xref: /openbmc/linux/drivers/thunderbolt/switch.c (revision d40d48e1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 
17 #include "tb.h"
18 
19 /* Switch NVM support */
20 
21 #define NVM_CSS			0x10
22 
23 struct nvm_auth_status {
24 	struct list_head list;
25 	uuid_t uuid;
26 	u32 status;
27 };
28 
29 /*
30  * Hold NVM authentication failure status per switch This information
31  * needs to stay around even when the switch gets power cycled so we
32  * keep it separately.
33  */
34 static LIST_HEAD(nvm_auth_status_cache);
35 static DEFINE_MUTEX(nvm_auth_status_lock);
36 
37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
38 {
39 	struct nvm_auth_status *st;
40 
41 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
42 		if (uuid_equal(&st->uuid, sw->uuid))
43 			return st;
44 	}
45 
46 	return NULL;
47 }
48 
49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
50 {
51 	struct nvm_auth_status *st;
52 
53 	mutex_lock(&nvm_auth_status_lock);
54 	st = __nvm_get_auth_status(sw);
55 	mutex_unlock(&nvm_auth_status_lock);
56 
57 	*status = st ? st->status : 0;
58 }
59 
60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
61 {
62 	struct nvm_auth_status *st;
63 
64 	if (WARN_ON(!sw->uuid))
65 		return;
66 
67 	mutex_lock(&nvm_auth_status_lock);
68 	st = __nvm_get_auth_status(sw);
69 
70 	if (!st) {
71 		st = kzalloc(sizeof(*st), GFP_KERNEL);
72 		if (!st)
73 			goto unlock;
74 
75 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76 		INIT_LIST_HEAD(&st->list);
77 		list_add_tail(&st->list, &nvm_auth_status_cache);
78 	}
79 
80 	st->status = status;
81 unlock:
82 	mutex_unlock(&nvm_auth_status_lock);
83 }
84 
85 static void nvm_clear_auth_status(const struct tb_switch *sw)
86 {
87 	struct nvm_auth_status *st;
88 
89 	mutex_lock(&nvm_auth_status_lock);
90 	st = __nvm_get_auth_status(sw);
91 	if (st) {
92 		list_del(&st->list);
93 		kfree(st);
94 	}
95 	mutex_unlock(&nvm_auth_status_lock);
96 }
97 
98 static int nvm_validate_and_write(struct tb_switch *sw)
99 {
100 	unsigned int image_size, hdr_size;
101 	const u8 *buf = sw->nvm->buf;
102 	u16 ds_size;
103 	int ret;
104 
105 	if (!buf)
106 		return -EINVAL;
107 
108 	image_size = sw->nvm->buf_data_size;
109 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
110 		return -EINVAL;
111 
112 	/*
113 	 * FARB pointer must point inside the image and must at least
114 	 * contain parts of the digital section we will be reading here.
115 	 */
116 	hdr_size = (*(u32 *)buf) & 0xffffff;
117 	if (hdr_size + NVM_DEVID + 2 >= image_size)
118 		return -EINVAL;
119 
120 	/* Digital section start should be aligned to 4k page */
121 	if (!IS_ALIGNED(hdr_size, SZ_4K))
122 		return -EINVAL;
123 
124 	/*
125 	 * Read digital section size and check that it also fits inside
126 	 * the image.
127 	 */
128 	ds_size = *(u16 *)(buf + hdr_size);
129 	if (ds_size >= image_size)
130 		return -EINVAL;
131 
132 	if (!sw->safe_mode) {
133 		u16 device_id;
134 
135 		/*
136 		 * Make sure the device ID in the image matches the one
137 		 * we read from the switch config space.
138 		 */
139 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
140 		if (device_id != sw->config.device_id)
141 			return -EINVAL;
142 
143 		if (sw->generation < 3) {
144 			/* Write CSS headers first */
145 			ret = dma_port_flash_write(sw->dma_port,
146 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
147 				DMA_PORT_CSS_MAX_SIZE);
148 			if (ret)
149 				return ret;
150 		}
151 
152 		/* Skip headers in the image */
153 		buf += hdr_size;
154 		image_size -= hdr_size;
155 	}
156 
157 	if (tb_switch_is_usb4(sw))
158 		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
159 	else
160 		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
161 	if (!ret)
162 		sw->nvm->flushed = true;
163 	return ret;
164 }
165 
166 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
167 {
168 	int ret = 0;
169 
170 	/*
171 	 * Root switch NVM upgrade requires that we disconnect the
172 	 * existing paths first (in case it is not in safe mode
173 	 * already).
174 	 */
175 	if (!sw->safe_mode) {
176 		u32 status;
177 
178 		ret = tb_domain_disconnect_all_paths(sw->tb);
179 		if (ret)
180 			return ret;
181 		/*
182 		 * The host controller goes away pretty soon after this if
183 		 * everything goes well so getting timeout is expected.
184 		 */
185 		ret = dma_port_flash_update_auth(sw->dma_port);
186 		if (!ret || ret == -ETIMEDOUT)
187 			return 0;
188 
189 		/*
190 		 * Any error from update auth operation requires power
191 		 * cycling of the host router.
192 		 */
193 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
194 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
195 			nvm_set_auth_status(sw, status);
196 	}
197 
198 	/*
199 	 * From safe mode we can get out by just power cycling the
200 	 * switch.
201 	 */
202 	dma_port_power_cycle(sw->dma_port);
203 	return ret;
204 }
205 
206 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
207 {
208 	int ret, retries = 10;
209 
210 	ret = dma_port_flash_update_auth(sw->dma_port);
211 	switch (ret) {
212 	case 0:
213 	case -ETIMEDOUT:
214 	case -EACCES:
215 	case -EINVAL:
216 		/* Power cycle is required */
217 		break;
218 	default:
219 		return ret;
220 	}
221 
222 	/*
223 	 * Poll here for the authentication status. It takes some time
224 	 * for the device to respond (we get timeout for a while). Once
225 	 * we get response the device needs to be power cycled in order
226 	 * to the new NVM to be taken into use.
227 	 */
228 	do {
229 		u32 status;
230 
231 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
232 		if (ret < 0 && ret != -ETIMEDOUT)
233 			return ret;
234 		if (ret > 0) {
235 			if (status) {
236 				tb_sw_warn(sw, "failed to authenticate NVM\n");
237 				nvm_set_auth_status(sw, status);
238 			}
239 
240 			tb_sw_info(sw, "power cycling the switch now\n");
241 			dma_port_power_cycle(sw->dma_port);
242 			return 0;
243 		}
244 
245 		msleep(500);
246 	} while (--retries);
247 
248 	return -ETIMEDOUT;
249 }
250 
251 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
252 {
253 	struct pci_dev *root_port;
254 
255 	/*
256 	 * During host router NVM upgrade we should not allow root port to
257 	 * go into D3cold because some root ports cannot trigger PME
258 	 * itself. To be on the safe side keep the root port in D0 during
259 	 * the whole upgrade process.
260 	 */
261 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
262 	if (root_port)
263 		pm_runtime_get_noresume(&root_port->dev);
264 }
265 
266 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
267 {
268 	struct pci_dev *root_port;
269 
270 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
271 	if (root_port)
272 		pm_runtime_put(&root_port->dev);
273 }
274 
275 static inline bool nvm_readable(struct tb_switch *sw)
276 {
277 	if (tb_switch_is_usb4(sw)) {
278 		/*
279 		 * USB4 devices must support NVM operations but it is
280 		 * optional for hosts. Therefore we query the NVM sector
281 		 * size here and if it is supported assume NVM
282 		 * operations are implemented.
283 		 */
284 		return usb4_switch_nvm_sector_size(sw) > 0;
285 	}
286 
287 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
288 	return !!sw->dma_port;
289 }
290 
291 static inline bool nvm_upgradeable(struct tb_switch *sw)
292 {
293 	if (sw->no_nvm_upgrade)
294 		return false;
295 	return nvm_readable(sw);
296 }
297 
298 static inline int nvm_read(struct tb_switch *sw, unsigned int address,
299 			   void *buf, size_t size)
300 {
301 	if (tb_switch_is_usb4(sw))
302 		return usb4_switch_nvm_read(sw, address, buf, size);
303 	return dma_port_flash_read(sw->dma_port, address, buf, size);
304 }
305 
306 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
307 {
308 	int ret;
309 
310 	if (tb_switch_is_usb4(sw)) {
311 		if (auth_only) {
312 			ret = usb4_switch_nvm_set_offset(sw, 0);
313 			if (ret)
314 				return ret;
315 		}
316 		sw->nvm->authenticating = true;
317 		return usb4_switch_nvm_authenticate(sw);
318 	} else if (auth_only) {
319 		return -EOPNOTSUPP;
320 	}
321 
322 	sw->nvm->authenticating = true;
323 	if (!tb_route(sw)) {
324 		nvm_authenticate_start_dma_port(sw);
325 		ret = nvm_authenticate_host_dma_port(sw);
326 	} else {
327 		ret = nvm_authenticate_device_dma_port(sw);
328 	}
329 
330 	return ret;
331 }
332 
333 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
334 			      size_t bytes)
335 {
336 	struct tb_nvm *nvm = priv;
337 	struct tb_switch *sw = tb_to_switch(nvm->dev);
338 	int ret;
339 
340 	pm_runtime_get_sync(&sw->dev);
341 
342 	if (!mutex_trylock(&sw->tb->lock)) {
343 		ret = restart_syscall();
344 		goto out;
345 	}
346 
347 	ret = nvm_read(sw, offset, val, bytes);
348 	mutex_unlock(&sw->tb->lock);
349 
350 out:
351 	pm_runtime_mark_last_busy(&sw->dev);
352 	pm_runtime_put_autosuspend(&sw->dev);
353 
354 	return ret;
355 }
356 
357 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
358 			       size_t bytes)
359 {
360 	struct tb_nvm *nvm = priv;
361 	struct tb_switch *sw = tb_to_switch(nvm->dev);
362 	int ret;
363 
364 	if (!mutex_trylock(&sw->tb->lock))
365 		return restart_syscall();
366 
367 	/*
368 	 * Since writing the NVM image might require some special steps,
369 	 * for example when CSS headers are written, we cache the image
370 	 * locally here and handle the special cases when the user asks
371 	 * us to authenticate the image.
372 	 */
373 	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
374 	mutex_unlock(&sw->tb->lock);
375 
376 	return ret;
377 }
378 
379 static int tb_switch_nvm_add(struct tb_switch *sw)
380 {
381 	struct tb_nvm *nvm;
382 	u32 val;
383 	int ret;
384 
385 	if (!nvm_readable(sw))
386 		return 0;
387 
388 	/*
389 	 * The NVM format of non-Intel hardware is not known so
390 	 * currently restrict NVM upgrade for Intel hardware. We may
391 	 * relax this in the future when we learn other NVM formats.
392 	 */
393 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
394 	    sw->config.vendor_id != 0x8087) {
395 		dev_info(&sw->dev,
396 			 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
397 			 sw->config.vendor_id);
398 		return 0;
399 	}
400 
401 	nvm = tb_nvm_alloc(&sw->dev);
402 	if (IS_ERR(nvm))
403 		return PTR_ERR(nvm);
404 
405 	/*
406 	 * If the switch is in safe-mode the only accessible portion of
407 	 * the NVM is the non-active one where userspace is expected to
408 	 * write new functional NVM.
