xref: /openbmc/linux/drivers/thunderbolt/switch.c (revision da1d9caf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 
18 #include "tb.h"
19 
20 /* Switch NVM support */
21 
22 #define NVM_CSS			0x10
23 
24 struct nvm_auth_status {
25 	struct list_head list;
26 	uuid_t uuid;
27 	u32 status;
28 };
29 
30 static bool clx_enabled = true;
31 module_param_named(clx, clx_enabled, bool, 0444);
32 MODULE_PARM_DESC(clx, "allow low power states on the high-speed lanes (default: true)");
33 
34 /*
35  * Hold NVM authentication failure status per switch This information
36  * needs to stay around even when the switch gets power cycled so we
37  * keep it separately.
38  */
39 static LIST_HEAD(nvm_auth_status_cache);
40 static DEFINE_MUTEX(nvm_auth_status_lock);
41 
42 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
43 {
44 	struct nvm_auth_status *st;
45 
46 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
47 		if (uuid_equal(&st->uuid, sw->uuid))
48 			return st;
49 	}
50 
51 	return NULL;
52 }
53 
54 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
55 {
56 	struct nvm_auth_status *st;
57 
58 	mutex_lock(&nvm_auth_status_lock);
59 	st = __nvm_get_auth_status(sw);
60 	mutex_unlock(&nvm_auth_status_lock);
61 
62 	*status = st ? st->status : 0;
63 }
64 
65 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
66 {
67 	struct nvm_auth_status *st;
68 
69 	if (WARN_ON(!sw->uuid))
70 		return;
71 
72 	mutex_lock(&nvm_auth_status_lock);
73 	st = __nvm_get_auth_status(sw);
74 
75 	if (!st) {
76 		st = kzalloc(sizeof(*st), GFP_KERNEL);
77 		if (!st)
78 			goto unlock;
79 
80 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
81 		INIT_LIST_HEAD(&st->list);
82 		list_add_tail(&st->list, &nvm_auth_status_cache);
83 	}
84 
85 	st->status = status;
86 unlock:
87 	mutex_unlock(&nvm_auth_status_lock);
88 }
89 
90 static void nvm_clear_auth_status(const struct tb_switch *sw)
91 {
92 	struct nvm_auth_status *st;
93 
94 	mutex_lock(&nvm_auth_status_lock);
95 	st = __nvm_get_auth_status(sw);
96 	if (st) {
97 		list_del(&st->list);
98 		kfree(st);
99 	}
100 	mutex_unlock(&nvm_auth_status_lock);
101 }
102 
103 static int nvm_validate_and_write(struct tb_switch *sw)
104 {
105 	unsigned int image_size, hdr_size;
106 	const u8 *buf = sw->nvm->buf;
107 	u16 ds_size;
108 	int ret;
109 
110 	if (!buf)
111 		return -EINVAL;
112 
113 	image_size = sw->nvm->buf_data_size;
114 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
115 		return -EINVAL;
116 
117 	/*
118 	 * FARB pointer must point inside the image and must at least
119 	 * contain parts of the digital section we will be reading here.
120 	 */
121 	hdr_size = (*(u32 *)buf) & 0xffffff;
122 	if (hdr_size + NVM_DEVID + 2 >= image_size)
123 		return -EINVAL;
124 
125 	/* Digital section start should be aligned to 4k page */
126 	if (!IS_ALIGNED(hdr_size, SZ_4K))
127 		return -EINVAL;
128 
129 	/*
130 	 * Read digital section size and check that it also fits inside
131 	 * the image.
132 	 */
133 	ds_size = *(u16 *)(buf + hdr_size);
134 	if (ds_size >= image_size)
135 		return -EINVAL;
136 
137 	if (!sw->safe_mode) {
138 		u16 device_id;
139 
140 		/*
141 		 * Make sure the device ID in the image matches the one
142 		 * we read from the switch config space.
143 		 */
144 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
145 		if (device_id != sw->config.device_id)
146 			return -EINVAL;
147 
148 		if (sw->generation < 3) {
149 			/* Write CSS headers first */
150 			ret = dma_port_flash_write(sw->dma_port,
151 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
152 				DMA_PORT_CSS_MAX_SIZE);
153 			if (ret)
154 				return ret;
155 		}
156 
157 		/* Skip headers in the image */
158 		buf += hdr_size;
159 		image_size -= hdr_size;
160 	}
161 
162 	if (tb_switch_is_usb4(sw))
163 		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
164 	else
165 		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
166 	if (!ret)
167 		sw->nvm->flushed = true;
168 	return ret;
169 }
170 
171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
172 {
173 	int ret = 0;
174 
175 	/*
176 	 * Root switch NVM upgrade requires that we disconnect the
177 	 * existing paths first (in case it is not in safe mode
178 	 * already).
179 	 */
180 	if (!sw->safe_mode) {
181 		u32 status;
182 
183 		ret = tb_domain_disconnect_all_paths(sw->tb);
184 		if (ret)
185 			return ret;
186 		/*
187 		 * The host controller goes away pretty soon after this if
188 		 * everything goes well so getting timeout is expected.
189 		 */
190 		ret = dma_port_flash_update_auth(sw->dma_port);
191 		if (!ret || ret == -ETIMEDOUT)
192 			return 0;
193 
194 		/*
195 		 * Any error from update auth operation requires power
196 		 * cycling of the host router.
197 		 */
198 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 			nvm_set_auth_status(sw, status);
201 	}
202 
203 	/*
204 	 * From safe mode we can get out by just power cycling the
205 	 * switch.
206 	 */
207 	dma_port_power_cycle(sw->dma_port);
208 	return ret;
209 }
210 
211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
212 {
213 	int ret, retries = 10;
214 
215 	ret = dma_port_flash_update_auth(sw->dma_port);
216 	switch (ret) {
217 	case 0:
218 	case -ETIMEDOUT:
219 	case -EACCES:
220 	case -EINVAL:
221 		/* Power cycle is required */
222 		break;
223 	default:
224 		return ret;
225 	}
226 
227 	/*
228 	 * Poll here for the authentication status. It takes some time
229 	 * for the device to respond (we get timeout for a while). Once
230 	 * we get response the device needs to be power cycled in order
231 	 * to the new NVM to be taken into use.
232 	 */
233 	do {
234 		u32 status;
235 
236 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 		if (ret < 0 && ret != -ETIMEDOUT)
238 			return ret;
239 		if (ret > 0) {
240 			if (status) {
241 				tb_sw_warn(sw, "failed to authenticate NVM\n");
242 				nvm_set_auth_status(sw, status);
243 			}
244 
245 			tb_sw_info(sw, "power cycling the switch now\n");
246 			dma_port_power_cycle(sw->dma_port);
247 			return 0;
248 		}
249 
250 		msleep(500);
251 	} while (--retries);
252 
253 	return -ETIMEDOUT;
254 }
255 
256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257 {
258 	struct pci_dev *root_port;
259 
260 	/*
261 	 * During host router NVM upgrade we should not allow root port to
262 	 * go into D3cold because some root ports cannot trigger PME
263 	 * itself. To be on the safe side keep the root port in D0 during
264 	 * the whole upgrade process.
265 	 */
266 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
267 	if (root_port)
268 		pm_runtime_get_noresume(&root_port->dev);
269 }
270 
271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272 {
273 	struct pci_dev *root_port;
274 
275 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
276 	if (root_port)
277 		pm_runtime_put(&root_port->dev);
278 }
279 
280 static inline bool nvm_readable(struct tb_switch *sw)
281 {
282 	if (tb_switch_is_usb4(sw)) {
283 		/*
284 		 * USB4 devices must support NVM operations but it is
285 		 * optional for hosts. Therefore we query the NVM sector
286 		 * size here and if it is supported assume NVM
287 		 * operations are implemented.
288 		 */
289 		return usb4_switch_nvm_sector_size(sw) > 0;
290 	}
291 
292 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 	return !!sw->dma_port;
294 }
295 
296 static inline bool nvm_upgradeable(struct tb_switch *sw)
297 {
298 	if (sw->no_nvm_upgrade)
299 		return false;
300 	return nvm_readable(sw);
301 }
302 
303 static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 			   void *buf, size_t size)
305 {
306 	if (tb_switch_is_usb4(sw))
307 		return usb4_switch_nvm_read(sw, address, buf, size);
308 	return dma_port_flash_read(sw->dma_port, address, buf, size);
309 }
310 
311 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
312 {
313 	int ret;
314 
315 	if (tb_switch_is_usb4(sw)) {
316 		if (auth_only) {
317 			ret = usb4_switch_nvm_set_offset(sw, 0);
318 			if (ret)
319 				return ret;
320 		}
321 		sw->nvm->authenticating = true;
322 		return usb4_switch_nvm_authenticate(sw);
323 	} else if (auth_only) {
324 		return -EOPNOTSUPP;
325 	}
326 
327 	sw->nvm->authenticating = true;
328 	if (!tb_route(sw)) {
329 		nvm_authenticate_start_dma_port(sw);
330 		ret = nvm_authenticate_host_dma_port(sw);
331 	} else {
332 		ret = nvm_authenticate_device_dma_port(sw);
333 	}
334 
335 	return ret;
336 }
337 
338 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
339 			      size_t bytes)
340 {
341 	struct tb_nvm *nvm = priv;
342 	struct tb_switch *sw = tb_to_switch(nvm->dev);
343 	int ret;
344 
345 	pm_runtime_get_sync(&sw->dev);
346 
347 	if (!mutex_trylock(&sw->tb->lock)) {
348 		ret = restart_syscall();
349 		goto out;
350 	}
351 
352 	ret = nvm_read(sw, offset, val, bytes);
353 	mutex_unlock(&sw->tb->lock);
354 
355 out:
356 	pm_runtime_mark_last_busy(&sw->dev);
357 	pm_runtime_put_autosuspend(&sw->dev);
358 
359 	return ret;
360 }
361 
362 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
363 			       size_t bytes)
364 {
365 	struct tb_nvm *nvm = priv;
366 	struct tb_switch *sw = tb_to_switch(nvm->dev);
367 	int ret;
368 
369 	if (!mutex_trylock(&sw->tb->lock))
370 		return restart_syscall();
371 
372 	/*
373 	 * Since writing the NVM image might require some special steps,
374 	 * for example when CSS headers are written, we cache the image
375 	 * locally here and handle the special cases when the user asks
376 	 * us to authenticate the image.
377 	 */
378 	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
379 	mutex_unlock(&sw->tb->lock);
380 
381 	return ret;
382 }
383 
384 static int tb_switch_nvm_add(struct tb_switch *sw)
385 {
386 	struct tb_nvm *nvm;
387 	u32 val;
388 	int ret;
389 
390 	if (!nvm_readable(sw))
391 		return 0;
392 
393 	/*
394 	 * The NVM format of non-Intel hardware is not known so
395 	 * currently restrict NVM upgrade for Intel hardware. We may
396 	 * relax this in the future when we learn other NVM formats.
397 	 */
398 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
399 	    sw->config.vendor_id != 0x8087) {
400 		dev_info(&sw->dev,
401 			 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
402 			 sw->config.vendor_id);
403 		return 0;
404 	}
405 
406 	nvm = tb_nvm_alloc(&sw->dev);
407 	if (IS_ERR(nvm))
408 		return PTR_ERR(nvm);
409 
410 	/*
411 	 * If the switch is in safe-mode the only accessible portion of
412 	 * the NVM is the non-active one where userspace is expected to
413 	 * write new functional NVM.
414 	 */
415 	if (!sw->safe_mode) {
416 		u32 nvm_size, hdr_size;
417 
418 		ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
419 		if (ret)
420 			goto err_nvm;
421 
422 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
423 		nvm_size = (SZ_1M << (val & 7)) / 8;
424 		nvm_size = (nvm_size - hdr_size) / 2;
425 
426 		ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
427 		if (ret)
428 			goto err_nvm;
429 
430 		nvm->major = val >> 16;
431 		nvm->minor = val >> 8;
432 
433 		ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
434 		if (ret)
435 			goto err_nvm;
436 	}
437 
438 	if (!sw->no_nvm_upgrade) {
439 		ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
440 					    tb_switch_nvm_write);
441 		if (ret)
442 			goto err_nvm;
443 	}
444 
445 	sw->nvm = nvm;
446 	return 0;
447 
448 err_nvm:
449 	tb_nvm_free(nvm);
450 	return ret;
451 }
452 
453 static void tb_switch_nvm_remove(struct tb_switch *sw)
454 {
455 	struct tb_nvm *nvm;
456 
457 	nvm = sw->nvm;
458 	sw->nvm = NULL;
459 
460 	if (!nvm)
461 		return;
462 
463 	/* Remove authentication status in case the switch is unplugged */
464 	if (!nvm->authenticating)
465 		nvm_clear_auth_status(sw);
466 
467 	tb_nvm_free(nvm);
468 }
469 
470 /* port utility functions */
471 
472 static const char *tb_port_type(const struct tb_regs_port_header *port)
473 {
474 	switch (port->type >> 16) {
475 	case 0:
476 		switch ((u8) port->type) {
477 		case 0:
478 			return "Inactive";
479 		case 1:
480 			return "Port";
481 		case 2:
482 			return "NHI";
483 		default:
484 			return "unknown";
485 		}
486 	case 0x2:
487 		return "Ethernet";
488 	case 0x8:
489 		return "SATA";
490 	case 0xe:
491 		return "DP/HDMI";
492 	case 0x10:
493 		return "PCIe";
494 	case 0x20:
495 		return "USB";
496 	default:
497 		return "unknown";
498 	}
499 }
500 
501 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
502 {
503 	const struct tb_regs_port_header *regs = &port->config;
504 
505 	tb_dbg(tb,
506 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
507 	       regs->port_number, regs->vendor_id, regs->device_id,
508 	       regs->revision, regs->thunderbolt_version, tb_port_type(regs),
509 	       regs->type);
510 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
511 	       regs->max_in_hop_id, regs->max_out_hop_id);
512 	tb_dbg(tb, "  Max counters: %d\n", regs->max_counters);
513 	tb_dbg(tb, "  NFC Credits: %#x\n", regs->nfc_credits);
514 	tb_dbg(tb, "  Credits (total/control): %u/%u\n", port->total_credits,
515 	       port->ctl_credits);
516 }
517 
518 /**
519  * tb_port_state() - get connectedness state of a port
520  * @port: the port to check
521  *
522  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
523  *
524  * Return: Returns an enum tb_port_state on success or an error code on failure.
