1 /* 2 * Thunderbolt Cactus Ridge driver - switch/port utility functions 3 * 4 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 5 */ 6 7 #include <linux/delay.h> 8 #include <linux/idr.h> 9 #include <linux/nvmem-provider.h> 10 #include <linux/sizes.h> 11 #include <linux/slab.h> 12 #include <linux/vmalloc.h> 13 14 #include "tb.h" 15 16 /* Switch authorization from userspace is serialized by this lock */ 17 static DEFINE_MUTEX(switch_lock); 18 19 /* Switch NVM support */ 20 21 #define NVM_DEVID 0x05 22 #define NVM_VERSION 0x08 23 #define NVM_CSS 0x10 24 #define NVM_FLASH_SIZE 0x45 25 26 #define NVM_MIN_SIZE SZ_32K 27 #define NVM_MAX_SIZE SZ_512K 28 29 static DEFINE_IDA(nvm_ida); 30 31 struct nvm_auth_status { 32 struct list_head list; 33 uuid_t uuid; 34 u32 status; 35 }; 36 37 /* 38 * Hold NVM authentication failure status per switch This information 39 * needs to stay around even when the switch gets power cycled so we 40 * keep it separately. 41 */ 42 static LIST_HEAD(nvm_auth_status_cache); 43 static DEFINE_MUTEX(nvm_auth_status_lock); 44 45 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 46 { 47 struct nvm_auth_status *st; 48 49 list_for_each_entry(st, &nvm_auth_status_cache, list) { 50 if (uuid_equal(&st->uuid, sw->uuid)) 51 return st; 52 } 53 54 return NULL; 55 } 56 57 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 58 { 59 struct nvm_auth_status *st; 60 61 mutex_lock(&nvm_auth_status_lock); 62 st = __nvm_get_auth_status(sw); 63 mutex_unlock(&nvm_auth_status_lock); 64 65 *status = st ? st->status : 0; 66 } 67 68 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 69 { 70 struct nvm_auth_status *st; 71 72 if (WARN_ON(!sw->uuid)) 73 return; 74 75 mutex_lock(&nvm_auth_status_lock); 76 st = __nvm_get_auth_status(sw); 77 78 if (!st) { 79 st = kzalloc(sizeof(*st), GFP_KERNEL); 80 if (!st) 81 goto unlock; 82 83 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 84 INIT_LIST_HEAD(&st->list); 85 list_add_tail(&st->list, &nvm_auth_status_cache); 86 } 87 88 st->status = status; 89 unlock: 90 mutex_unlock(&nvm_auth_status_lock); 91 } 92 93 static void nvm_clear_auth_status(const struct tb_switch *sw) 94 { 95 struct nvm_auth_status *st; 96 97 mutex_lock(&nvm_auth_status_lock); 98 st = __nvm_get_auth_status(sw); 99 if (st) { 100 list_del(&st->list); 101 kfree(st); 102 } 103 mutex_unlock(&nvm_auth_status_lock); 104 } 105 106 static int nvm_validate_and_write(struct tb_switch *sw) 107 { 108 unsigned int image_size, hdr_size; 109 const u8 *buf = sw->nvm->buf; 110 u16 ds_size; 111 int ret; 112 113 if (!buf) 114 return -EINVAL; 115 116 image_size = sw->nvm->buf_data_size; 117 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) 118 return -EINVAL; 119 120 /* 121 * FARB pointer must point inside the image and must at least 122 * contain parts of the digital section we will be reading here. 123 */ 124 hdr_size = (*(u32 *)buf) & 0xffffff; 125 if (hdr_size + NVM_DEVID + 2 >= image_size) 126 return -EINVAL; 127 128 /* Digital section start should be aligned to 4k page */ 129 if (!IS_ALIGNED(hdr_size, SZ_4K)) 130 return -EINVAL; 131 132 /* 133 * Read digital section size and check that it also fits inside 134 * the image. 135 */ 136 ds_size = *(u16 *)(buf + hdr_size); 137 if (ds_size >= image_size) 138 return -EINVAL; 139 140 if (!sw->safe_mode) { 141 u16 device_id; 142 143 /* 144 * Make sure the device ID in the image matches the one 145 * we read from the switch config space. 146 */ 147 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID); 148 if (device_id != sw->config.device_id) 149 return -EINVAL; 150 151 if (sw->generation < 3) { 152 /* Write CSS headers first */ 153 ret = dma_port_flash_write(sw->dma_port, 154 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS, 155 DMA_PORT_CSS_MAX_SIZE); 156 if (ret) 157 return ret; 158 } 159 160 /* Skip headers in the image */ 161 buf += hdr_size; 162 image_size -= hdr_size; 163 } 164 165 return dma_port_flash_write(sw->dma_port, 0, buf, image_size); 166 } 167 168 static int nvm_authenticate_host(struct tb_switch *sw) 169 { 170 int ret; 171 172 /* 173 * Root switch NVM upgrade requires that we disconnect the 174 * existing PCIe paths first (in case it is not in safe mode 175 * already). 176 */ 177 if (!sw->safe_mode) { 178 ret = tb_domain_disconnect_pcie_paths(sw->tb); 179 if (ret) 180 return ret; 181 /* 182 * The host controller goes away pretty soon after this if 183 * everything goes well so getting timeout is expected. 