409 	 */
410 	if (!sw->safe_mode) {
411 		u32 nvm_size, hdr_size;
412 
413 		ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
414 		if (ret)
415 			goto err_nvm;
416 
417 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
418 		nvm_size = (SZ_1M << (val & 7)) / 8;
419 		nvm_size = (nvm_size - hdr_size) / 2;
420 
421 		ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
422 		if (ret)
423 			goto err_nvm;
424 
425 		nvm->major = val >> 16;
426 		nvm->minor = val >> 8;
427 
428 		ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
429 		if (ret)
430 			goto err_nvm;
431 	}
432 
433 	if (!sw->no_nvm_upgrade) {
434 		ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
435 					    tb_switch_nvm_write);
436 		if (ret)
437 			goto err_nvm;
438 	}
439 
440 	sw->nvm = nvm;
441 	return 0;
442 
443 err_nvm:
444 	tb_nvm_free(nvm);
445 	return ret;
446 }
447 
448 static void tb_switch_nvm_remove(struct tb_switch *sw)
449 {
450 	struct tb_nvm *nvm;
451 
452 	nvm = sw->nvm;
453 	sw->nvm = NULL;
454 
455 	if (!nvm)
456 		return;
457 
458 	/* Remove authentication status in case the switch is unplugged */
459 	if (!nvm->authenticating)
460 		nvm_clear_auth_status(sw);
461 
462 	tb_nvm_free(nvm);
463 }
464 
465 /* port utility functions */
466 
467 static const char *tb_port_type(const struct tb_regs_port_header *port)
468 {
469 	switch (port->type >> 16) {
470 	case 0:
471 		switch ((u8) port->type) {
472 		case 0:
473 			return "Inactive";
474 		case 1:
475 			return "Port";
476 		case 2:
477 			return "NHI";
478 		default:
479 			return "unknown";
480 		}
481 	case 0x2:
482 		return "Ethernet";
483 	case 0x8:
484 		return "SATA";
485 	case 0xe:
486 		return "DP/HDMI";
487 	case 0x10:
488 		return "PCIe";
489 	case 0x20:
490 		return "USB";
491 	default:
492 		return "unknown";
493 	}
494 }
495 
496 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
497 {
498 	const struct tb_regs_port_header *regs = &port->config;
499 
500 	tb_dbg(tb,
501 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
502 	       regs->port_number, regs->vendor_id, regs->device_id,
503 	       regs->revision, regs->thunderbolt_version, tb_port_type(regs),
504 	       regs->type);
505 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
506 	       regs->max_in_hop_id, regs->max_out_hop_id);
507 	tb_dbg(tb, "  Max counters: %d\n", regs->max_counters);
508 	tb_dbg(tb, "  NFC Credits: %#x\n", regs->nfc_credits);
509 	tb_dbg(tb, "  Credits (total/control): %u/%u\n", port->total_credits,
510 	       port->ctl_credits);
511 }
512 
513 /**
514  * tb_port_state() - get connectedness state of a port
515  * @port: the port to check
516  *
517  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
518  *
519  * Return: Returns an enum tb_port_state on success or an error code on failure.
520  */
521 int tb_port_state(struct tb_port *port)
522 {
523 	struct tb_cap_phy phy;
524 	int res;
525 	if (port->cap_phy == 0) {
526 		tb_port_WARN(port, "does not have a PHY\n");
527 		return -EINVAL;
528 	}
529 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
530 	if (res)
531 		return res;
532 	return phy.state;
533 }
534 
535 /**
536  * tb_wait_for_port() - wait for a port to become ready
537  * @port: Port to wait
538  * @wait_if_unplugged: Wait also when port is unplugged
539  *
540  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
541  * wait_if_unplugged is set then we also wait if the port is in state
542  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
543  * switch resume). Otherwise we only wait if a device is registered but the link
544  * has not yet been established.
545  *
546  * Return: Returns an error code on failure. Returns 0 if the port is not
547  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
548  * if the port is connected and in state TB_PORT_UP.
549  */
550 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
551 {
552 	int retries = 10;
553 	int state;
554 	if (!port->cap_phy) {
555 		tb_port_WARN(port, "does not have PHY\n");
556 		return -EINVAL;
557 	}
558 	if (tb_is_upstream_port(port)) {
559 		tb_port_WARN(port, "is the upstream port\n");
560 		return -EINVAL;
561 	}
562 
563 	while (retries--) {
564 		state = tb_port_state(port);
565 		if (state < 0)
566 			return state;
567 		if (state == TB_PORT_DISABLED) {
568 			tb_port_dbg(port, "is disabled (state: 0)\n");
569 			return 0;
570 		}
571 		if (state == TB_PORT_UNPLUGGED) {
572 			if (wait_if_unplugged) {
573 				/* used during resume */
574 				tb_port_dbg(port,
575 					    "is unplugged (state: 7), retrying...\n");
576 				msleep(100);
577 				continue;
578 			}
579 			tb_port_dbg(port, "is unplugged (state: 7)\n");
580 			return 0;
581 		}
582 		if (state == TB_PORT_UP) {
583 			tb_port_dbg(port, "is connected, link is up (state: 2)\n");
584 			return 1;
585 		}
586 
587 		/*
588 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
589 		 * time.
590 		 */
591 		tb_port_dbg(port,
592 			    "is connected, link is not up (state: %d), retrying...\n",
593 			    state);
594 		msleep(100);
595 	}
596 	tb_port_warn(port,
597 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
598 	return 0;
599 }
600 
601 /**
602  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
603  * @port: Port to add/remove NFC credits
604  * @credits: Credits to add/remove
605  *
606  * Change the number of NFC credits allocated to @port by @credits. To remove
607  * NFC credits pass a negative amount of credits.
608  *
609  * Return: Returns 0 on success or an error code on failure.
610  */
611 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
612 {
613 	u32 nfc_credits;
614 
615 	if (credits == 0 || port->sw->is_unplugged)
616 		return 0;
617 
618 	/*
619 	 * USB4 restricts programming NFC buffers to lane adapters only
620 	 * so skip other ports.
621 	 */
622 	if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
623 		return 0;
624 
625 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
626 	nfc_credits += credits;
627 
628 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
629 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
630 
631 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
632 	port->config.nfc_credits |= nfc_credits;
633 
634 	return tb_port_write(port, &port->config.nfc_credits,
635 			     TB_CFG_PORT, ADP_CS_4, 1);
636 }
637 
638 /**
639  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
640  * @port: Port whose counters to clear
641  * @counter: Counter index to clear
642  *
643  * Return: Returns 0 on success or an error code on failure.
644  */
645 int tb_port_clear_counter(struct tb_port *port, int counter)
646 {
647 	u32 zero[3] = { 0, 0, 0 };
648 	tb_port_dbg(port, "clearing counter %d\n", counter);
649 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
650 }
651 
652 /**
653  * tb_port_unlock() - Unlock downstream port
654  * @port: Port to unlock
655  *
656  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
657  * downstream router accessible for CM.
658  */
659 int tb_port_unlock(struct tb_port *port)
660 {
661 	if (tb_switch_is_icm(port->sw))
662 		return 0;
663 	if (!tb_port_is_null(port))
664 		return -EINVAL;
665 	if (tb_switch_is_usb4(port->sw))
666 		return usb4_port_unlock(port);
667 	return 0;
668 }
669 
670 static int __tb_port_enable(struct tb_port *port, bool enable)
671 {
672 	int ret;
673 	u32 phy;
674 
675 	if (!tb_port_is_null(port))
676 		return -EINVAL;
677 
678 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
679 			   port->cap_phy + LANE_ADP_CS_1, 1);
680 	if (ret)
681 		return ret;
682 
683 	if (enable)
684 		phy &= ~LANE_ADP_CS_1_LD;
685 	else
686 		phy |= LANE_ADP_CS_1_LD;
687 
688 	return tb_port_write(port, &phy, TB_CFG_PORT,
689 			     port->cap_phy + LANE_ADP_CS_1, 1);
690 }
691 
692 /**
693  * tb_port_enable() - Enable lane adapter
694  * @port: Port to enable (can be %NULL)
695  *
696  * This is used for lane 0 and 1 adapters to enable it.
697  */
698 int tb_port_enable(struct tb_port *port)
699 {
700 	return __tb_port_enable(port, true);
701 }
702 
703 /**
704  * tb_port_disable() - Disable lane adapter
705  * @port: Port to disable (can be %NULL)
706  *
707  * This is used for lane 0 and 1 adapters to disable it.
708  */
709 int tb_port_disable(struct tb_port *port)
710 {
711 	return __tb_port_enable(port, false);
712 }
713 
714 /*
715  * tb_init_port() - initialize a port
716  *
717  * This is a helper method for tb_switch_alloc. Does not check or initialize
718  * any downstream switches.
719  *
720  * Return: Returns 0 on success or an error code on failure.
721  */
722 static int tb_init_port(struct tb_port *port)
723 {
724 	int res;
725 	int cap;
726 
727 	INIT_LIST_HEAD(&port->list);
728 
729 	/* Control adapter does not have configuration space */
730 	if (!port->port)
731 		return 0;
732 
733 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
734 	if (res) {
735 		if (res == -ENODEV) {
736 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
737 			       port->port);
738 			port->disabled = true;
739 			return 0;
740 		}
741 		return res;
742 	}
743 
744 	/* Port 0 is the switch itself and has no PHY. */
745 	if (port->config.type == TB_TYPE_PORT) {
746 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
747 
748 		if (cap > 0)
749 			port->cap_phy = cap;
750 		else
751 			tb_port_WARN(port, "non switch port without a PHY\n");
752 
753 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
754 		if (cap > 0)
755 			port->cap_usb4 = cap;
756 
757 		/*
758 		 * USB4 ports the buffers allocated for the control path
759 		 * can be read from the path config space. Legacy
760 		 * devices we use hard-coded value.
761 		 */
762 		if (tb_switch_is_usb4(port->sw)) {
763 			struct tb_regs_hop hop;
764 
765 			if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
766 				port->ctl_credits = hop.initial_credits;
767 		}
768 		if (!port->ctl_credits)
769 			port->ctl_credits = 2;
770 
771 	} else {
772 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
773 		if (cap > 0)
774 			port->cap_adap = cap;
775 	}
776 
777 	port->total_credits =
778 		(port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
779 		ADP_CS_4_TOTAL_BUFFERS_SHIFT;
780 
781 	tb_dump_port(port->sw->tb, port);
782 	return 0;
783 }
784 
785 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
786 			       int max_hopid)
787 {
788 	int port_max_hopid;
789 	struct ida *ida;
790 
791 	if (in) {
792 		port_max_hopid = port->config.max_in_hop_id;
793 		ida = &port->in_hopids;
794 	} else {
795 		port_max_hopid = port->config.max_out_hop_id;
796 		ida = &port->out_hopids;
797 	}
798 
799 	/*
800 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
801 	 * reserved.
802 	 */
803 	if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
804 		min_hopid = TB_PATH_MIN_HOPID;
805 
806 	if (max_hopid < 0 || max_hopid > port_max_hopid)
807 		max_hopid = port_max_hopid;
808 
809 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
810 }
811 
812 /**
813  * tb_port_alloc_in_hopid() - Allocate input HopID from port
814  * @port: Port to allocate HopID for
815  * @min_hopid: Minimum acceptable input HopID
816  * @max_hopid: Maximum acceptable input HopID
817  *
818  * Return: HopID between @min_hopid and @max_hopid or negative errno in
819  * case of error.
820  */
821 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
822 {
823 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
824 }
825 
826 /**
827  * tb_port_alloc_out_hopid() - Allocate output HopID from port
828  * @port: Port to allocate HopID for
829  * @min_hopid: Minimum acceptable output HopID
830  * @max_hopid: Maximum acceptable output HopID
831  *
832  * Return: HopID between @min_hopid and @max_hopid or negative errno in
833  * case of error.
834  */
835 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
836 {
837 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
838 }
839 
840 /**
841  * tb_port_release_in_hopid() - Release allocated input HopID from port
842  * @port: Port whose HopID to release
843  * @hopid: HopID to release
844  */
845 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
846 {
847 	ida_simple_remove(&port->in_hopids, hopid);
848 }
849 
850 /**
851  * tb_port_release_out_hopid() - Release allocated output HopID from port
852  * @port: Port whose HopID to release
853  * @hopid: HopID to release
854  */
855 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
856 {
857 	ida_simple_remove(&port->out_hopids, hopid);
858 }
859 
860 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
861 					  const struct tb_switch *sw)
862 {
863 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
864 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
865 }
866 
867 /**
868  * tb_next_port_on_path() - Return next port for given port on a path
869  * @start: Start port of the walk
870  * @end: End port of the walk
871  * @prev: Previous port (%NULL if this is the first)
872  *
873  * This function can be used to walk from one port to another if they
874  * are connected through zero or more switches. If the @prev is dual
875  * link port, the function follows that link and returns another end on
876  * that same link.