525  */
526 int tb_port_state(struct tb_port *port)
527 {
528 	struct tb_cap_phy phy;
529 	int res;
530 	if (port->cap_phy == 0) {
531 		tb_port_WARN(port, "does not have a PHY\n");
532 		return -EINVAL;
533 	}
534 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
535 	if (res)
536 		return res;
537 	return phy.state;
538 }
539 
540 /**
541  * tb_wait_for_port() - wait for a port to become ready
542  * @port: Port to wait
543  * @wait_if_unplugged: Wait also when port is unplugged
544  *
545  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
546  * wait_if_unplugged is set then we also wait if the port is in state
547  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
548  * switch resume). Otherwise we only wait if a device is registered but the link
549  * has not yet been established.
550  *
551  * Return: Returns an error code on failure. Returns 0 if the port is not
552  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
553  * if the port is connected and in state TB_PORT_UP.
554  */
555 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
556 {
557 	int retries = 10;
558 	int state;
559 	if (!port->cap_phy) {
560 		tb_port_WARN(port, "does not have PHY\n");
561 		return -EINVAL;
562 	}
563 	if (tb_is_upstream_port(port)) {
564 		tb_port_WARN(port, "is the upstream port\n");
565 		return -EINVAL;
566 	}
567 
568 	while (retries--) {
569 		state = tb_port_state(port);
570 		if (state < 0)
571 			return state;
572 		if (state == TB_PORT_DISABLED) {
573 			tb_port_dbg(port, "is disabled (state: 0)\n");
574 			return 0;
575 		}
576 		if (state == TB_PORT_UNPLUGGED) {
577 			if (wait_if_unplugged) {
578 				/* used during resume */
579 				tb_port_dbg(port,
580 					    "is unplugged (state: 7), retrying...\n");
581 				msleep(100);
582 				continue;
583 			}
584 			tb_port_dbg(port, "is unplugged (state: 7)\n");
585 			return 0;
586 		}
587 		if (state == TB_PORT_UP) {
588 			tb_port_dbg(port, "is connected, link is up (state: 2)\n");
589 			return 1;
590 		}
591 
592 		/*
593 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
594 		 * time.
595 		 */
596 		tb_port_dbg(port,
597 			    "is connected, link is not up (state: %d), retrying...\n",
598 			    state);
599 		msleep(100);
600 	}
601 	tb_port_warn(port,
602 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
603 	return 0;
604 }
605 
606 /**
607  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
608  * @port: Port to add/remove NFC credits
609  * @credits: Credits to add/remove
610  *
611  * Change the number of NFC credits allocated to @port by @credits. To remove
612  * NFC credits pass a negative amount of credits.
613  *
614  * Return: Returns 0 on success or an error code on failure.
615  */
616 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
617 {
618 	u32 nfc_credits;
619 
620 	if (credits == 0 || port->sw->is_unplugged)
621 		return 0;
622 
623 	/*
624 	 * USB4 restricts programming NFC buffers to lane adapters only
625 	 * so skip other ports.
626 	 */
627 	if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
628 		return 0;
629 
630 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
631 	if (credits < 0)
632 		credits = max_t(int, -nfc_credits, credits);
633 
634 	nfc_credits += credits;
635 
636 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
637 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
638 
639 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
640 	port->config.nfc_credits |= nfc_credits;
641 
642 	return tb_port_write(port, &port->config.nfc_credits,
643 			     TB_CFG_PORT, ADP_CS_4, 1);
644 }
645 
646 /**
647  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
648  * @port: Port whose counters to clear
649  * @counter: Counter index to clear
650  *
651  * Return: Returns 0 on success or an error code on failure.
652  */
653 int tb_port_clear_counter(struct tb_port *port, int counter)
654 {
655 	u32 zero[3] = { 0, 0, 0 };
656 	tb_port_dbg(port, "clearing counter %d\n", counter);
657 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
658 }
659 
660 /**
661  * tb_port_unlock() - Unlock downstream port
662  * @port: Port to unlock
663  *
664  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
665  * downstream router accessible for CM.
666  */
667 int tb_port_unlock(struct tb_port *port)
668 {
669 	if (tb_switch_is_icm(port->sw))
670 		return 0;
671 	if (!tb_port_is_null(port))
672 		return -EINVAL;
673 	if (tb_switch_is_usb4(port->sw))
674 		return usb4_port_unlock(port);
675 	return 0;
676 }
677 
678 static int __tb_port_enable(struct tb_port *port, bool enable)
679 {
680 	int ret;
681 	u32 phy;
682 
683 	if (!tb_port_is_null(port))
684 		return -EINVAL;
685 
686 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
687 			   port->cap_phy + LANE_ADP_CS_1, 1);
688 	if (ret)
689 		return ret;
690 
691 	if (enable)
692 		phy &= ~LANE_ADP_CS_1_LD;
693 	else
694 		phy |= LANE_ADP_CS_1_LD;
695 
696 
697 	ret = tb_port_write(port, &phy, TB_CFG_PORT,
698 			    port->cap_phy + LANE_ADP_CS_1, 1);
699 	if (ret)
700 		return ret;
701 
702 	tb_port_dbg(port, "lane %sabled\n", enable ? "en" : "dis");
703 	return 0;
704 }
705 
706 /**
707  * tb_port_enable() - Enable lane adapter
708  * @port: Port to enable (can be %NULL)
709  *
710  * This is used for lane 0 and 1 adapters to enable it.
711  */
712 int tb_port_enable(struct tb_port *port)
713 {
714 	return __tb_port_enable(port, true);
715 }
716 
717 /**
718  * tb_port_disable() - Disable lane adapter
719  * @port: Port to disable (can be %NULL)
720  *
721  * This is used for lane 0 and 1 adapters to disable it.
722  */
723 int tb_port_disable(struct tb_port *port)
724 {
725 	return __tb_port_enable(port, false);
726 }
727 
728 /*
729  * tb_init_port() - initialize a port
730  *
731  * This is a helper method for tb_switch_alloc. Does not check or initialize
732  * any downstream switches.
733  *
734  * Return: Returns 0 on success or an error code on failure.
735  */
736 static int tb_init_port(struct tb_port *port)
737 {
738 	int res;
739 	int cap;
740 
741 	INIT_LIST_HEAD(&port->list);
742 
743 	/* Control adapter does not have configuration space */
744 	if (!port->port)
745 		return 0;
746 
747 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
748 	if (res) {
749 		if (res == -ENODEV) {
750 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
751 			       port->port);
752 			port->disabled = true;
753 			return 0;
754 		}
755 		return res;
756 	}
757 
758 	/* Port 0 is the switch itself and has no PHY. */
759 	if (port->config.type == TB_TYPE_PORT) {
760 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
761 
762 		if (cap > 0)
763 			port->cap_phy = cap;
764 		else
765 			tb_port_WARN(port, "non switch port without a PHY\n");
766 
767 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
768 		if (cap > 0)
769 			port->cap_usb4 = cap;
770 
771 		/*
772 		 * USB4 ports the buffers allocated for the control path
773 		 * can be read from the path config space. Legacy
774 		 * devices we use hard-coded value.
775 		 */
776 		if (tb_switch_is_usb4(port->sw)) {
777 			struct tb_regs_hop hop;
778 
779 			if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
780 				port->ctl_credits = hop.initial_credits;
781 		}
782 		if (!port->ctl_credits)
783 			port->ctl_credits = 2;
784 
785 	} else {
786 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
787 		if (cap > 0)
788 			port->cap_adap = cap;
789 	}
790 
791 	port->total_credits =
792 		(port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
793 		ADP_CS_4_TOTAL_BUFFERS_SHIFT;
794 
795 	tb_dump_port(port->sw->tb, port);
796 	return 0;
797 }
798 
799 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
800 			       int max_hopid)
801 {
802 	int port_max_hopid;
803 	struct ida *ida;
804 
805 	if (in) {
806 		port_max_hopid = port->config.max_in_hop_id;
807 		ida = &port->in_hopids;
808 	} else {
809 		port_max_hopid = port->config.max_out_hop_id;
810 		ida = &port->out_hopids;
811 	}
812 
813 	/*
814 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
815 	 * reserved.
816 	 */
817 	if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
818 		min_hopid = TB_PATH_MIN_HOPID;
819 
820 	if (max_hopid < 0 || max_hopid > port_max_hopid)
821 		max_hopid = port_max_hopid;
822 
823 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
824 }
825 
826 /**
827  * tb_port_alloc_in_hopid() - Allocate input HopID from port
828  * @port: Port to allocate HopID for
829  * @min_hopid: Minimum acceptable input HopID
830  * @max_hopid: Maximum acceptable input HopID
831  *
832  * Return: HopID between @min_hopid and @max_hopid or negative errno in
833  * case of error.
834  */
835 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
836 {
837 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
838 }
839 
840 /**
841  * tb_port_alloc_out_hopid() - Allocate output HopID from port
842  * @port: Port to allocate HopID for
843  * @min_hopid: Minimum acceptable output HopID
844  * @max_hopid: Maximum acceptable output HopID
845  *
846  * Return: HopID between @min_hopid and @max_hopid or negative errno in
847  * case of error.
848  */
849 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
850 {
851 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
852 }
853 
854 /**
855  * tb_port_release_in_hopid() - Release allocated input HopID from port
856  * @port: Port whose HopID to release
857  * @hopid: HopID to release
858  */
859 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
860 {
861 	ida_simple_remove(&port->in_hopids, hopid);
862 }
863 
864 /**
865  * tb_port_release_out_hopid() - Release allocated output HopID from port
866  * @port: Port whose HopID to release
867  * @hopid: HopID to release
868  */
869 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
870 {
871 	ida_simple_remove(&port->out_hopids, hopid);
872 }
873 
874 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
875 					  const struct tb_switch *sw)
876 {
877 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
878 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
879 }
880 
881 /**
882  * tb_next_port_on_path() - Return next port for given port on a path
883  * @start: Start port of the walk
884  * @end: End port of the walk
885  * @prev: Previous port (%NULL if this is the first)
886  *
887  * This function can be used to walk from one port to another if they
888  * are connected through zero or more switches. If the @prev is dual
889  * link port, the function follows that link and returns another end on
890  * that same link.
891  *
892  * If the @end port has been reached, return %NULL.
893  *
894  * Domain tb->lock must be held when this function is called.
895  */
896 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
897 				     struct tb_port *prev)
898 {
899 	struct tb_port *next;
900 
901 	if (!prev)
902 		return start;
903 
904 	if (prev->sw == end->sw) {
905 		if (prev == end)
906 			return NULL;
907 		return end;
908 	}
909 
910 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
911 		next = tb_port_at(tb_route(end->sw), prev->sw);
912 		/* Walk down the topology if next == prev */
913 		if (prev->remote &&
914 		    (next == prev || next->dual_link_port == prev))
915 			next = prev->remote;
916 	} else {
917 		if (tb_is_upstream_port(prev)) {
918 			next = prev->remote;
919 		} else {
920 			next = tb_upstream_port(prev->sw);
921 			/*
922 			 * Keep the same link if prev and next are both
923 			 * dual link ports.
924 			 */
925 			if (next->dual_link_port &&
926 			    next->link_nr != prev->link_nr) {
927 				next = next->dual_link_port;
928 			}
929 		}
930 	}
931 
932 	return next != prev ? next : NULL;
933 }
934 
935 /**
936  * tb_port_get_link_speed() - Get current link speed
937  * @port: Port to check (USB4 or CIO)
938  *
939  * Returns link speed in Gb/s or negative errno in case of failure.
940  */
941 int tb_port_get_link_speed(struct tb_port *port)
942 {
943 	u32 val, speed;
944 	int ret;
945 
946 	if (!port->cap_phy)
947 		return -EINVAL;
948 
949 	ret = tb_port_read(port, &val, TB_CFG_PORT,
950 			   port->cap_phy + LANE_ADP_CS_1, 1);
951 	if (ret)
952 		return ret;
953 
954 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
955 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
956 	return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
957 }
958 
959 /**
960  * tb_port_get_link_width() - Get current link width
961  * @port: Port to check (USB4 or CIO)
962  *
963  * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane)
964  * or negative errno in case of failure.
965  */
966 int tb_port_get_link_width(struct tb_port *port)
967 {
968 	u32 val;
969 	int ret;
970 
971 	if (!port->cap_phy)
972 		return -EINVAL;
973 
974 	ret = tb_port_read(port, &val, TB_CFG_PORT,
975 			   port->cap_phy + LANE_ADP_CS_1, 1);
976 	if (ret)
977 		return ret;
978 
979 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
980 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
981 }
982 
983 static bool tb_port_is_width_supported(struct tb_port *port, int width)
984 {
985 	u32 phy, widths;
986 	int ret;
987 
988 	if (!port->cap_phy)
989 		return false;
990 
991 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
992 			   port->cap_phy + LANE_ADP_CS_0, 1);
993 	if (ret)
994 		return false;
995 
996 	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
997 		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
998 
999 	return !!(widths & width);
1000 }
1001 
1002 /**
1003  * tb_port_set_link_width() - Set target link width of the lane adapter
1004  * @port: Lane adapter
1005  * @width: Target link width (%1 or %2)
1006  *
1007  * Sets the target link width of the lane adapter to @width. Does not
1008  * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
1009  *
1010  * Return: %0 in case of success and negative errno in case of error
1011  */
1012 int tb_port_set_link_width(struct tb_port *port, unsigned int width)
1013 {
1014 	u32 val;
1015 	int ret;
1016 
1017 	if (!port->cap_phy)
1018 		return -EINVAL;
1019 
1020 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1021 			   port->cap_phy + LANE_ADP_CS_1, 1);
1022 	if (ret)
1023 		return ret;
1024 
1025 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1026 	switch (width) {
1027 	case 1:
1028 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1029 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1030 		break;
1031 	case 2:
1032 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1033 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1034 		break;
1035 	default:
1036 		return -EINVAL;
1037 	}
1038 
1039 	return tb_port_write(port, &val, TB_CFG_PORT,
1040 			     port->cap_phy + LANE_ADP_CS_1, 1);
1041 }
1042 
1043 /**
1044  * tb_port_set_lane_bonding() - Enable/disable lane bonding
1045  * @port: Lane adapter
1046  * @bonding: enable/disable bonding
1047  *
1048  * Enables or disables lane bonding. This should be called after target
1049  * link width has been set (tb_port_set_link_width()). Note in most
1050  * cases one should use tb_port_lane_bonding_enable() instead to enable
1051  * lane bonding.
1052  *
1053  * As a side effect sets @port->bonding accordingly (and does the same
1054  * for lane 1 too).