184 */ 185 ret = dma_port_flash_update_auth(sw->dma_port); 186 return ret == -ETIMEDOUT ? 0 : ret; 187 } 188 189 /* 190 * From safe mode we can get out by just power cycling the 191 * switch. 192 */ 193 dma_port_power_cycle(sw->dma_port); 194 return 0; 195 } 196 197 static int nvm_authenticate_device(struct tb_switch *sw) 198 { 199 int ret, retries = 10; 200 201 ret = dma_port_flash_update_auth(sw->dma_port); 202 if (ret && ret != -ETIMEDOUT) 203 return ret; 204 205 /* 206 * Poll here for the authentication status. It takes some time 207 * for the device to respond (we get timeout for a while). Once 208 * we get response the device needs to be power cycled in order 209 * to the new NVM to be taken into use. 210 */ 211 do { 212 u32 status; 213 214 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 215 if (ret < 0 && ret != -ETIMEDOUT) 216 return ret; 217 if (ret > 0) { 218 if (status) { 219 tb_sw_warn(sw, "failed to authenticate NVM\n"); 220 nvm_set_auth_status(sw, status); 221 } 222 223 tb_sw_info(sw, "power cycling the switch now\n"); 224 dma_port_power_cycle(sw->dma_port); 225 return 0; 226 } 227 228 msleep(500); 229 } while (--retries); 230 231 return -ETIMEDOUT; 232 } 233 234 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val, 235 size_t bytes) 236 { 237 struct tb_switch *sw = priv; 238 239 return dma_port_flash_read(sw->dma_port, offset, val, bytes); 240 } 241 242 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val, 243 size_t bytes) 244 { 245 struct tb_switch *sw = priv; 246 int ret = 0; 247 248 if (mutex_lock_interruptible(&switch_lock)) 249 return -ERESTARTSYS; 250 251 /* 252 * Since writing the NVM image might require some special steps, 253 * for example when CSS headers are written, we cache the image 254 * locally here and handle the special cases when the user asks 255 * us to authenticate the image. 256 */ 257 if (!sw->nvm->buf) { 258 sw->nvm->buf = vmalloc(NVM_MAX_SIZE); 259 if (!sw->nvm->buf) { 260 ret = -ENOMEM; 261 goto unlock; 262 } 263 } 264 265 sw->nvm->buf_data_size = offset + bytes; 266 memcpy(sw->nvm->buf + offset, val, bytes); 267 268 unlock: 269 mutex_unlock(&switch_lock); 270 271 return ret; 272 } 273 274 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id, 275 size_t size, bool active) 276 { 277 struct nvmem_config config; 278 279 memset(&config, 0, sizeof(config)); 280 281 if (active) { 282 config.name = "nvm_active"; 283 config.reg_read = tb_switch_nvm_read; 284 config.read_only = true; 285 } else { 286 config.name = "nvm_non_active"; 287 config.reg_write = tb_switch_nvm_write; 288 config.root_only = true; 289 } 290 291 config.id = id; 292 config.stride = 4; 293 config.word_size = 4; 294 config.size = size; 295 config.dev = &sw->dev; 296 config.owner = THIS_MODULE; 297 config.priv = sw; 298 299 return nvmem_register(&config); 300 } 301 302 static int tb_switch_nvm_add(struct tb_switch *sw) 303 { 304 struct nvmem_device *nvm_dev; 305 struct tb_switch_nvm *nvm; 306 u32 val; 307 int ret; 308 309 if (!sw->dma_port) 310 return 0; 311 312 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 313 if (!nvm) 314 return -ENOMEM; 315 316 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL); 317 318 /* 319 * If the switch is in safe-mode the only accessible portion of 320 * the NVM is the non-active one where userspace is expected to 321 * write new functional NVM. 322 */ 323 if (!sw->safe_mode) { 324 u32 nvm_size, hdr_size; 325 326 ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val, 327 sizeof(val)); 328 if (ret) 329 goto err_ida; 330 331 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; 332 nvm_size = (SZ_1M << (val & 7)) / 8; 333 nvm_size = (nvm_size - hdr_size) / 2; 334 335 ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val, 336 sizeof(val)); 337 if (ret) 338 goto err_ida; 339 340 nvm->major = val >> 16; 341 nvm->minor = val >> 8; 342 343 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true); 344 if (IS_ERR(nvm_dev)) { 345 ret = PTR_ERR(nvm_dev); 346 goto err_ida; 347 } 348 nvm->active = nvm_dev; 349 } 350 351 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false); 352 if (IS_ERR(nvm_dev)) { 353 ret = PTR_ERR(nvm_dev); 354 goto err_nvm_active; 355 } 356 nvm->non_active = nvm_dev; 357 358 mutex_lock(&switch_lock); 359 sw->nvm = nvm; 360 mutex_unlock(&switch_lock); 361 362 return 0; 363 364 err_nvm_active: 