set_link_width()). Note in most 1050 * cases one should use tb_port_lane_bonding_enable() instead to enable 1051 * lane bonding. 1052 * 1053 * As a side effect sets @port->bonding accordingly (and does the same 1054 * for lane 1 too). 1055 * 1056 * Return: %0 in case of success and negative errno in case of error 1057 */ 1058 int tb_port_set_lane_bonding(struct tb_port *port, bool bonding) 1059 { 1060 u32 val; 1061 int ret; 1062 1063 if (!port->cap_phy) 1064 return -EINVAL; 1065 1066 ret = tb_port_read(port, &val, TB_CFG_PORT, 1067 port->cap_phy + LANE_ADP_CS_1, 1); 1068 if (ret) 1069 return ret; 1070 1071 if (bonding) 1072 val |= LANE_ADP_CS_1_LB; 1073 else 1074 val &= ~LANE_ADP_CS_1_LB; 1075 1076 ret = tb_port_write(port, &val, TB_CFG_PORT, 1077 port->cap_phy + LANE_ADP_CS_1, 1); 1078 if (ret) 1079 return ret; 1080 1081 /* 1082 * When lane 0 bonding is set it will affect lane 1 too so 1083 * update both. 1084 */ 1085 port->bonded = bonding; 1086 port->dual_link_port->bonded = bonding; 1087 1088 return 0; 1089 } 1090 1091 /** 1092 * tb_port_lane_bonding_enable() - Enable bonding on port 1093 * @port: port to enable 1094 * 1095 * Enable bonding by setting the link width of the port and the other 1096 * port in case of dual link port. Does not wait for the link to 1097 * actually reach the bonded state so caller needs to call 1098 * tb_port_wait_for_link_width() before enabling any paths through the 1099 * link to make sure the link is in expected state. 1100 * 1101 * Return: %0 in case of success and negative errno in case of error 1102 */ 1103 int tb_port_lane_bonding_enable(struct tb_port *port) 1104 { 1105 int ret; 1106 1107 /* 1108 * Enable lane bonding for both links if not already enabled by 1109 * for example the boot firmware. 1110 */ 1111 ret = tb_port_get_link_width(port); 1112 if (ret == 1) { 1113 ret = tb_port_set_link_width(port, 2); 1114 if (ret) 1115 goto err_lane0; 1116 } 1117 1118 ret = tb_port_get_link_width(port->dual_link_port); 1119 if (ret == 1) { 1120 ret = tb_port_set_link_width(port->dual_link_port, 2); 1121 if (ret) 1122 goto err_lane0; 1123 } 1124 1125 ret = tb_port_set_lane_bonding(port, true); 1126 if (ret) 1127 goto err_lane1; 1128 1129 return 0; 1130 1131 err_lane1: 1132 tb_port_set_link_width(port->dual_link_port, 1); 1133 err_lane0: 1134 tb_port_set_link_width(port, 1); 1135 return ret; 1136 } 1137 1138 /** 1139 * tb_port_lane_bonding_disable() - Disable bonding on port 1140 * @port: port to disable 1141 * 1142 * Disable bonding by setting the link width of the port and the 1143 * other port in case of dual link port. 1144 */ 1145 void tb_port_lane_bonding_disable(struct tb_port *port) 1146 { 1147 tb_port_set_lane_bonding(port, false); 1148 tb_port_set_link_width(port->dual_link_port, 1); 1149 tb_port_set_link_width(port, 1); 1150 } 1151 1152 /** 1153 * tb_port_wait_for_link_width() - Wait until link reaches specific width 1154 * @port: Port to wait for 1155 * @width: Expected link width (%1 or %2) 1156 * @timeout_msec: Timeout in ms how long to wait 1157 * 1158 * Should be used after both ends of the link have been bonded (or 1159 * bonding has been disabled) to wait until the link actually reaches 1160 * the expected state. Returns %-ETIMEDOUT if the @width was not reached 1161 * within the given timeout, %0 if it did. 1162 */ 1163 int tb_port_wait_for_link_width(struct tb_port *port, int width, 1164 int timeout_msec) 1165 { 1166 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 1167 int ret; 1168 1169 do { 1170 ret = tb_port_get_link_width(port); 1171 if (ret < 0) { 1172 /* 1173 * Sometimes we get port locked error when 1174 * polling the lanes so we can ignore it and 1175 * retry. 1176 */ 1177 if (ret != -EACCES) 1178 return ret; 1179 } else if (ret == width) { 1180 return 0; 1181 } 1182 1183 usleep_range(1000, 2000); 1184 } while (ktime_before(ktime_get(), timeout)); 1185 1186 return -ETIMEDOUT; 1187 } 1188 1189 static int tb_port_do_update_credits(struct tb_port *port) 1190 { 1191 u32 nfc_credits; 1192 int ret; 1193 1194 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1); 1195 if (ret) 1196 return ret; 1197 1198 if (nfc_credits != port->config.nfc_credits) { 1199 u32 total; 1200 1201 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >> 1202 ADP_CS_4_TOTAL_BUFFERS_SHIFT; 1203 1204 tb_port_dbg(port, "total credits changed %u -> %u\n", 1205 port->total_credits, total); 1206 1207 port->config.nfc_credits = nfc_credits; 1208 port->total_credits = total; 1209 } 1210 1211 return 0; 1212 } 1213 1214 /** 1215 * tb_port_update_credits() - Re-read port total credits 1216 * @port: Port to update 1217 * 1218 * After the link is bonded (or bonding was disabled) the port total 1219 * credits may change, so this function needs to be called to re-read 1220 * the credits. Updates also the second lane adapter. 1221 */ 1222 int tb_port_update_credits(struct tb_port *port) 1223 { 1224 int ret; 1225 1226 ret = tb_port_do_update_credits(port); 1227 if (ret) 1228 return ret; 1229 return tb_port_do_update_credits(port->dual_link_port); 1230 } 1231 1232 static int tb_port_start_lane_initialization(struct tb_port *port) 1233 { 1234 int ret; 1235 1236 if (tb_switch_is_usb4(port->sw)) 1237 return 0; 1238 1239 ret = tb_lc_start_lane_initialization(port); 1240 return ret == -EINVAL ? 0 : ret; 1241 } 1242 1243 /* 1244 * Returns true if the port had something (router, XDomain) connected 1245 * before suspend. 1246 */ 1247 static bool tb_port_resume(struct tb_port *port) 1248 { 1249 bool has_remote = tb_port_has_remote(port); 1250 1251 if (port->usb4) { 1252 usb4_port_device_resume(port->usb4); 1253 } else if (!has_remote) { 1254 /* 1255 * For disconnected downstream lane adapters start lane 1256 * initialization now so we detect future connects. 1257 * 1258 * For XDomain start the lane initialzation now so the 1259 * link gets re-established. 1260 * 1261 * This is only needed for non-USB4 ports. 1262 */ 1263 if (!tb_is_upstream_port(port) || port->xdomain) 1264 tb_port_start_lane_initialization(port); 1265 } 1266 1267 return has_remote || port->xdomain; 1268 } 1269 1270 /** 1271 * tb_port_is_enabled() - Is the adapter port enabled 1272 * @port: Port to check 1273 */ 1274 bool tb_port_is_enabled(struct tb_port *port) 1275 { 1276 switch (port->config.type) { 1277 case TB_TYPE_PCIE_UP: 1278 case TB_TYPE_PCIE_DOWN: 1279 return tb_pci_port_is_enabled(port); 1280 1281 case TB_TYPE_DP_HDMI_IN: 1282 case TB_TYPE_DP_HDMI_OUT: 1283 return tb_dp_port_is_enabled(port); 1284 1285 case TB_TYPE_USB3_UP: 1286 case TB_TYPE_USB3_DOWN: 1287 return tb_usb3_port_is_enabled(port); 1288 1289 default: 1290 return false; 1291 } 1292 } 1293 1294 /** 1295 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled 1296 * @port: USB3 adapter port to check 1297 */ 1298 bool tb_usb3_port_is_enabled(struct tb_port *port) 1299 { 1300 u32 data; 1301 1302 if (tb_port_read(port, &data, TB_CFG_PORT, 1303 port->cap_adap + ADP_USB3_CS_0, 1)) 1304 return false; 1305 1306 return !!(data & ADP_USB3_CS_0_PE); 1307 } 1308 1309 /** 1310 * tb_usb3_port_enable() - Enable USB3 adapter port 1311 * @port: USB3 adapter port to enable 1312 * @enable: Enable/disable the USB3 adapter 1313 */ 1314 int tb_usb3_port_enable(struct tb_port *port, bool enable) 1315 { 1316 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V) 1317 : ADP_USB3_CS_0_V; 1318 1319 if (!port->cap_adap) 1320 return -ENXIO; 1321 return tb_port_write(port, &word, TB_CFG_PORT, 1322 port->cap_adap + ADP_USB3_CS_0, 1); 1323 } 1324 1325 /** 1326 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled 1327 * @port: PCIe port to check 1328 */ 1329 bool tb_pci_port_is_enabled(struct tb_port *port) 1330 { 1331 u32 data; 1332 1333 if (tb_port_read(port, &data, TB_CFG_PORT, 1334 port->cap_adap + ADP_PCIE_CS_0, 1)) 1335 return false; 1336 1337 return !!(data & ADP_PCIE_CS_0_PE); 1338 } 1339 1340 /** 1341 * tb_pci_port_enable() - Enable PCIe adapter port 1342 * @port: PCIe port to enable 1343 * @enable: Enable/disable the PCIe adapter 1344 */ 1345 int tb_pci_port_enable(struct tb_port *port, bool enable) 1346 { 1347 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0; 1348 if (!port->cap_adap) 1349 return -ENXIO; 1350 return tb_port_write(port, &word, TB_CFG_PORT, 1351 port->cap_adap + ADP_PCIE_CS_0, 1); 1352 } 1353 1354 /** 1355 * tb_dp_port_hpd_is_active() - Is HPD already active 1356 * @port: DP out port to check 1357 * 1358 * Checks if the DP OUT adapter port has HDP bit already set. 1359 */ 1360 int tb_dp_port_hpd_is_active(struct tb_port *port) 1361 { 1362 u32 data; 1363 int ret; 1364 1365 ret = tb_port_read(port, &data, TB_CFG_PORT, 1366 port->cap_adap + ADP_DP_CS_2, 1); 1367 if (ret) 1368 return ret; 1369 1370 return !!