877  *
878  * If the @end port has been reached, return %NULL.
879  *
880  * Domain tb->lock must be held when this function is called.
881  */
882 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
883 				     struct tb_port *prev)
884 {
885 	struct tb_port *next;
886 
887 	if (!prev)
888 		return start;
889 
890 	if (prev->sw == end->sw) {
891 		if (prev == end)
892 			return NULL;
893 		return end;
894 	}
895 
896 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
897 		next = tb_port_at(tb_route(end->sw), prev->sw);
898 		/* Walk down the topology if next == prev */
899 		if (prev->remote &&
900 		    (next == prev || next->dual_link_port == prev))
901 			next = prev->remote;
902 	} else {
903 		if (tb_is_upstream_port(prev)) {
904 			next = prev->remote;
905 		} else {
906 			next = tb_upstream_port(prev->sw);
907 			/*
908 			 * Keep the same link if prev and next are both
909 			 * dual link ports.
910 			 */
911 			if (next->dual_link_port &&
912 			    next->link_nr != prev->link_nr) {
913 				next = next->dual_link_port;
914 			}
915 		}
916 	}
917 
918 	return next != prev ? next : NULL;
919 }
920 
921 /**
922  * tb_port_get_link_speed() - Get current link speed
923  * @port: Port to check (USB4 or CIO)
924  *
925  * Returns link speed in Gb/s or negative errno in case of failure.
926  */
927 int tb_port_get_link_speed(struct tb_port *port)
928 {
929 	u32 val, speed;
930 	int ret;
931 
932 	if (!port->cap_phy)
933 		return -EINVAL;
934 
935 	ret = tb_port_read(port, &val, TB_CFG_PORT,
936 			   port->cap_phy + LANE_ADP_CS_1, 1);
937 	if (ret)
938 		return ret;
939 
940 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
941 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
942 	return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
943 }
944 
945 /**
946  * tb_port_get_link_width() - Get current link width
947  * @port: Port to check (USB4 or CIO)
948  *
949  * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane)
950  * or negative errno in case of failure.
951  */
952 int tb_port_get_link_width(struct tb_port *port)
953 {
954 	u32 val;
955 	int ret;
956 
957 	if (!port->cap_phy)
958 		return -EINVAL;
959 
960 	ret = tb_port_read(port, &val, TB_CFG_PORT,
961 			   port->cap_phy + LANE_ADP_CS_1, 1);
962 	if (ret)
963 		return ret;
964 
965 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
966 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
967 }
968 
969 static bool tb_port_is_width_supported(struct tb_port *port, int width)
970 {
971 	u32 phy, widths;
972 	int ret;
973 
974 	if (!port->cap_phy)
975 		return false;
976 
977 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
978 			   port->cap_phy + LANE_ADP_CS_0, 1);
979 	if (ret)
980 		return false;
981 
982 	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
983 		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
984 
985 	return !!(widths & width);
986 }
987 
988 static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
989 {
990 	u32 val;
991 	int ret;
992 
993 	if (!port->cap_phy)
994 		return -EINVAL;
995 
996 	ret = tb_port_read(port, &val, TB_CFG_PORT,
997 			   port->cap_phy + LANE_ADP_CS_1, 1);
998 	if (ret)
999 		return ret;
1000 
1001 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1002 	switch (width) {
1003 	case 1:
1004 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1005 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1006 		break;
1007 	case 2:
1008 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1009 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1010 		break;
1011 	default:
1012 		return -EINVAL;
1013 	}
1014 
1015 	val |= LANE_ADP_CS_1_LB;
1016 
1017 	return tb_port_write(port, &val, TB_CFG_PORT,
1018 			     port->cap_phy + LANE_ADP_CS_1, 1);
1019 }
1020 
1021 /**
1022  * tb_port_lane_bonding_enable() - Enable bonding on port
1023  * @port: port to enable
1024  *
1025  * Enable bonding by setting the link width of the port and the other
1026  * port in case of dual link port. Does not wait for the link to
1027  * actually reach the bonded state so caller needs to call
1028  * tb_port_wait_for_link_width() before enabling any paths through the
1029  * link to make sure the link is in expected state.
1030  *
1031  * Return: %0 in case of success and negative errno in case of error
1032  */
1033 int tb_port_lane_bonding_enable(struct tb_port *port)
1034 {
1035 	int ret;
1036 
1037 	/*
1038 	 * Enable lane bonding for both links if not already enabled by
1039 	 * for example the boot firmware.
1040 	 */
1041 	ret = tb_port_get_link_width(port);
1042 	if (ret == 1) {
1043 		ret = tb_port_set_link_width(port, 2);
1044 		if (ret)
1045 			return ret;
1046 	}
1047 
1048 	ret = tb_port_get_link_width(port->dual_link_port);
1049 	if (ret == 1) {
1050 		ret = tb_port_set_link_width(port->dual_link_port, 2);
1051 		if (ret) {
1052 			tb_port_set_link_width(port, 1);
1053 			return ret;
1054 		}
1055 	}
1056 
1057 	port->bonded = true;
1058 	port->dual_link_port->bonded = true;
1059 
1060 	return 0;
1061 }
1062 
1063 /**
1064  * tb_port_lane_bonding_disable() - Disable bonding on port
1065  * @port: port to disable
1066  *
1067  * Disable bonding by setting the link width of the port and the
1068  * other port in case of dual link port.
1069  *
1070  */
1071 void tb_port_lane_bonding_disable(struct tb_port *port)
1072 {
1073 	port->dual_link_port->bonded = false;
1074 	port->bonded = false;
1075 
1076 	tb_port_set_link_width(port->dual_link_port, 1);
1077 	tb_port_set_link_width(port, 1);
1078 }
1079 
1080 /**
1081  * tb_port_wait_for_link_width() - Wait until link reaches specific width
1082  * @port: Port to wait for
1083  * @width: Expected link width (%1 or %2)
1084  * @timeout_msec: Timeout in ms how long to wait
1085  *
1086  * Should be used after both ends of the link have been bonded (or
1087  * bonding has been disabled) to wait until the link actually reaches
1088  * the expected state. Returns %-ETIMEDOUT if the @width was not reached
1089  * within the given timeout, %0 if it did.
1090  */
1091 int tb_port_wait_for_link_width(struct tb_port *port, int width,
1092 				int timeout_msec)
1093 {
1094 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1095 	int ret;
1096 
1097 	do {
1098 		ret = tb_port_get_link_width(port);
1099 		if (ret < 0)
1100 			return ret;
1101 		else if (ret == width)
1102 			return 0;
1103 
1104 		usleep_range(1000, 2000);
1105 	} while (ktime_before(ktime_get(), timeout));
1106 
1107 	return -ETIMEDOUT;
1108 }
1109 
1110 static int tb_port_do_update_credits(struct tb_port *port)
1111 {
1112 	u32 nfc_credits;
1113 	int ret;
1114 
1115 	ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1116 	if (ret)
1117 		return ret;
1118 
1119 	if (nfc_credits != port->config.nfc_credits) {
1120 		u32 total;
1121 
1122 		total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1123 			ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1124 
1125 		tb_port_dbg(port, "total credits changed %u -> %u\n",
1126 			    port->total_credits, total);
1127 
1128 		port->config.nfc_credits = nfc_credits;
1129 		port->total_credits = total;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 /**
1136  * tb_port_update_credits() - Re-read port total credits
1137  * @port: Port to update
1138  *
1139  * After the link is bonded (or bonding was disabled) the port total
1140  * credits may change, so this function needs to be called to re-read
1141  * the credits. Updates also the second lane adapter.
1142  */
1143 int tb_port_update_credits(struct tb_port *port)
1144 {
1145 	int ret;
1146 
1147 	ret = tb_port_do_update_credits(port);
1148 	if (ret)
1149 		return ret;
1150 	return tb_port_do_update_credits(port->dual_link_port);
1151 }
1152 
1153 static int tb_port_start_lane_initialization(struct tb_port *port)
1154 {
1155 	int ret;
1156 
1157 	if (tb_switch_is_usb4(port->sw))
1158 		return 0;
1159 
1160 	ret = tb_lc_start_lane_initialization(port);
1161 	return ret == -EINVAL ? 0 : ret;
1162 }
1163 
1164 /*
1165  * Returns true if the port had something (router, XDomain) connected
1166  * before suspend.
1167  */
1168 static bool tb_port_resume(struct tb_port *port)
1169 {
1170 	bool has_remote = tb_port_has_remote(port);
1171 
1172 	if (port->usb4) {
1173 		usb4_port_device_resume(port->usb4);
1174 	} else if (!has_remote) {
1175 		/*
1176 		 * For disconnected downstream lane adapters start lane
1177 		 * initialization now so we detect future connects.
1178 		 *
1179 		 * For XDomain start the lane initialzation now so the
1180 		 * link gets re-established.
1181 		 *
1182 		 * This is only needed for non-USB4 ports.
1183 		 */
1184 		if (!tb_is_upstream_port(port) || port->xdomain)
1185 			tb_port_start_lane_initialization(port);
1186 	}
1187 
1188 	return has_remote || port->xdomain;
1189 }
1190 
1191 /**
1192  * tb_port_is_enabled() - Is the adapter port enabled
1193  * @port: Port to check
1194  */
1195 bool tb_port_is_enabled(struct tb_port *port)
1196 {
1197 	switch (port->config.type) {
1198 	case TB_TYPE_PCIE_UP:
1199 	case TB_TYPE_PCIE_DOWN:
1200 		return tb_pci_port_is_enabled(port);
1201 
1202 	case TB_TYPE_DP_HDMI_IN:
1203 	case TB_TYPE_DP_HDMI_OUT:
1204 		return tb_dp_port_is_enabled(port);
1205 
1206 	case TB_TYPE_USB3_UP:
1207 	case TB_TYPE_USB3_DOWN:
1208 		return tb_usb3_port_is_enabled(port);
1209 
1210 	default:
1211 		return false;
1212 	}
1213 }
1214 
1215 /**
1216  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1217  * @port: USB3 adapter port to check
1218  */
1219 bool tb_usb3_port_is_enabled(struct tb_port *port)
1220 {
1221 	u32 data;
1222 
1223 	if (tb_port_read(port, &data, TB_CFG_PORT,
1224 			 port->cap_adap + ADP_USB3_CS_0, 1))
1225 		return false;
1226 
1227 	return !!(data & ADP_USB3_CS_0_PE);
1228 }
1229 
1230 /**
1231  * tb_usb3_port_enable() - Enable USB3 adapter port
1232  * @port: USB3 adapter port to enable
1233  * @enable: Enable/disable the USB3 adapter
1234  */
1235 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1236 {
1237 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1238 			  : ADP_USB3_CS_0_V;
1239 
1240 	if (!port->cap_adap)
1241 		return -ENXIO;
1242 	return tb_port_write(port, &word, TB_CFG_PORT,
1243 			     port->cap_adap + ADP_USB3_CS_0, 1);
1244 }
1245 
1246 /**
1247  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1248  * @port: PCIe port to check
1249  */
1250 bool tb_pci_port_is_enabled(struct tb_port *port)
1251 {
1252 	u32 data;
1253 
1254 	if (tb_port_read(port, &data, TB_CFG_PORT,
1255 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1256 		return false;
1257 
1258 	return !!(data & ADP_PCIE_CS_0_PE);
1259 }
1260 
1261 /**
1262  * tb_pci_port_enable() - Enable PCIe adapter port
1263  * @port: PCIe port to enable
1264  * @enable: Enable/disable the PCIe adapter
1265  */
1266 int tb_pci_port_enable(struct tb_port *port, bool enable)
1267 {
1268 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1269 	if (!port->cap_adap)
1270 		return -ENXIO;
1271 	return tb_port_write(port, &word, TB_CFG_PORT,
1272 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1273 }
1274 
1275 /**
1276  * tb_dp_port_hpd_is_active() - Is HPD already active
1277  * @port: DP out port to check
1278  *
1279  * Checks if the DP OUT adapter port has HDP bit already set.