365 if (nvm->active) 366 nvmem_unregister(nvm->active); 367 err_ida: 368 ida_simple_remove(&nvm_ida, nvm->id); 369 kfree(nvm); 370 371 return ret; 372 } 373 374 static void tb_switch_nvm_remove(struct tb_switch *sw) 375 { 376 struct tb_switch_nvm *nvm; 377 378 mutex_lock(&switch_lock); 379 nvm = sw->nvm; 380 sw->nvm = NULL; 381 mutex_unlock(&switch_lock); 382 383 if (!nvm) 384 return; 385 386 /* Remove authentication status in case the switch is unplugged */ 387 if (!nvm->authenticating) 388 nvm_clear_auth_status(sw); 389 390 nvmem_unregister(nvm->non_active); 391 if (nvm->active) 392 nvmem_unregister(nvm->active); 393 ida_simple_remove(&nvm_ida, nvm->id); 394 vfree(nvm->buf); 395 kfree(nvm); 396 } 397 398 /* port utility functions */ 399 400 static const char *tb_port_type(struct tb_regs_port_header *port) 401 { 402 switch (port->type >> 16) { 403 case 0: 404 switch ((u8) port->type) { 405 case 0: 406 return "Inactive"; 407 case 1: 408 return "Port"; 409 case 2: 410 return "NHI"; 411 default: 412 return "unknown"; 413 } 414 case 0x2: 415 return "Ethernet"; 416 case 0x8: 417 return "SATA"; 418 case 0xe: 419 return "DP/HDMI"; 420 case 0x10: 421 return "PCIe"; 422 case 0x20: 423 return "USB"; 424 default: 425 return "unknown"; 426 } 427 } 428 429 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port) 430 { 431 tb_info(tb, 432 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 433 port->port_number, port->vendor_id, port->device_id, 434 port->revision, port->thunderbolt_version, tb_port_type(port), 435 port->type); 436 tb_info(tb, " Max hop id (in/out): %d/%d\n", 437 port->max_in_hop_id, port->max_out_hop_id); 438 tb_info(tb, " Max counters: %d\n", port->max_counters); 439 tb_info(tb, " NFC Credits: %#x\n", port->nfc_credits); 440 } 441 442 /** 443 * tb_port_state() - get connectedness state of a port 444 * 445 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 446 * 447 * Return: Returns an enum tb_port_state on success or an error code on failure. 448 */ 449 static int tb_port_state(struct tb_port *port) 450 { 451 struct tb_cap_phy phy; 452 int res; 453 if (port->cap_phy == 0) { 454 tb_port_WARN(port, "does not have a PHY\n"); 455 return -EINVAL; 456 } 457 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 458 if (res) 459 return res; 460 return phy.state; 461 } 462 463 /** 464 * tb_wait_for_port() - wait for a port to become ready 465 * 466 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 467 * wait_if_unplugged is set then we also wait if the port is in state 468 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 469 * switch resume). Otherwise we only wait if a device is registered but the link 470 * has not yet been established. 471 * 472 * Return: Returns an error code on failure. Returns 0 if the port is not 473 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 474 * if the port is connected and in state TB_PORT_UP. 475 */ 476 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 477 { 478 int retries = 10; 479 int state; 480 if (!port->cap_phy) { 481 tb_port_WARN(port, "does not have PHY\n"); 482 return -EINVAL; 483 } 484 if (tb_is_upstream_port(port)) { 485 tb_port_WARN(port, "is the upstream port\n"); 486 return -EINVAL; 487 } 488 489 while (retries--) { 490 state = tb_port_state(port); 491 if (state < 0) 492 return state; 493 if (state == TB_PORT_DISABLED) { 494 tb_port_info(port, "is disabled (state: 0)\n"); 495 return 0; 496 } 497 if (state == TB_PORT_UNPLUGGED) { 498 if (wait_if_unplugged) { 499 /* used during resume */ 500 tb_port_info(port, 501 "is unplugged (state: 7), retrying...\n"); 502 msleep(100); 503 continue; 504 } 505 tb_port_info(port, "is unplugged (state: 7)\n"); 506 return 0; 507 } 508 if (state == TB_PORT_UP) { 509 tb_port_info(port, 510 "is connected, link is up (state: 2)\n"); 511 return 1; 512 } 513 514 /* 515 * After plug-in the state is TB_PORT_CONNECTING. Give it some 516 * time. 517 */ 518 tb_port_info(port, 519 "is connected, link is not up (state: %d), retrying...\n", 520 state); 521 msleep(100); 522 } 523 tb_port_warn(port, 524 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 525 return 0; 526 } 527 528 /** 529 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 530 * 531 * Change the number of NFC credits allocated to @port by @credits. To remove 532 * NFC credits pass a negative amount of credits. 533 * 534 * Return: Returns 0 on success or an error code on failure. 