1055  *
1056  * Return: %0 in case of success and negative errno in case of error
1057  */
1058 int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1059 {
1060 	u32 val;
1061 	int ret;
1062 
1063 	if (!port->cap_phy)
1064 		return -EINVAL;
1065 
1066 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1067 			   port->cap_phy + LANE_ADP_CS_1, 1);
1068 	if (ret)
1069 		return ret;
1070 
1071 	if (bonding)
1072 		val |= LANE_ADP_CS_1_LB;
1073 	else
1074 		val &= ~LANE_ADP_CS_1_LB;
1075 
1076 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1077 			    port->cap_phy + LANE_ADP_CS_1, 1);
1078 	if (ret)
1079 		return ret;
1080 
1081 	/*
1082 	 * When lane 0 bonding is set it will affect lane 1 too so
1083 	 * update both.
1084 	 */
1085 	port->bonded = bonding;
1086 	port->dual_link_port->bonded = bonding;
1087 
1088 	return 0;
1089 }
1090 
1091 /**
1092  * tb_port_lane_bonding_enable() - Enable bonding on port
1093  * @port: port to enable
1094  *
1095  * Enable bonding by setting the link width of the port and the other
1096  * port in case of dual link port. Does not wait for the link to
1097  * actually reach the bonded state so caller needs to call
1098  * tb_port_wait_for_link_width() before enabling any paths through the
1099  * link to make sure the link is in expected state.
1100  *
1101  * Return: %0 in case of success and negative errno in case of error
1102  */
1103 int tb_port_lane_bonding_enable(struct tb_port *port)
1104 {
1105 	int ret;
1106 
1107 	/*
1108 	 * Enable lane bonding for both links if not already enabled by
1109 	 * for example the boot firmware.
1110 	 */
1111 	ret = tb_port_get_link_width(port);
1112 	if (ret == 1) {
1113 		ret = tb_port_set_link_width(port, 2);
1114 		if (ret)
1115 			goto err_lane0;
1116 	}
1117 
1118 	ret = tb_port_get_link_width(port->dual_link_port);
1119 	if (ret == 1) {
1120 		ret = tb_port_set_link_width(port->dual_link_port, 2);
1121 		if (ret)
1122 			goto err_lane0;
1123 	}
1124 
1125 	ret = tb_port_set_lane_bonding(port, true);
1126 	if (ret)
1127 		goto err_lane1;
1128 
1129 	return 0;
1130 
1131 err_lane1:
1132 	tb_port_set_link_width(port->dual_link_port, 1);
1133 err_lane0:
1134 	tb_port_set_link_width(port, 1);
1135 	return ret;
1136 }
1137 
1138 /**
1139  * tb_port_lane_bonding_disable() - Disable bonding on port
1140  * @port: port to disable
1141  *
1142  * Disable bonding by setting the link width of the port and the
1143  * other port in case of dual link port.
1144  */
1145 void tb_port_lane_bonding_disable(struct tb_port *port)
1146 {
1147 	tb_port_set_lane_bonding(port, false);
1148 	tb_port_set_link_width(port->dual_link_port, 1);
1149 	tb_port_set_link_width(port, 1);
1150 }
1151 
1152 /**
1153  * tb_port_wait_for_link_width() - Wait until link reaches specific width
1154  * @port: Port to wait for
1155  * @width: Expected link width (%1 or %2)
1156  * @timeout_msec: Timeout in ms how long to wait
1157  *
1158  * Should be used after both ends of the link have been bonded (or
1159  * bonding has been disabled) to wait until the link actually reaches
1160  * the expected state. Returns %-ETIMEDOUT if the @width was not reached
1161  * within the given timeout, %0 if it did.
1162  */
1163 int tb_port_wait_for_link_width(struct tb_port *port, int width,
1164 				int timeout_msec)
1165 {
1166 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1167 	int ret;
1168 
1169 	do {
1170 		ret = tb_port_get_link_width(port);
1171 		if (ret < 0) {
1172 			/*
1173 			 * Sometimes we get port locked error when
1174 			 * polling the lanes so we can ignore it and
1175 			 * retry.
1176 			 */
1177 			if (ret != -EACCES)
1178 				return ret;
1179 		} else if (ret == width) {
1180 			return 0;
1181 		}
1182 
1183 		usleep_range(1000, 2000);
1184 	} while (ktime_before(ktime_get(), timeout));
1185 
1186 	return -ETIMEDOUT;
1187 }
1188 
1189 static int tb_port_do_update_credits(struct tb_port *port)
1190 {
1191 	u32 nfc_credits;
1192 	int ret;
1193 
1194 	ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1195 	if (ret)
1196 		return ret;
1197 
1198 	if (nfc_credits != port->config.nfc_credits) {
1199 		u32 total;
1200 
1201 		total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1202 			ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1203 
1204 		tb_port_dbg(port, "total credits changed %u -> %u\n",
1205 			    port->total_credits, total);
1206 
1207 		port->config.nfc_credits = nfc_credits;
1208 		port->total_credits = total;
1209 	}
1210 
1211 	return 0;
1212 }
1213 
1214 /**
1215  * tb_port_update_credits() - Re-read port total credits
1216  * @port: Port to update
1217  *
1218  * After the link is bonded (or bonding was disabled) the port total
1219  * credits may change, so this function needs to be called to re-read
1220  * the credits. Updates also the second lane adapter.
1221  */
1222 int tb_port_update_credits(struct tb_port *port)
1223 {
1224 	int ret;
1225 
1226 	ret = tb_port_do_update_credits(port);
1227 	if (ret)
1228 		return ret;
1229 	return tb_port_do_update_credits(port->dual_link_port);
1230 }
1231 
1232 static int tb_port_start_lane_initialization(struct tb_port *port)
1233 {
1234 	int ret;
1235 
1236 	if (tb_switch_is_usb4(port->sw))
1237 		return 0;
1238 
1239 	ret = tb_lc_start_lane_initialization(port);
1240 	return ret == -EINVAL ? 0 : ret;
1241 }
1242 
1243 /*
1244  * Returns true if the port had something (router, XDomain) connected
1245  * before suspend.
1246  */
1247 static bool tb_port_resume(struct tb_port *port)
1248 {
1249 	bool has_remote = tb_port_has_remote(port);
1250 
1251 	if (port->usb4) {
1252 		usb4_port_device_resume(port->usb4);
1253 	} else if (!has_remote) {
1254 		/*
1255 		 * For disconnected downstream lane adapters start lane
1256 		 * initialization now so we detect future connects.
1257 		 *
1258 		 * For XDomain start the lane initialzation now so the
1259 		 * link gets re-established.
1260 		 *
1261 		 * This is only needed for non-USB4 ports.
1262 		 */
1263 		if (!tb_is_upstream_port(port) || port->xdomain)
1264 			tb_port_start_lane_initialization(port);
1265 	}
1266 
1267 	return has_remote || port->xdomain;
1268 }
1269 
1270 /**
1271  * tb_port_is_enabled() - Is the adapter port enabled
1272  * @port: Port to check
1273  */
1274 bool tb_port_is_enabled(struct tb_port *port)
1275 {
1276 	switch (port->config.type) {
1277 	case TB_TYPE_PCIE_UP:
1278 	case TB_TYPE_PCIE_DOWN:
1279 		return tb_pci_port_is_enabled(port);
1280 
1281 	case TB_TYPE_DP_HDMI_IN:
1282 	case TB_TYPE_DP_HDMI_OUT:
1283 		return tb_dp_port_is_enabled(port);
1284 
1285 	case TB_TYPE_USB3_UP:
1286 	case TB_TYPE_USB3_DOWN:
1287 		return tb_usb3_port_is_enabled(port);
1288 
1289 	default:
1290 		return false;
1291 	}
1292 }
1293 
1294 /**
1295  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1296  * @port: USB3 adapter port to check
1297  */
1298 bool tb_usb3_port_is_enabled(struct tb_port *port)
1299 {
1300 	u32 data;
1301 
1302 	if (tb_port_read(port, &data, TB_CFG_PORT,
1303 			 port->cap_adap + ADP_USB3_CS_0, 1))
1304 		return false;
1305 
1306 	return !!(data & ADP_USB3_CS_0_PE);
1307 }
1308 
1309 /**
1310  * tb_usb3_port_enable() - Enable USB3 adapter port
1311  * @port: USB3 adapter port to enable
1312  * @enable: Enable/disable the USB3 adapter
1313  */
1314 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1315 {
1316 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1317 			  : ADP_USB3_CS_0_V;
1318 
1319 	if (!port->cap_adap)
1320 		return -ENXIO;
1321 	return tb_port_write(port, &word, TB_CFG_PORT,
1322 			     port->cap_adap + ADP_USB3_CS_0, 1);
1323 }
1324 
1325 /**
1326  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1327  * @port: PCIe port to check
1328  */
1329 bool tb_pci_port_is_enabled(struct tb_port *port)
1330 {
1331 	u32 data;
1332 
1333 	if (tb_port_read(port, &data, TB_CFG_PORT,
1334 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1335 		return false;
1336 
1337 	return !!(data & ADP_PCIE_CS_0_PE);
1338 }
1339 
1340 /**
1341  * tb_pci_port_enable() - Enable PCIe adapter port
1342  * @port: PCIe port to enable
1343  * @enable: Enable/disable the PCIe adapter
1344  */
1345 int tb_pci_port_enable(struct tb_port *port, bool enable)
1346 {
1347 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1348 	if (!port->cap_adap)
1349 		return -ENXIO;
1350 	return tb_port_write(port, &word, TB_CFG_PORT,
1351 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1352 }
1353 
1354 /**
1355  * tb_dp_port_hpd_is_active() - Is HPD already active
1356  * @port: DP out port to check
1357  *
1358  * Checks if the DP OUT adapter port has HDP bit already set.
1359  */
1360 int tb_dp_port_hpd_is_active(struct tb_port *port)
1361 {
1362 	u32 data;
1363 	int ret;
1364 
1365 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1366 			   port->cap_adap + ADP_DP_CS_2, 1);
1367 	if (ret)
1368 		return ret;
1369 
1370 	return !!(data & ADP_DP_CS_2_HDP);
1371 }
1372 
1373 /**
1374  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1375  * @port: Port to clear HPD
1376  *
1377  * If the DP IN port has HDP set, this function can be used to clear it.
1378  */
1379 int tb_dp_port_hpd_clear(struct tb_port *port)
1380 {
1381 	u32 data;
1382 	int ret;
1383 
1384 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1385 			   port->cap_adap + ADP_DP_CS_3, 1);
1386 	if (ret)
1387 		return ret;
1388 
1389 	data |= ADP_DP_CS_3_HDPC;
1390 	return tb_port_write(port, &data, TB_CFG_PORT,
1391 			     port->cap_adap + ADP_DP_CS_3, 1);
1392 }
1393 
1394 /**
1395  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1396  * @port: DP IN/OUT port to set hops
1397  * @video: Video Hop ID
1398  * @aux_tx: AUX TX Hop ID
1399  * @aux_rx: AUX RX Hop ID
1400  *
1401  * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1402  * router DP adapters too but does not program the values as the fields
1403  * are read-only.
1404  */
1405 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1406 			unsigned int aux_tx, unsigned int aux_rx)
1407 {
1408 	u32 data[2];
1409 	int ret;
1410 
1411 	if (tb_switch_is_usb4(port->sw))
1412 		return 0;
1413 
1414 	ret = tb_port_read(port, data, TB_CFG_PORT,
1415 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1416 	if (ret)
1417 		return ret;
1418 
1419 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1420 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1421 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1422 
1423 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1424 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1425 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1426 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1427 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1428 
1429 	return tb_port_write(port, data, TB_CFG_PORT,
1430 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1431 }
1432 
1433 /**
1434  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1435  * @port: DP adapter port to check
1436  */
1437 bool tb_dp_port_is_enabled(struct tb_port *port)
1438 {
1439 	u32 data[2];
1440 
1441 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1442 			 ARRAY_SIZE(data)))
1443 		return false;
1444 
1445 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1446 }
1447 
1448 /**
1449  * tb_dp_port_enable() - Enables/disables DP paths of a port
1450  * @port: DP IN/OUT port
1451  * @enable: Enable/disable DP path
1452  *
1453  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1454  * calling this function.
1455  */
1456 int tb_dp_port_enable(struct tb_port *port, bool enable)
1457 {
1458 	u32 data[2];
1459 	int ret;
1460 
1461 	ret = tb_port_read(port, data, TB_CFG_PORT,
1462 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1463 	if (ret)
1464 		return ret;
1465 
1466 	if (enable)
1467 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1468 	else
1469 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1470 
1471 	return tb_port_write(port, data, TB_CFG_PORT,
1472 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1473 }
1474 
1475 /* switch utility functions */
1476 
1477 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1478 {
1479 	switch (sw->generation) {
1480 	case 1:
1481 		return "Thunderbolt 1";
1482 	case 2:
1483 		return "Thunderbolt 2";
1484 	case 3:
1485 		return "Thunderbolt 3";
1486 	case 4:
1487 		return "USB4";
1488 	default:
1489 		return "Unknown";
1490 	}
1491 }
1492 
1493 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1494 {
1495 	const struct tb_regs_switch_header *regs = &sw->config;
1496 
1497 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1498 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1499 	       regs->revision, regs->thunderbolt_version);
1500 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1501 	tb_dbg(tb, "  Config:\n");
1502 	tb_dbg(tb,
1503 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1504 	       regs->upstream_port_number, regs->depth,
1505 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1506 	       regs->enabled, regs->plug_events_delay);
1507 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1508 	       regs->__unknown1, regs->__unknown4);
1509 }
1510 
1511 /**
1512  * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1513  * @sw: Switch to reset
1514  *
1515  * Return: Returns 0 on success or an error code on failure.
1516  */
1517 int tb_switch_reset(struct tb_switch *sw)
1518 {
1519 	struct tb_cfg_result res;
1520 
1521 	if (sw->generation > 1)
1522 		return 0;
1523 
1524 	tb_sw_dbg(sw, "resetting switch\n");
1525 
1526 	res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1527 			      TB_CFG_SWITCH, 2, 2);
1528 	if (res.err)
1529 		return res.err;
1530 	res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1531 	if (res.err > 0)
1532 		return -EIO;
1533 	return res.err;
1534 }
1535 
1536 /**
1537  * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1538  * @sw: Router to read the offset value from
1539  * @offset: Offset in the router config space to read from
1540  * @bit: Bit mask in the offset to wait for
1541  * @value: Value of the bits to wait for
1542  * @timeout_msec: Timeout in ms how long to wait
1543  *
1544  * Wait till the specified bits in specified offset reach specified value.