(data & ADP_DP_CS_2_HDP); 1371 } 1372 1373 /** 1374 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port 1375 * @port: Port to clear HPD 1376 * 1377 * If the DP IN port has HDP set, this function can be used to clear it. 1378 */ 1379 int tb_dp_port_hpd_clear(struct tb_port *port) 1380 { 1381 u32 data; 1382 int ret; 1383 1384 ret = tb_port_read(port, &data, TB_CFG_PORT, 1385 port->cap_adap + ADP_DP_CS_3, 1); 1386 if (ret) 1387 return ret; 1388 1389 data |= ADP_DP_CS_3_HDPC; 1390 return tb_port_write(port, &data, TB_CFG_PORT, 1391 port->cap_adap + ADP_DP_CS_3, 1); 1392 } 1393 1394 /** 1395 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port 1396 * @port: DP IN/OUT port to set hops 1397 * @video: Video Hop ID 1398 * @aux_tx: AUX TX Hop ID 1399 * @aux_rx: AUX RX Hop ID 1400 * 1401 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4 1402 * router DP adapters too but does not program the values as the fields 1403 * are read-only. 1404 */ 1405 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video, 1406 unsigned int aux_tx, unsigned int aux_rx) 1407 { 1408 u32 data[2]; 1409 int ret; 1410 1411 if (tb_switch_is_usb4(port->sw)) 1412 return 0; 1413 1414 ret = tb_port_read(port, data, TB_CFG_PORT, 1415 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1416 if (ret) 1417 return ret; 1418 1419 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK; 1420 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1421 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1422 1423 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) & 1424 ADP_DP_CS_0_VIDEO_HOPID_MASK; 1425 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK; 1426 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) & 1427 ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1428 1429 return tb_port_write(port, data, TB_CFG_PORT, 1430 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1431 } 1432 1433 /** 1434 * tb_dp_port_is_enabled() - Is DP adapter port enabled 1435 * @port: DP adapter port to check 1436 */ 1437 bool tb_dp_port_is_enabled(struct tb_port *port) 1438 { 1439 u32 data[2]; 1440 1441 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0, 1442 ARRAY_SIZE(data))) 1443 return false; 1444 1445 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE)); 1446 } 1447 1448 /** 1449 * tb_dp_port_enable() - Enables/disables DP paths of a port 1450 * @port: DP IN/OUT port 1451 * @enable: Enable/disable DP path 1452 * 1453 * Once Hop IDs are programmed DP paths can be enabled or disabled by 1454 * calling this function. 1455 */ 1456 int tb_dp_port_enable(struct tb_port *port, bool enable) 1457 { 1458 u32 data[2]; 1459 int ret; 1460 1461 ret = tb_port_read(port, data, TB_CFG_PORT, 1462 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1463 if (ret) 1464 return ret; 1465 1466 if (enable) 1467 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE; 1468 else 1469 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE); 1470 1471 return tb_port_write(port, data, TB_CFG_PORT, 1472 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1473 } 1474 1475 /* switch utility functions */ 1476 1477 static const char *tb_switch_generation_name(const struct tb_switch *sw) 1478 { 1479 switch (sw->generation) { 1480 case 1: 1481 return "Thunderbolt 1"; 1482 case 2: 1483 return "Thunderbolt 2"; 1484 case 3: 1485 return "Thunderbolt 3"; 1486 case 4: 1487 return "USB4"; 1488 default: 1489 return "Unknown"; 1490 } 1491 } 1492 1493 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw) 1494 { 1495 const struct tb_regs_switch_header *regs = &sw->config; 1496 1497 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n", 1498 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id, 1499 regs->revision, regs->thunderbolt_version); 1500 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number); 1501 tb_dbg(tb, " Config:\n"); 1502 tb_dbg(tb, 1503 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 1504 regs->upstream_port_number, regs->depth, 1505 (((u64) regs->route_hi) << 32) | regs->route_lo, 1506 regs->enabled, regs->plug_events_delay); 1507 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n", 1508 regs->__unknown1, regs->__unknown4); 1509 } 1510 1511 /** 1512 * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET 1513 * @sw: Switch to reset 1514 * 1515 * Return: Returns 0 on success or an error code on failure. 1516 */ 1517 int tb_switch_reset(struct tb_switch *sw) 1518 { 1519 struct tb_cfg_result res; 1520 1521 if (sw->generation > 1) 1522 return 0; 1523 1524 tb_sw_dbg(sw, "resetting switch\n"); 1525 1526 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2, 1527 TB_CFG_SWITCH, 2, 2); 1528 if (res.err) 1529 return res.err; 1530 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw)); 1531 if (res.err > 0) 1532 return -EIO; 1533 return res.err; 1534 } 1535 1536 /** 1537 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset 1538 * @sw: Router to read the offset value from 1539 * @offset: Offset in the router config space to read from 1540 * @bit: Bit mask in the offset to wait for 1541 * @value: Value of the bits to wait for 1542 * @timeout_msec: Timeout in ms how long to wait 1543 * 1544 * Wait till the specified bits in specified offset reach specified value. 1545 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached 1546 * within the given timeout or a negative errno in case of failure. 1547 */ 1548 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit, 1549 u32 value, int timeout_msec) 1550 { 1551 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 1552 1553 do { 1554 u32 val; 1555 int ret; 1556 1557 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1); 1558 if (ret) 1559 return ret; 1560 1561 if ((val & bit) == value) 1562 return 0; 1563 1564 usleep_range(50, 100); 1565 } while (ktime_before(ktime_get(), timeout)); 1566 1567 return -ETIMEDOUT; 1568 } 1569 1570 /* 1571 * tb_plug_events_active() - enable/disable plug events on a switch 1572 * 1573 * Also configures a sane plug_events_delay of 255ms. 1574 * 1575 * Return: Returns 0 on success or an error code on failure. 1576 */ 1577 static int tb_plug_events_active(struct tb_switch *sw, bool active) 1578 { 1579 u32 data; 1580 int res; 1581 1582 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw)) 1583 return 0; 1584 1585 sw->config.plug_events_delay = 0xff; 1586 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 1587 if (res) 1588 return res; 1589 1590 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 1591 if (res) 1592 return res; 1593 1594 if (active) { 1595 data = data & 0xFFFFFF83; 1596 switch (sw->config.device_id) { 1597 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1598 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1599 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1600 break; 1601 default: 1602 /* 1603 * Skip Alpine Ridge, it needs to have vendor 1604 * specific USB hotplug event enabled for the 1605 * internal xHCI to work. 1606 */ 1607 if (!tb_switch_is_alpine_ridge(sw)) 1608 data |= TB_PLUG_EVENTS_USB_DISABLE; 1609 } 1610 } else { 1611 data = data | 0x7c; 1612 } 1613 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 1614 sw->cap_plug_events + 1, 1); 1615 } 1616 1617 static ssize_t authorized_show(struct device *dev, 1618 struct device_attribute *attr, 1619 char *buf) 1620 { 1621 struct tb_switch *sw = tb_to_switch(dev); 1622 1623 return sprintf(buf, "%u\n", sw->authorized); 1624 } 1625 1626 static int disapprove_switch(struct device *dev, void *not_used) 1627 { 1628 char *envp[] = { "AUTHORIZED=0", NULL }; 1629 struct tb_switch *sw; 1630 1631 sw = tb_to_switch(dev); 1632 if (sw && sw->authorized) { 1633 int ret; 1634 1635 /* First children */ 1636 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch); 1637 if (ret) 1638 return ret; 1639 1640 ret = tb_domain_disapprove_switch(sw->tb, sw); 1641 if (ret) 1642 return ret; 1643 1644 sw->authorized = 0; 1645 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp); 1646 } 1647 1648 return 0; 1649 } 1650 1651 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 1652 { 1653 char envp_string[13]; 1654 int ret = -EINVAL; 1655 char *envp[] = { envp_string, NULL }; 1656 1657 if (!mutex_trylock(&sw->tb->lock)) 1658 return restart_syscall(); 1659 1660 if (!!sw->authorized == !!val) 1661 goto unlock; 1662 1663 switch (val) { 1664 /* Disapprove switch */ 1665 case 0: 1666 if (tb_route(sw)) { 1667 ret = disapprove_switch(&sw->dev, NULL); 1668 goto unlock; 1669 } 1670 break; 1671 1672 /* Approve switch */ 1673 case 1: 1674 if (sw->key) 1675 ret = tb_domain_approve_switch_key(sw->tb, sw); 1676 else 1677 ret = tb_domain_approve_switch(sw->tb, sw); 1678 break; 1679 1680 /* Challenge switch */ 1681 case 2: 1682 if (sw->key) 1683 ret = tb_domain_challenge_switch_key(sw->tb, sw); 1684 break; 1685 1686 default: 1687 break; 1688 } 1689 1690 if (!ret) { 1691 sw->authorized = val; 1692 /* 1693 * Notify status change to the userspace, informing the new 1694 * value of /sys/bus/thunderbolt/devices/.../authorized. 1695 */ 1696 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized); 1697 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp); 1698 } 1699 1700 unlock: 1701 mutex_unlock(&sw->tb->lock); 1702 return ret; 1703 } 1704 1705 static ssize_t authorized_store(struct device *dev, 1706 struct device_attribute *attr, 1707 const char *buf, size_t count) 1708 { 1709 struct tb_switch *sw = tb_to_switch(dev); 1710 unsigned int val; 1711 ssize_t ret; 1712 1713 ret = kstrtouint(buf, 0, &val); 1714 if (ret) 1715 return ret; 1716 if (val > 2) 1717 return -EINVAL; 1718 1719 pm_runtime_get_sync(&sw->dev); 1720 ret = tb_switch_set_authorized(sw, val); 1721 pm_runtime_mark_last_busy(&sw->dev); 1722 pm_runtime_put_autosuspend(&sw->dev); 1723 1724 return ret ? ret : count; 1725 } 1726 static DEVICE_ATTR_RW(authorized); 1727 1728 static ssize_t boot_show(struct device *dev, struct device_attribute *attr, 1729 char *buf) 1730 { 1731 struct tb_switch *sw = tb_to_switch(dev); 1732 1733 return sprintf(buf, "%u\n", sw->boot); 1734 } 1735 static DEVICE_ATTR_RO(boot); 1736 1737 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 1738 char *buf) 1739 { 1740 struct tb_switch *sw = tb_to_switch(dev); 1741 1742 return sprintf(buf, "%#x\n", sw->device); 1743 } 1744 static DEVICE_ATTR_RO(device); 1745 1746 static ssize_t 1747 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1748 { 1749 struct tb_switch *sw = tb_to_switch(dev); 1750 1751 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : ""); 1752 } 1753 static DEVICE_ATTR_RO(device_name); 1754 1755 static ssize_t 1756 generation_show(struct device *dev, struct device_attribute *attr, char *buf) 1757 { 1758 struct tb_switch *sw = tb_to_switch(dev); 1759 1760 return sprintf(buf, "%u\n", sw->generation); 1761 } 1762 static DEVICE_ATTR_RO(generation); 1763 1764 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 1765 char *buf) 1766 { 1767 struct tb_switch *sw = tb_to_switch(dev); 1768 ssize_t ret; 1769 1770 if (!mutex_trylock(&sw->tb->lock)) 1771 return restart_syscall(); 1772 1773 if (sw->key) 1774 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 1775 else 1776 ret = sprintf(buf, "\n"); 1777 1778 mutex_unlock(&sw->tb->lock); 1779 return ret; 1780 } 1781 1782 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 1783 const char *buf, size_t count) 1784 { 1785 struct tb_switch *sw = tb_to_switch(dev); 1786 u8 key[TB_SWITCH_KEY_SIZE]; 1787 ssize_t ret = count; 1788 bool clear = false; 1789 1790 if (!strcmp(buf, "\n")) 1791 clear = true; 1792 else if (hex2bin(key, buf, sizeof(key))) 1793 return -EINVAL; 1794 1795 if (!mutex_trylock(&sw->tb->lock)) 1796 return restart_syscall(); 1797 1798 if (sw->authorized) { 1799 ret = -EBUSY; 1800 } else { 1801 kfree(sw->key); 1802 if (clear) { 1803 sw->key = NULL; 1804 } else { 1805 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 1806 if (!sw->key) 1807 ret = -ENOMEM; 1808 } 1809 } 1810 1811 mutex_unlock(&sw->tb->lock); 1812 return ret; 1813 } 1814 static DEVICE_ATTR(key, 0600, key_show, key_store); 1815 1816 static ssize_t speed_show(struct device *dev, struct device_attribute *attr, 1817 char *buf) 1818 { 1819 struct tb_switch *sw = tb_to_switch(dev); 1820 1821 return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed); 1822 } 1823 1824 /* 1825 * Currently all lanes must run at the same speed but we expose here 1826 * both directions to allow possible asymmetric links in the future. 1827 */ 1828 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL); 1829 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL); 1830 1831 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr, 1832 char *buf) 1833 { 1834 struct tb_switch *sw = tb_to_switch(dev); 1835 1836 return sprintf(buf, "%u\n", sw->link_width); 1837 } 1838 1839 /* 1840 * Currently link has same amount of lanes both directions (1 or 2) but 1841 * expose them separately to allow possible asymmetric links in the future. 1842 */ 1843 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL); 1844 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL); 1845 1846 static ssize_t nvm_authenticate_show(struct device *dev, 1847 struct device_attribute *attr, char *buf) 1848 { 1849 struct tb_switch *sw = tb_to_switch(dev); 1850 u32 status; 1851 1852 nvm_get_auth_status(sw, &status); 1853 return sprintf(buf, "%#x\n", status); 1854 } 1855 1856 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf, 1857 bool disconnect) 1858 { 1859 struct tb_switch *sw = tb_to_switch(dev); 1860 int val, ret; 1861 1862 pm_runtime_get_sync(&sw->dev); 1863 1864 if (!mutex_trylock(&sw->tb->lock)) { 1865 ret = restart_syscall(); 1866 goto exit_rpm; 1867 } 1868 1869 /* If NVMem devices are not yet added */ 1870 if (!sw->nvm) { 1871 ret = -EAGAIN; 1872 goto exit_unlock; 1873 } 1874 1875 ret = kstrtoint(buf, 10, &val); 1876 if (ret) 1877 goto exit_unlock; 1878 1879 /* Always clear the authentication status */ 1880 nvm_clear_auth_status(sw); 1881 1882 if (val > 0) { 1883 if (val == AUTHENTICATE_ONLY) { 1884 if (disconnect) 1885 ret = -EINVAL; 1886 else 1887 ret = nvm_authenticate(sw, true); 1888 } else { 1889 if (!sw->nvm->flushed) { 1890 if (!sw->nvm->buf) { 1891 ret = -EINVAL; 1892 goto exit_unlock; 1893 } 1894 1895 ret = nvm_validate_and_write(sw); 1896 if (ret || val == WRITE_ONLY) 1897 goto exit_unlock; 1898 } 1899 if (val == WRITE_AND_AUTHENTICATE) { 1900 if (disconnect) 1901 ret = tb_lc_force_power(sw); 1902 else 1903 ret = nvm_authenticate(sw, false); 1904 } 1905 } 1906 } 1907 1908 exit_unlock: 1909 mutex_unlock(&sw->tb->lock); 1910 exit_rpm: 1911 pm_runtime_mark_last_busy(&sw->dev); 1912 pm_runtime_put_autosuspend(&sw->dev); 1913 1914 return ret; 1915 } 1916 1917 static ssize_t nvm_authenticate_store(struct device *dev, 1918 struct device_attribute *attr, const char *buf, size_t count) 1919 { 1920 int ret = nvm_authenticate_sysfs(dev, buf, false); 1921 if (ret) 1922 return ret; 1923 return count; 1924 } 1925 static DEVICE_ATTR_RW(nvm_authenticate); 1926 1927 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev, 1928 struct device_attribute *attr, char *buf) 1929 { 1930 return nvm_authenticate_show(dev, attr, buf); 1931 } 1932 1933 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev, 1934 struct device_attribute *attr, const char *buf, size_t count) 1935 { 1936 int ret; 1937 1938 ret = nvm_authenticate_sysfs(dev, buf, true); 1939 return ret ? ret : count; 1940 } 1941 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect); 1942 1943 static ssize_t nvm_version_show(struct device *dev, 1944 struct device_attribute *attr, char *buf) 1945 { 1946 struct tb_switch *sw = tb_to_switch(dev); 1947 int ret; 1948 1949 if (!mutex_trylock(&sw->tb->lock)) 1950 return restart_syscall(); 1951 1952 if (sw->safe_mode) 1953 ret = -ENODATA; 1954 else if (!sw->nvm) 1955 ret = -EAGAIN; 1956 else 1957 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 1958 1959 mutex_unlock(&sw->tb->lock); 1960 1961 return ret; 1962 } 1963 static DEVICE_ATTR_RO(nvm_version); 1964 1965 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 1966 char *buf) 1967 { 1968 struct tb_switch *sw = tb_to_switch(dev); 1969 1970 return sprintf(buf, "%#x\n", sw->vendor); 1971 } 1972 static DEVICE_ATTR_RO(vendor); 1973 1974 static ssize_t 1975 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1976 { 1977 struct tb_switch *sw = tb_to_switch(dev); 1978 1979 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : ""); 1980 } 1981 static DEVICE_ATTR_RO(vendor_name); 1982 1983 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 1984 char *buf) 1985 { 1986 struct tb_switch *sw = tb_to_switch(dev); 1987 1988 return sprintf(buf, "%pUb\n", sw->uuid); 1989 } 1990 static DEVICE_ATTR_RO(unique_id); 1991 1992 static struct attribute *switch_attrs[] = { 1993 &dev_attr_authorized.attr, 1994 &dev_attr_boot.attr, 1995 &dev_attr_device.attr, 1996 &dev_attr_device_name.attr, 1997 &dev_attr_generation.attr, 1998 &dev_attr_key.attr, 1999 &dev_attr_nvm_authenticate.attr, 2000 &dev_attr_nvm_authenticate_on_disconnect.attr, 2001 &dev_attr_nvm_version.attr, 2002 &dev_attr_rx_speed.attr, 2003 &dev_attr_rx_lanes.attr, 2004 &dev_attr_tx_speed.attr, 2005 &dev_attr_tx_lanes.attr, 2006 &dev_attr_vendor.attr, 2007 &dev_attr_vendor_name.attr, 2008 &dev_attr_unique_id.attr, 2009 NULL, 2010 }; 2011 2012 static umode_t switch_attr_is_visible(struct kobject *kobj, 2013 struct attribute *attr, int n) 2014 { 2015 struct device *dev = kobj_to_dev(kobj); 2016 struct tb_switch *sw = tb_to_switch(dev); 2017 2018 if (attr == &dev_attr_authorized.attr) { 2019 if (sw->tb->security_level == TB_SECURITY_NOPCIE || 2020 sw->tb->security_level == TB_SECURITY_DPONLY) 2021 return 0; 2022 } else if (attr == &dev_attr_device.attr) { 2023 if (!sw->device) 2024 return 0; 2025 } else if (attr == &dev_attr_device_name.attr) { 2026 if (!sw->device_name) 2027 return 0; 2028 } else if (attr == &dev_attr_vendor.attr) { 2029 if (!sw->vendor) 2030 return 0; 2031 } else if (attr == &dev_attr_vendor_name.attr) { 2032 if (!sw->vendor_name) 2033 return 0; 2034 } else if (attr == &dev_attr_key.attr) { 2035 if (tb_route(sw) && 2036 sw->tb->security_level == TB_SECURITY_SECURE && 2037 sw->security_level == TB_SECURITY_SECURE) 2038 return attr->mode; 2039 return 0; 2040 } else if (attr == &dev_attr_rx_speed.attr || 2041 attr == &dev_attr_rx_lanes.attr || 2042 attr == &dev_attr_tx_speed.attr || 2043 attr == &dev_attr_tx_lanes.attr) { 2044 if (tb_route(sw)) 2045 return attr->mode; 2046 return 0; 2047 } else if (attr == &dev_attr_nvm_authenticate.attr) { 2048 if (nvm_upgradeable(sw)) 2049 return attr->mode; 2050 return 0; 2051 } else if (attr == &dev_attr_nvm_version.attr) { 2052 if (nvm_readable(sw)) 2053 return attr->mode; 2054 return 0; 2055 } else if (attr == &dev_attr_boot.attr) { 2056 if (tb_route(sw)) 2057 return attr->mode; 2058 return 0; 2059 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) { 2060 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER) 2061 return attr->mode; 2062 return 0; 2063 } 2064 2065 return sw->safe_mode ? 0 : attr->mode; 2066 } 2067 2068 static const struct attribute_group switch_group = { 2069 .is_visible = switch_attr_is_visible, 2070 .attrs = switch_attrs, 2071 }; 2072 2073 static const struct attribute_group *switch_groups[] = { 2074 &switch_group, 2075 NULL, 2076 }; 2077 2078 static void tb_switch_release(struct device *dev) 2079 { 2080 struct tb_switch *sw = tb_to_switch(dev); 2081 struct tb_port *port; 2082 2083 dma_port_free(sw->dma_port); 2084 2085 tb_switch_for_each_port(sw, port) { 2086 ida_destroy(&port->in_hopids); 2087 ida_destroy(&port->out_hopids); 2088 } 2089 2090 kfree(sw->uuid); 2091 kfree(sw->device_name); 2092 kfree(sw->vendor_name); 2093 kfree(sw->ports); 2094 kfree(sw->drom); 2095 kfree(sw->key); 2096 kfree(sw); 2097 } 2098 2099 static int tb_switch_uevent(struct device *dev, struct kobj_uevent_env *env) 2100 { 2101 struct tb_switch *sw = tb_to_switch(dev); 2102 const char *type; 2103 2104 if (sw->config.thunderbolt_version == USB4_VERSION_1_0) { 2105 if (add_uevent_var(env, "USB4_VERSION=1.0")) 2106 return -ENOMEM; 2107 } 2108 2109 if (!tb_route(sw)) { 2110 type = "host"; 2111 } else { 2112 const struct tb_port *port; 2113 bool hub = false; 2114 2115 /* Device is hub if it has any downstream ports */ 2116 tb_switch_for_each_port(sw, port) { 2117 if (!port->disabled && !tb_is_upstream_port(port) && 2118 tb_port_is_null(port)) { 2119 hub = true; 2120 break; 2121 } 2122 } 2123 2124 type = hub ? "hub" : "device"; 2125 } 2126 2127 if (add_uevent_var(env, "USB4_TYPE=%s", type)) 2128 return -ENOMEM; 2129 return 0; 2130 } 2131 2132 /* 2133 * Currently only need to provide the callbacks. Everything else is handled 2134 * in the connection manager. 