535 */ 536 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 537 { 538 if (credits == 0) 539 return 0; 540 tb_port_info(port, 541 "adding %#x NFC credits (%#x -> %#x)", 542 credits, 543 port->config.nfc_credits, 544 port->config.nfc_credits + credits); 545 port->config.nfc_credits += credits; 546 return tb_port_write(port, &port->config.nfc_credits, 547 TB_CFG_PORT, 4, 1); 548 } 549 550 /** 551 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 552 * 553 * Return: Returns 0 on success or an error code on failure. 554 */ 555 int tb_port_clear_counter(struct tb_port *port, int counter) 556 { 557 u32 zero[3] = { 0, 0, 0 }; 558 tb_port_info(port, "clearing counter %d\n", counter); 559 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 560 } 561 562 /** 563 * tb_init_port() - initialize a port 564 * 565 * This is a helper method for tb_switch_alloc. Does not check or initialize 566 * any downstream switches. 567 * 568 * Return: Returns 0 on success or an error code on failure. 569 */ 570 static int tb_init_port(struct tb_port *port) 571 { 572 int res; 573 int cap; 574 575 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 576 if (res) 577 return res; 578 579 /* Port 0 is the switch itself and has no PHY. */ 580 if (port->config.type == TB_TYPE_PORT && port->port != 0) { 581 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 582 583 if (cap > 0) 584 port->cap_phy = cap; 585 else 586 tb_port_WARN(port, "non switch port without a PHY\n"); 587 } 588 589 tb_dump_port(port->sw->tb, &port->config); 590 591 /* TODO: Read dual link port, DP port and more from EEPROM. */ 592 return 0; 593 594 } 595 596 /* switch utility functions */ 597 598 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw) 599 { 600 tb_info(tb, 601 " Switch: %x:%x (Revision: %d, TB Version: %d)\n", 602 sw->vendor_id, sw->device_id, sw->revision, 603 sw->thunderbolt_version); 604 tb_info(tb, " Max Port Number: %d\n", sw->max_port_number); 605 tb_info(tb, " Config:\n"); 606 tb_info(tb, 607 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 608 sw->upstream_port_number, sw->depth, 609 (((u64) sw->route_hi) << 32) | sw->route_lo, 610 sw->enabled, sw->plug_events_delay); 611 tb_info(tb, 612 " unknown1: %#x unknown4: %#x\n", 613 sw->__unknown1, sw->__unknown4); 614 } 615 616 /** 617 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET 618 * 619 * Return: Returns 0 on success or an error code on failure. 620 */ 621 int tb_switch_reset(struct tb *tb, u64 route) 622 { 623 struct tb_cfg_result res; 624 struct tb_regs_switch_header header = { 625 header.route_hi = route >> 32, 626 header.route_lo = route, 627 header.enabled = true, 628 }; 629 tb_info(tb, "resetting switch at %llx\n", route); 630 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route, 631 0, 2, 2, 2); 632 if (res.err) 633 return res.err; 634 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT); 635 if (res.err > 0) 636 return -EIO; 637 return res.err; 638 } 639 640 struct tb_switch *get_switch_at_route(struct tb_switch *sw, u64 route) 641 { 642 u8 next_port = route; /* 643 * Routes use a stride of 8 bits, 644 * eventhough a port index has 6 bits at most. 645 * */ 646 if (route == 0) 647 return sw; 648 if (next_port > sw->config.max_port_number) 649 return NULL; 650 if (tb_is_upstream_port(&sw->ports[next_port])) 651 return NULL; 652 if (!sw->ports[next_port].remote) 653 return NULL; 654 return get_switch_at_route(sw->ports[next_port].remote->sw, 655 route >> TB_ROUTE_SHIFT); 656 } 657 658 /** 659 * tb_plug_events_active() - enable/disable plug events on a switch 660 * 661 * Also configures a sane plug_events_delay of 255ms. 662 * 663 * Return: Returns 0 on success or an error code on failure. 664 */ 665 static int tb_plug_events_active(struct tb_switch *sw, bool active) 666 { 667 u32 data; 668 int res; 669 670 if (!sw->config.enabled) 671 return 0; 672 673 sw->config.plug_events_delay = 0xff; 674 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 675 if (res) 676 return res; 677 678 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 679 if (res) 680 return res; 681 682 if (active) { 683 data = data & 0xFFFFFF83; 684 switch (sw->config.device_id) { 685 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 686 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 687 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 688 break; 689 default: 690 data |= 