1545  * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1546  * within the given timeout or a negative errno in case of failure.
1547  */
1548 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1549 			   u32 value, int timeout_msec)
1550 {
1551 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1552 
1553 	do {
1554 		u32 val;
1555 		int ret;
1556 
1557 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1558 		if (ret)
1559 			return ret;
1560 
1561 		if ((val & bit) == value)
1562 			return 0;
1563 
1564 		usleep_range(50, 100);
1565 	} while (ktime_before(ktime_get(), timeout));
1566 
1567 	return -ETIMEDOUT;
1568 }
1569 
1570 /*
1571  * tb_plug_events_active() - enable/disable plug events on a switch
1572  *
1573  * Also configures a sane plug_events_delay of 255ms.
1574  *
1575  * Return: Returns 0 on success or an error code on failure.
1576  */
1577 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1578 {
1579 	u32 data;
1580 	int res;
1581 
1582 	if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1583 		return 0;
1584 
1585 	sw->config.plug_events_delay = 0xff;
1586 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1587 	if (res)
1588 		return res;
1589 
1590 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1591 	if (res)
1592 		return res;
1593 
1594 	if (active) {
1595 		data = data & 0xFFFFFF83;
1596 		switch (sw->config.device_id) {
1597 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1598 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1599 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1600 			break;
1601 		default:
1602 			/*
1603 			 * Skip Alpine Ridge, it needs to have vendor
1604 			 * specific USB hotplug event enabled for the
1605 			 * internal xHCI to work.
1606 			 */
1607 			if (!tb_switch_is_alpine_ridge(sw))
1608 				data |= TB_PLUG_EVENTS_USB_DISABLE;
1609 		}
1610 	} else {
1611 		data = data | 0x7c;
1612 	}
1613 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1614 			   sw->cap_plug_events + 1, 1);
1615 }
1616 
1617 static ssize_t authorized_show(struct device *dev,
1618 			       struct device_attribute *attr,
1619 			       char *buf)
1620 {
1621 	struct tb_switch *sw = tb_to_switch(dev);
1622 
1623 	return sprintf(buf, "%u\n", sw->authorized);
1624 }
1625 
1626 static int disapprove_switch(struct device *dev, void *not_used)
1627 {
1628 	char *envp[] = { "AUTHORIZED=0", NULL };
1629 	struct tb_switch *sw;
1630 
1631 	sw = tb_to_switch(dev);
1632 	if (sw && sw->authorized) {
1633 		int ret;
1634 
1635 		/* First children */
1636 		ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1637 		if (ret)
1638 			return ret;
1639 
1640 		ret = tb_domain_disapprove_switch(sw->tb, sw);
1641 		if (ret)
1642 			return ret;
1643 
1644 		sw->authorized = 0;
1645 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1646 	}
1647 
1648 	return 0;
1649 }
1650 
1651 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1652 {
1653 	char envp_string[13];
1654 	int ret = -EINVAL;
1655 	char *envp[] = { envp_string, NULL };
1656 
1657 	if (!mutex_trylock(&sw->tb->lock))
1658 		return restart_syscall();
1659 
1660 	if (!!sw->authorized == !!val)
1661 		goto unlock;
1662 
1663 	switch (val) {
1664 	/* Disapprove switch */
1665 	case 0:
1666 		if (tb_route(sw)) {
1667 			ret = disapprove_switch(&sw->dev, NULL);
1668 			goto unlock;
1669 		}
1670 		break;
1671 
1672 	/* Approve switch */
1673 	case 1:
1674 		if (sw->key)
1675 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1676 		else
1677 			ret = tb_domain_approve_switch(sw->tb, sw);
1678 		break;
1679 
1680 	/* Challenge switch */
1681 	case 2:
1682 		if (sw->key)
1683 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1684 		break;
1685 
1686 	default:
1687 		break;
1688 	}
1689 
1690 	if (!ret) {
1691 		sw->authorized = val;
1692 		/*
1693 		 * Notify status change to the userspace, informing the new
1694 		 * value of /sys/bus/thunderbolt/devices/.../authorized.
1695 		 */
1696 		sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1697 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1698 	}
1699 
1700 unlock:
1701 	mutex_unlock(&sw->tb->lock);
1702 	return ret;
1703 }
1704 
1705 static ssize_t authorized_store(struct device *dev,
1706 				struct device_attribute *attr,
1707 				const char *buf, size_t count)
1708 {
1709 	struct tb_switch *sw = tb_to_switch(dev);
1710 	unsigned int val;
1711 	ssize_t ret;
1712 
1713 	ret = kstrtouint(buf, 0, &val);
1714 	if (ret)
1715 		return ret;
1716 	if (val > 2)
1717 		return -EINVAL;
1718 
1719 	pm_runtime_get_sync(&sw->dev);
1720 	ret = tb_switch_set_authorized(sw, val);
1721 	pm_runtime_mark_last_busy(&sw->dev);
1722 	pm_runtime_put_autosuspend(&sw->dev);
1723 
1724 	return ret ? ret : count;
1725 }
1726 static DEVICE_ATTR_RW(authorized);
1727 
1728 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1729 			 char *buf)
1730 {
1731 	struct tb_switch *sw = tb_to_switch(dev);
1732 
1733 	return sprintf(buf, "%u\n", sw->boot);
1734 }
1735 static DEVICE_ATTR_RO(boot);
1736 
1737 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1738 			   char *buf)
1739 {
1740 	struct tb_switch *sw = tb_to_switch(dev);
1741 
1742 	return sprintf(buf, "%#x\n", sw->device);
1743 }
1744 static DEVICE_ATTR_RO(device);
1745 
1746 static ssize_t
1747 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1748 {
1749 	struct tb_switch *sw = tb_to_switch(dev);
1750 
1751 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1752 }
1753 static DEVICE_ATTR_RO(device_name);
1754 
1755 static ssize_t
1756 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1757 {
1758 	struct tb_switch *sw = tb_to_switch(dev);
1759 
1760 	return sprintf(buf, "%u\n", sw->generation);
1761 }
1762 static DEVICE_ATTR_RO(generation);
1763 
1764 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1765 			char *buf)
1766 {
1767 	struct tb_switch *sw = tb_to_switch(dev);
1768 	ssize_t ret;
1769 
1770 	if (!mutex_trylock(&sw->tb->lock))
1771 		return restart_syscall();
1772 
1773 	if (sw->key)
1774 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1775 	else
1776 		ret = sprintf(buf, "\n");
1777 
1778 	mutex_unlock(&sw->tb->lock);
1779 	return ret;
1780 }
1781 
1782 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1783 			 const char *buf, size_t count)
1784 {
1785 	struct tb_switch *sw = tb_to_switch(dev);
1786 	u8 key[TB_SWITCH_KEY_SIZE];
1787 	ssize_t ret = count;
1788 	bool clear = false;
1789 
1790 	if (!strcmp(buf, "\n"))
1791 		clear = true;
1792 	else if (hex2bin(key, buf, sizeof(key)))
1793 		return -EINVAL;
1794 
1795 	if (!mutex_trylock(&sw->tb->lock))
1796 		return restart_syscall();
1797 
1798 	if (sw->authorized) {
1799 		ret = -EBUSY;
1800 	} else {
1801 		kfree(sw->key);
1802 		if (clear) {
1803 			sw->key = NULL;
1804 		} else {
1805 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1806 			if (!sw->key)
1807 				ret = -ENOMEM;
1808 		}
1809 	}
1810 
1811 	mutex_unlock(&sw->tb->lock);
1812 	return ret;
1813 }
1814 static DEVICE_ATTR(key, 0600, key_show, key_store);
1815 
1816 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1817 			  char *buf)
1818 {
1819 	struct tb_switch *sw = tb_to_switch(dev);
1820 
1821 	return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1822 }
1823 
1824 /*
1825  * Currently all lanes must run at the same speed but we expose here
1826  * both directions to allow possible asymmetric links in the future.
1827  */
1828 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1829 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1830 
1831 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1832 			  char *buf)
1833 {
1834 	struct tb_switch *sw = tb_to_switch(dev);
1835 
1836 	return sprintf(buf, "%u\n", sw->link_width);
1837 }
1838 
1839 /*
1840  * Currently link has same amount of lanes both directions (1 or 2) but
1841  * expose them separately to allow possible asymmetric links in the future.
1842  */
1843 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1844 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1845 
1846 static ssize_t nvm_authenticate_show(struct device *dev,
1847 	struct device_attribute *attr, char *buf)
1848 {
1849 	struct tb_switch *sw = tb_to_switch(dev);
1850 	u32 status;
1851 
1852 	nvm_get_auth_status(sw, &status);
1853 	return sprintf(buf, "%#x\n", status);
1854 }
1855 
1856 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1857 				      bool disconnect)
1858 {
1859 	struct tb_switch *sw = tb_to_switch(dev);
1860 	int val, ret;
1861 
1862 	pm_runtime_get_sync(&sw->dev);
1863 
1864 	if (!mutex_trylock(&sw->tb->lock)) {
1865 		ret = restart_syscall();
1866 		goto exit_rpm;
1867 	}
1868 
1869 	/* If NVMem devices are not yet added */
1870 	if (!sw->nvm) {
1871 		ret = -EAGAIN;
1872 		goto exit_unlock;
1873 	}
1874 
1875 	ret = kstrtoint(buf, 10, &val);
1876 	if (ret)
1877 		goto exit_unlock;
1878 
1879 	/* Always clear the authentication status */
1880 	nvm_clear_auth_status(sw);
1881 
1882 	if (val > 0) {
1883 		if (val == AUTHENTICATE_ONLY) {
1884 			if (disconnect)
1885 				ret = -EINVAL;
1886 			else
1887 				ret = nvm_authenticate(sw, true);
1888 		} else {
1889 			if (!sw->nvm->flushed) {
1890 				if (!sw->nvm->buf) {
1891 					ret = -EINVAL;
1892 					goto exit_unlock;
1893 				}
1894 
1895 				ret = nvm_validate_and_write(sw);
1896 				if (ret || val == WRITE_ONLY)
1897 					goto exit_unlock;
1898 			}
1899 			if (val == WRITE_AND_AUTHENTICATE) {
1900 				if (disconnect)
1901 					ret = tb_lc_force_power(sw);
1902 				else
1903 					ret = nvm_authenticate(sw, false);
1904 			}
1905 		}
1906 	}
1907 
1908 exit_unlock:
1909 	mutex_unlock(&sw->tb->lock);
1910 exit_rpm:
1911 	pm_runtime_mark_last_busy(&sw->dev);
1912 	pm_runtime_put_autosuspend(&sw->dev);
1913 
1914 	return ret;
1915 }
1916 
1917 static ssize_t nvm_authenticate_store(struct device *dev,
1918 	struct device_attribute *attr, const char *buf, size_t count)
1919 {
1920 	int ret = nvm_authenticate_sysfs(dev, buf, false);
1921 	if (ret)
1922 		return ret;
1923 	return count;
1924 }
1925 static DEVICE_ATTR_RW(nvm_authenticate);
1926 
1927 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1928 	struct device_attribute *attr, char *buf)
1929 {
1930 	return nvm_authenticate_show(dev, attr, buf);
1931 }
1932 
1933 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1934 	struct device_attribute *attr, const char *buf, size_t count)
1935 {
1936 	int ret;
1937 
1938 	ret = nvm_authenticate_sysfs(dev, buf, true);
1939 	return ret ? ret : count;
1940 }
1941 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1942 
1943 static ssize_t nvm_version_show(struct device *dev,
1944 				struct device_attribute *attr, char *buf)
1945 {
1946 	struct tb_switch *sw = tb_to_switch(dev);
1947 	int ret;
1948 
1949 	if (!mutex_trylock(&sw->tb->lock))
1950 		return restart_syscall();
1951 
1952 	if (sw->safe_mode)
1953 		ret = -ENODATA;
1954 	else if (!sw->nvm)
1955 		ret = -EAGAIN;
1956 	else
1957 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1958 
1959 	mutex_unlock(&sw->tb->lock);
1960 
1961 	return ret;
1962 }
1963 static DEVICE_ATTR_RO(nvm_version);
1964 
1965 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1966 			   char *buf)
1967 {
1968 	struct tb_switch *sw = tb_to_switch(dev);
1969 
1970 	return sprintf(buf, "%#x\n", sw->vendor);
1971 }
1972 static DEVICE_ATTR_RO(vendor);
1973 
1974 static ssize_t
1975 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1976 {
1977 	struct tb_switch *sw = tb_to_switch(dev);
1978 
1979 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1980 }
1981 static DEVICE_ATTR_RO(vendor_name);
1982 
1983 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1984 			      char *buf)
1985 {
1986 	struct tb_switch *sw = tb_to_switch(dev);
1987 
1988 	return sprintf(buf, "%pUb\n", sw->uuid);
1989 }
1990 static DEVICE_ATTR_RO(unique_id);
1991 
1992 static struct attribute *switch_attrs[] = {
1993 	&dev_attr_authorized.attr,
1994 	&dev_attr_boot.attr,
1995 	&dev_attr_device.attr,
1996 	&dev_attr_device_name.attr,
1997 	&dev_attr_generation.attr,
1998 	&dev_attr_key.attr,
1999 	&dev_attr_nvm_authenticate.attr,
2000 	&dev_attr_nvm_authenticate_on_disconnect.attr,
2001 	&dev_attr_nvm_version.attr,
2002 	&dev_attr_rx_speed.attr,
2003 	&dev_attr_rx_lanes.attr,
2004 	&dev_attr_tx_speed.attr,
2005 	&dev_attr_tx_lanes.attr,
2006 	&dev_attr_vendor.attr,
2007 	&dev_attr_vendor_name.attr,
2008 	&dev_attr_unique_id.attr,
2009 	NULL,
2010 };
2011 
2012 static umode_t switch_attr_is_visible(struct kobject *kobj,
2013 				      struct attribute *attr, int n)
2014 {
2015 	struct device *dev = kobj_to_dev(kobj);
2016 	struct tb_switch *sw = tb_to_switch(dev);
2017 
2018 	if (attr == &dev_attr_authorized.attr) {
2019 		if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2020 		    sw->tb->security_level == TB_SECURITY_DPONLY)
2021 			return 0;
2022 	} else if (attr == &dev_attr_device.attr) {
2023 		if (!sw->device)
2024 			return 0;
2025 	} else if (attr == &dev_attr_device_name.attr) {
2026 		if (!sw->device_name)
2027 			return 0;
2028 	} else if (attr == &dev_attr_vendor.attr)  {
2029 		if (!sw->vendor)
2030 			return 0;
2031 	} else if (attr == &dev_attr_vendor_name.attr)  {
2032 		if (!sw->vendor_name)
2033 			return 0;
2034 	} else if (attr == &dev_attr_key.attr) {
2035 		if (tb_route(sw) &&
2036 		    sw->tb->security_level == TB_SECURITY_SECURE &&
2037 		    sw->security_level == TB_SECURITY_SECURE)
2038 			return attr->mode;
2039 		return 0;
2040 	} else if (attr == &dev_attr_rx_speed.attr ||
2041 		   attr == &dev_attr_rx_lanes.attr ||
2042 		   attr == &dev_attr_tx_speed.attr ||
2043 		   attr == &dev_attr_tx_lanes.attr) {
2044 		if (tb_route(sw))
2045 			return attr->mode;
2046 		return 0;
2047 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
2048 		if (nvm_upgradeable(sw))
2049 			return attr->mode;
2050 		return 0;
2051 	} else if (attr == &dev_attr_nvm_version.attr) {
2052 		if (nvm_readable(sw))
2053 			return attr->mode;
2054 		return 0;
2055 	} else if (attr == &dev_attr_boot.attr) {
2056 		if (tb_route(sw))
2057 			return attr->mode;
2058 		return 0;
2059 	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2060 		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2061 			return attr->mode;
2062 		return 0;
2063 	}
2064 
2065 	return sw->safe_mode ? 0 : attr->mode;
2066 }
2067 
2068 static const struct attribute_group switch_group = {
2069 	.is_visible = switch_attr_is_visible,
2070 	.attrs = switch_attrs,
2071 };
2072 
2073 static const struct attribute_group *switch_groups[] = {
2074 	&switch_group,
2075 	NULL,
2076 };
2077 
2078 static void tb_switch_release(struct device *dev)
2079 {
2080 	struct tb_switch *sw = tb_to_switch(dev);
2081 	struct tb_port *port;
2082 
2083 	dma_port_free(sw->dma_port);
2084 
2085 	tb_switch_for_each_port(sw, port) {
2086 		ida_destroy(&port->in_hopids);
2087 		ida_destroy(&port->out_hopids);
2088 	}
2089 
2090 	kfree(sw->uuid);
2091 	kfree(sw->device_name);
2092 	kfree(sw->vendor_name);
2093 	kfree(sw->ports);
2094 	kfree(sw->drom);
2095 	kfree(sw->key);
2096 	kfree(sw);
2097 }
2098 
2099 static int tb_switch_uevent(struct device *dev, struct kobj_uevent_env *env)
2100 {
2101 	struct tb_switch *sw = tb_to_switch(dev);
2102 	const char *type;
2103 
2104 	if (sw->config.thunderbolt_version == USB4_VERSION_1_0) {
2105 		if (add_uevent_var(env, "USB4_VERSION=1.0"))
2106 			return -ENOMEM;
2107 	}
2108 
2109 	if (!tb_route(sw)) {
2110 		type = "host";
2111 	} else {
2112 		const struct tb_port *port;
2113 		bool hub = false;
2114 
2115 		/* Device is hub if it has any downstream ports */
2116 		tb_switch_for_each_port(sw, port) {
2117 			if (!port->disabled && !tb_is_upstream_port(port) &&
2118 			     tb_port_is_null(port)) {
2119 				hub = true;
2120 				break;
2121 			}
2122 		}
2123 
2124 		type = hub ? "hub" : "device";
2125 	}
2126 
2127 	if (add_uevent_var(env, "USB4_TYPE=%s", type))
2128 		return -ENOMEM;
2129 	return 0;
2130 }
2131 
2132 /*
2133  * Currently only need to provide the callbacks. Everything else is handled
2134  * in the connection manager.