2135 */ 2136 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev) 2137 { 2138 struct tb_switch *sw = tb_to_switch(dev); 2139 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 2140 2141 if (cm_ops->runtime_suspend_switch) 2142 return cm_ops->runtime_suspend_switch(sw); 2143 2144 return 0; 2145 } 2146 2147 static int __maybe_unused tb_switch_runtime_resume(struct device *dev) 2148 { 2149 struct tb_switch *sw = tb_to_switch(dev); 2150 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 2151 2152 if (cm_ops->runtime_resume_switch) 2153 return cm_ops->runtime_resume_switch(sw); 2154 return 0; 2155 } 2156 2157 static const struct dev_pm_ops tb_switch_pm_ops = { 2158 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume, 2159 NULL) 2160 }; 2161 2162 struct device_type tb_switch_type = { 2163 .name = "thunderbolt_device", 2164 .release = tb_switch_release, 2165 .uevent = tb_switch_uevent, 2166 .pm = &tb_switch_pm_ops, 2167 }; 2168 2169 static int tb_switch_get_generation(struct tb_switch *sw) 2170 { 2171 switch (sw->config.device_id) { 2172 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 2173 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 2174 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 2175 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 2176 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 2177 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 2178 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 2179 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 2180 return 1; 2181 2182 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 2183 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 2184 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 2185 return 2; 2186 2187 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 2188 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 2189 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 2190 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 2191 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 2192 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: 2193 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: 2194 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: 2195 case PCI_DEVICE_ID_INTEL_ICL_NHI0: 2196 case PCI_DEVICE_ID_INTEL_ICL_NHI1: 2197 return 3; 2198 2199 default: 2200 if (tb_switch_is_usb4(sw)) 2201 return 4; 2202 2203 /* 2204 * For unknown switches assume generation to be 1 to be 2205 * on the safe side. 2206 */ 2207 tb_sw_warn(sw, "unsupported switch device id %#x\n", 2208 sw->config.device_id); 2209 return 1; 2210 } 2211 } 2212 2213 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth) 2214 { 2215 int max_depth; 2216 2217 if (tb_switch_is_usb4(sw) || 2218 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch))) 2219 max_depth = USB4_SWITCH_MAX_DEPTH; 2220 else 2221 max_depth = TB_SWITCH_MAX_DEPTH; 2222 2223 return depth > max_depth; 2224 } 2225 2226 /** 2227 * tb_switch_alloc() - allocate a switch 2228 * @tb: Pointer to the owning domain 2229 * @parent: Parent device for this switch 2230 * @route: Route string for this switch 2231 * 2232 * Allocates and initializes a switch. Will not upload configuration to 2233 * the switch. For that you need to call tb_switch_configure() 2234 * separately. The returned switch should be released by calling 2235 * tb_switch_put(). 2236 * 2237 * Return: Pointer to the allocated switch or ERR_PTR() in case of 2238 * failure. 2239 */ 2240 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 2241 u64 route) 2242 { 2243 struct tb_switch *sw; 2244 int upstream_port; 2245 int i, ret, depth; 2246 2247 /* Unlock the downstream port so we can access the switch below */ 2248 if (route) { 2249 struct tb_switch *parent_sw = tb_to_switch(parent); 2250 struct tb_port *down; 2251 2252 down = tb_port_at(route, parent_sw); 2253 tb_port_unlock(down); 2254 } 2255 2256 depth = tb_route_length(route); 2257 2258 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 2259 if (upstream_port < 0) 2260 return ERR_PTR(upstream_port); 2261 2262 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 2263 if (!sw) 2264 return ERR_PTR(-ENOMEM); 2265 2266 sw->tb = tb; 2267 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5); 2268 if (ret) 2269 goto err_free_sw_ports; 2270 2271 sw->generation = tb_switch_get_generation(sw); 2272 2273 tb_dbg(tb, "current switch config:\n"); 2274 tb_dump_switch(tb, sw); 2275 2276 /* configure switch */ 2277 sw->config.upstream_port_number = upstream_port; 2278 sw->config.depth = depth; 2279 sw->config.route_hi = upper_32_bits(route); 2280 sw->config.route_lo = lower_32_bits(route); 2281 sw->config.enabled = 0; 2282 2283 /* Make sure we do not exceed maximum topology limit */ 2284 if (tb_switch_exceeds_max_depth(sw, depth)) { 2285 ret = -EADDRNOTAVAIL; 2286 goto err_free_sw_ports; 2287 } 2288 2289 /* initialize ports */ 2290 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 2291 GFP_KERNEL); 2292 if (!sw->ports) { 2293 ret = -ENOMEM; 2294 goto err_free_sw_ports; 2295 } 2296 2297 for (i = 0; i <= sw->config.max_port_number; i++) { 2298 /* minimum setup for tb_find_cap and tb_drom_read to work */ 2299 sw->ports[i].sw = sw; 2300 sw->ports[i].port = i; 2301 2302 /* Control port does not need HopID allocation */ 2303 if (i) { 2304 ida_init(&sw->ports[i].in_hopids); 2305 ida_init(&sw->ports[i].out_hopids); 2306 } 2307 } 2308 2309 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 2310 if (ret > 0) 2311 sw->cap_plug_events = ret; 2312 2313 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2); 2314 if (ret > 0) 2315 sw->cap_vsec_tmu = ret; 2316 2317 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 2318 if (ret > 0) 2319 sw->cap_lc = ret; 2320 2321 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP); 2322 if (ret > 0) 2323 sw->cap_lp = ret; 2324 2325 /* Root switch is always authorized */ 2326 if (!route) 2327 sw->authorized = true; 2328 2329 device_initialize(&sw->dev); 2330 sw->dev.parent = parent; 2331 sw->dev.bus = &tb_bus_type; 2332 sw->dev.type = &tb_switch_type; 2333 sw->dev.groups = switch_groups; 2334 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 2335 2336 return sw; 2337 2338 err_free_sw_ports: 2339 kfree(sw->ports); 2340 kfree(sw); 2341 2342 return ERR_PTR(ret); 2343 } 2344 2345 /** 2346 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 2347 * @tb: Pointer to the owning domain 2348 * @parent: Parent device for this switch 2349 * @route: Route string for this switch 2350 * 2351 * This creates a switch in safe mode. This means the switch pretty much 2352 * lacks all capabilities except DMA configuration port before it is 2353 * flashed with a valid NVM firmware. 2354 * 2355 * The returned switch must be released by calling tb_switch_put(). 2356 * 2357 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure 2358 */ 2359 struct tb_switch * 2360 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 2361 { 2362 struct tb_switch *sw; 2363 2364 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 2365 if (!sw) 2366 return ERR_PTR(-ENOMEM); 2367 2368 sw->tb = tb; 2369 sw->config.depth = tb_route_length(route); 2370 sw->config.route_hi = upper_32_bits(route); 2371 sw->config.route_lo = lower_32_bits(route); 2372 sw->safe_mode = true; 2373 2374 device_initialize(&sw->dev); 2375 sw->dev.parent = parent; 2376 sw->dev.bus = &tb_bus_type; 2377 sw->dev.type = &tb_switch_type; 2378 sw->dev.groups = switch_groups; 2379 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 2380 2381 return sw; 2382 } 2383 2384 /** 2385 * tb_switch_configure() - Uploads configuration to the switch 2386 * @sw: Switch to configure 2387 * 2388 * Call this function before the switch is added to the system. It will 2389 * upload configuration to the switch and makes it available for the 2390 * connection manager to use. Can be called to the switch again after 2391 * resume from low power states to re-initialize it. 2392 * 2393 * Return: %0 in case of success and negative errno in case of failure 2394 */ 2395 int tb_switch_configure(struct tb_switch *sw) 2396 { 2397 struct tb *tb = sw->tb; 2398 u64 route; 2399 int ret; 2400 2401 route = tb_route(sw); 2402 2403 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n", 2404 sw->config.enabled ? "restoring" : "initializing", route, 2405 tb_route_length(route), sw->config.upstream_port_number); 2406 2407 sw->config.enabled = 1; 2408 2409 if (tb_switch_is_usb4(sw)) { 2410 /* 2411 * For USB4 devices, we need to program the CM version 2412 * accordingly so that it knows to expose all the 2413 * additional capabilities. 