4; 691 } 692 } else { 693 data = data | 0x7c; 694 } 695 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 696 sw->cap_plug_events + 1, 1); 697 } 698 699 static ssize_t authorized_show(struct device *dev, 700 struct device_attribute *attr, 701 char *buf) 702 { 703 struct tb_switch *sw = tb_to_switch(dev); 704 705 return sprintf(buf, "%u\n", sw->authorized); 706 } 707 708 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 709 { 710 int ret = -EINVAL; 711 712 if (mutex_lock_interruptible(&switch_lock)) 713 return -ERESTARTSYS; 714 715 if (sw->authorized) 716 goto unlock; 717 718 switch (val) { 719 /* Approve switch */ 720 case 1: 721 if (sw->key) 722 ret = tb_domain_approve_switch_key(sw->tb, sw); 723 else 724 ret = tb_domain_approve_switch(sw->tb, sw); 725 break; 726 727 /* Challenge switch */ 728 case 2: 729 if (sw->key) 730 ret = tb_domain_challenge_switch_key(sw->tb, sw); 731 break; 732 733 default: 734 break; 735 } 736 737 if (!ret) { 738 sw->authorized = val; 739 /* Notify status change to the userspace */ 740 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 741 } 742 743 unlock: 744 mutex_unlock(&switch_lock); 745 return ret; 746 } 747 748 static ssize_t authorized_store(struct device *dev, 749 struct device_attribute *attr, 750 const char *buf, size_t count) 751 { 752 struct tb_switch *sw = tb_to_switch(dev); 753 unsigned int val; 754 ssize_t ret; 755 756 ret = kstrtouint(buf, 0, &val); 757 if (ret) 758 return ret; 759 if (val > 2) 760 return -EINVAL; 761 762 ret = tb_switch_set_authorized(sw, val); 763 764 return ret ? ret : count; 765 } 766 static DEVICE_ATTR_RW(authorized); 767 768 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 769 char *buf) 770 { 771 struct tb_switch *sw = tb_to_switch(dev); 772 773 return sprintf(buf, "%#x\n", sw->device); 774 } 775 static DEVICE_ATTR_RO(device); 776 777 static ssize_t 778 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 779 { 780 struct tb_switch *sw = tb_to_switch(dev); 781 782 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : ""); 783 } 784 static DEVICE_ATTR_RO(device_name); 785 786 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 787 char *buf) 788 { 789 struct tb_switch *sw = tb_to_switch(dev); 790 ssize_t ret; 791 792 if (mutex_lock_interruptible(&switch_lock)) 793 return -ERESTARTSYS; 794 795 if (sw->key) 796 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 797 else 798 ret = sprintf(buf, "\n"); 799 800 mutex_unlock(&switch_lock); 801 return ret; 802 } 803 804 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 805 const char *buf, size_t count) 806 { 807 struct tb_switch *sw = tb_to_switch(dev); 808 u8 key[TB_SWITCH_KEY_SIZE]; 809 ssize_t ret = count; 810 811 if (count < 64) 812 return -EINVAL; 813 814 if (hex2bin(key, buf, sizeof(key))) 815 return -EINVAL; 816 817 if (mutex_lock_interruptible(&switch_lock)) 818 return -ERESTARTSYS; 819 820 if (sw->authorized) { 821 ret = -EBUSY; 822 } else { 823 kfree(sw->key); 824 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 825 if (!sw->key) 826 ret = -ENOMEM; 827 } 828 829 mutex_unlock(&switch_lock); 830 return ret; 831 } 832 static DEVICE_ATTR_RW(key); 833 834 static ssize_t nvm_authenticate_show(struct device *dev, 835 struct device_attribute *attr, char *buf) 836 { 837 struct tb_switch *sw = tb_to_switch(dev); 838 u32 status; 839 840 nvm_get_auth_status(sw, &status); 841 return sprintf(buf, "%#x\n", status); 842 } 843 844 static ssize_t nvm_authenticate_store(struct device *dev, 845 struct device_attribute *attr, const char *buf, size_t count) 846 { 847 struct tb_switch *sw = tb_to_switch(dev); 848 bool val; 849 int ret; 850 851 if (mutex_lock_interruptible(&switch_lock)) 852 return -ERESTARTSYS; 853 854 /* If NVMem devices are not yet added */ 855 if (!sw->nvm) { 856 ret = -EAGAIN; 857 goto exit_unlock; 858 } 859 860 ret = kstrtobool(buf, &val); 861 if (ret) 862 goto exit_unlock; 863 864 /* Always clear the authentication status */ 865 nvm_clear_auth_status(sw); 866 867 if (val) { 868 ret = nvm_validate_and_write(sw); 869 if (ret) 870 goto exit_unlock; 871 872 sw->nvm->authenticating = true; 873 874 if (!tb_route(sw)) 875 ret = nvm_authenticate_host(sw); 876 else 877 ret = nvm_authenticate_device(sw); 878 } 879 880 exit_unlock: 881 mutex_unlock(&switch_lock); 882 883 if (ret) 884 return ret; 885 return count; 886 } 887 static DEVICE_ATTR_RW(nvm_authenticate); 888 889 static