1280  */
1281 int tb_dp_port_hpd_is_active(struct tb_port *port)
1282 {
1283 	u32 data;
1284 	int ret;
1285 
1286 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1287 			   port->cap_adap + ADP_DP_CS_2, 1);
1288 	if (ret)
1289 		return ret;
1290 
1291 	return !!(data & ADP_DP_CS_2_HDP);
1292 }
1293 
1294 /**
1295  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1296  * @port: Port to clear HPD
1297  *
1298  * If the DP IN port has HDP set, this function can be used to clear it.
1299  */
1300 int tb_dp_port_hpd_clear(struct tb_port *port)
1301 {
1302 	u32 data;
1303 	int ret;
1304 
1305 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1306 			   port->cap_adap + ADP_DP_CS_3, 1);
1307 	if (ret)
1308 		return ret;
1309 
1310 	data |= ADP_DP_CS_3_HDPC;
1311 	return tb_port_write(port, &data, TB_CFG_PORT,
1312 			     port->cap_adap + ADP_DP_CS_3, 1);
1313 }
1314 
1315 /**
1316  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1317  * @port: DP IN/OUT port to set hops
1318  * @video: Video Hop ID
1319  * @aux_tx: AUX TX Hop ID
1320  * @aux_rx: AUX RX Hop ID
1321  *
1322  * Programs specified Hop IDs for DP IN/OUT port.
1323  */
1324 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1325 			unsigned int aux_tx, unsigned int aux_rx)
1326 {
1327 	u32 data[2];
1328 	int ret;
1329 
1330 	ret = tb_port_read(port, data, TB_CFG_PORT,
1331 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1332 	if (ret)
1333 		return ret;
1334 
1335 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1336 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1337 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1338 
1339 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1340 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1341 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1342 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1343 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1344 
1345 	return tb_port_write(port, data, TB_CFG_PORT,
1346 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1347 }
1348 
1349 /**
1350  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1351  * @port: DP adapter port to check
1352  */
1353 bool tb_dp_port_is_enabled(struct tb_port *port)
1354 {
1355 	u32 data[2];
1356 
1357 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1358 			 ARRAY_SIZE(data)))
1359 		return false;
1360 
1361 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1362 }
1363 
1364 /**
1365  * tb_dp_port_enable() - Enables/disables DP paths of a port
1366  * @port: DP IN/OUT port
1367  * @enable: Enable/disable DP path
1368  *
1369  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1370  * calling this function.
1371  */
1372 int tb_dp_port_enable(struct tb_port *port, bool enable)
1373 {
1374 	u32 data[2];
1375 	int ret;
1376 
1377 	ret = tb_port_read(port, data, TB_CFG_PORT,
1378 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1379 	if (ret)
1380 		return ret;
1381 
1382 	if (enable)
1383 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1384 	else
1385 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1386 
1387 	return tb_port_write(port, data, TB_CFG_PORT,
1388 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1389 }
1390 
1391 /* switch utility functions */
1392 
1393 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1394 {
1395 	switch (sw->generation) {
1396 	case 1:
1397 		return "Thunderbolt 1";
1398 	case 2:
1399 		return "Thunderbolt 2";
1400 	case 3:
1401 		return "Thunderbolt 3";
1402 	case 4:
1403 		return "USB4";
1404 	default:
1405 		return "Unknown";
1406 	}
1407 }
1408 
1409 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1410 {
1411 	const struct tb_regs_switch_header *regs = &sw->config;
1412 
1413 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1414 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1415 	       regs->revision, regs->thunderbolt_version);
1416 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1417 	tb_dbg(tb, "  Config:\n");
1418 	tb_dbg(tb,
1419 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1420 	       regs->upstream_port_number, regs->depth,
1421 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1422 	       regs->enabled, regs->plug_events_delay);
1423 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1424 	       regs->__unknown1, regs->__unknown4);
1425 }
1426 
1427 /**
1428  * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1429  * @sw: Switch to reset
1430  *
1431  * Return: Returns 0 on success or an error code on failure.
1432  */
1433 int tb_switch_reset(struct tb_switch *sw)
1434 {
1435 	struct tb_cfg_result res;
1436 
1437 	if (sw->generation > 1)
1438 		return 0;
1439 
1440 	tb_sw_dbg(sw, "resetting switch\n");
1441 
1442 	res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1443 			      TB_CFG_SWITCH, 2, 2);
1444 	if (res.err)
1445 		return res.err;
1446 	res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1447 	if (res.err > 0)
1448 		return -EIO;
1449 	return res.err;
1450 }
1451 
1452 /*
1453  * tb_plug_events_active() - enable/disable plug events on a switch
1454  *
1455  * Also configures a sane plug_events_delay of 255ms.
1456  *
1457  * Return: Returns 0 on success or an error code on failure.
1458  */
1459 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1460 {
1461 	u32 data;
1462 	int res;
1463 
1464 	if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1465 		return 0;
1466 
1467 	sw->config.plug_events_delay = 0xff;
1468 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1469 	if (res)
1470 		return res;
1471 
1472 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1473 	if (res)
1474 		return res;
1475 
1476 	if (active) {
1477 		data = data & 0xFFFFFF83;
1478 		switch (sw->config.device_id) {
1479 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1480 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1481 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1482 			break;
1483 		default:
1484 			data |= 4;
1485 		}
1486 	} else {
1487 		data = data | 0x7c;
1488 	}
1489 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1490 			   sw->cap_plug_events + 1, 1);
1491 }
1492 
1493 static ssize_t authorized_show(struct device *dev,
1494 			       struct device_attribute *attr,
1495 			       char *buf)
1496 {
1497 	struct tb_switch *sw = tb_to_switch(dev);
1498 
1499 	return sprintf(buf, "%u\n", sw->authorized);
1500 }
1501 
1502 static int disapprove_switch(struct device *dev, void *not_used)
1503 {
1504 	char *envp[] = { "AUTHORIZED=0", NULL };
1505 	struct tb_switch *sw;
1506 
1507 	sw = tb_to_switch(dev);
1508 	if (sw && sw->authorized) {
1509 		int ret;
1510 
1511 		/* First children */
1512 		ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1513 		if (ret)
1514 			return ret;
1515 
1516 		ret = tb_domain_disapprove_switch(sw->tb, sw);
1517 		if (ret)
1518 			return ret;
1519 
1520 		sw->authorized = 0;
1521 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1522 	}
1523 
1524 	return 0;
1525 }
1526 
1527 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1528 {
1529 	char envp_string[13];
1530 	int ret = -EINVAL;
1531 	char *envp[] = { envp_string, NULL };
1532 
1533 	if (!mutex_trylock(&sw->tb->lock))
1534 		return restart_syscall();
1535 
1536 	if (!!sw->authorized == !!val)
1537 		goto unlock;
1538 
1539 	switch (val) {
1540 	/* Disapprove switch */
1541 	case 0:
1542 		if (tb_route(sw)) {
1543 			ret = disapprove_switch(&sw->dev, NULL);
1544 			goto unlock;
1545 		}
1546 		break;
1547 
1548 	/* Approve switch */
1549 	case 1:
1550 		if (sw->key)
1551 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1552 		else
1553 			ret = tb_domain_approve_switch(sw->tb, sw);
1554 		break;
1555 
1556 	/* Challenge switch */
1557 	case 2:
1558 		if (sw->key)
1559 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1560 		break;
1561 
1562 	default:
1563 		break;
1564 	}
1565 
1566 	if (!ret) {
1567 		sw->authorized = val;
1568 		/*
1569 		 * Notify status change to the userspace, informing the new
1570 		 * value of /sys/bus/thunderbolt/devices/.../authorized.
1571 		 */
1572 		sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1573 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1574 	}
1575 
1576 unlock:
1577 	mutex_unlock(&sw->tb->lock);
1578 	return ret;
1579 }
1580 
1581 static ssize_t authorized_store(struct device *dev,
1582 				struct device_attribute *attr,
1583 				const char *buf, size_t count)
1584 {
1585 	struct tb_switch *sw = tb_to_switch(dev);
1586 	unsigned int val;
1587 	ssize_t ret;
1588 
1589 	ret = kstrtouint(buf, 0, &val);
1590 	if (ret)
1591 		return ret;
1592 	if (val > 2)
1593 		return -EINVAL;
1594 
1595 	pm_runtime_get_sync(&sw->dev);
1596 	ret = tb_switch_set_authorized(sw, val);
1597 	pm_runtime_mark_last_busy(&sw->dev);
1598 	pm_runtime_put_autosuspend(&sw->dev);
1599 
1600 	return ret ? ret : count;
1601 }
1602 static DEVICE_ATTR_RW(authorized);
1603 
1604 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1605 			 char *buf)
1606 {
1607 	struct tb_switch *sw = tb_to_switch(dev);
1608 
1609 	return sprintf(buf, "%u\n", sw->boot);
1610 }
1611 static DEVICE_ATTR_RO(boot);
1612 
1613 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1614 			   char *buf)
1615 {
1616 	struct tb_switch *sw = tb_to_switch(dev);
1617 
1618 	return sprintf(buf, "%#x\n", sw->device);
1619 }
1620 static DEVICE_ATTR_RO(device);
1621 
1622 static ssize_t
1623 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1624 {
1625 	struct tb_switch *sw = tb_to_switch(dev);
1626 
1627 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1628 }
1629 static DEVICE_ATTR_RO(device_name);
1630 
1631 static ssize_t
1632 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1633 {
1634 	struct tb_switch *sw = tb_to_switch(dev);
1635 
1636 	return sprintf(buf, "%u\n", sw->generation);
1637 }
1638 static DEVICE_ATTR_RO(generation);
1639 
1640 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1641 			char *buf)
1642 {
1643 	struct tb_switch *sw = tb_to_switch(dev);
1644 	ssize_t ret;
1645 
1646 	if (!mutex_trylock(&sw->tb->lock))
1647 		return restart_syscall();
1648 
1649 	if (sw->key)
1650 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1651 	else
1652 		ret = sprintf(buf, "\n");
1653 
1654 	mutex_unlock(&sw->tb->lock);
1655 	return ret;
1656 }
1657 
1658 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1659 			 const char *buf, size_t count)
1660 {
1661 	struct tb_switch *sw = tb_to_switch(dev);
1662 	u8 key[TB_SWITCH_KEY_SIZE];
1663 	ssize_t ret = count;
1664 	bool clear = false;
1665 
1666 	if (!strcmp(buf, "\n"))
1667 		clear = true;
1668 	else if (hex2bin(key, buf, sizeof(key)))
1669 		return -EINVAL;
1670 
1671 	if (!mutex_trylock(&sw->tb->lock))
1672 		return restart_syscall();
1673 
1674 	if (sw->authorized) {
1675 		ret = -EBUSY;
1676 	} else {
1677 		kfree(sw->key);
1678 		if (clear) {
1679 			sw->key = NULL;
1680 		} else {
1681 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1682 			if (!sw->key)
1683 				ret = -ENOMEM;
1684 		}
1685 	}
1686 
1687 	mutex_unlock(&sw->tb->lock);
1688 	return ret;
1689 }
1690 static DEVICE_ATTR(key, 0600, key_show, key_store);
1691 
1692 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1693 			  char *buf)
1694 {
1695 	struct tb_switch *sw = tb_to_switch(dev);
1696 
1697 	return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1698 }
1699 
1700 /*
1701  * Currently all lanes must run at the same speed but we expose here
1702  * both directions to allow possible asymmetric links in the future.