2414 */ 2415 sw->config.cmuv = USB4_VERSION_1_0; 2416 2417 /* Enumerate the switch */ 2418 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2419 ROUTER_CS_1, 4); 2420 if (ret) 2421 return ret; 2422 2423 ret = usb4_switch_setup(sw); 2424 } else { 2425 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 2426 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 2427 sw->config.vendor_id); 2428 2429 if (!sw->cap_plug_events) { 2430 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 2431 return -ENODEV; 2432 } 2433 2434 /* Enumerate the switch */ 2435 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2436 ROUTER_CS_1, 3); 2437 } 2438 if (ret) 2439 return ret; 2440 2441 return tb_plug_events_active(sw, true); 2442 } 2443 2444 static int tb_switch_set_uuid(struct tb_switch *sw) 2445 { 2446 bool uid = false; 2447 u32 uuid[4]; 2448 int ret; 2449 2450 if (sw->uuid) 2451 return 0; 2452 2453 if (tb_switch_is_usb4(sw)) { 2454 ret = usb4_switch_read_uid(sw, &sw->uid); 2455 if (ret) 2456 return ret; 2457 uid = true; 2458 } else { 2459 /* 2460 * The newer controllers include fused UUID as part of 2461 * link controller specific registers 2462 */ 2463 ret = tb_lc_read_uuid(sw, uuid); 2464 if (ret) { 2465 if (ret != -EINVAL) 2466 return ret; 2467 uid = true; 2468 } 2469 } 2470 2471 if (uid) { 2472 /* 2473 * ICM generates UUID based on UID and fills the upper 2474 * two words with ones. This is not strictly following 2475 * UUID format but we want to be compatible with it so 2476 * we do the same here. 2477 */ 2478 uuid[0] = sw->uid & 0xffffffff; 2479 uuid[1] = (sw->uid >> 32) & 0xffffffff; 2480 uuid[2] = 0xffffffff; 2481 uuid[3] = 0xffffffff; 2482 } 2483 2484 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 2485 if (!sw->uuid) 2486 return -ENOMEM; 2487 return 0; 2488 } 2489 2490 static int tb_switch_add_dma_port(struct tb_switch *sw) 2491 { 2492 u32 status; 2493 int ret; 2494 2495 switch (sw->generation) { 2496 case 2: 2497 /* Only root switch can be upgraded */ 2498 if (tb_route(sw)) 2499 return 0; 2500 2501 fallthrough; 2502 case 3: 2503 case 4: 2504 ret = tb_switch_set_uuid(sw); 2505 if (ret) 2506 return ret; 2507 break; 2508 2509 default: 2510 /* 2511 * DMA port is the only thing available when the switch 2512 * is in safe mode. 2513 */ 2514 if (!sw->safe_mode) 2515 return 0; 2516 break; 2517 } 2518 2519 if (sw->no_nvm_upgrade) 2520 return 0; 2521 2522 if (tb_switch_is_usb4(sw)) { 2523 ret = usb4_switch_nvm_authenticate_status(sw, &status); 2524 if (ret) 2525 return ret; 2526 2527 if (status) { 2528 tb_sw_info(sw, "switch flash authentication failed\n"); 2529 nvm_set_auth_status(sw, status); 2530 } 2531 2532 return 0; 2533 } 2534 2535 /* Root switch DMA port requires running firmware */ 2536 if (!tb_route(sw) && !tb_switch_is_icm(sw)) 2537 return 0; 2538 2539 sw->dma_port = dma_port_alloc(sw); 2540 if (!sw->dma_port) 2541 return 0; 2542 2543 /* 2544 * If there is status already set then authentication failed 2545 * when the dma_port_flash_update_auth() returned. Power cycling 2546 * is not needed (it was done already) so only thing we do here 2547 * is to unblock runtime PM of the root port. 2548 */ 2549 nvm_get_auth_status(sw, &status); 2550 if (status) { 2551 if (!tb_route(sw)) 2552 nvm_authenticate_complete_dma_port(sw); 2553 return 0; 2554 } 2555 2556 /* 2557 * Check status of the previous flash authentication. If there 2558 * is one we need to power cycle the switch in any case to make 2559 * it functional again. 2560 */ 2561 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 2562 if (ret <= 0) 2563 return ret; 2564 2565 /* Now we can allow root port to suspend again */ 2566 if (!tb_route(sw)) 2567 nvm_authenticate_complete_dma_port(sw); 2568 2569 if (status) { 2570 tb_sw_info(sw, "switch flash authentication failed\n"); 2571 nvm_set_auth_status(sw, status); 2572 } 2573 2574 tb_sw_info(sw, "power cycling the switch now\n"); 2575 dma_port_power_cycle(sw->dma_port); 2576 2577 /* 2578 * We return error here which causes the switch adding failure. 2579 * It should appear back after power cycle is complete. 2580 */ 2581 return -ESHUTDOWN; 2582 } 2583 2584 static void tb_switch_default_link_ports(struct tb_switch *sw) 2585 { 2586 int i; 2587 2588 for (i = 1; i <= sw->config.max_port_number; i++) { 2589 struct tb_port *port = &sw->ports[i]; 2590 struct tb_port *subordinate; 2591 2592 if (!tb_port_is_null(port)) 2593 continue; 2594 2595 /* Check for the subordinate port */ 2596 if (i == sw->config.max_port_number || 2597 !tb_port_is_null(&sw->ports[i + 1])) 2598 continue; 2599 2600 /* Link them if not already done so (by DROM) */ 2601 subordinate = &sw->ports[i + 1]; 2602 if (!port->dual_link_port && !subordinate->dual_link_port) { 2603 port->link_nr = 0; 2604 port->dual_link_port = subordinate; 2605 subordinate->link_nr = 1; 2606 subordinate->dual_link_port = port; 2607 2608 tb_sw_dbg(sw, "linked ports %d <-> %d\n", 2609 port->port, subordinate->port); 2610 } 2611 } 2612 } 2613 2614 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw) 2615 { 2616 const struct tb_port *up = tb_upstream_port(sw); 2617 2618 if (!up->dual_link_port || !up->dual_link_port->remote) 2619 return false; 2620 2621 if (tb_switch_is_usb4(sw)) 2622 return usb4_switch_lane_bonding_possible(sw); 2623 return tb_lc_lane_bonding_possible(sw); 2624 } 2625 2626 static int tb_switch_update_link_attributes(struct tb_switch *sw) 2627 { 2628 struct tb_port *up; 2629 bool change = false; 2630 int ret; 2631 2632 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2633 return 0; 2634 2635 up = tb_upstream_port(sw); 2636 2637 ret = tb_port_get_link_speed(up); 2638 if (ret < 0) 2639 return ret; 2640 if (sw->link_speed != ret) 2641 change = true; 2642 sw->link_speed = ret; 2643 2644 ret = tb_port_get_link_width(up); 2645 if (ret < 0) 2646 return ret; 2647 if (sw->link_width != ret) 2648 change = true; 2649 sw->link_width = ret; 2650 2651 /* Notify userspace that there is possible link attribute change */ 2652 if (device_is_registered(&sw->dev) && change) 2653 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 2654 2655 return 0; 2656 } 2657 2658 /** 2659 * tb_switch_lane_bonding_enable() - Enable lane bonding 2660 * @sw: Switch to enable lane bonding 2661 * 2662 * Connection manager can call this function to enable lane bonding of a 2663 * switch. If conditions are correct and both switches support the feature, 2664 * lanes are bonded. It is safe to call this to any switch. 2665 */ 2666 int tb_switch_lane_bonding_enable(struct tb_switch *sw) 2667 { 2668 struct tb_switch *parent = tb_to_switch(sw->dev.parent); 2669 struct tb_port *up, *down; 2670 u64 route = tb_route(sw); 2671 int ret; 2672 2673 if (!route) 2674 return 0; 2675 2676 if (!tb_switch_lane_bonding_possible(sw)) 2677 return 0; 2678 2679 up = tb_upstream_port(sw); 2680 down = tb_port_at(route, parent); 2681 2682 if (!tb_port_is_width_supported(up, 2) || 2683 !tb_port_is_width_supported(down, 2)) 2684 return 0; 2685 2686 ret = tb_port_lane_bonding_enable(up); 2687 if (ret) { 2688 tb_port_warn(up, "failed to enable lane bonding\n"); 2689 return ret; 2690 } 2691 2692 ret = tb_port_lane_bonding_enable(down); 2693 if (ret) { 2694 tb_port_warn(down, "failed to enable lane bonding\n"); 2695 tb_port_lane_bonding_disable(up); 2696 return ret; 2697 } 2698 2699 ret = tb_port_wait_for_link_width(down, 2, 100); 2700 if (ret) { 2701 tb_port_warn(down, "timeout enabling lane bonding\n"); 2702 return ret; 2703 } 2704 2705 tb_port_update_credits(down); 2706 tb_port_update_credits(up); 2707 tb_switch_update_link_attributes(sw); 2708 2709 tb_sw_dbg(sw, "lane bonding enabled\n"); 2710 return ret; 2711 } 2712 2713 /** 2714 * tb_switch_lane_bonding_disable() - Disable lane bonding 2715 * @sw: Switch whose lane bonding to disable 2716 * 2717 * Disables lane bonding between @sw and parent. This can be called even 2718 * if lanes were not bonded originally. 2719 */ 2720 void tb_switch_lane_bonding_disable(struct tb_switch *sw) 2721 { 2722 struct tb_switch *parent = tb_to_switch(sw->dev.parent); 2723 struct tb_port *up, *down; 2724 2725 if (!tb_route(sw)) 2726 return; 2727 2728 up = tb_upstream_port(sw); 2729 if (!up->bonded) 2730 return; 2731 2732 down = tb_port_at(tb_route(sw), parent); 2733 2734 tb_port_lane_bonding_disable(up); 2735 tb_port_lane_bonding_disable(down); 2736 2737 /* 2738 * It is fine if we get other errors as the router might have 2739 * been unplugged. 2740 */ 2741 if (tb_port_wait_for_link_width(down, 1, 100) == -ETIMEDOUT) 2742 tb_sw_warn(sw, "timeout disabling lane bonding\n"); 2743 2744 tb_port_update_credits(down); 2745 tb_port_update_credits(up); 2746 tb_switch_update_link_attributes(sw); 2747 2748 tb_sw_dbg(sw, "lane bonding disabled\n"); 2749 } 2750 2751 /** 2752 * tb_switch_configure_link() - Set link configured 2753 * @sw: Switch whose link is configured 2754 * 2755 * Sets the link upstream from @sw configured (from both ends) so that 2756 * it will not be disconnected when the domain exits sleep. Can be 2757 * called for any switch. 2758 * 2759 * It is recommended that this is called after lane bonding is enabled. 2760 * 2761 * Returns %0 on success and negative errno in case of error. 2762 */ 2763 int tb_switch_configure_link(struct tb_switch *sw) 2764 { 2765 struct tb_port *up, *down; 2766 int ret; 2767 2768 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2769 return 0; 2770 2771 up = tb_upstream_port(sw); 2772 if (tb_switch_is_usb4(up->sw)) 2773 ret = usb4_port_configure(up); 2774 else 2775 ret = tb_lc_configure_port(up); 2776 if (ret) 2777 return ret; 2778 2779 down = up->remote; 2780 if (tb_switch_is_usb4(down->sw)) 2781 return usb4_port_configure(down); 2782 return tb_lc_configure_port(down); 2783 } 2784 2785 /** 2786 * tb_switch_unconfigure_link() - Unconfigure link 2787 * @sw: Switch whose link is unconfigured 2788 * 2789 * Sets the link unconfigured so the @sw will be disconnected if the 2790 * domain exists sleep. 