ssize_t nvm_version_show(struct device *dev, 890 struct device_attribute *attr, char *buf) 891 { 892 struct tb_switch *sw = tb_to_switch(dev); 893 int ret; 894 895 if (mutex_lock_interruptible(&switch_lock)) 896 return -ERESTARTSYS; 897 898 if (sw->safe_mode) 899 ret = -ENODATA; 900 else if (!sw->nvm) 901 ret = -EAGAIN; 902 else 903 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 904 905 mutex_unlock(&switch_lock); 906 907 return ret; 908 } 909 static DEVICE_ATTR_RO(nvm_version); 910 911 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 912 char *buf) 913 { 914 struct tb_switch *sw = tb_to_switch(dev); 915 916 return sprintf(buf, "%#x\n", sw->vendor); 917 } 918 static DEVICE_ATTR_RO(vendor); 919 920 static ssize_t 921 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 922 { 923 struct tb_switch *sw = tb_to_switch(dev); 924 925 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : ""); 926 } 927 static DEVICE_ATTR_RO(vendor_name); 928 929 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 930 char *buf) 931 { 932 struct tb_switch *sw = tb_to_switch(dev); 933 934 return sprintf(buf, "%pUb\n", sw->uuid); 935 } 936 static DEVICE_ATTR_RO(unique_id); 937 938 static struct attribute *switch_attrs[] = { 939 &dev_attr_authorized.attr, 940 &dev_attr_device.attr, 941 &dev_attr_device_name.attr, 942 &dev_attr_key.attr, 943 &dev_attr_nvm_authenticate.attr, 944 &dev_attr_nvm_version.attr, 945 &dev_attr_vendor.attr, 946 &dev_attr_vendor_name.attr, 947 &dev_attr_unique_id.attr, 948 NULL, 949 }; 950 951 static umode_t switch_attr_is_visible(struct kobject *kobj, 952 struct attribute *attr, int n) 953 { 954 struct device *dev = container_of(kobj, struct device, kobj); 955 struct tb_switch *sw = tb_to_switch(dev); 956 957 if (attr == &dev_attr_key.attr) { 958 if (tb_route(sw) && 959 sw->tb->security_level == TB_SECURITY_SECURE && 960 sw->security_level == TB_SECURITY_SECURE) 961 return attr->mode; 962 return 0; 963 } else if (attr == &dev_attr_nvm_authenticate.attr || 964 attr == &dev_attr_nvm_version.attr) { 965 if (sw->dma_port) 966 return attr->mode; 967 return 0; 968 } 969 970 return sw->safe_mode ? 0 : attr->mode; 971 } 972 973 static struct attribute_group switch_group = { 974 .is_visible = switch_attr_is_visible, 975 .attrs = switch_attrs, 976 }; 977 978 static const struct attribute_group *switch_groups[] = { 979 &switch_group, 980 NULL, 981 }; 982 983 static void tb_switch_release(struct device *dev) 984 { 985 struct tb_switch *sw = tb_to_switch(dev); 986 987 dma_port_free(sw->dma_port); 988 989 kfree(sw->uuid); 990 kfree(sw->device_name); 991 kfree(sw->vendor_name); 992 kfree(sw->ports); 993 kfree(sw->drom); 994 kfree(sw->key); 995 kfree(sw); 996 } 997 998 struct device_type tb_switch_type = { 999 .name = "thunderbolt_device", 1000 .release = tb_switch_release, 1001 }; 1002 1003 static int tb_switch_get_generation(struct tb_switch *sw) 1004 { 1005 switch (sw->config.device_id) { 1006 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1007 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1008 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 1009 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 1010 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 1011 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1012 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 1013 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 1014 return 1; 1015 1016 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 1017 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 1018 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 1019 return 2; 1020 1021 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 1022 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 1023 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 1024 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 1025 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 1026 return 3; 1027 1028 default: 1029 /* 1030 * For unknown switches assume generation to be 1 to be 1031 * on the safe side. 1032 */ 1033 tb_sw_warn(sw, "unsupported switch device id %#x\n", 1034 sw->config.device_id); 1035 return 1; 1036 } 1037 } 1038 1039 /** 1040 * tb_switch_alloc() - allocate a switch 1041 * @tb: Pointer to the owning domain 1042 * @parent: Parent device for this switch 1043 * @route: Route string for this switch 1044 * 1045 * Allocates and initializes a switch. Will not upload configuration to 1046 * the switch. For that you need to call tb_switch_configure() 1047 * separately. The returned switch should be released by calling 1048 * tb_switch_put(). 