1703  */
1704 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1705 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1706 
1707 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1708 			  char *buf)
1709 {
1710 	struct tb_switch *sw = tb_to_switch(dev);
1711 
1712 	return sprintf(buf, "%u\n", sw->link_width);
1713 }
1714 
1715 /*
1716  * Currently link has same amount of lanes both directions (1 or 2) but
1717  * expose them separately to allow possible asymmetric links in the future.
1718  */
1719 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1720 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1721 
1722 static ssize_t nvm_authenticate_show(struct device *dev,
1723 	struct device_attribute *attr, char *buf)
1724 {
1725 	struct tb_switch *sw = tb_to_switch(dev);
1726 	u32 status;
1727 
1728 	nvm_get_auth_status(sw, &status);
1729 	return sprintf(buf, "%#x\n", status);
1730 }
1731 
1732 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1733 				      bool disconnect)
1734 {
1735 	struct tb_switch *sw = tb_to_switch(dev);
1736 	int val, ret;
1737 
1738 	pm_runtime_get_sync(&sw->dev);
1739 
1740 	if (!mutex_trylock(&sw->tb->lock)) {
1741 		ret = restart_syscall();
1742 		goto exit_rpm;
1743 	}
1744 
1745 	/* If NVMem devices are not yet added */
1746 	if (!sw->nvm) {
1747 		ret = -EAGAIN;
1748 		goto exit_unlock;
1749 	}
1750 
1751 	ret = kstrtoint(buf, 10, &val);
1752 	if (ret)
1753 		goto exit_unlock;
1754 
1755 	/* Always clear the authentication status */
1756 	nvm_clear_auth_status(sw);
1757 
1758 	if (val > 0) {
1759 		if (val == AUTHENTICATE_ONLY) {
1760 			if (disconnect)
1761 				ret = -EINVAL;
1762 			else
1763 				ret = nvm_authenticate(sw, true);
1764 		} else {
1765 			if (!sw->nvm->flushed) {
1766 				if (!sw->nvm->buf) {
1767 					ret = -EINVAL;
1768 					goto exit_unlock;
1769 				}
1770 
1771 				ret = nvm_validate_and_write(sw);
1772 				if (ret || val == WRITE_ONLY)
1773 					goto exit_unlock;
1774 			}
1775 			if (val == WRITE_AND_AUTHENTICATE) {
1776 				if (disconnect)
1777 					ret = tb_lc_force_power(sw);
1778 				else
1779 					ret = nvm_authenticate(sw, false);
1780 			}
1781 		}
1782 	}
1783 
1784 exit_unlock:
1785 	mutex_unlock(&sw->tb->lock);
1786 exit_rpm:
1787 	pm_runtime_mark_last_busy(&sw->dev);
1788 	pm_runtime_put_autosuspend(&sw->dev);
1789 
1790 	return ret;
1791 }
1792 
1793 static ssize_t nvm_authenticate_store(struct device *dev,
1794 	struct device_attribute *attr, const char *buf, size_t count)
1795 {
1796 	int ret = nvm_authenticate_sysfs(dev, buf, false);
1797 	if (ret)
1798 		return ret;
1799 	return count;
1800 }
1801 static DEVICE_ATTR_RW(nvm_authenticate);
1802 
1803 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1804 	struct device_attribute *attr, char *buf)
1805 {
1806 	return nvm_authenticate_show(dev, attr, buf);
1807 }
1808 
1809 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1810 	struct device_attribute *attr, const char *buf, size_t count)
1811 {
1812 	int ret;
1813 
1814 	ret = nvm_authenticate_sysfs(dev, buf, true);
1815 	return ret ? ret : count;
1816 }
1817 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1818 
1819 static ssize_t nvm_version_show(struct device *dev,
1820 				struct device_attribute *attr, char *buf)
1821 {
1822 	struct tb_switch *sw = tb_to_switch(dev);
1823 	int ret;
1824 
1825 	if (!mutex_trylock(&sw->tb->lock))
1826 		return restart_syscall();
1827 
1828 	if (sw->safe_mode)
1829 		ret = -ENODATA;
1830 	else if (!sw->nvm)
1831 		ret = -EAGAIN;
1832 	else
1833 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1834 
1835 	mutex_unlock(&sw->tb->lock);
1836 
1837 	return ret;
1838 }
1839 static DEVICE_ATTR_RO(nvm_version);
1840 
1841 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1842 			   char *buf)
1843 {
1844 	struct tb_switch *sw = tb_to_switch(dev);
1845 
1846 	return sprintf(buf, "%#x\n", sw->vendor);
1847 }
1848 static DEVICE_ATTR_RO(vendor);
1849 
1850 static ssize_t
1851 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1852 {
1853 	struct tb_switch *sw = tb_to_switch(dev);
1854 
1855 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1856 }
1857 static DEVICE_ATTR_RO(vendor_name);
1858 
1859 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1860 			      char *buf)
1861 {
1862 	struct tb_switch *sw = tb_to_switch(dev);
1863 
1864 	return sprintf(buf, "%pUb\n", sw->uuid);
1865 }
1866 static DEVICE_ATTR_RO(unique_id);
1867 
1868 static struct attribute *switch_attrs[] = {
1869 	&dev_attr_authorized.attr,
1870 	&dev_attr_boot.attr,
1871 	&dev_attr_device.attr,
1872 	&dev_attr_device_name.attr,
1873 	&dev_attr_generation.attr,
1874 	&dev_attr_key.attr,
1875 	&dev_attr_nvm_authenticate.attr,
1876 	&dev_attr_nvm_authenticate_on_disconnect.attr,
1877 	&dev_attr_nvm_version.attr,
1878 	&dev_attr_rx_speed.attr,
1879 	&dev_attr_rx_lanes.attr,
1880 	&dev_attr_tx_speed.attr,
1881 	&dev_attr_tx_lanes.attr,
1882 	&dev_attr_vendor.attr,
1883 	&dev_attr_vendor_name.attr,
1884 	&dev_attr_unique_id.attr,
1885 	NULL,
1886 };
1887 
1888 static umode_t switch_attr_is_visible(struct kobject *kobj,
1889 				      struct attribute *attr, int n)
1890 {
1891 	struct device *dev = kobj_to_dev(kobj);
1892 	struct tb_switch *sw = tb_to_switch(dev);
1893 
1894 	if (attr == &dev_attr_authorized.attr) {
1895 		if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
1896 		    sw->tb->security_level == TB_SECURITY_DPONLY)
1897 			return 0;
1898 	} else if (attr == &dev_attr_device.attr) {
1899 		if (!sw->device)
1900 			return 0;
1901 	} else if (attr == &dev_attr_device_name.attr) {
1902 		if (!sw->device_name)
1903 			return 0;
1904 	} else if (attr == &dev_attr_vendor.attr)  {
1905 		if (!sw->vendor)
1906 			return 0;
1907 	} else if (attr == &dev_attr_vendor_name.attr)  {
1908 		if (!sw->vendor_name)
1909 			return 0;
1910 	} else if (attr == &dev_attr_key.attr) {
1911 		if (tb_route(sw) &&
1912 		    sw->tb->security_level == TB_SECURITY_SECURE &&
1913 		    sw->security_level == TB_SECURITY_SECURE)
1914 			return attr->mode;
1915 		return 0;
1916 	} else if (attr == &dev_attr_rx_speed.attr ||
1917 		   attr == &dev_attr_rx_lanes.attr ||
1918 		   attr == &dev_attr_tx_speed.attr ||
1919 		   attr == &dev_attr_tx_lanes.attr) {
1920 		if (tb_route(sw))
1921 			return attr->mode;
1922 		return 0;
1923 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
1924 		if (nvm_upgradeable(sw))
1925 			return attr->mode;
1926 		return 0;
1927 	} else if (attr == &dev_attr_nvm_version.attr) {
1928 		if (nvm_readable(sw))
1929 			return attr->mode;
1930 		return 0;
1931 	} else if (attr == &dev_attr_boot.attr) {
1932 		if (tb_route(sw))
1933 			return attr->mode;
1934 		return 0;
1935 	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1936 		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1937 			return attr->mode;
1938 		return 0;
1939 	}
1940 
1941 	return sw->safe_mode ? 0 : attr->mode;
1942 }
1943 
1944 static const struct attribute_group switch_group = {
1945 	.is_visible = switch_attr_is_visible,
1946 	.attrs = switch_attrs,
1947 };
1948 
1949 static const struct attribute_group *switch_groups[] = {
1950 	&switch_group,
1951 	NULL,
1952 };
1953 
1954 static void tb_switch_release(struct device *dev)
1955 {
1956 	struct tb_switch *sw = tb_to_switch(dev);
1957 	struct tb_port *port;
1958 
1959 	dma_port_free(sw->dma_port);
1960 
1961 	tb_switch_for_each_port(sw, port) {
1962 		ida_destroy(&port->in_hopids);
1963 		ida_destroy(&port->out_hopids);
1964 	}
1965 
1966 	kfree(sw->uuid);
1967 	kfree(sw->device_name);
1968 	kfree(sw->vendor_name);
1969 	kfree(sw->ports);
1970 	kfree(sw->drom);
1971 	kfree(sw->key);
1972 	kfree(sw);
1973 }
1974 
1975 static int tb_switch_uevent(struct device *dev, struct kobj_uevent_env *env)
1976 {
1977 	struct tb_switch *sw = tb_to_switch(dev);
1978 	const char *type;
1979 
1980 	if (sw->config.thunderbolt_version == USB4_VERSION_1_0) {
1981 		if (add_uevent_var(env, "USB4_VERSION=1.0"))
1982 			return -ENOMEM;
1983 	}
1984 
1985 	if (!tb_route(sw)) {
1986 		type = "host";
1987 	} else {
1988 		const struct tb_port *port;
1989 		bool hub = false;
1990 
1991 		/* Device is hub if it has any downstream ports */
1992 		tb_switch_for_each_port(sw, port) {
1993 			if (!port->disabled && !tb_is_upstream_port(port) &&
1994 			     tb_port_is_null(port)) {
1995 				hub = true;
1996 				break;
1997 			}
1998 		}
1999 
2000 		type = hub ? "hub" : "device";
2001 	}
2002 
2003 	if (add_uevent_var(env, "USB4_TYPE=%s", type))
2004 		return -ENOMEM;
2005 	return 0;
2006 }
2007 
2008 /*
2009  * Currently only need to provide the callbacks. Everything else is handled
2010  * in the connection manager.
2011  */
2012 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2013 {
2014 	struct tb_switch *sw = tb_to_switch(dev);
2015 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2016 
2017 	if (cm_ops->runtime_suspend_switch)
2018 		return cm_ops->runtime_suspend_switch(sw);
2019 
2020 	return 0;
2021 }
2022 
2023 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2024 {
2025 	struct tb_switch *sw = tb_to_switch(dev);
2026 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2027 
2028 	if (cm_ops->runtime_resume_switch)
2029 		return cm_ops->runtime_resume_switch(sw);
2030 	return 0;
2031 }
2032 
2033 static const struct dev_pm_ops tb_switch_pm_ops = {
2034 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2035 			   NULL)
2036 };
2037 
2038 struct device_type tb_switch_type = {
2039 	.name = "thunderbolt_device",
2040 	.release = tb_switch_release,
2041 	.uevent = tb_switch_uevent,
2042 	.pm = &tb_switch_pm_ops,
2043 };
2044 
2045 static int tb_switch_get_generation(struct tb_switch *sw)
2046 {
2047 	switch (sw->config.device_id) {
2048 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2049 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2050 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2051 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2052 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2053 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2054 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2055 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2056 		return 1;
2057 
2058 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2059 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2060 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2061 		return 2;
2062 
2063 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2064 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2065 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2066 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2067 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2068 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2069 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2070 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2071 	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2072 	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2073 		return 3;
2074 
2075 	default:
2076 		if (tb_switch_is_usb4(sw))
2077 			return 4;
2078 
2079 		/*
2080 		 * For unknown switches assume generation to be 1 to be
2081 		 * on the safe side.