2791 */ 2792 void tb_switch_unconfigure_link(struct tb_switch *sw) 2793 { 2794 struct tb_port *up, *down; 2795 2796 if (sw->is_unplugged) 2797 return; 2798 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2799 return; 2800 2801 up = tb_upstream_port(sw); 2802 if (tb_switch_is_usb4(up->sw)) 2803 usb4_port_unconfigure(up); 2804 else 2805 tb_lc_unconfigure_port(up); 2806 2807 down = up->remote; 2808 if (tb_switch_is_usb4(down->sw)) 2809 usb4_port_unconfigure(down); 2810 else 2811 tb_lc_unconfigure_port(down); 2812 } 2813 2814 static void tb_switch_credits_init(struct tb_switch *sw) 2815 { 2816 if (tb_switch_is_icm(sw)) 2817 return; 2818 if (!tb_switch_is_usb4(sw)) 2819 return; 2820 if (usb4_switch_credits_init(sw)) 2821 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n"); 2822 } 2823 2824 /** 2825 * tb_switch_add() - Add a switch to the domain 2826 * @sw: Switch to add 2827 * 2828 * This is the last step in adding switch to the domain. It will read 2829 * identification information from DROM and initializes ports so that 2830 * they can be used to connect other switches. The switch will be 2831 * exposed to the userspace when this function successfully returns. To 2832 * remove and release the switch, call tb_switch_remove(). 2833 * 2834 * Return: %0 in case of success and negative errno in case of failure 2835 */ 2836 int tb_switch_add(struct tb_switch *sw) 2837 { 2838 int i, ret; 2839 2840 /* 2841 * Initialize DMA control port now before we read DROM. Recent 2842 * host controllers have more complete DROM on NVM that includes 2843 * vendor and model identification strings which we then expose 2844 * to the userspace. NVM can be accessed through DMA 2845 * configuration based mailbox. 2846 */ 2847 ret = tb_switch_add_dma_port(sw); 2848 if (ret) { 2849 dev_err(&sw->dev, "failed to add DMA port\n"); 2850 return ret; 2851 } 2852 2853 if (!sw->safe_mode) { 2854 tb_switch_credits_init(sw); 2855 2856 /* read drom */ 2857 ret = tb_drom_read(sw); 2858 if (ret) 2859 dev_warn(&sw->dev, "reading DROM failed: %d\n", ret); 2860 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid); 2861 2862 tb_check_quirks(sw); 2863 2864 ret = tb_switch_set_uuid(sw); 2865 if (ret) { 2866 dev_err(&sw->dev, "failed to set UUID\n"); 2867 return ret; 2868 } 2869 2870 for (i = 0; i <= sw->config.max_port_number; i++) { 2871 if (sw->ports[i].disabled) { 2872 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n"); 2873 continue; 2874 } 2875 ret = tb_init_port(&sw->ports[i]); 2876 if (ret) { 2877 dev_err(&sw->dev, "failed to initialize port %d\n", i); 2878 return ret; 2879 } 2880 } 2881 2882 tb_switch_default_link_ports(sw); 2883 2884 ret = tb_switch_update_link_attributes(sw); 2885 if (ret) 2886 return ret; 2887 2888 ret = tb_switch_tmu_init(sw); 2889 if (ret) 2890 return ret; 2891 } 2892 2893 ret = device_add(&sw->dev); 2894 if (ret) { 2895 dev_err(&sw->dev, "failed to add device: %d\n", ret); 2896 return ret; 2897 } 2898 2899 if (tb_route(sw)) { 2900 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n", 2901 sw->vendor, sw->device); 2902 if (sw->vendor_name && sw->device_name) 2903 dev_info(&sw->dev, "%s %s\n", sw->vendor_name, 2904 sw->device_name); 2905 } 2906 2907 ret = usb4_switch_add_ports(sw); 2908 if (ret) { 2909 dev_err(&sw->dev, "failed to add USB4 ports\n"); 2910 goto err_del; 2911 } 2912 2913 ret = tb_switch_nvm_add(sw); 2914 if (ret) { 2915 dev_err(&sw->dev, "failed to add NVM devices\n"); 2916 goto err_ports; 2917 } 2918 2919 /* 2920 * Thunderbolt routers do not generate wakeups themselves but 2921 * they forward wakeups from tunneled protocols, so enable it 2922 * here. 2923 */ 2924 device_init_wakeup(&sw->dev, true); 2925 2926 pm_runtime_set_active(&sw->dev); 2927 if (sw->rpm) { 2928 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY); 2929 pm_runtime_use_autosuspend(&sw->dev); 2930 pm_runtime_mark_last_busy(&sw->dev); 2931 pm_runtime_enable(&sw->dev); 2932 pm_request_autosuspend(&sw->dev); 2933 } 2934 2935 tb_switch_debugfs_init(sw); 2936 return 0; 2937 2938 err_ports: 2939 usb4_switch_remove_ports(sw); 2940 err_del: 2941 device_del(&sw->dev); 2942 2943 return ret; 2944 } 2945 2946 /** 2947 * tb_switch_remove() - Remove and release a switch 2948 * @sw: Switch to remove 2949 * 2950 * This will remove the switch from the domain and release it after last 2951 * reference count drops to zero. If there are switches connected below 2952 * this switch, they will be removed as well. 2953 */ 2954 void tb_switch_remove(struct tb_switch *sw) 2955 { 2956 struct tb_port *port; 2957 2958 tb_switch_debugfs_remove(sw); 2959 2960 if (sw->rpm) { 2961 pm_runtime_get_sync(&sw->dev); 2962 pm_runtime_disable(&sw->dev); 2963 } 2964 2965 /* port 0 is the switch itself and never has a remote */ 2966 tb_switch_for_each_port(sw, port) { 2967 if (tb_port_has_remote(port)) { 2968 tb_switch_remove(port->remote->sw); 2969 port->remote = NULL; 2970 } else if (port->xdomain) { 2971 tb_xdomain_remove(port->xdomain); 2972 port->xdomain = NULL; 2973 } 2974 2975 /* Remove any downstream retimers */ 2976 tb_retimer_remove_all(port); 2977 } 2978 2979 if (!sw->is_unplugged) 2980 tb_plug_events_active(sw, false); 2981 2982 tb_switch_nvm_remove(sw); 2983 usb4_switch_remove_ports(sw); 2984 2985 if (tb_route(sw)) 2986 dev_info(&sw->dev, "device disconnected\n"); 2987 device_unregister(&sw->dev); 2988 } 2989 2990 /** 2991 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 2992 * @sw: Router to mark unplugged 2993 */ 2994 void tb_sw_set_unplugged(struct tb_switch *sw) 2995 { 2996 struct tb_port *port; 2997 2998 if (sw == sw->tb->root_switch) { 2999 tb_sw_WARN(sw, "cannot unplug root switch\n"); 3000 return; 3001 } 3002 if (sw->is_unplugged) { 3003 tb_sw_WARN(sw, "is_unplugged already set\n"); 3004 return; 3005 } 3006 sw->is_unplugged = true; 3007 tb_switch_for_each_port(sw, port) { 3008 if (tb_port_has_remote(port)) 3009 tb_sw_set_unplugged(port->remote->sw); 3010 else if (port->xdomain) 3011 port->xdomain->is_unplugged = true; 3012 } 3013 } 3014 3015 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags) 3016 { 3017 if (flags) 3018 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags); 3019 else 3020 tb_sw_dbg(sw, "disabling wakeup\n"); 3021 3022 if (tb_switch_is_usb4(sw)) 3023 return usb4_switch_set_wake(sw, flags); 3024 return tb_lc_set_wake(sw, flags); 3025 } 3026 3027 int tb_switch_resume(struct tb_switch *sw) 3028 { 3029 struct tb_port *port; 3030 int err; 3031 3032 tb_sw_dbg(sw, "resuming switch\n"); 3033 3034 /* 3035 * Check for UID of the connected switches except for root 3036 * switch which we assume cannot be removed. 3037 */ 3038 if (tb_route(sw)) { 3039 u64 uid; 3040 3041 /* 3042 * Check first that we can still read the switch config 3043 * space. It may be that there is now another domain 3044 * connected. 3045 */ 3046 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw)); 3047 if (err < 0) { 3048 tb_sw_info(sw, "switch not present anymore\n"); 3049 return err; 3050 } 3051 3052 /* We don't have any way to confirm this was the same device */ 3053 if (!sw->uid) 3054 return -ENODEV; 3055 3056 if (tb_switch_is_usb4(sw)) 3057 err = usb4_switch_read_uid(sw, &uid); 3058 else 3059 err = tb_drom_read_uid_only(sw, &uid); 3060 if (err) { 3061 tb_sw_warn(sw, "uid read failed\n"); 3062 return err; 3063 } 3064 if (sw->uid != uid) { 3065 tb_sw_info(sw, 3066 "changed while suspended (uid %#llx -> %#llx)\n", 3067 sw->uid, uid); 3068 return -ENODEV; 3069 } 3070 } 3071 3072 err = tb_switch_configure(sw); 3073 if (err) 3074 return err; 3075 3076 /* Disable wakes */ 3077 tb_switch_set_wake(sw, 0); 3078 3079 err = tb_switch_tmu_init(sw); 3080 if (err) 3081 return err; 3082 3083 /* check for surviving downstream switches */ 3084 tb_switch_for_each_port(sw, port) { 3085 if (!tb_port_is_null(port)) 3086 continue; 3087 3088 if (!tb_port_resume(port)) 3089 continue; 3090 3091 if (tb_wait_for_port(port, true) <= 0) { 3092 tb_port_warn(port, 3093 "lost during suspend, disconnecting\n"); 3094 if (tb_port_has_remote(port)) 3095 tb_sw_set_unplugged(port->remote->sw); 3096 else if (port->xdomain) 3097 port->xdomain->is_unplugged = true; 3098 } else { 3099 /* 3100 * Always unlock the port so the downstream 3101 * switch/domain is accessible. 3102 */ 3103 if (tb_port_unlock(port)) 3104 tb_port_warn(port, "failed to unlock port\n"); 3105 if (port->remote && tb_switch_resume(port->remote->sw)) { 3106 tb_port_warn(port, 3107 "lost during suspend, disconnecting\n"); 3108 tb_sw_set_unplugged(port->remote->sw); 3109 } 3110 } 3111 } 3112 return 0; 3113 } 3114 3115 /** 3116 * tb_switch_suspend() - Put a switch to sleep 3117 * @sw: Switch to suspend 3118 * @runtime: Is this runtime suspend or system sleep 3119 * 3120 * Suspends router and all its children. Enables wakes according to 3121 * value of @runtime and then sets sleep bit for the router. If @sw is 3122 * host router the domain is ready to go to sleep once this function 3123 * returns. 3124 */ 3125 void tb_switch_suspend(struct tb_switch *sw, bool runtime) 3126 { 3127 unsigned int flags = 0; 3128 struct tb_port *port; 3129 int err; 3130 3131 tb_sw_dbg(sw, "suspending switch\n"); 3132 3133 /* 3134 * Actually only needed for Titan Ridge but for simplicity can be 3135 * done for USB4 device too as CLx is re-enabled at resume. 