1049 * 1050 * Return: Pointer to the allocated switch or %NULL in case of failure 1051 */ 1052 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 1053 u64 route) 1054 { 1055 int i; 1056 int cap; 1057 struct tb_switch *sw; 1058 int upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 1059 if (upstream_port < 0) 1060 return NULL; 1061 1062 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1063 if (!sw) 1064 return NULL; 1065 1066 sw->tb = tb; 1067 if (tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5)) 1068 goto err_free_sw_ports; 1069 1070 tb_info(tb, "current switch config:\n"); 1071 tb_dump_switch(tb, &sw->config); 1072 1073 /* configure switch */ 1074 sw->config.upstream_port_number = upstream_port; 1075 sw->config.depth = tb_route_length(route); 1076 sw->config.route_lo = route; 1077 sw->config.route_hi = route >> 32; 1078 sw->config.enabled = 0; 1079 1080 /* initialize ports */ 1081 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 1082 GFP_KERNEL); 1083 if (!sw->ports) 1084 goto err_free_sw_ports; 1085 1086 for (i = 0; i <= sw->config.max_port_number; i++) { 1087 /* minimum setup for tb_find_cap and tb_drom_read to work */ 1088 sw->ports[i].sw = sw; 1089 sw->ports[i].port = i; 1090 } 1091 1092 sw->generation = tb_switch_get_generation(sw); 1093 1094 cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 1095 if (cap < 0) { 1096 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 1097 goto err_free_sw_ports; 1098 } 1099 sw->cap_plug_events = cap; 1100 1101 /* Root switch is always authorized */ 1102 if (!route) 1103 sw->authorized = true; 1104 1105 device_initialize(&sw->dev); 1106 sw->dev.parent = parent; 1107 sw->dev.bus = &tb_bus_type; 1108 sw->dev.type = &tb_switch_type; 1109 sw->dev.groups = switch_groups; 1110 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1111 1112 return sw; 1113 1114 err_free_sw_ports: 1115 kfree(sw->ports); 1116 kfree(sw); 1117 1118 return NULL; 1119 } 1120 1121 /** 1122 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 1123 * @tb: Pointer to the owning domain 1124 * @parent: Parent device for this switch 1125 * @route: Route string for this switch 1126 * 1127 * This creates a switch in safe mode. This means the switch pretty much 1128 * lacks all capabilities except DMA configuration port before it is 1129 * flashed with a valid NVM firmware. 1130 * 1131 * The returned switch must be released by calling tb_switch_put(). 1132 * 1133 * Return: Pointer to the allocated switch or %NULL in case of failure 1134 */ 1135 struct tb_switch * 1136 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 1137 { 1138 struct tb_switch *sw; 1139 1140 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1141 if (!sw) 1142 return NULL; 1143 1144 sw->tb = tb; 1145 sw->config.depth = tb_route_length(route); 1146 sw->config.route_hi = upper_32_bits(route); 1147 sw->config.route_lo = lower_32_bits(route); 1148 sw->safe_mode = true; 1149 1150 device_initialize(&sw->dev); 1151 sw->dev.parent = parent; 1152 sw->dev.bus = &tb_bus_type; 1153 sw->dev.type = &tb_switch_type; 1154 sw->dev.groups = switch_groups; 1155 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1156 1157 return sw; 1158 } 1159 1160 /** 1161 * tb_switch_configure() - Uploads configuration to the switch 1162 * @sw: Switch to configure 1163 * 1164 * Call this function before the switch is added to the system. It will 1165 * upload configuration to the switch and makes it available for the 1166 * connection manager to use. 1167 * 1168 * Return: %0 in case of success and negative errno in case of failure 1169 */ 1170 int tb_switch_configure(struct tb_switch *sw) 1171 { 1172 struct tb *tb = sw->tb; 1173 u64 route; 1174 int ret; 1175 1176 route = tb_route(sw); 1177 tb_info(tb, 1178 "initializing Switch at %#llx (depth: %d, up port: %d)\n", 1179 route, tb_route_length(route), sw->config.upstream_port_number); 1180 1181 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 1182 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 1183 sw->config.vendor_id); 1184 1185 sw->config.enabled = 1; 1186 1187 /* upload configuration */ 1188 ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3); 1189 if (ret) 1190 return ret; 1191 1192 return