2082 		 */
2083 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
2084 			   sw->config.device_id);
2085 		return 1;
2086 	}
2087 }
2088 
2089 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2090 {
2091 	int max_depth;
2092 
2093 	if (tb_switch_is_usb4(sw) ||
2094 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2095 		max_depth = USB4_SWITCH_MAX_DEPTH;
2096 	else
2097 		max_depth = TB_SWITCH_MAX_DEPTH;
2098 
2099 	return depth > max_depth;
2100 }
2101 
2102 /**
2103  * tb_switch_alloc() - allocate a switch
2104  * @tb: Pointer to the owning domain
2105  * @parent: Parent device for this switch
2106  * @route: Route string for this switch
2107  *
2108  * Allocates and initializes a switch. Will not upload configuration to
2109  * the switch. For that you need to call tb_switch_configure()
2110  * separately. The returned switch should be released by calling
2111  * tb_switch_put().
2112  *
2113  * Return: Pointer to the allocated switch or ERR_PTR() in case of
2114  * failure.
2115  */
2116 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2117 				  u64 route)
2118 {
2119 	struct tb_switch *sw;
2120 	int upstream_port;
2121 	int i, ret, depth;
2122 
2123 	/* Unlock the downstream port so we can access the switch below */
2124 	if (route) {
2125 		struct tb_switch *parent_sw = tb_to_switch(parent);
2126 		struct tb_port *down;
2127 
2128 		down = tb_port_at(route, parent_sw);
2129 		tb_port_unlock(down);
2130 	}
2131 
2132 	depth = tb_route_length(route);
2133 
2134 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2135 	if (upstream_port < 0)
2136 		return ERR_PTR(upstream_port);
2137 
2138 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2139 	if (!sw)
2140 		return ERR_PTR(-ENOMEM);
2141 
2142 	sw->tb = tb;
2143 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2144 	if (ret)
2145 		goto err_free_sw_ports;
2146 
2147 	sw->generation = tb_switch_get_generation(sw);
2148 
2149 	tb_dbg(tb, "current switch config:\n");
2150 	tb_dump_switch(tb, sw);
2151 
2152 	/* configure switch */
2153 	sw->config.upstream_port_number = upstream_port;
2154 	sw->config.depth = depth;
2155 	sw->config.route_hi = upper_32_bits(route);
2156 	sw->config.route_lo = lower_32_bits(route);
2157 	sw->config.enabled = 0;
2158 
2159 	/* Make sure we do not exceed maximum topology limit */
2160 	if (tb_switch_exceeds_max_depth(sw, depth)) {
2161 		ret = -EADDRNOTAVAIL;
2162 		goto err_free_sw_ports;
2163 	}
2164 
2165 	/* initialize ports */
2166 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2167 				GFP_KERNEL);
2168 	if (!sw->ports) {
2169 		ret = -ENOMEM;
2170 		goto err_free_sw_ports;
2171 	}
2172 
2173 	for (i = 0; i <= sw->config.max_port_number; i++) {
2174 		/* minimum setup for tb_find_cap and tb_drom_read to work */
2175 		sw->ports[i].sw = sw;
2176 		sw->ports[i].port = i;
2177 
2178 		/* Control port does not need HopID allocation */
2179 		if (i) {
2180 			ida_init(&sw->ports[i].in_hopids);
2181 			ida_init(&sw->ports[i].out_hopids);
2182 		}
2183 	}
2184 
2185 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2186 	if (ret > 0)
2187 		sw->cap_plug_events = ret;
2188 
2189 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2190 	if (ret > 0)
2191 		sw->cap_lc = ret;
2192 
2193 	/* Root switch is always authorized */
2194 	if (!route)
2195 		sw->authorized = true;
2196 
2197 	device_initialize(&sw->dev);
2198 	sw->dev.parent = parent;
2199 	sw->dev.bus = &tb_bus_type;
2200 	sw->dev.type = &tb_switch_type;
2201 	sw->dev.groups = switch_groups;
2202 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2203 
2204 	return sw;
2205 
2206 err_free_sw_ports:
2207 	kfree(sw->ports);
2208 	kfree(sw);
2209 
2210 	return ERR_PTR(ret);
2211 }
2212 
2213 /**
2214  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2215  * @tb: Pointer to the owning domain
2216  * @parent: Parent device for this switch
2217  * @route: Route string for this switch
2218  *
2219  * This creates a switch in safe mode. This means the switch pretty much
2220  * lacks all capabilities except DMA configuration port before it is
2221  * flashed with a valid NVM firmware.
2222  *
2223  * The returned switch must be released by calling tb_switch_put().
2224  *
2225  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2226  */
2227 struct tb_switch *
2228 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2229 {
2230 	struct tb_switch *sw;
2231 
2232 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2233 	if (!sw)
2234 		return ERR_PTR(-ENOMEM);
2235 
2236 	sw->tb = tb;
2237 	sw->config.depth = tb_route_length(route);
2238 	sw->config.route_hi = upper_32_bits(route);
2239 	sw->config.route_lo = lower_32_bits(route);
2240 	sw->safe_mode = true;
2241 
2242 	device_initialize(&sw->dev);
2243 	sw->dev.parent = parent;
2244 	sw->dev.bus = &tb_bus_type;
2245 	sw->dev.type = &tb_switch_type;
2246 	sw->dev.groups = switch_groups;
2247 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2248 
2249 	return sw;
2250 }
2251 
2252 /**
2253  * tb_switch_configure() - Uploads configuration to the switch
2254  * @sw: Switch to configure
2255  *
2256  * Call this function before the switch is added to the system. It will
2257  * upload configuration to the switch and makes it available for the
2258  * connection manager to use. Can be called to the switch again after
2259  * resume from low power states to re-initialize it.
2260  *
2261  * Return: %0 in case of success and negative errno in case of failure
2262  */
2263 int tb_switch_configure(struct tb_switch *sw)
2264 {
2265 	struct tb *tb = sw->tb;
2266 	u64 route;
2267 	int ret;
2268 
2269 	route = tb_route(sw);
2270 
2271 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2272 	       sw->config.enabled ? "restoring" : "initializing", route,
2273 	       tb_route_length(route), sw->config.upstream_port_number);
2274 
2275 	sw->config.enabled = 1;
2276 
2277 	if (tb_switch_is_usb4(sw)) {
2278 		/*
2279 		 * For USB4 devices, we need to program the CM version
2280 		 * accordingly so that it knows to expose all the
2281 		 * additional capabilities.
2282 		 */
2283 		sw->config.cmuv = USB4_VERSION_1_0;
2284 
2285 		/* Enumerate the switch */
2286 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2287 				  ROUTER_CS_1, 4);
2288 		if (ret)
2289 			return ret;
2290 
2291 		ret = usb4_switch_setup(sw);
2292 	} else {
2293 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2294 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2295 				   sw->config.vendor_id);
2296 
2297 		if (!sw->cap_plug_events) {
2298 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2299 			return -ENODEV;
2300 		}
2301 
2302 		/* Enumerate the switch */
2303 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2304 				  ROUTER_CS_1, 3);
2305 	}
2306 	if (ret)
2307 		return ret;
2308 
2309 	return tb_plug_events_active(sw, true);
2310 }
2311 
2312 static int tb_switch_set_uuid(struct tb_switch *sw)
2313 {
2314 	bool uid = false;
2315 	u32 uuid[4];
2316 	int ret;
2317 
2318 	if (sw->uuid)
2319 		return 0;
2320 
2321 	if (tb_switch_is_usb4(sw)) {
2322 		ret = usb4_switch_read_uid(sw, &sw->uid);
2323 		if (ret)
2324 			return ret;
2325 		uid = true;
2326 	} else {
2327 		/*
2328 		 * The newer controllers include fused UUID as part of
2329 		 * link controller specific registers
2330 		 */
2331 		ret = tb_lc_read_uuid(sw, uuid);
2332 		if (ret) {
2333 			if (ret != -EINVAL)
2334 				return ret;
2335 			uid = true;
2336 		}
2337 	}
2338 
2339 	if (uid) {
2340 		/*
2341 		 * ICM generates UUID based on UID and fills the upper
2342 		 * two words with ones. This is not strictly following
2343 		 * UUID format but we want to be compatible with it so
2344 		 * we do the same here.
2345 		 */
2346 		uuid[0] = sw->uid & 0xffffffff;
2347 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2348 		uuid[2] = 0xffffffff;
2349 		uuid[3] = 0xffffffff;
2350 	}
2351 
2352 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2353 	if (!sw->uuid)
2354 		return -ENOMEM;
2355 	return 0;
2356 }
2357 
2358 static int tb_switch_add_dma_port(struct tb_switch *sw)
2359 {
2360 	u32 status;
2361 	int ret;
2362 
2363 	switch (sw->generation) {
2364 	case 2:
2365 		/* Only root switch can be upgraded */
2366 		if (tb_route(sw))
2367 			return 0;
2368 
2369 		fallthrough;
2370 	case 3:
2371 	case 4:
2372 		ret = tb_switch_set_uuid(sw);
2373 		if (ret)
2374 			return ret;
2375 		break;
2376 
2377 	default:
2378 		/*
2379 		 * DMA port is the only thing available when the switch
2380 		 * is in safe mode.
2381 		 */
2382 		if (!sw->safe_mode)
2383 			return 0;
2384 		break;
2385 	}
2386 
2387 	if (sw->no_nvm_upgrade)
2388 		return 0;
2389 
2390 	if (tb_switch_is_usb4(sw)) {
2391 		ret = usb4_switch_nvm_authenticate_status(sw, &status);
2392 		if (ret)
2393 			return ret;
2394 
2395 		if (status) {
2396 			tb_sw_info(sw, "switch flash authentication failed\n");
2397 			nvm_set_auth_status(sw, status);
2398 		}
2399 
2400 		return 0;
2401 	}
2402 
2403 	/* Root switch DMA port requires running firmware */
2404 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2405 		return 0;
2406 
2407 	sw->dma_port = dma_port_alloc(sw);
2408 	if (!sw->dma_port)
2409 		return 0;
2410 
2411 	/*
2412 	 * If there is status already set then authentication failed
2413 	 * when the dma_port_flash_update_auth() returned. Power cycling
2414 	 * is not needed (it was done already) so only thing we do here
2415 	 * is to unblock runtime PM of the root port.
2416 	 */
2417 	nvm_get_auth_status(sw, &status);
2418 	if (status) {
2419 		if (!tb_route(sw))
2420 			nvm_authenticate_complete_dma_port(sw);
2421 		return 0;
2422 	}
2423 
2424 	/*
2425 	 * Check status of the previous flash authentication. If there
2426 	 * is one we need to power cycle the switch in any case to make
2427 	 * it functional again.
2428 	 */
2429 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2430 	if (ret <= 0)
2431 		return ret;
2432 
2433 	/* Now we can allow root port to suspend again */
2434 	if (!tb_route(sw))
2435 		nvm_authenticate_complete_dma_port(sw);
2436 
2437 	if (status) {
2438 		tb_sw_info(sw, "switch flash authentication failed\n");
2439 		nvm_set_auth_status(sw, status);
2440 	}
2441 
2442 	tb_sw_info(sw, "power cycling the switch now\n");
2443 	dma_port_power_cycle(sw->dma_port);
2444 
2445 	/*
2446 	 * We return error here which causes the switch adding failure.
2447 	 * It should appear back after power cycle is complete.