2135  */
2136 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2137 {
2138 	struct tb_switch *sw = tb_to_switch(dev);
2139 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2140 
2141 	if (cm_ops->runtime_suspend_switch)
2142 		return cm_ops->runtime_suspend_switch(sw);
2143 
2144 	return 0;
2145 }
2146 
2147 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2148 {
2149 	struct tb_switch *sw = tb_to_switch(dev);
2150 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2151 
2152 	if (cm_ops->runtime_resume_switch)
2153 		return cm_ops->runtime_resume_switch(sw);
2154 	return 0;
2155 }
2156 
2157 static const struct dev_pm_ops tb_switch_pm_ops = {
2158 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2159 			   NULL)
2160 };
2161 
2162 struct device_type tb_switch_type = {
2163 	.name = "thunderbolt_device",
2164 	.release = tb_switch_release,
2165 	.uevent = tb_switch_uevent,
2166 	.pm = &tb_switch_pm_ops,
2167 };
2168 
2169 static int tb_switch_get_generation(struct tb_switch *sw)
2170 {
2171 	switch (sw->config.device_id) {
2172 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2173 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2174 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2175 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2176 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2177 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2178 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2179 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2180 		return 1;
2181 
2182 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2183 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2184 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2185 		return 2;
2186 
2187 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2188 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2189 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2190 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2191 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2192 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2193 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2194 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2195 	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2196 	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2197 		return 3;
2198 
2199 	default:
2200 		if (tb_switch_is_usb4(sw))
2201 			return 4;
2202 
2203 		/*
2204 		 * For unknown switches assume generation to be 1 to be
2205 		 * on the safe side.
2206 		 */
2207 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
2208 			   sw->config.device_id);
2209 		return 1;
2210 	}
2211 }
2212 
2213 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2214 {
2215 	int max_depth;
2216 
2217 	if (tb_switch_is_usb4(sw) ||
2218 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2219 		max_depth = USB4_SWITCH_MAX_DEPTH;
2220 	else
2221 		max_depth = TB_SWITCH_MAX_DEPTH;
2222 
2223 	return depth > max_depth;
2224 }
2225 
2226 /**
2227  * tb_switch_alloc() - allocate a switch
2228  * @tb: Pointer to the owning domain
2229  * @parent: Parent device for this switch
2230  * @route: Route string for this switch
2231  *
2232  * Allocates and initializes a switch. Will not upload configuration to
2233  * the switch. For that you need to call tb_switch_configure()
2234  * separately. The returned switch should be released by calling
2235  * tb_switch_put().
2236  *
2237  * Return: Pointer to the allocated switch or ERR_PTR() in case of
2238  * failure.
2239  */
2240 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2241 				  u64 route)
2242 {
2243 	struct tb_switch *sw;
2244 	int upstream_port;
2245 	int i, ret, depth;
2246 
2247 	/* Unlock the downstream port so we can access the switch below */
2248 	if (route) {
2249 		struct tb_switch *parent_sw = tb_to_switch(parent);
2250 		struct tb_port *down;
2251 
2252 		down = tb_port_at(route, parent_sw);
2253 		tb_port_unlock(down);
2254 	}
2255 
2256 	depth = tb_route_length(route);
2257 
2258 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2259 	if (upstream_port < 0)
2260 		return ERR_PTR(upstream_port);
2261 
2262 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2263 	if (!sw)
2264 		return ERR_PTR(-ENOMEM);
2265 
2266 	sw->tb = tb;
2267 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2268 	if (ret)
2269 		goto err_free_sw_ports;
2270 
2271 	sw->generation = tb_switch_get_generation(sw);
2272 
2273 	tb_dbg(tb, "current switch config:\n");
2274 	tb_dump_switch(tb, sw);
2275 
2276 	/* configure switch */
2277 	sw->config.upstream_port_number = upstream_port;
2278 	sw->config.depth = depth;
2279 	sw->config.route_hi = upper_32_bits(route);
2280 	sw->config.route_lo = lower_32_bits(route);
2281 	sw->config.enabled = 0;
2282 
2283 	/* Make sure we do not exceed maximum topology limit */
2284 	if (tb_switch_exceeds_max_depth(sw, depth)) {
2285 		ret = -EADDRNOTAVAIL;
2286 		goto err_free_sw_ports;
2287 	}
2288 
2289 	/* initialize ports */
2290 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2291 				GFP_KERNEL);
2292 	if (!sw->ports) {
2293 		ret = -ENOMEM;
2294 		goto err_free_sw_ports;
2295 	}
2296 
2297 	for (i = 0; i <= sw->config.max_port_number; i++) {
2298 		/* minimum setup for tb_find_cap and tb_drom_read to work */
2299 		sw->ports[i].sw = sw;
2300 		sw->ports[i].port = i;
2301 
2302 		/* Control port does not need HopID allocation */
2303 		if (i) {
2304 			ida_init(&sw->ports[i].in_hopids);
2305 			ida_init(&sw->ports[i].out_hopids);
2306 		}
2307 	}
2308 
2309 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2310 	if (ret > 0)
2311 		sw->cap_plug_events = ret;
2312 
2313 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2314 	if (ret > 0)
2315 		sw->cap_vsec_tmu = ret;
2316 
2317 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2318 	if (ret > 0)
2319 		sw->cap_lc = ret;
2320 
2321 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2322 	if (ret > 0)
2323 		sw->cap_lp = ret;
2324 
2325 	/* Root switch is always authorized */
2326 	if (!route)
2327 		sw->authorized = true;
2328 
2329 	device_initialize(&sw->dev);
2330 	sw->dev.parent = parent;
2331 	sw->dev.bus = &tb_bus_type;
2332 	sw->dev.type = &tb_switch_type;
2333 	sw->dev.groups = switch_groups;
2334 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2335 
2336 	return sw;
2337 
2338 err_free_sw_ports:
2339 	kfree(sw->ports);
2340 	kfree(sw);
2341 
2342 	return ERR_PTR(ret);
2343 }
2344 
2345 /**
2346  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2347  * @tb: Pointer to the owning domain
2348  * @parent: Parent device for this switch
2349  * @route: Route string for this switch
2350  *
2351  * This creates a switch in safe mode. This means the switch pretty much
2352  * lacks all capabilities except DMA configuration port before it is
2353  * flashed with a valid NVM firmware.
2354  *
2355  * The returned switch must be released by calling tb_switch_put().
2356  *
2357  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2358  */
2359 struct tb_switch *
2360 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2361 {
2362 	struct tb_switch *sw;
2363 
2364 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2365 	if (!sw)
2366 		return ERR_PTR(-ENOMEM);
2367 
2368 	sw->tb = tb;
2369 	sw->config.depth = tb_route_length(route);
2370 	sw->config.route_hi = upper_32_bits(route);
2371 	sw->config.route_lo = lower_32_bits(route);
2372 	sw->safe_mode = true;
2373 
2374 	device_initialize(&sw->dev);
2375 	sw->dev.parent = parent;
2376 	sw->dev.bus = &tb_bus_type;
2377 	sw->dev.type = &tb_switch_type;
2378 	sw->dev.groups = switch_groups;
2379 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2380 
2381 	return sw;
2382 }
2383 
2384 /**
2385  * tb_switch_configure() - Uploads configuration to the switch
2386  * @sw: Switch to configure
2387  *
2388  * Call this function before the switch is added to the system. It will
2389  * upload configuration to the switch and makes it available for the
2390  * connection manager to use. Can be called to the switch again after
2391  * resume from low power states to re-initialize it.
2392  *
2393  * Return: %0 in case of success and negative errno in case of failure
2394  */
2395 int tb_switch_configure(struct tb_switch *sw)
2396 {
2397 	struct tb *tb = sw->tb;
2398 	u64 route;
2399 	int ret;
2400 
2401 	route = tb_route(sw);
2402 
2403 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2404 	       sw->config.enabled ? "restoring" : "initializing", route,
2405 	       tb_route_length(route), sw->config.upstream_port_number);
2406 
2407 	sw->config.enabled = 1;
2408 
2409 	if (tb_switch_is_usb4(sw)) {
2410 		/*
2411 		 * For USB4 devices, we need to program the CM version
2412 		 * accordingly so that it knows to expose all the
2413 		 * additional capabilities.
2414 		 */
2415 		sw->config.cmuv = USB4_VERSION_1_0;
2416 
2417 		/* Enumerate the switch */
2418 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2419 				  ROUTER_CS_1, 4);
2420 		if (ret)
2421 			return ret;
2422 
2423 		ret = usb4_switch_setup(sw);
2424 	} else {
2425 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2426 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2427 				   sw->config.vendor_id);
2428 
2429 		if (!sw->cap_plug_events) {
2430 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2431 			return -ENODEV;
2432 		}
2433 
2434 		/* Enumerate the switch */
2435 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2436 				  ROUTER_CS_1, 3);
2437 	}
2438 	if (ret)
2439 		return ret;
2440 
2441 	return tb_plug_events_active(sw, true);
2442 }
2443 
2444 static int tb_switch_set_uuid(struct tb_switch *sw)
2445 {
2446 	bool uid = false;
2447 	u32 uuid[4];
2448 	int ret;
2449 
2450 	if (sw->uuid)
2451 		return 0;
2452 
2453 	if (tb_switch_is_usb4(sw)) {
2454 		ret = usb4_switch_read_uid(sw, &sw->uid);
2455 		if (ret)
2456 			return ret;
2457 		uid = true;
2458 	} else {
2459 		/*
2460 		 * The newer controllers include fused UUID as part of
2461 		 * link controller specific registers
2462 		 */
2463 		ret = tb_lc_read_uuid(sw, uuid);
2464 		if (ret) {
2465 			if (ret != -EINVAL)
2466 				return ret;
2467 			uid = true;
2468 		}
2469 	}
2470 
2471 	if (uid) {
2472 		/*
2473 		 * ICM generates UUID based on UID and fills the upper
2474 		 * two words with ones. This is not strictly following
2475 		 * UUID format but we want to be compatible with it so
2476 		 * we do the same here.
2477 		 */
2478 		uuid[0] = sw->uid & 0xffffffff;
2479 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2480 		uuid[2] = 0xffffffff;
2481 		uuid[3] = 0xffffffff;
2482 	}
2483 
2484 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2485 	if (!sw->uuid)
2486 		return -ENOMEM;
2487 	return 0;
2488 }
2489 
2490 static int tb_switch_add_dma_port(struct tb_switch *sw)
2491 {
2492 	u32 status;
2493 	int ret;
2494 
2495 	switch (sw->generation) {
2496 	case 2:
2497 		/* Only root switch can be upgraded */
2498 		if (tb_route(sw))
2499 			return 0;
2500 
2501 		fallthrough;
2502 	case 3:
2503 	case 4:
2504 		ret = tb_switch_set_uuid(sw);
2505 		if (ret)
2506 			return ret;
2507 		break;
2508 
2509 	default:
2510 		/*
2511 		 * DMA port is the only thing available when the switch
2512 		 * is in safe mode.