3136 */ 3137 if (tb_switch_disable_clx(sw, TB_CL0S)) 3138 tb_sw_warn(sw, "failed to disable CLx on upstream port\n"); 3139 3140 err = tb_plug_events_active(sw, false); 3141 if (err) 3142 return; 3143 3144 tb_switch_for_each_port(sw, port) { 3145 if (tb_port_has_remote(port)) 3146 tb_switch_suspend(port->remote->sw, runtime); 3147 } 3148 3149 if (runtime) { 3150 /* Trigger wake when something is plugged in/out */ 3151 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT; 3152 flags |= TB_WAKE_ON_USB4; 3153 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP; 3154 } else if (device_may_wakeup(&sw->dev)) { 3155 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE; 3156 } 3157 3158 tb_switch_set_wake(sw, flags); 3159 3160 if (tb_switch_is_usb4(sw)) 3161 usb4_switch_set_sleep(sw); 3162 else 3163 tb_lc_set_sleep(sw); 3164 } 3165 3166 /** 3167 * tb_switch_query_dp_resource() - Query availability of DP resource 3168 * @sw: Switch whose DP resource is queried 3169 * @in: DP IN port 3170 * 3171 * Queries availability of DP resource for DP tunneling using switch 3172 * specific means. Returns %true if resource is available. 3173 */ 3174 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) 3175 { 3176 if (tb_switch_is_usb4(sw)) 3177 return usb4_switch_query_dp_resource(sw, in); 3178 return tb_lc_dp_sink_query(sw, in); 3179 } 3180 3181 /** 3182 * tb_switch_alloc_dp_resource() - Allocate available DP resource 3183 * @sw: Switch whose DP resource is allocated 3184 * @in: DP IN port 3185 * 3186 * Allocates DP resource for DP tunneling. The resource must be 3187 * available for this to succeed (see tb_switch_query_dp_resource()). 3188 * Returns %0 in success and negative errno otherwise. 3189 */ 3190 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 3191 { 3192 int ret; 3193 3194 if (tb_switch_is_usb4(sw)) 3195 ret = usb4_switch_alloc_dp_resource(sw, in); 3196 else 3197 ret = tb_lc_dp_sink_alloc(sw, in); 3198 3199 if (ret) 3200 tb_sw_warn(sw, "failed to allocate DP resource for port %d\n", 3201 in->port); 3202 else 3203 tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port); 3204 3205 return ret; 3206 } 3207 3208 /** 3209 * tb_switch_dealloc_dp_resource() - De-allocate DP resource 3210 * @sw: Switch whose DP resource is de-allocated 3211 * @in: DP IN port 3212 * 3213 * De-allocates DP resource that was previously allocated for DP 3214 * tunneling. 3215 */ 3216 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 3217 { 3218 int ret; 3219 3220 if (tb_switch_is_usb4(sw)) 3221 ret = usb4_switch_dealloc_dp_resource(sw, in); 3222 else 3223 ret = tb_lc_dp_sink_dealloc(sw, in); 3224 3225 if (ret) 3226 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n", 3227 in->port); 3228 else 3229 tb_sw_dbg(sw, "released DP resource for port %d\n", in->port); 3230 } 3231 3232 struct tb_sw_lookup { 3233 struct tb *tb; 3234 u8 link; 3235 u8 depth; 3236 const uuid_t *uuid; 3237 u64 route; 3238 }; 3239 3240 static int tb_switch_match(struct device *dev, const void *data) 3241 { 3242 struct tb_switch *sw = tb_to_switch(dev); 3243 const struct tb_sw_lookup *lookup = data; 3244 3245 if (!sw) 3246 return 0; 3247 if (sw->tb != lookup->tb) 3248 return 0; 3249 3250 if (lookup->uuid) 3251 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 3252 3253 if (lookup->route) { 3254 return sw->config.route_lo == lower_32_bits(lookup->route) && 3255 sw->config.route_hi == upper_32_bits(lookup->route); 3256 } 3257 3258 /* Root switch is matched only by depth */ 3259 if (!lookup->depth) 3260 return !sw->depth; 3261 3262 return sw->link == lookup->link && sw->depth == lookup->depth; 3263 } 3264 3265 /** 3266 * tb_switch_find_by_link_depth() - Find switch by link and depth 3267 * @tb: Domain the switch belongs 3268 * @link: Link number the switch is connected 3269 * @depth: Depth of the switch in link 3270 * 3271 * Returned switch has reference count increased so the caller needs to 3272 * call tb_switch_put() when done with the switch. 3273 */ 3274 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 3275 { 3276 struct tb_sw_lookup lookup; 3277 struct device *dev; 3278 3279 memset(&lookup, 0, sizeof(lookup)); 3280 lookup.tb = tb; 3281 lookup.link = link; 3282 lookup.depth = depth; 3283 3284 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3285 if (dev) 3286 return tb_to_switch(dev); 3287 3288 return NULL; 3289 } 3290 3291 /** 3292 * tb_switch_find_by_uuid() - Find switch by UUID 3293 * @tb: Domain the switch belongs 3294 * @uuid: UUID to look for 3295 * 3296 * Returned switch has reference count increased so the caller needs to 3297 * call tb_switch_put() when done with the switch. 3298 */ 3299 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) 3300 { 3301 struct tb_sw_lookup lookup; 3302 struct device *dev; 3303 3304 memset(&lookup, 0, sizeof(lookup)); 3305 lookup.tb = tb; 3306 lookup.uuid = uuid; 3307 3308 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3309 if (dev) 3310 return tb_to_switch(dev); 3311 3312 return NULL; 3313 } 3314 3315 /** 3316 * tb_switch_find_by_route() - Find switch by route string 3317 * @tb: Domain the switch belongs 3318 * @route: Route string to look for 3319 * 3320 * Returned switch has reference count increased so the caller needs to 3321 * call tb_switch_put() when done with the switch. 3322 */ 3323 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route) 3324 { 3325 struct tb_sw_lookup lookup; 3326 struct device *dev; 3327 3328 if (!route) 3329 return tb_switch_get(tb->root_switch); 3330 3331 memset(&lookup, 0, sizeof(lookup)); 3332 lookup.tb = tb; 3333 lookup.route = route; 3334 3335 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3336 if (dev) 3337 return tb_to_switch(dev); 3338 3339 return NULL; 3340 } 3341 3342 /** 3343 * tb_switch_find_port() - return the first port of @type on @sw or NULL 3344 * @sw: Switch to find the port from 3345 * @type: Port type to look for 3346 */ 3347 struct tb_port *tb_switch_find_port(struct tb_switch *sw, 3348 enum tb_port_type type) 3349 { 3350 struct tb_port *port; 3351 3352 tb_switch_for_each_port(sw, port) { 3353 if (port->config.type == type) 3354 return port; 3355 } 3356 3357 return NULL; 3358 } 3359 3360 static int __tb_port_pm_secondary_set(struct tb_port *port, bool secondary) 3361 { 3362 u32 phy; 3363 int ret; 3364 3365 ret = tb_port_read(port, &phy, TB_CFG_PORT, 3366 port->cap_phy + LANE_ADP_CS_1, 1); 3367 if (ret) 3368 return ret; 3369 3370 if (secondary) 3371 phy |= LANE_ADP_CS_1_PMS; 3372 else 3373 phy &= ~LANE_ADP_CS_1_PMS; 3374 3375 return tb_port_write(port, &phy, TB_CFG_PORT, 3376 port->cap_phy + LANE_ADP_CS_1, 1); 3377 } 3378 3379 static int tb_port_pm_secondary_enable(struct tb_port *port) 3380 { 3381 return __tb_port_pm_secondary_set(port, true); 3382 } 3383 3384 static int tb_port_pm_secondary_disable(struct tb_port *port) 3385 { 3386 return __tb_port_pm_secondary_set(port, false); 3387 } 3388 3389 static int tb_switch_pm_secondary_resolve(struct tb_switch *sw) 3390 { 3391 struct tb_switch *parent = tb_switch_parent(sw); 3392 struct tb_port *up, *down; 3393 int ret; 3394 3395 if (!tb_route(sw)) 3396 return 0; 3397 3398 up = tb_upstream_port(sw); 3399 down = tb_port_at(tb_route(sw), parent); 3400 ret = tb_port_pm_secondary_enable(up); 3401 if (ret) 3402 return ret; 3403 3404 return tb_port_pm_secondary_disable(down); 3405 } 3406 3407 /* Called for USB4 or Titan Ridge routers only */ 3408 static bool tb_port_clx_supported(struct tb_port *port, enum tb_clx clx) 3409 { 3410 u32 mask, val; 3411 bool ret; 3412 3413 /* Don't enable CLx in case of two single-lane links */ 3414 if (!port->bonded && port->dual_link_port) 3415 return false; 3416 3417 /* Don't enable CLx in case of inter-domain link */ 3418 if (port->xdomain) 3419 return false; 3420 3421 if (tb_switch_is_usb4(port->sw)) { 3422 if (!usb4_port_clx_supported(port)) 3423 return false; 3424 } else if (!tb_lc_is_clx_supported(port)) { 3425 return false; 3426 } 3427 3428 switch (clx) { 3429 case TB_CL0S: 3430 /* CL0s support requires also CL1 support */ 3431 mask = LANE_ADP_CS_0_CL0S_SUPPORT | LANE_ADP_CS_0_CL1_SUPPORT; 3432 break; 3433 3434 /* For now we support only CL0s. Not CL1, CL2 */ 3435 case TB_CL1: 3436 case TB_CL2: 3437 default: 3438 return false; 3439 } 3440 3441 ret = tb_port_read(port, &val, TB_CFG_PORT, 3442 port->cap_phy + LANE_ADP_CS_0, 1); 3443 if (ret) 3444 return false; 3445 3446 return !!(val & mask); 3447 } 3448 3449 static inline bool tb_port_cl0s_supported(struct tb_port *port) 3450 { 3451 return tb_port_clx_supported(port, TB_CL0S); 3452 } 3453 3454 static int __tb_port_cl0s_set(struct tb_port *port, bool enable) 3455 { 3456 u32 phy, mask; 3457 int ret; 3458 3459 /* To enable CL0s also required to enable CL1 */ 3460 mask = LANE_ADP_CS_1_CL0S_ENABLE | LANE_ADP_CS_1_CL1_ENABLE; 3461 ret = tb_port_read(port, &phy, TB_CFG_PORT, 3462 port->cap_phy + LANE_ADP_CS_1, 1); 3463 if (ret) 3464 return ret; 3465 3466 if (enable) 3467 phy |= mask; 3468 else 3469 phy &= ~mask; 3470 3471 return tb_port_write(port, &phy, TB_CFG_PORT, 3472 port->cap_phy + LANE_ADP_CS_1, 1); 3473 } 3474 3475 static int tb_port_cl0s_disable(struct tb_port *port) 3476 { 3477 return __tb_port_cl0s_set(port, false); 3478 } 3479 3480 static int tb_port_cl0s_enable(struct tb_port *port) 3481 { 3482 return __tb_port_cl0s_set(port, true); 3483 } 3484 3485 static int tb_switch_enable_cl0s(struct tb_switch *sw) 3486 { 3487 struct tb_switch *parent = tb_switch_parent(sw); 3488 bool up_cl0s_support, down_cl0s_support; 3489 struct tb_port *up, *down; 3490 int ret; 3491 3492 if (!tb_switch_is_clx_supported(sw)) 3493 return 0; 3494 3495 /* 3496 * Enable CLx for host router's downstream port as part of the 3497 * downstream router enabling procedure. 