2448 	 */
2449 	return -ESHUTDOWN;
2450 }
2451 
2452 static void tb_switch_default_link_ports(struct tb_switch *sw)
2453 {
2454 	int i;
2455 
2456 	for (i = 1; i <= sw->config.max_port_number; i++) {
2457 		struct tb_port *port = &sw->ports[i];
2458 		struct tb_port *subordinate;
2459 
2460 		if (!tb_port_is_null(port))
2461 			continue;
2462 
2463 		/* Check for the subordinate port */
2464 		if (i == sw->config.max_port_number ||
2465 		    !tb_port_is_null(&sw->ports[i + 1]))
2466 			continue;
2467 
2468 		/* Link them if not already done so (by DROM) */
2469 		subordinate = &sw->ports[i + 1];
2470 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2471 			port->link_nr = 0;
2472 			port->dual_link_port = subordinate;
2473 			subordinate->link_nr = 1;
2474 			subordinate->dual_link_port = port;
2475 
2476 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2477 				  port->port, subordinate->port);
2478 		}
2479 	}
2480 }
2481 
2482 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2483 {
2484 	const struct tb_port *up = tb_upstream_port(sw);
2485 
2486 	if (!up->dual_link_port || !up->dual_link_port->remote)
2487 		return false;
2488 
2489 	if (tb_switch_is_usb4(sw))
2490 		return usb4_switch_lane_bonding_possible(sw);
2491 	return tb_lc_lane_bonding_possible(sw);
2492 }
2493 
2494 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2495 {
2496 	struct tb_port *up;
2497 	bool change = false;
2498 	int ret;
2499 
2500 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2501 		return 0;
2502 
2503 	up = tb_upstream_port(sw);
2504 
2505 	ret = tb_port_get_link_speed(up);
2506 	if (ret < 0)
2507 		return ret;
2508 	if (sw->link_speed != ret)
2509 		change = true;
2510 	sw->link_speed = ret;
2511 
2512 	ret = tb_port_get_link_width(up);
2513 	if (ret < 0)
2514 		return ret;
2515 	if (sw->link_width != ret)
2516 		change = true;
2517 	sw->link_width = ret;
2518 
2519 	/* Notify userspace that there is possible link attribute change */
2520 	if (device_is_registered(&sw->dev) && change)
2521 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2522 
2523 	return 0;
2524 }
2525 
2526 /**
2527  * tb_switch_lane_bonding_enable() - Enable lane bonding
2528  * @sw: Switch to enable lane bonding
2529  *
2530  * Connection manager can call this function to enable lane bonding of a
2531  * switch. If conditions are correct and both switches support the feature,
2532  * lanes are bonded. It is safe to call this to any switch.
2533  */
2534 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2535 {
2536 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2537 	struct tb_port *up, *down;
2538 	u64 route = tb_route(sw);
2539 	int ret;
2540 
2541 	if (!route)
2542 		return 0;
2543 
2544 	if (!tb_switch_lane_bonding_possible(sw))
2545 		return 0;
2546 
2547 	up = tb_upstream_port(sw);
2548 	down = tb_port_at(route, parent);
2549 
2550 	if (!tb_port_is_width_supported(up, 2) ||
2551 	    !tb_port_is_width_supported(down, 2))
2552 		return 0;
2553 
2554 	ret = tb_port_lane_bonding_enable(up);
2555 	if (ret) {
2556 		tb_port_warn(up, "failed to enable lane bonding\n");
2557 		return ret;
2558 	}
2559 
2560 	ret = tb_port_lane_bonding_enable(down);
2561 	if (ret) {
2562 		tb_port_warn(down, "failed to enable lane bonding\n");
2563 		tb_port_lane_bonding_disable(up);
2564 		return ret;
2565 	}
2566 
2567 	ret = tb_port_wait_for_link_width(down, 2, 100);
2568 	if (ret) {
2569 		tb_port_warn(down, "timeout enabling lane bonding\n");
2570 		return ret;
2571 	}
2572 
2573 	tb_port_update_credits(down);
2574 	tb_port_update_credits(up);
2575 	tb_switch_update_link_attributes(sw);
2576 
2577 	tb_sw_dbg(sw, "lane bonding enabled\n");
2578 	return ret;
2579 }
2580 
2581 /**
2582  * tb_switch_lane_bonding_disable() - Disable lane bonding
2583  * @sw: Switch whose lane bonding to disable
2584  *
2585  * Disables lane bonding between @sw and parent. This can be called even
2586  * if lanes were not bonded originally.
2587  */
2588 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2589 {
2590 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2591 	struct tb_port *up, *down;
2592 
2593 	if (!tb_route(sw))
2594 		return;
2595 
2596 	up = tb_upstream_port(sw);
2597 	if (!up->bonded)
2598 		return;
2599 
2600 	down = tb_port_at(tb_route(sw), parent);
2601 
2602 	tb_port_lane_bonding_disable(up);
2603 	tb_port_lane_bonding_disable(down);
2604 
2605 	/*
2606 	 * It is fine if we get other errors as the router might have
2607 	 * been unplugged.
2608 	 */
2609 	if (tb_port_wait_for_link_width(down, 1, 100) == -ETIMEDOUT)
2610 		tb_sw_warn(sw, "timeout disabling lane bonding\n");
2611 
2612 	tb_port_update_credits(down);
2613 	tb_port_update_credits(up);
2614 	tb_switch_update_link_attributes(sw);
2615 
2616 	tb_sw_dbg(sw, "lane bonding disabled\n");
2617 }
2618 
2619 /**
2620  * tb_switch_configure_link() - Set link configured
2621  * @sw: Switch whose link is configured
2622  *
2623  * Sets the link upstream from @sw configured (from both ends) so that
2624  * it will not be disconnected when the domain exits sleep. Can be
2625  * called for any switch.
2626  *
2627  * It is recommended that this is called after lane bonding is enabled.
2628  *
2629  * Returns %0 on success and negative errno in case of error.
2630  */
2631 int tb_switch_configure_link(struct tb_switch *sw)
2632 {
2633 	struct tb_port *up, *down;
2634 	int ret;
2635 
2636 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2637 		return 0;
2638 
2639 	up = tb_upstream_port(sw);
2640 	if (tb_switch_is_usb4(up->sw))
2641 		ret = usb4_port_configure(up);
2642 	else
2643 		ret = tb_lc_configure_port(up);
2644 	if (ret)
2645 		return ret;
2646 
2647 	down = up->remote;
2648 	if (tb_switch_is_usb4(down->sw))
2649 		return usb4_port_configure(down);
2650 	return tb_lc_configure_port(down);
2651 }
2652 
2653 /**
2654  * tb_switch_unconfigure_link() - Unconfigure link
2655  * @sw: Switch whose link is unconfigured
2656  *
2657  * Sets the link unconfigured so the @sw will be disconnected if the
2658  * domain exists sleep.
2659  */
2660 void tb_switch_unconfigure_link(struct tb_switch *sw)
2661 {
2662 	struct tb_port *up, *down;
2663 
2664 	if (sw->is_unplugged)
2665 		return;
2666 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2667 		return;
2668 
2669 	up = tb_upstream_port(sw);
2670 	if (tb_switch_is_usb4(up->sw))
2671 		usb4_port_unconfigure(up);
2672 	else
2673 		tb_lc_unconfigure_port(up);
2674 
2675 	down = up->remote;
2676 	if (tb_switch_is_usb4(down->sw))
2677 		usb4_port_unconfigure(down);
2678 	else
2679 		tb_lc_unconfigure_port(down);
2680 }
2681 
2682 static void tb_switch_credits_init(struct tb_switch *sw)
2683 {
2684 	if (tb_switch_is_icm(sw))
2685 		return;
2686 	if (!tb_switch_is_usb4(sw))
2687 		return;
2688 	if (usb4_switch_credits_init(sw))
2689 		tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
2690 }
2691 
2692 /**
2693  * tb_switch_add() - Add a switch to the domain
2694  * @sw: Switch to add
2695  *
2696  * This is the last step in adding switch to the domain. It will read
2697  * identification information from DROM and initializes ports so that
2698  * they can be used to connect other switches. The switch will be
2699  * exposed to the userspace when this function successfully returns. To
2700  * remove and release the switch, call tb_switch_remove().
2701  *
2702  * Return: %0 in case of success and negative errno in case of failure
2703  */
2704 int tb_switch_add(struct tb_switch *sw)
2705 {
2706 	int i, ret;
2707 
2708 	/*
2709 	 * Initialize DMA control port now before we read DROM. Recent
2710 	 * host controllers have more complete DROM on NVM that includes
2711 	 * vendor and model identification strings which we then expose
2712 	 * to the userspace. NVM can be accessed through DMA
2713 	 * configuration based mailbox.
2714 	 */
2715 	ret = tb_switch_add_dma_port(sw);
2716 	if (ret) {
2717 		dev_err(&sw->dev, "failed to add DMA port\n");
2718 		return ret;
2719 	}
2720 
2721 	if (!sw->safe_mode) {
2722 		tb_switch_credits_init(sw);
2723 
2724 		/* read drom */
2725 		ret = tb_drom_read(sw);
2726 		if (ret) {
2727 			dev_err(&sw->dev, "reading DROM failed\n");
2728 			return ret;
2729 		}
2730 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2731 
2732 		tb_check_quirks(sw);
2733 
2734 		ret = tb_switch_set_uuid(sw);
2735 		if (ret) {
2736 			dev_err(&sw->dev, "failed to set UUID\n");
2737 			return ret;
2738 		}
2739 
2740 		for (i = 0; i <= sw->config.max_port_number; i++) {
2741 			if (sw->ports[i].disabled) {
2742 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2743 				continue;
2744 			}
2745 			ret = tb_init_port(&sw->ports[i]);
2746 			if (ret) {
2747 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
2748 				return ret;
2749 			}
2750 		}
2751 
2752 		tb_switch_default_link_ports(sw);
2753 
2754 		ret = tb_switch_update_link_attributes(sw);
2755 		if (ret)
2756 			return ret;
2757 
2758 		ret = tb_switch_tmu_init(sw);
2759 		if (ret)
2760 			return ret;
2761 	}
2762 
2763 	ret = device_add(&sw->dev);
2764 	if (ret) {
2765 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
2766 		return ret;
2767 	}
2768 
2769 	if (tb_route(sw)) {
2770 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2771 			 sw->vendor, sw->device);
2772 		if (sw->vendor_name && sw->device_name)
2773 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2774 				 sw->device_name);
2775 	}
2776 
2777 	ret = usb4_switch_add_ports(sw);
2778 	if (ret) {
2779 		dev_err(&sw->dev, "failed to add USB4 ports\n");
2780 		goto err_del;
2781 	}
2782 
2783 	ret = tb_switch_nvm_add(sw);
2784 	if (ret) {
2785 		dev_err(&sw->dev, "failed to add NVM devices\n");
2786 		goto err_ports;
2787 	}
2788 
2789 	/*
2790 	 * Thunderbolt routers do not generate wakeups themselves but
2791 	 * they forward wakeups from tunneled protocols, so enable it
2792 	 * here.
2793 	 */
2794 	device_init_wakeup(&sw->dev, true);
2795 
2796 	pm_runtime_set_active(&sw->dev);
2797 	if (sw->rpm) {
2798 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2799 		pm_runtime_use_autosuspend(&sw->dev);
2800 		pm_runtime_mark_last_busy(&sw->dev);
2801 		pm_runtime_enable(&sw->dev);
2802 		pm_request_autosuspend(&sw->dev);
2803 	}
2804 
2805 	tb_switch_debugfs_init(sw);
2806 	return 0;
2807 
2808 err_ports:
2809 	usb4_switch_remove_ports(sw);
2810 err_del:
2811 	device_del(&sw->dev);
2812 
2813 	return ret;
2814 }
2815 
2816 /**
2817  * tb_switch_remove() - Remove and release a switch
2818  * @sw: Switch to remove
2819  *
2820  * This will remove the switch from the domain and release it after last
2821  * reference count drops to zero. If there are switches connected below
2822  * this switch, they will be removed as well.