2513 		 */
2514 		if (!sw->safe_mode)
2515 			return 0;
2516 		break;
2517 	}
2518 
2519 	if (sw->no_nvm_upgrade)
2520 		return 0;
2521 
2522 	if (tb_switch_is_usb4(sw)) {
2523 		ret = usb4_switch_nvm_authenticate_status(sw, &status);
2524 		if (ret)
2525 			return ret;
2526 
2527 		if (status) {
2528 			tb_sw_info(sw, "switch flash authentication failed\n");
2529 			nvm_set_auth_status(sw, status);
2530 		}
2531 
2532 		return 0;
2533 	}
2534 
2535 	/* Root switch DMA port requires running firmware */
2536 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2537 		return 0;
2538 
2539 	sw->dma_port = dma_port_alloc(sw);
2540 	if (!sw->dma_port)
2541 		return 0;
2542 
2543 	/*
2544 	 * If there is status already set then authentication failed
2545 	 * when the dma_port_flash_update_auth() returned. Power cycling
2546 	 * is not needed (it was done already) so only thing we do here
2547 	 * is to unblock runtime PM of the root port.
2548 	 */
2549 	nvm_get_auth_status(sw, &status);
2550 	if (status) {
2551 		if (!tb_route(sw))
2552 			nvm_authenticate_complete_dma_port(sw);
2553 		return 0;
2554 	}
2555 
2556 	/*
2557 	 * Check status of the previous flash authentication. If there
2558 	 * is one we need to power cycle the switch in any case to make
2559 	 * it functional again.
2560 	 */
2561 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2562 	if (ret <= 0)
2563 		return ret;
2564 
2565 	/* Now we can allow root port to suspend again */
2566 	if (!tb_route(sw))
2567 		nvm_authenticate_complete_dma_port(sw);
2568 
2569 	if (status) {
2570 		tb_sw_info(sw, "switch flash authentication failed\n");
2571 		nvm_set_auth_status(sw, status);
2572 	}
2573 
2574 	tb_sw_info(sw, "power cycling the switch now\n");
2575 	dma_port_power_cycle(sw->dma_port);
2576 
2577 	/*
2578 	 * We return error here which causes the switch adding failure.
2579 	 * It should appear back after power cycle is complete.
2580 	 */
2581 	return -ESHUTDOWN;
2582 }
2583 
2584 static void tb_switch_default_link_ports(struct tb_switch *sw)
2585 {
2586 	int i;
2587 
2588 	for (i = 1; i <= sw->config.max_port_number; i++) {
2589 		struct tb_port *port = &sw->ports[i];
2590 		struct tb_port *subordinate;
2591 
2592 		if (!tb_port_is_null(port))
2593 			continue;
2594 
2595 		/* Check for the subordinate port */
2596 		if (i == sw->config.max_port_number ||
2597 		    !tb_port_is_null(&sw->ports[i + 1]))
2598 			continue;
2599 
2600 		/* Link them if not already done so (by DROM) */
2601 		subordinate = &sw->ports[i + 1];
2602 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2603 			port->link_nr = 0;
2604 			port->dual_link_port = subordinate;
2605 			subordinate->link_nr = 1;
2606 			subordinate->dual_link_port = port;
2607 
2608 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2609 				  port->port, subordinate->port);
2610 		}
2611 	}
2612 }
2613 
2614 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2615 {
2616 	const struct tb_port *up = tb_upstream_port(sw);
2617 
2618 	if (!up->dual_link_port || !up->dual_link_port->remote)
2619 		return false;
2620 
2621 	if (tb_switch_is_usb4(sw))
2622 		return usb4_switch_lane_bonding_possible(sw);
2623 	return tb_lc_lane_bonding_possible(sw);
2624 }
2625 
2626 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2627 {
2628 	struct tb_port *up;
2629 	bool change = false;
2630 	int ret;
2631 
2632 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2633 		return 0;
2634 
2635 	up = tb_upstream_port(sw);
2636 
2637 	ret = tb_port_get_link_speed(up);
2638 	if (ret < 0)
2639 		return ret;
2640 	if (sw->link_speed != ret)
2641 		change = true;
2642 	sw->link_speed = ret;
2643 
2644 	ret = tb_port_get_link_width(up);
2645 	if (ret < 0)
2646 		return ret;
2647 	if (sw->link_width != ret)
2648 		change = true;
2649 	sw->link_width = ret;
2650 
2651 	/* Notify userspace that there is possible link attribute change */
2652 	if (device_is_registered(&sw->dev) && change)
2653 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2654 
2655 	return 0;
2656 }
2657 
2658 /**
2659  * tb_switch_lane_bonding_enable() - Enable lane bonding
2660  * @sw: Switch to enable lane bonding
2661  *
2662  * Connection manager can call this function to enable lane bonding of a
2663  * switch. If conditions are correct and both switches support the feature,
2664  * lanes are bonded. It is safe to call this to any switch.
2665  */
2666 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2667 {
2668 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2669 	struct tb_port *up, *down;
2670 	u64 route = tb_route(sw);
2671 	int ret;
2672 
2673 	if (!route)
2674 		return 0;
2675 
2676 	if (!tb_switch_lane_bonding_possible(sw))
2677 		return 0;
2678 
2679 	up = tb_upstream_port(sw);
2680 	down = tb_port_at(route, parent);
2681 
2682 	if (!tb_port_is_width_supported(up, 2) ||
2683 	    !tb_port_is_width_supported(down, 2))
2684 		return 0;
2685 
2686 	ret = tb_port_lane_bonding_enable(up);
2687 	if (ret) {
2688 		tb_port_warn(up, "failed to enable lane bonding\n");
2689 		return ret;
2690 	}
2691 
2692 	ret = tb_port_lane_bonding_enable(down);
2693 	if (ret) {
2694 		tb_port_warn(down, "failed to enable lane bonding\n");
2695 		tb_port_lane_bonding_disable(up);
2696 		return ret;
2697 	}
2698 
2699 	ret = tb_port_wait_for_link_width(down, 2, 100);
2700 	if (ret) {
2701 		tb_port_warn(down, "timeout enabling lane bonding\n");
2702 		return ret;
2703 	}
2704 
2705 	tb_port_update_credits(down);
2706 	tb_port_update_credits(up);
2707 	tb_switch_update_link_attributes(sw);
2708 
2709 	tb_sw_dbg(sw, "lane bonding enabled\n");
2710 	return ret;
2711 }
2712 
2713 /**
2714  * tb_switch_lane_bonding_disable() - Disable lane bonding
2715  * @sw: Switch whose lane bonding to disable
2716  *
2717  * Disables lane bonding between @sw and parent. This can be called even
2718  * if lanes were not bonded originally.
2719  */
2720 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2721 {
2722 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2723 	struct tb_port *up, *down;
2724 
2725 	if (!tb_route(sw))
2726 		return;
2727 
2728 	up = tb_upstream_port(sw);
2729 	if (!up->bonded)
2730 		return;
2731 
2732 	down = tb_port_at(tb_route(sw), parent);
2733 
2734 	tb_port_lane_bonding_disable(up);
2735 	tb_port_lane_bonding_disable(down);
2736 
2737 	/*
2738 	 * It is fine if we get other errors as the router might have
2739 	 * been unplugged.
2740 	 */
2741 	if (tb_port_wait_for_link_width(down, 1, 100) == -ETIMEDOUT)
2742 		tb_sw_warn(sw, "timeout disabling lane bonding\n");
2743 
2744 	tb_port_update_credits(down);
2745 	tb_port_update_credits(up);
2746 	tb_switch_update_link_attributes(sw);
2747 
2748 	tb_sw_dbg(sw, "lane bonding disabled\n");
2749 }
2750 
2751 /**
2752  * tb_switch_configure_link() - Set link configured
2753  * @sw: Switch whose link is configured
2754  *
2755  * Sets the link upstream from @sw configured (from both ends) so that
2756  * it will not be disconnected when the domain exits sleep. Can be
2757  * called for any switch.
2758  *
2759  * It is recommended that this is called after lane bonding is enabled.
2760  *
2761  * Returns %0 on success and negative errno in case of error.
2762  */
2763 int tb_switch_configure_link(struct tb_switch *sw)
2764 {
2765 	struct tb_port *up, *down;
2766 	int ret;
2767 
2768 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2769 		return 0;
2770 
2771 	up = tb_upstream_port(sw);
2772 	if (tb_switch_is_usb4(up->sw))
2773 		ret = usb4_port_configure(up);
2774 	else
2775 		ret = tb_lc_configure_port(up);
2776 	if (ret)
2777 		return ret;
2778 
2779 	down = up->remote;
2780 	if (tb_switch_is_usb4(down->sw))
2781 		return usb4_port_configure(down);
2782 	return tb_lc_configure_port(down);
2783 }
2784 
2785 /**
2786  * tb_switch_unconfigure_link() - Unconfigure link
2787  * @sw: Switch whose link is unconfigured
2788  *
2789  * Sets the link unconfigured so the @sw will be disconnected if the
2790  * domain exists sleep.
2791  */
2792 void tb_switch_unconfigure_link(struct tb_switch *sw)
2793 {
2794 	struct tb_port *up, *down;
2795 
2796 	if (sw->is_unplugged)
2797 		return;
2798 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2799 		return;
2800 
2801 	up = tb_upstream_port(sw);
2802 	if (tb_switch_is_usb4(up->sw))
2803 		usb4_port_unconfigure(up);
2804 	else
2805 		tb_lc_unconfigure_port(up);
2806 
2807 	down = up->remote;
2808 	if (tb_switch_is_usb4(down->sw))
2809 		usb4_port_unconfigure(down);
2810 	else
2811 		tb_lc_unconfigure_port(down);
2812 }
2813 
2814 static void tb_switch_credits_init(struct tb_switch *sw)
2815 {
2816 	if (tb_switch_is_icm(sw))
2817 		return;
2818 	if (!tb_switch_is_usb4(sw))
2819 		return;
2820 	if (usb4_switch_credits_init(sw))
2821 		tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
2822 }
2823 
2824 /**
2825  * tb_switch_add() - Add a switch to the domain
2826  * @sw: Switch to add
2827  *
2828  * This is the last step in adding switch to the domain. It will read
2829  * identification information from DROM and initializes ports so that
2830  * they can be used to connect other switches. The switch will be
2831  * exposed to the userspace when this function successfully returns. To
2832  * remove and release the switch, call tb_switch_remove().
2833  *
2834  * Return: %0 in case of success and negative errno in case of failure
2835  */
2836 int tb_switch_add(struct tb_switch *sw)
2837 {
2838 	int i, ret;
2839 
2840 	/*
2841 	 * Initialize DMA control port now before we read DROM. Recent
2842 	 * host controllers have more complete DROM on NVM that includes
2843 	 * vendor and model identification strings which we then expose
2844 	 * to the userspace. NVM can be accessed through DMA
2845 	 * configuration based mailbox.
2846 	 */
2847 	ret = tb_switch_add_dma_port(sw);
2848 	if (ret) {
2849 		dev_err(&sw->dev, "failed to add DMA port\n");
2850 		return ret;
2851 	}
2852 
2853 	if (!sw->safe_mode) {
2854 		tb_switch_credits_init(sw);
2855 
2856 		/* read drom */
2857 		ret = tb_drom_read(sw);
2858 		if (ret)
2859 			dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
2860 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2861 
2862 		tb_check_quirks(sw);
2863 
2864 		ret = tb_switch_set_uuid(sw);
2865 		if (ret) {
2866 			dev_err(&sw->dev, "failed to set UUID\n");
2867 			return ret;
2868 		}
2869 
2870 		for (i = 0; i <= sw->config.max_port_number; i++) {
2871 			if (sw->ports[i].disabled) {
2872 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2873 				continue;
2874 			}
2875 			ret = tb_init_port(&sw->ports[i]);
2876 			if (ret) {
2877 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
2878 				return ret;
2879 			}
2880 		}
2881 
2882 		tb_switch_default_link_ports(sw);
2883 
2884 		ret = tb_switch_update_link_attributes(sw);
2885 		if (ret)
2886 			return ret;
2887 
2888 		ret = tb_switch_tmu_init(sw);
2889 		if (ret)
2890 			return ret;
2891 	}
2892 
2893 	ret = device_add(&sw->dev);
2894 	if (ret) {
2895 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
2896 		return ret;
2897 	}
2898 
2899 	if (tb_route(sw)) {
2900 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2901 			 sw->vendor, sw->device);
2902 		if (sw->vendor_name && sw->device_name)
2903 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2904 				 sw->device_name);
2905 	}
2906 
2907 	ret = usb4_switch_add_ports(sw);
2908 	if (ret) {
2909 		dev_err(&sw->dev, "failed to add USB4 ports\n");
2910 		goto err_del;
2911 	}
2912 
2913 	ret = tb_switch_nvm_add(sw);
2914 	if (ret) {
2915 		dev_err(&sw->dev, "failed to add NVM devices\n");
2916 		goto err_ports;
2917 	}
2918 
2919 	/*
2920 	 * Thunderbolt routers do not generate wakeups themselves but
2921 	 * they forward wakeups from tunneled protocols, so enable it
2922 	 * here.
2923 	 */
2924 	device_init_wakeup(&sw->dev, true);
2925 
2926 	pm_runtime_set_active(&sw->dev);
2927 	if (sw->rpm) {
2928 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2929 		pm_runtime_use_autosuspend(&sw->dev);
2930 		pm_runtime_mark_last_busy(&sw->dev);
2931 		pm_runtime_enable(&sw->dev);
2932 		pm_request_autosuspend(&sw->dev);
2933 	}
2934 
2935 	tb_switch_debugfs_init(sw);
2936 	return 0;
2937 
2938 err_ports:
2939 	usb4_switch_remove_ports(sw);
2940 err_del:
2941 	device_del(&sw->dev);
2942 
2943 	return ret;
2944 }
2945 
2946 /**
2947  * tb_switch_remove() - Remove and release a switch
2948  * @sw: Switch to remove
2949  *
2950  * This will remove the switch from the domain and release it after last
2951  * reference count drops to zero. If there are switches connected below
2952  * this switch, they will be removed as well.