3498 */ 3499 if (!tb_route(sw)) 3500 return 0; 3501 3502 /* Enable CLx only for first hop router (depth = 1) */ 3503 if (tb_route(parent)) 3504 return 0; 3505 3506 ret = tb_switch_pm_secondary_resolve(sw); 3507 if (ret) 3508 return ret; 3509 3510 up = tb_upstream_port(sw); 3511 down = tb_port_at(tb_route(sw), parent); 3512 3513 up_cl0s_support = tb_port_cl0s_supported(up); 3514 down_cl0s_support = tb_port_cl0s_supported(down); 3515 3516 tb_port_dbg(up, "CL0s %ssupported\n", 3517 up_cl0s_support ? "" : "not "); 3518 tb_port_dbg(down, "CL0s %ssupported\n", 3519 down_cl0s_support ? "" : "not "); 3520 3521 if (!up_cl0s_support || !down_cl0s_support) 3522 return -EOPNOTSUPP; 3523 3524 ret = tb_port_cl0s_enable(up); 3525 if (ret) 3526 return ret; 3527 3528 ret = tb_port_cl0s_enable(down); 3529 if (ret) { 3530 tb_port_cl0s_disable(up); 3531 return ret; 3532 } 3533 3534 ret = tb_switch_mask_clx_objections(sw); 3535 if (ret) { 3536 tb_port_cl0s_disable(up); 3537 tb_port_cl0s_disable(down); 3538 return ret; 3539 } 3540 3541 sw->clx = TB_CL0S; 3542 3543 tb_port_dbg(up, "CL0s enabled\n"); 3544 return 0; 3545 } 3546 3547 /** 3548 * tb_switch_enable_clx() - Enable CLx on upstream port of specified router 3549 * @sw: Router to enable CLx for 3550 * @clx: The CLx state to enable 3551 * 3552 * Enable CLx state only for first hop router. That is the most common 3553 * use-case, that is intended for better thermal management, and so helps 3554 * to improve performance. CLx is enabled only if both sides of the link 3555 * support CLx, and if both sides of the link are not configured as two 3556 * single lane links and only if the link is not inter-domain link. The 3557 * complete set of conditions is descibed in CM Guide 1.0 section 8.1. 3558 * 3559 * Return: Returns 0 on success or an error code on failure. 3560 */ 3561 int tb_switch_enable_clx(struct tb_switch *sw, enum tb_clx clx) 3562 { 3563 struct tb_switch *root_sw = sw->tb->root_switch; 3564 3565 if (!clx_enabled) 3566 return 0; 3567 3568 /* 3569 * CLx is not enabled and validated on Intel USB4 platforms before 3570 * Alder Lake. 3571 */ 3572 if (root_sw->generation < 4 || tb_switch_is_tiger_lake(root_sw)) 3573 return 0; 3574 3575 switch (clx) { 3576 case TB_CL0S: 3577 return tb_switch_enable_cl0s(sw); 3578 3579 default: 3580 return -EOPNOTSUPP; 3581 } 3582 } 3583 3584 static int tb_switch_disable_cl0s(struct tb_switch *sw) 3585 { 3586 struct tb_switch *parent = tb_switch_parent(sw); 3587 struct tb_port *up, *down; 3588 int ret; 3589 3590 if (!tb_switch_is_clx_supported(sw)) 3591 return 0; 3592 3593 /* 3594 * Disable CLx for host router's downstream port as part of the 3595 * downstream router enabling procedure. 3596 */ 3597 if (!tb_route(sw)) 3598 return 0; 3599 3600 /* Disable CLx only for first hop router (depth = 1) */ 3601 if (tb_route(parent)) 3602 return 0; 3603 3604 up = tb_upstream_port(sw); 3605 down = tb_port_at(tb_route(sw), parent); 3606 ret = tb_port_cl0s_disable(up); 3607 if (ret) 3608 return ret; 3609 3610 ret = tb_port_cl0s_disable(down); 3611 if (ret) 3612 return ret; 3613 3614 sw->clx = TB_CLX_DISABLE; 3615 3616 tb_port_dbg(up, "CL0s disabled\n"); 3617 return 0; 3618 } 3619 3620 /** 3621 * tb_switch_disable_clx() - Disable CLx on upstream port of specified router 3622 * @sw: Router to disable CLx for 3623 * @clx: The CLx state to disable 3624 * 3625 * Return: Returns 0 on success or an error code on failure. 3626 */ 3627 int tb_switch_disable_clx(struct tb_switch *sw, enum tb_clx clx) 3628 { 3629 if (!clx_enabled) 3630 return 0; 3631 3632 switch (clx) { 3633 case TB_CL0S: 3634 return tb_switch_disable_cl0s(sw); 3635 3636 default: 3637 return -EOPNOTSUPP; 3638 } 3639 } 3640 3641 /** 3642 * tb_switch_mask_clx_objections() - Mask CLx objections for a router 3643 * @sw: Router to mask objections for 3644 * 3645 * Mask the objections coming from the second depth routers in order to 3646 * stop these objections from interfering with the CLx states of the first 3647 * depth link. 3648 */ 3649 int tb_switch_mask_clx_objections(struct tb_switch *sw) 3650 { 3651 int up_port = sw->config.upstream_port_number; 3652 u32 offset, val[2], mask_obj, unmask_obj; 3653 int ret, i; 3654 3655 /* Only Titan Ridge of pre-USB4 devices support CLx states */ 3656 if (!tb_switch_is_titan_ridge(sw)) 3657 return 0; 3658 3659 if (!tb_route(sw)) 3660 return 0; 3661 3662 /* 3663 * In Titan Ridge there are only 2 dual-lane Thunderbolt ports: 3664 * Port A consists of lane adapters 1,2 and 3665 * Port B consists of lane adapters 3,4 3666 * If upstream port is A, (lanes are 1,2), we mask objections from 3667 * port B (lanes 3,4) and unmask objections from Port A and vice-versa. 3668 */ 3669 if (up_port == 1) { 3670 mask_obj = TB_LOW_PWR_C0_PORT_B_MASK; 3671 unmask_obj = TB_LOW_PWR_C1_PORT_A_MASK; 3672 offset = TB_LOW_PWR_C1_CL1; 3673 } else { 3674 mask_obj = TB_LOW_PWR_C1_PORT_A_MASK; 3675 unmask_obj = TB_LOW_PWR_C0_PORT_B_MASK; 3676 offset = TB_LOW_PWR_C3_CL1; 3677 } 3678 3679 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, 3680 sw->cap_lp + offset, ARRAY_SIZE(val)); 3681 if (ret) 3682 return ret; 3683 3684 for (i = 0; i < ARRAY_SIZE(val); i++) { 3685 val[i] |= mask_obj; 3686 val[i] &= ~unmask_obj; 3687 } 3688 3689 return tb_sw_write(sw, &val, TB_CFG_SWITCH, 3690 sw->cap_lp + offset, ARRAY_SIZE(val)); 3691 } 3692 3693 /* 3694 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3 3695 * device. For now used only for Titan Ridge. 3696 */ 3697 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge, 3698 unsigned int pcie_offset, u32 value) 3699 { 3700 u32 offset, command, val; 3701 int ret; 3702 3703 if (sw->generation != 3) 3704 return -EOPNOTSUPP; 3705 3706 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA; 3707 ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1); 3708 if (ret) 3709 return ret; 3710 3711 command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK; 3712 command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT); 3713 command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK; 3714 command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL 3715 << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT; 3716 command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK; 3717 3718 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD; 3719 3720 ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1); 3721 if (ret) 3722 return ret; 3723 3724 ret = tb_switch_wait_for_bit(sw, offset, 3725 TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100); 3726 if (ret) 3727 return ret; 3728 3729 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1); 3730 if (ret) 3731 return ret; 3732 3733 if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK) 3734 return -ETIMEDOUT; 3735 3736 return 0; 3737 } 3738 3739 /** 3740 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state 3741 * @sw: Router to enable PCIe L1 3742 * 3743 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable 3744 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel 3745 * was configured. Due to Intel platforms limitation, shall be called only 3746 * for first hop switch. 3747 */ 3748 int tb_switch_pcie_l1_enable(struct tb_switch *sw) 3749 { 3750 struct tb_switch *parent = tb_switch_parent(sw); 3751 int ret; 3752 3753 if (!tb_route(sw)) 3754 return 0; 3755 3756 if (!tb_switch_is_titan_ridge(sw)) 3757 return 0; 3758 3759 /* Enable PCIe L1 enable only for first hop router (depth = 1) */ 3760 if (tb_route(parent)) 3761 return 0; 3762 3763 /* Write to downstream PCIe bridge #5 aka Dn4 */ 3764 ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1); 3765 if (ret) 3766 return ret; 3767 3768 /* Write to Upstream PCIe bridge #0 aka Up0 */ 3769 return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1); 3770 } 3771 3772 /** 3773 * tb_switch_xhci_connect() - Connect internal xHCI 3774 * @sw: Router whose xHCI to connect 3775 * 3776 * Can be called to any router. For Alpine Ridge and Titan Ridge 3777 * performs special flows that bring the xHCI functional for any device 3778 * connected to the type-C port. Call only after PCIe tunnel has been 3779 * established. The function only does the connect if not done already 3780 * so can be called several times for the same router. 3781 */ 3782 int tb_switch_xhci_connect(struct tb_switch *sw) 3783 { 3784 bool usb_port1, usb_port3, xhci_port1, xhci_port3; 3785 struct tb_port *port1, *port3; 3786 int ret; 3787 3788 port1 = &sw->ports[1]; 3789 port3 = &sw->ports[3]; 3790 3791 if (tb_switch_is_alpine_ridge(sw)) { 3792 usb_port1 = tb_lc_is_usb_plugged(port1); 3793 usb_port3 = tb_lc_is_usb_plugged(port3); 3794 xhci_port1 = tb_lc_is_xhci_connected(port1); 3795 xhci_port3 = tb_lc_is_xhci_connected(port3); 3796 3797 /* Figure out correct USB port to connect */ 3798 if (usb_port1 && !xhci_port1) { 3799 ret = tb_lc_xhci_connect(port1); 3800 if (ret) 3801 return ret; 3802 } 3803 if (usb_port3 && !xhci_port3) 3804 return tb_lc_xhci_connect(port3); 3805 } else if (tb_switch_is_titan_ridge(sw)) { 3806 ret = tb_lc_xhci_connect(port1); 3807 if (ret) 3808 return ret; 3809 return tb_lc_xhci_connect(port3); 3810 } 3811 3812 return 0; 3813 } 3814 3815 /** 3816 * tb_switch_xhci_disconnect() - Disconnect internal xHCI 3817 * @sw: Router whose xHCI to disconnect 3818 * 3819 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both 3820 * ports. 3821 */ 3822 void tb_switch_xhci_disconnect(struct tb_switch *sw) 3823 { 3824 if (sw->generation == 3) { 3825 struct tb_port *port1 = &sw->ports[1]; 3826 struct tb_port *port3 = &sw->ports[3]; 3827 3828 tb_lc_xhci_disconnect(port1); 3829 tb_port_dbg(port1, "disconnected xHCI\n"); 3830 tb_lc_xhci_disconnect(port3); 3831 tb_port_dbg(port3, "disconnected xHCI\n"); 3832 } 3833 } 3834