2823  */
2824 void tb_switch_remove(struct tb_switch *sw)
2825 {
2826 	struct tb_port *port;
2827 
2828 	tb_switch_debugfs_remove(sw);
2829 
2830 	if (sw->rpm) {
2831 		pm_runtime_get_sync(&sw->dev);
2832 		pm_runtime_disable(&sw->dev);
2833 	}
2834 
2835 	/* port 0 is the switch itself and never has a remote */
2836 	tb_switch_for_each_port(sw, port) {
2837 		if (tb_port_has_remote(port)) {
2838 			tb_switch_remove(port->remote->sw);
2839 			port->remote = NULL;
2840 		} else if (port->xdomain) {
2841 			tb_xdomain_remove(port->xdomain);
2842 			port->xdomain = NULL;
2843 		}
2844 
2845 		/* Remove any downstream retimers */
2846 		tb_retimer_remove_all(port);
2847 	}
2848 
2849 	if (!sw->is_unplugged)
2850 		tb_plug_events_active(sw, false);
2851 
2852 	tb_switch_nvm_remove(sw);
2853 	usb4_switch_remove_ports(sw);
2854 
2855 	if (tb_route(sw))
2856 		dev_info(&sw->dev, "device disconnected\n");
2857 	device_unregister(&sw->dev);
2858 }
2859 
2860 /**
2861  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2862  * @sw: Router to mark unplugged
2863  */
2864 void tb_sw_set_unplugged(struct tb_switch *sw)
2865 {
2866 	struct tb_port *port;
2867 
2868 	if (sw == sw->tb->root_switch) {
2869 		tb_sw_WARN(sw, "cannot unplug root switch\n");
2870 		return;
2871 	}
2872 	if (sw->is_unplugged) {
2873 		tb_sw_WARN(sw, "is_unplugged already set\n");
2874 		return;
2875 	}
2876 	sw->is_unplugged = true;
2877 	tb_switch_for_each_port(sw, port) {
2878 		if (tb_port_has_remote(port))
2879 			tb_sw_set_unplugged(port->remote->sw);
2880 		else if (port->xdomain)
2881 			port->xdomain->is_unplugged = true;
2882 	}
2883 }
2884 
2885 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
2886 {
2887 	if (flags)
2888 		tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
2889 	else
2890 		tb_sw_dbg(sw, "disabling wakeup\n");
2891 
2892 	if (tb_switch_is_usb4(sw))
2893 		return usb4_switch_set_wake(sw, flags);
2894 	return tb_lc_set_wake(sw, flags);
2895 }
2896 
2897 int tb_switch_resume(struct tb_switch *sw)
2898 {
2899 	struct tb_port *port;
2900 	int err;
2901 
2902 	tb_sw_dbg(sw, "resuming switch\n");
2903 
2904 	/*
2905 	 * Check for UID of the connected switches except for root
2906 	 * switch which we assume cannot be removed.
2907 	 */
2908 	if (tb_route(sw)) {
2909 		u64 uid;
2910 
2911 		/*
2912 		 * Check first that we can still read the switch config
2913 		 * space. It may be that there is now another domain
2914 		 * connected.
2915 		 */
2916 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2917 		if (err < 0) {
2918 			tb_sw_info(sw, "switch not present anymore\n");
2919 			return err;
2920 		}
2921 
2922 		if (tb_switch_is_usb4(sw))
2923 			err = usb4_switch_read_uid(sw, &uid);
2924 		else
2925 			err = tb_drom_read_uid_only(sw, &uid);
2926 		if (err) {
2927 			tb_sw_warn(sw, "uid read failed\n");
2928 			return err;
2929 		}
2930 		if (sw->uid != uid) {
2931 			tb_sw_info(sw,
2932 				"changed while suspended (uid %#llx -> %#llx)\n",
2933 				sw->uid, uid);
2934 			return -ENODEV;
2935 		}
2936 	}
2937 
2938 	err = tb_switch_configure(sw);
2939 	if (err)
2940 		return err;
2941 
2942 	/* Disable wakes */
2943 	tb_switch_set_wake(sw, 0);
2944 
2945 	err = tb_switch_tmu_init(sw);
2946 	if (err)
2947 		return err;
2948 
2949 	/* check for surviving downstream switches */
2950 	tb_switch_for_each_port(sw, port) {
2951 		if (!tb_port_is_null(port))
2952 			continue;
2953 
2954 		if (!tb_port_resume(port))
2955 			continue;
2956 
2957 		if (tb_wait_for_port(port, true) <= 0) {
2958 			tb_port_warn(port,
2959 				     "lost during suspend, disconnecting\n");
2960 			if (tb_port_has_remote(port))
2961 				tb_sw_set_unplugged(port->remote->sw);
2962 			else if (port->xdomain)
2963 				port->xdomain->is_unplugged = true;
2964 		} else {
2965 			/*
2966 			 * Always unlock the port so the downstream
2967 			 * switch/domain is accessible.
2968 			 */
2969 			if (tb_port_unlock(port))
2970 				tb_port_warn(port, "failed to unlock port\n");
2971 			if (port->remote && tb_switch_resume(port->remote->sw)) {
2972 				tb_port_warn(port,
2973 					     "lost during suspend, disconnecting\n");
2974 				tb_sw_set_unplugged(port->remote->sw);
2975 			}
2976 		}
2977 	}
2978 	return 0;
2979 }
2980 
2981 /**
2982  * tb_switch_suspend() - Put a switch to sleep
2983  * @sw: Switch to suspend
2984  * @runtime: Is this runtime suspend or system sleep
2985  *
2986  * Suspends router and all its children. Enables wakes according to
2987  * value of @runtime and then sets sleep bit for the router. If @sw is
2988  * host router the domain is ready to go to sleep once this function
2989  * returns.
2990  */
2991 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
2992 {
2993 	unsigned int flags = 0;
2994 	struct tb_port *port;
2995 	int err;
2996 
2997 	tb_sw_dbg(sw, "suspending switch\n");
2998 
2999 	err = tb_plug_events_active(sw, false);
3000 	if (err)
3001 		return;
3002 
3003 	tb_switch_for_each_port(sw, port) {
3004 		if (tb_port_has_remote(port))
3005 			tb_switch_suspend(port->remote->sw, runtime);
3006 	}
3007 
3008 	if (runtime) {
3009 		/* Trigger wake when something is plugged in/out */
3010 		flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3011 		flags |= TB_WAKE_ON_USB4;
3012 		flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3013 	} else if (device_may_wakeup(&sw->dev)) {
3014 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3015 	}
3016 
3017 	tb_switch_set_wake(sw, flags);
3018 
3019 	if (tb_switch_is_usb4(sw))
3020 		usb4_switch_set_sleep(sw);
3021 	else
3022 		tb_lc_set_sleep(sw);
3023 }
3024 
3025 /**
3026  * tb_switch_query_dp_resource() - Query availability of DP resource
3027  * @sw: Switch whose DP resource is queried
3028  * @in: DP IN port
3029  *
3030  * Queries availability of DP resource for DP tunneling using switch
3031  * specific means. Returns %true if resource is available.
3032  */
3033 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3034 {
3035 	if (tb_switch_is_usb4(sw))
3036 		return usb4_switch_query_dp_resource(sw, in);
3037 	return tb_lc_dp_sink_query(sw, in);
3038 }
3039 
3040 /**
3041  * tb_switch_alloc_dp_resource() - Allocate available DP resource
3042  * @sw: Switch whose DP resource is allocated
3043  * @in: DP IN port
3044  *
3045  * Allocates DP resource for DP tunneling. The resource must be
3046  * available for this to succeed (see tb_switch_query_dp_resource()).
3047  * Returns %0 in success and negative errno otherwise.
3048  */
3049 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3050 {
3051 	if (tb_switch_is_usb4(sw))
3052 		return usb4_switch_alloc_dp_resource(sw, in);
3053 	return tb_lc_dp_sink_alloc(sw, in);
3054 }
3055 
3056 /**
3057  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3058  * @sw: Switch whose DP resource is de-allocated
3059  * @in: DP IN port
3060  *
3061  * De-allocates DP resource that was previously allocated for DP
3062  * tunneling.
3063  */
3064 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3065 {
3066 	int ret;
3067 
3068 	if (tb_switch_is_usb4(sw))
3069 		ret = usb4_switch_dealloc_dp_resource(sw, in);
3070 	else
3071 		ret = tb_lc_dp_sink_dealloc(sw, in);
3072 
3073 	if (ret)
3074 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3075 			   in->port);
3076 }
3077 
3078 struct tb_sw_lookup {
3079 	struct tb *tb;
3080 	u8 link;
3081 	u8 depth;
3082 	const uuid_t *uuid;
3083 	u64 route;
3084 };
3085 
3086 static int tb_switch_match(struct device *dev, const void *data)
3087 {
3088 	struct tb_switch *sw = tb_to_switch(dev);
3089 	const struct tb_sw_lookup *lookup = data;
3090 
3091 	if (!sw)
3092 		return 0;
3093 	if (sw->tb != lookup->tb)
3094 		return 0;
3095 
3096 	if (lookup->uuid)
3097 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3098 
3099 	if (lookup->route) {
3100 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
3101 		       sw->config.route_hi == upper_32_bits(lookup->route);
3102 	}
3103 
3104 	/* Root switch is matched only by depth */
3105 	if (!lookup->depth)
3106 		return !sw->depth;
3107 
3108 	return sw->link == lookup->link && sw->depth == lookup->depth;
3109 }
3110 
3111 /**
3112  * tb_switch_find_by_link_depth() - Find switch by link and depth
3113  * @tb: Domain the switch belongs
3114  * @link: Link number the switch is connected
3115  * @depth: Depth of the switch in link
3116  *
3117  * Returned switch has reference count increased so the caller needs to
3118  * call tb_switch_put() when done with the switch.
3119  */
3120 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3121 {
3122 	struct tb_sw_lookup lookup;
3123 	struct device *dev;
3124 
3125 	memset(&lookup, 0, sizeof(lookup));
3126 	lookup.tb = tb;
3127 	lookup.link = link;
3128 	lookup.depth = depth;
3129 
3130 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3131 	if (dev)
3132 		return tb_to_switch(dev);
3133 
3134 	return NULL;
3135 }
3136 
3137 /**
3138  * tb_switch_find_by_uuid() - Find switch by UUID
3139  * @tb: Domain the switch belongs
3140  * @uuid: UUID to look for
3141  *
3142  * Returned switch has reference count increased so the caller needs to
3143  * call tb_switch_put() when done with the switch.
3144  */
3145 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3146 {
3147 	struct tb_sw_lookup lookup;
3148 	struct device *dev;
3149 
3150 	memset(&lookup, 0, sizeof(lookup));
3151 	lookup.tb = tb;
3152 	lookup.uuid = uuid;
3153 
3154 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3155 	if (dev)
3156 		return tb_to_switch(dev);
3157 
3158 	return NULL;
3159 }
3160 
3161 /**
3162  * tb_switch_find_by_route() - Find switch by route string
3163  * @tb: Domain the switch belongs
3164  * @route: Route string to look for
3165  *
3166  * Returned switch has reference count increased so the caller needs to
3167  * call tb_switch_put() when done with the switch.
3168  */
3169 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3170 {
3171 	struct tb_sw_lookup lookup;
3172 	struct device *dev;
3173 
3174 	if (!route)
3175 		return tb_switch_get(tb->root_switch);
3176 
3177 	memset(&lookup, 0, sizeof(lookup));
3178 	lookup.tb = tb;
3179 	lookup.route = route;
3180 
3181 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3182 	if (dev)
3183 		return tb_to_switch(dev);
3184 
3185 	return NULL;
3186 }
3187 
3188 /**
3189  * tb_switch_find_port() - return the first port of @type on @sw or NULL
3190  * @sw: Switch to find the port from
3191  * @type: Port type to look for
3192  */
3193 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3194 				    enum tb_port_type type)
3195 {
3196 	struct tb_port *port;
3197 
3198 	tb_switch_for_each_port(sw, port) {
3199 		if (port->config.type == type)
3200 			return port;
3201 	}
3202 
3203 	return NULL;
3204 }
3205