2953  */
2954 void tb_switch_remove(struct tb_switch *sw)
2955 {
2956 	struct tb_port *port;
2957 
2958 	tb_switch_debugfs_remove(sw);
2959 
2960 	if (sw->rpm) {
2961 		pm_runtime_get_sync(&sw->dev);
2962 		pm_runtime_disable(&sw->dev);
2963 	}
2964 
2965 	/* port 0 is the switch itself and never has a remote */
2966 	tb_switch_for_each_port(sw, port) {
2967 		if (tb_port_has_remote(port)) {
2968 			tb_switch_remove(port->remote->sw);
2969 			port->remote = NULL;
2970 		} else if (port->xdomain) {
2971 			tb_xdomain_remove(port->xdomain);
2972 			port->xdomain = NULL;
2973 		}
2974 
2975 		/* Remove any downstream retimers */
2976 		tb_retimer_remove_all(port);
2977 	}
2978 
2979 	if (!sw->is_unplugged)
2980 		tb_plug_events_active(sw, false);
2981 
2982 	tb_switch_nvm_remove(sw);
2983 	usb4_switch_remove_ports(sw);
2984 
2985 	if (tb_route(sw))
2986 		dev_info(&sw->dev, "device disconnected\n");
2987 	device_unregister(&sw->dev);
2988 }
2989 
2990 /**
2991  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2992  * @sw: Router to mark unplugged
2993  */
2994 void tb_sw_set_unplugged(struct tb_switch *sw)
2995 {
2996 	struct tb_port *port;
2997 
2998 	if (sw == sw->tb->root_switch) {
2999 		tb_sw_WARN(sw, "cannot unplug root switch\n");
3000 		return;
3001 	}
3002 	if (sw->is_unplugged) {
3003 		tb_sw_WARN(sw, "is_unplugged already set\n");
3004 		return;
3005 	}
3006 	sw->is_unplugged = true;
3007 	tb_switch_for_each_port(sw, port) {
3008 		if (tb_port_has_remote(port))
3009 			tb_sw_set_unplugged(port->remote->sw);
3010 		else if (port->xdomain)
3011 			port->xdomain->is_unplugged = true;
3012 	}
3013 }
3014 
3015 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3016 {
3017 	if (flags)
3018 		tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3019 	else
3020 		tb_sw_dbg(sw, "disabling wakeup\n");
3021 
3022 	if (tb_switch_is_usb4(sw))
3023 		return usb4_switch_set_wake(sw, flags);
3024 	return tb_lc_set_wake(sw, flags);
3025 }
3026 
3027 int tb_switch_resume(struct tb_switch *sw)
3028 {
3029 	struct tb_port *port;
3030 	int err;
3031 
3032 	tb_sw_dbg(sw, "resuming switch\n");
3033 
3034 	/*
3035 	 * Check for UID of the connected switches except for root
3036 	 * switch which we assume cannot be removed.
3037 	 */
3038 	if (tb_route(sw)) {
3039 		u64 uid;
3040 
3041 		/*
3042 		 * Check first that we can still read the switch config
3043 		 * space. It may be that there is now another domain
3044 		 * connected.
3045 		 */
3046 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3047 		if (err < 0) {
3048 			tb_sw_info(sw, "switch not present anymore\n");
3049 			return err;
3050 		}
3051 
3052 		/* We don't have any way to confirm this was the same device */
3053 		if (!sw->uid)
3054 			return -ENODEV;
3055 
3056 		if (tb_switch_is_usb4(sw))
3057 			err = usb4_switch_read_uid(sw, &uid);
3058 		else
3059 			err = tb_drom_read_uid_only(sw, &uid);
3060 		if (err) {
3061 			tb_sw_warn(sw, "uid read failed\n");
3062 			return err;
3063 		}
3064 		if (sw->uid != uid) {
3065 			tb_sw_info(sw,
3066 				"changed while suspended (uid %#llx -> %#llx)\n",
3067 				sw->uid, uid);
3068 			return -ENODEV;
3069 		}
3070 	}
3071 
3072 	err = tb_switch_configure(sw);
3073 	if (err)
3074 		return err;
3075 
3076 	/* Disable wakes */
3077 	tb_switch_set_wake(sw, 0);
3078 
3079 	err = tb_switch_tmu_init(sw);
3080 	if (err)
3081 		return err;
3082 
3083 	/* check for surviving downstream switches */
3084 	tb_switch_for_each_port(sw, port) {
3085 		if (!tb_port_is_null(port))
3086 			continue;
3087 
3088 		if (!tb_port_resume(port))
3089 			continue;
3090 
3091 		if (tb_wait_for_port(port, true) <= 0) {
3092 			tb_port_warn(port,
3093 				     "lost during suspend, disconnecting\n");
3094 			if (tb_port_has_remote(port))
3095 				tb_sw_set_unplugged(port->remote->sw);
3096 			else if (port->xdomain)
3097 				port->xdomain->is_unplugged = true;
3098 		} else {
3099 			/*
3100 			 * Always unlock the port so the downstream
3101 			 * switch/domain is accessible.
3102 			 */
3103 			if (tb_port_unlock(port))
3104 				tb_port_warn(port, "failed to unlock port\n");
3105 			if (port->remote && tb_switch_resume(port->remote->sw)) {
3106 				tb_port_warn(port,
3107 					     "lost during suspend, disconnecting\n");
3108 				tb_sw_set_unplugged(port->remote->sw);
3109 			}
3110 		}
3111 	}
3112 	return 0;
3113 }
3114 
3115 /**
3116  * tb_switch_suspend() - Put a switch to sleep
3117  * @sw: Switch to suspend
3118  * @runtime: Is this runtime suspend or system sleep
3119  *
3120  * Suspends router and all its children. Enables wakes according to
3121  * value of @runtime and then sets sleep bit for the router. If @sw is
3122  * host router the domain is ready to go to sleep once this function
3123  * returns.
3124  */
3125 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3126 {
3127 	unsigned int flags = 0;
3128 	struct tb_port *port;
3129 	int err;
3130 
3131 	tb_sw_dbg(sw, "suspending switch\n");
3132 
3133 	/*
3134 	 * Actually only needed for Titan Ridge but for simplicity can be
3135 	 * done for USB4 device too as CLx is re-enabled at resume.
3136 	 */
3137 	if (tb_switch_disable_clx(sw, TB_CL0S))
3138 		tb_sw_warn(sw, "failed to disable CLx on upstream port\n");
3139 
3140 	err = tb_plug_events_active(sw, false);
3141 	if (err)
3142 		return;
3143 
3144 	tb_switch_for_each_port(sw, port) {
3145 		if (tb_port_has_remote(port))
3146 			tb_switch_suspend(port->remote->sw, runtime);
3147 	}
3148 
3149 	if (runtime) {
3150 		/* Trigger wake when something is plugged in/out */
3151 		flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3152 		flags |= TB_WAKE_ON_USB4;
3153 		flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3154 	} else if (device_may_wakeup(&sw->dev)) {
3155 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3156 	}
3157 
3158 	tb_switch_set_wake(sw, flags);
3159 
3160 	if (tb_switch_is_usb4(sw))
3161 		usb4_switch_set_sleep(sw);
3162 	else
3163 		tb_lc_set_sleep(sw);
3164 }
3165 
3166 /**
3167  * tb_switch_query_dp_resource() - Query availability of DP resource
3168  * @sw: Switch whose DP resource is queried
3169  * @in: DP IN port
3170  *
3171  * Queries availability of DP resource for DP tunneling using switch
3172  * specific means. Returns %true if resource is available.
3173  */
3174 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3175 {
3176 	if (tb_switch_is_usb4(sw))
3177 		return usb4_switch_query_dp_resource(sw, in);
3178 	return tb_lc_dp_sink_query(sw, in);
3179 }
3180 
3181 /**
3182  * tb_switch_alloc_dp_resource() - Allocate available DP resource
3183  * @sw: Switch whose DP resource is allocated
3184  * @in: DP IN port
3185  *
3186  * Allocates DP resource for DP tunneling. The resource must be
3187  * available for this to succeed (see tb_switch_query_dp_resource()).
3188  * Returns %0 in success and negative errno otherwise.
3189  */
3190 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3191 {
3192 	int ret;
3193 
3194 	if (tb_switch_is_usb4(sw))
3195 		ret = usb4_switch_alloc_dp_resource(sw, in);
3196 	else
3197 		ret = tb_lc_dp_sink_alloc(sw, in);
3198 
3199 	if (ret)
3200 		tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3201 			   in->port);
3202 	else
3203 		tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3204 
3205 	return ret;
3206 }
3207 
3208 /**
3209  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3210  * @sw: Switch whose DP resource is de-allocated
3211  * @in: DP IN port
3212  *
3213  * De-allocates DP resource that was previously allocated for DP
3214  * tunneling.
3215  */
3216 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3217 {
3218 	int ret;
3219 
3220 	if (tb_switch_is_usb4(sw))
3221 		ret = usb4_switch_dealloc_dp_resource(sw, in);
3222 	else
3223 		ret = tb_lc_dp_sink_dealloc(sw, in);
3224 
3225 	if (ret)
3226 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3227 			   in->port);
3228 	else
3229 		tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3230 }
3231 
3232 struct tb_sw_lookup {
3233 	struct tb *tb;
3234 	u8 link;
3235 	u8 depth;
3236 	const uuid_t *uuid;
3237 	u64 route;
3238 };
3239 
3240 static int tb_switch_match(struct device *dev, const void *data)
3241 {
3242 	struct tb_switch *sw = tb_to_switch(dev);
3243 	const struct tb_sw_lookup *lookup = data;
3244 
3245 	if (!sw)
3246 		return 0;
3247 	if (sw->tb != lookup->tb)
3248 		return 0;
3249 
3250 	if (lookup->uuid)
3251 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3252 
3253 	if (lookup->route) {
3254 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
3255 		       sw->config.route_hi == upper_32_bits(lookup->route);
3256 	}
3257 
3258 	/* Root switch is matched only by depth */
3259 	if (!lookup->depth)
3260 		return !sw->depth;
3261 
3262 	return sw->link == lookup->link && sw->depth == lookup->depth;
3263 }
3264 
3265 /**
3266  * tb_switch_find_by_link_depth() - Find switch by link and depth
3267  * @tb: Domain the switch belongs
3268  * @link: Link number the switch is connected
3269  * @depth: Depth of the switch in link
3270  *
3271  * Returned switch has reference count increased so the caller needs to
3272  * call tb_switch_put() when done with the switch.
3273  */
3274 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3275 {
3276 	struct tb_sw_lookup lookup;
3277 	struct device *dev;
3278 
3279 	memset(&lookup, 0, sizeof(lookup));
3280 	lookup.tb = tb;
3281 	lookup.link = link;
3282 	lookup.depth = depth;
3283 
3284 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3285 	if (dev)
3286 		return tb_to_switch(dev);
3287 
3288 	return NULL;
3289 }
3290 
3291 /**
3292  * tb_switch_find_by_uuid() - Find switch by UUID
3293  * @tb: Domain the switch belongs
3294  * @uuid: UUID to look for
3295  *
3296  * Returned switch has reference count increased so the caller needs to
3297  * call tb_switch_put() when done with the switch.
3298  */
3299 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3300 {
3301 	struct tb_sw_lookup lookup;
3302 	struct device *dev;
3303 
3304 	memset(&lookup, 0, sizeof(lookup));
3305 	lookup.tb = tb;
3306 	lookup.uuid = uuid;
3307 
3308 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3309 	if (dev)
3310 		return tb_to_switch(dev);
3311 
3312 	return NULL;
3313 }
3314 
3315 /**
3316  * tb_switch_find_by_route() - Find switch by route string
3317  * @tb: Domain the switch belongs
3318  * @route: Route string to look for
3319  *
3320  * Returned switch has reference count increased so the caller needs to
3321  * call tb_switch_put() when done with the switch.
3322  */
3323 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3324 {
3325 	struct tb_sw_lookup lookup;
3326 	struct device *dev;
3327 
3328 	if (!route)
3329 		return tb_switch_get(tb->root_switch);
3330 
3331 	memset(&lookup, 0, sizeof(lookup));
3332 	lookup.tb = tb;
3333 	lookup.route = route;
3334 
3335 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3336 	if (dev)
3337 		return tb_to_switch(dev);
3338 
3339 	return NULL;
3340 }
3341 
3342 /**
3343  * tb_switch_find_port() - return the first port of @type on @sw or NULL
3344  * @sw: Switch to find the port from
3345  * @type: Port type to look for
3346  */
3347 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3348 				    enum tb_port_type type)
3349 {
3350 	struct tb_port *port;
3351 
3352 	tb_switch_for_each_port(sw, port) {
3353 		if (port->config.type == type)
3354 			return port;
3355 	}
3356 
3357 	return NULL;
3358 }
3359 
3360 static int __tb_port_pm_secondary_set(struct tb_port *port, bool secondary)
3361 {
3362 	u32 phy;
3363 	int ret;
3364 
3365 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
3366 			   port->cap_phy + LANE_ADP_CS_1, 1);
3367 	if (ret)
3368 		return ret;
3369 
3370 	if (secondary)
3371 		phy |= LANE_ADP_CS_1_PMS;
3372 	else
3373 		phy &= ~LANE_ADP_CS_1_PMS;
3374 
3375 	return tb_port_write(port, &phy, TB_CFG_PORT,
3376 			     port->cap_phy + LANE_ADP_CS_1, 1);
3377 }
3378 
3379 static int tb_port_pm_secondary_enable(struct tb_port *port)
3380 {
3381 	return __tb_port_pm_secondary_set(port, true);
3382 }
3383 
3384 static int tb_port_pm_secondary_disable(struct tb_port *port)
3385 {
3386 	return __tb_port_pm_secondary_set(port, false);
3387 }
3388 
3389 static int tb_switch_pm_secondary_resolve(struct tb_switch *sw)
3390 {
3391 	struct tb_switch *parent = tb_switch_parent(sw);
3392 	struct tb_port *up, *down;
3393 	int ret;
3394 
3395 	if (!tb_route(sw))
3396 		return 0;
3397 
3398 	up = tb_upstream_port(sw);
3399 	down = tb_port_at(tb_route(sw), parent);
3400 	ret = tb_port_pm_secondary_enable(up);
3401 	if (ret)
3402 		return ret;
3403 
3404 	return tb_port_pm_secondary_disable(down);
3405 }
3406 
3407 /* Called for USB4 or Titan Ridge routers only */
3408 static bool tb_port_clx_supported(struct tb_port *port, enum tb_clx clx)
3409 {
3410 	u32 mask, val;
3411 	bool ret;
3412 
3413 	/* Don't enable CLx in case of two single-lane links */
3414 	if (!port->bonded && port->dual_link_port)
3415 		return false;
3416 
3417 	/* Don't enable CLx in case of inter-domain link */
3418 	if (port->xdomain)
3419 		return false;
3420 
3421 	if (tb_switch_is_usb4(port->sw)) {
3422 		if (!usb4_port_clx_supported(port))
3423 			return false;
3424 	} else if (!tb_lc_is_clx_supported(port)) {
3425 		return false;
3426 	}
3427 
3428 	switch (clx) {
3429 	case TB_CL0S:
3430 		/* CL0s support requires also CL1 support */
3431 		mask = LANE_ADP_CS_0_CL0S_SUPPORT | LANE_ADP_CS_0_CL1_SUPPORT;
3432 		break;
3433 
3434 	/* For now we support only CL0s. Not CL1, CL2 */
3435 	case TB_CL1:
3436 	case TB_CL2:
3437 	default:
3438 		return false;
3439 	}
3440 
3441 	ret = tb_port_read(port, &val, TB_CFG_PORT,
3442 			   port->cap_phy + LANE_ADP_CS_0, 1);
3443 	if (ret)
3444 		return false;
3445 
3446 	return !!(val & mask);
3447 }
3448 
3449 static inline bool tb_port_cl0s_supported(struct tb_port *port)
3450 {
3451 	return tb_port_clx_supported(port, TB_CL0S);
3452 }
3453 
3454 static int __tb_port_cl0s_set(struct tb_port *port, bool enable)
3455 {
3456 	u32 phy, mask;
3457 	int ret;
3458 
3459 	/* To enable CL0s also required to enable CL1 */
3460 	mask = LANE_ADP_CS_1_CL0S_ENABLE | LANE_ADP_CS_1_CL1_ENABLE;
3461 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
3462 			   port->cap_phy + LANE_ADP_CS_1, 1);
3463 	if (ret)
3464 		return ret;
3465 
3466 	if (enable)
3467 		phy |= mask;
3468 	else
3469 		phy &= ~mask;
3470 
3471 	return tb_port_write(port, &phy, TB_CFG_PORT,
3472 			     port->cap_phy + LANE_ADP_CS_1, 1);
3473 }
3474 
3475 static int tb_port_cl0s_disable(struct tb_port *port)
3476 {
3477 	return __tb_port_cl0s_set(port, false);
3478 }
3479 
3480 static int tb_port_cl0s_enable(struct tb_port *port)
3481 {
3482 	return __tb_port_cl0s_set(port, true);
3483 }
3484 
3485 static int tb_switch_enable_cl0s(struct tb_switch *sw)
3486 {
3487 	struct tb_switch *parent = tb_switch_parent(sw);
3488 	bool up_cl0s_support, down_cl0s_support;
3489 	struct tb_port *up, *down;
3490 	int ret;
3491 
3492 	if (!tb_switch_is_clx_supported(sw))
3493 		return 0;
3494 
3495 	/*
3496 	 * Enable CLx for host router's downstream port as part of the
3497 	 * downstream router enabling procedure.
3498 	 */
3499 	if (!tb_route(sw))
3500 		return 0;
3501 
3502 	/* Enable CLx only for first hop router (depth = 1) */
3503 	if (tb_route(parent))
3504 		return 0;
3505 
3506 	ret = tb_switch_pm_secondary_resolve(sw);
3507 	if (ret)
3508 		return ret;
3509 
3510 	up = tb_upstream_port(sw);
3511 	down = tb_port_at(tb_route(sw), parent);
3512 
3513 	up_cl0s_support = tb_port_cl0s_supported(up);
3514 	down_cl0s_support = tb_port_cl0s_supported(down);
3515 
3516 	tb_port_dbg(up, "CL0s %ssupported\n",
3517 		    up_cl0s_support ? "" : "not ");
3518 	tb_port_dbg(down, "CL0s %ssupported\n",
3519 		    down_cl0s_support ? "" : "not ");
3520 
3521 	if (!up_cl0s_support || !down_cl0s_support)
3522 		return -EOPNOTSUPP;
3523 
3524 	ret = tb_port_cl0s_enable(up);
3525 	if (ret)
3526 		return ret;
3527 
3528 	ret = tb_port_cl0s_enable(down);
3529 	if (ret) {
3530 		tb_port_cl0s_disable(up);
3531 		return ret;
3532 	}
3533 
3534 	ret = tb_switch_mask_clx_objections(sw);
3535 	if (ret) {
3536 		tb_port_cl0s_disable(up);
3537 		tb_port_cl0s_disable(down);
3538 		return ret;
3539 	}
3540 
3541 	sw->clx = TB_CL0S;
3542 
3543 	tb_port_dbg(up, "CL0s enabled\n");
3544 	return 0;
3545 }
3546 
3547 /**
3548  * tb_switch_enable_clx() - Enable CLx on upstream port of specified router
3549  * @sw: Router to enable CLx for
3550  * @clx: The CLx state to enable
3551  *
3552  * Enable CLx state only for first hop router. That is the most common
3553  * use-case, that is intended for better thermal management, and so helps
3554  * to improve performance. CLx is enabled only if both sides of the link
3555  * support CLx, and if both sides of the link are not configured as two
3556  * single lane links and only if the link is not inter-domain link. The
3557  * complete set of conditions is descibed in CM Guide 1.0 section 8.1.
3558  *
3559  * Return: Returns 0 on success or an error code on failure.
3560  */
3561 int tb_switch_enable_clx(struct tb_switch *sw, enum tb_clx clx)
3562 {
3563 	struct tb_switch *root_sw = sw->tb->root_switch;
3564 
3565 	if (!clx_enabled)
3566 		return 0;
3567 
3568 	/*
3569 	 * CLx is not enabled and validated on Intel USB4 platforms before
3570 	 * Alder Lake.
3571 	 */
3572 	if (root_sw->generation < 4 || tb_switch_is_tiger_lake(root_sw))
3573 		return 0;
3574 
3575 	switch (clx) {
3576 	case TB_CL0S:
3577 		return tb_switch_enable_cl0s(sw);
3578 
3579 	default:
3580 		return -EOPNOTSUPP;
3581 	}
3582 }
3583 
3584 static int tb_switch_disable_cl0s(struct tb_switch *sw)
3585 {
3586 	struct tb_switch *parent = tb_switch_parent(sw);
3587 	struct tb_port *up, *down;
3588 	int ret;
3589 
3590 	if (!tb_switch_is_clx_supported(sw))
3591 		return 0;
3592 
3593 	/*
3594 	 * Disable CLx for host router's downstream port as part of the
3595 	 * downstream router enabling procedure.
3596 	 */
3597 	if (!tb_route(sw))
3598 		return 0;
3599 
3600 	/* Disable CLx only for first hop router (depth = 1) */
3601 	if (tb_route(parent))
3602 		return 0;
3603 
3604 	up = tb_upstream_port(sw);
3605 	down = tb_port_at(tb_route(sw), parent);
3606 	ret = tb_port_cl0s_disable(up);
3607 	if (ret)
3608 		return ret;
3609 
3610 	ret = tb_port_cl0s_disable(down);
3611 	if (ret)
3612 		return ret;
3613 
3614 	sw->clx = TB_CLX_DISABLE;
3615 
3616 	tb_port_dbg(up, "CL0s disabled\n");
3617 	return 0;
3618 }
3619 
3620 /**
3621  * tb_switch_disable_clx() - Disable CLx on upstream port of specified router
3622  * @sw: Router to disable CLx for
3623  * @clx: The CLx state to disable
3624  *
3625  * Return: Returns 0 on success or an error code on failure.
3626  */
3627 int tb_switch_disable_clx(struct tb_switch *sw, enum tb_clx clx)
3628 {
3629 	if (!clx_enabled)
3630 		return 0;
3631 
3632 	switch (clx) {
3633 	case TB_CL0S:
3634 		return tb_switch_disable_cl0s(sw);
3635 
3636 	default:
3637 		return -EOPNOTSUPP;
3638 	}
3639 }
3640 
3641 /**
3642  * tb_switch_mask_clx_objections() - Mask CLx objections for a router
3643  * @sw: Router to mask objections for
3644  *
3645  * Mask the objections coming from the second depth routers in order to
3646  * stop these objections from interfering with the CLx states of the first
3647  * depth link.
3648  */
3649 int tb_switch_mask_clx_objections(struct tb_switch *sw)
3650 {
3651 	int up_port = sw->config.upstream_port_number;
3652 	u32 offset, val[2], mask_obj, unmask_obj;
3653 	int ret, i;
3654 
3655 	/* Only Titan Ridge of pre-USB4 devices support CLx states */
3656 	if (!tb_switch_is_titan_ridge(sw))
3657 		return 0;
3658 
3659 	if (!tb_route(sw))
3660 		return 0;
3661 
3662 	/*
3663 	 * In Titan Ridge there are only 2 dual-lane Thunderbolt ports:
3664 	 * Port A consists of lane adapters 1,2 and
3665 	 * Port B consists of lane adapters 3,4
3666 	 * If upstream port is A, (lanes are 1,2), we mask objections from
3667 	 * port B (lanes 3,4) and unmask objections from Port A and vice-versa.
3668 	 */
3669 	if (up_port == 1) {
3670 		mask_obj = TB_LOW_PWR_C0_PORT_B_MASK;
3671 		unmask_obj = TB_LOW_PWR_C1_PORT_A_MASK;
3672 		offset = TB_LOW_PWR_C1_CL1;
3673 	} else {
3674 		mask_obj = TB_LOW_PWR_C1_PORT_A_MASK;
3675 		unmask_obj = TB_LOW_PWR_C0_PORT_B_MASK;
3676 		offset = TB_LOW_PWR_C3_CL1;
3677 	}
3678 
3679 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH,
3680 			 sw->cap_lp + offset, ARRAY_SIZE(val));
3681 	if (ret)
3682 		return ret;
3683 
3684 	for (i = 0; i < ARRAY_SIZE(val); i++) {
3685 		val[i] |= mask_obj;
3686 		val[i] &= ~unmask_obj;
3687 	}
3688 
3689 	return tb_sw_write(sw, &val, TB_CFG_SWITCH,
3690 			   sw->cap_lp + offset, ARRAY_SIZE(val));
3691 }
3692 
3693 /*
3694  * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3695  * device. For now used only for Titan Ridge.
3696  */
3697 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3698 				       unsigned int pcie_offset, u32 value)
3699 {
3700 	u32 offset, command, val;
3701 	int ret;
3702 
3703 	if (sw->generation != 3)
3704 		return -EOPNOTSUPP;
3705 
3706 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3707 	ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3708 	if (ret)
3709 		return ret;
3710 
3711 	command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3712 	command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3713 	command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3714 	command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3715 			<< TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3716 	command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3717 
3718 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3719 
3720 	ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3721 	if (ret)
3722 		return ret;
3723 
3724 	ret = tb_switch_wait_for_bit(sw, offset,
3725 				     TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3726 	if (ret)
3727 		return ret;
3728 
3729 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3730 	if (ret)
3731 		return ret;
3732 
3733 	if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3734 		return -ETIMEDOUT;
3735 
3736 	return 0;
3737 }
3738 
3739 /**
3740  * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3741  * @sw: Router to enable PCIe L1
3742  *
3743  * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3744  * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3745  * was configured. Due to Intel platforms limitation, shall be called only
3746  * for first hop switch.
3747  */
3748 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3749 {
3750 	struct tb_switch *parent = tb_switch_parent(sw);
3751 	int ret;
3752 
3753 	if (!tb_route(sw))
3754 		return 0;
3755 
3756 	if (!tb_switch_is_titan_ridge(sw))
3757 		return 0;
3758 
3759 	/* Enable PCIe L1 enable only for first hop router (depth = 1) */
3760 	if (tb_route(parent))
3761 		return 0;
3762 
3763 	/* Write to downstream PCIe bridge #5 aka Dn4 */
3764 	ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3765 	if (ret)
3766 		return ret;
3767 
3768 	/* Write to Upstream PCIe bridge #0 aka Up0 */
3769 	return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3770 }
3771 
3772 /**
3773  * tb_switch_xhci_connect() - Connect internal xHCI
3774  * @sw: Router whose xHCI to connect
3775  *
3776  * Can be called to any router. For Alpine Ridge and Titan Ridge
3777  * performs special flows that bring the xHCI functional for any device
3778  * connected to the type-C port. Call only after PCIe tunnel has been
3779  * established. The function only does the connect if not done already
3780  * so can be called several times for the same router.
3781  */
3782 int tb_switch_xhci_connect(struct tb_switch *sw)
3783 {
3784 	bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3785 	struct tb_port *port1, *port3;
3786 	int ret;
3787 
3788 	port1 = &sw->ports[1];
3789 	port3 = &sw->ports[3];
3790 
3791 	if (tb_switch_is_alpine_ridge(sw)) {
3792 		usb_port1 = tb_lc_is_usb_plugged(port1);
3793 		usb_port3 = tb_lc_is_usb_plugged(port3);
3794 		xhci_port1 = tb_lc_is_xhci_connected(port1);
3795 		xhci_port3 = tb_lc_is_xhci_connected(port3);
3796 
3797 		/* Figure out correct USB port to connect */
3798 		if (usb_port1 && !xhci_port1) {
3799 			ret = tb_lc_xhci_connect(port1);
3800 			if (ret)
3801 				return ret;
3802 		}
3803 		if (usb_port3 && !xhci_port3)
3804 			return tb_lc_xhci_connect(port3);
3805 	} else if (tb_switch_is_titan_ridge(sw)) {
3806 		ret = tb_lc_xhci_connect(port1);
3807 		if (ret)
3808 			return ret;
3809 		return tb_lc_xhci_connect(port3);
3810 	}
3811 
3812 	return 0;
3813 }
3814 
3815 /**
3816  * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3817  * @sw: Router whose xHCI to disconnect
3818  *
3819  * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3820  * ports.
3821  */
3822 void tb_switch_xhci_disconnect(struct tb_switch *sw)
3823 {
3824 	if (sw->generation == 3) {
3825 		struct tb_port *port1 = &sw->ports[1];
3826 		struct tb_port *port3 = &sw->ports[3];
3827 
3828 		tb_lc_xhci_disconnect(port1);
3829 		tb_port_dbg(port1, "disconnected xHCI\n");
3830 		tb_lc_xhci_disconnect(port3);
3831 		tb_port_dbg(port3, "disconnected xHCI\n");
3832 	}
3833 }
3834