tb_plug_events_active(sw, true); 1193 } 1194 1195 static void tb_switch_set_uuid(struct tb_switch *sw) 1196 { 1197 u32 uuid[4]; 1198 int cap; 1199 1200 if (sw->uuid) 1201 return; 1202 1203 /* 1204 * The newer controllers include fused UUID as part of link 1205 * controller specific registers 1206 */ 1207 cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 1208 if (cap > 0) { 1209 tb_sw_read(sw, uuid, TB_CFG_SWITCH, cap + 3, 4); 1210 } else { 1211 /* 1212 * ICM generates UUID based on UID and fills the upper 1213 * two words with ones. This is not strictly following 1214 * UUID format but we want to be compatible with it so 1215 * we do the same here. 1216 */ 1217 uuid[0] = sw->uid & 0xffffffff; 1218 uuid[1] = (sw->uid >> 32) & 0xffffffff; 1219 uuid[2] = 0xffffffff; 1220 uuid[3] = 0xffffffff; 1221 } 1222 1223 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 1224 } 1225 1226 static int tb_switch_add_dma_port(struct tb_switch *sw) 1227 { 1228 u32 status; 1229 int ret; 1230 1231 switch (sw->generation) { 1232 case 3: 1233 break; 1234 1235 case 2: 1236 /* Only root switch can be upgraded */ 1237 if (tb_route(sw)) 1238 return 0; 1239 break; 1240 1241 default: 1242 /* 1243 * DMA port is the only thing available when the switch 1244 * is in safe mode. 1245 */ 1246 if (!sw->safe_mode) 1247 return 0; 1248 break; 1249 } 1250 1251 if (sw->no_nvm_upgrade) 1252 return 0; 1253 1254 sw->dma_port = dma_port_alloc(sw); 1255 if (!sw->dma_port) 1256 return 0; 1257 1258 /* 1259 * Check status of the previous flash authentication. If there 1260 * is one we need to power cycle the switch in any case to make 1261 * it functional again. 1262 */ 1263 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 1264 if (ret <= 0) 1265 return ret; 1266 1267 if (status) { 1268 tb_sw_info(sw, "switch flash authentication failed\n"); 1269 tb_switch_set_uuid(sw); 1270 nvm_set_auth_status(sw, status); 1271 } 1272 1273 tb_sw_info(sw, "power cycling the switch now\n"); 1274 dma_port_power_cycle(sw->dma_port); 1275 1276 /* 1277 * We return error here which causes the switch adding failure. 1278 * It should appear back after power cycle is complete. 1279 */ 1280 return -ESHUTDOWN; 1281 } 1282 1283 /** 1284 * tb_switch_add() - Add a switch to the domain 1285 * @sw: Switch to add 1286 * 1287 * This is the last step in adding switch to the domain. It will read 1288 * identification information from DROM and initializes ports so that 1289 * they can be used to connect other switches. The switch will be 1290 * exposed to the userspace when this function successfully returns. To 1291 * remove and release the switch, call tb_switch_remove(). 1292 * 1293 * Return: %0 in case of success and negative errno in case of failure 1294 */ 1295 int tb_switch_add(struct tb_switch *sw) 1296 { 1297 int i, ret; 1298 1299 /* 1300 * Initialize DMA control port now before we read DROM. Recent 1301 * host controllers have more complete DROM on NVM that includes 1302 * vendor and model identification strings which we then expose 1303 * to the userspace. NVM can be accessed through DMA 1304 * configuration based mailbox. 1305 */ 1306 ret = tb_switch_add_dma_port(sw); 1307 if (ret) 1308 return ret; 1309 1310 if (!sw->safe_mode) { 1311 /* read drom */ 1312 ret = tb_drom_read(sw); 1313 if (ret) { 1314 tb_sw_warn(sw, "tb_eeprom_read_rom failed\n"); 1315 return ret; 1316 } 1317 tb_sw_info(sw, "uid: %#llx\n", sw->uid); 1318 1319 tb_switch_set_uuid(sw); 1320 1321 for (i = 0; i <= sw->config.max_port_number; i++) { 1322 if (sw->ports[i].disabled) { 1323 tb_port_info(&sw->ports[i], "disabled by eeprom\n"); 1324 continue; 1325 } 1326 ret = tb_init_port(&sw->ports[i]); 1327 if (ret) 1328 return ret; 1329 } 1330 } 1331 1332 ret = device_add(&sw->dev); 1333 if (ret) 1334 return ret; 1335 1336 ret = tb_switch_nvm_add(sw); 1337 if (ret) 1338 device_del(&sw->dev); 1339 1340 return ret; 1341 } 1342 1343 /** 1344 * tb_switch_remove() - Remove and release a switch 1345 * @sw: Switch to remove 1346 * 1347 * This will remove the switch from the domain and release it after last 1348 * reference count drops to zero. If there are switches connected below 1349 * this switch, they will be removed as well. 1350 */ 1351 void tb_switch_remove(struct tb_switch *sw) 1352 { 1353 int i; 1354 1355 /* port 0 is the switch itself and never has a remote */ 1356 for (i = 1; i <= sw->config.max_port_number; i++) { 1357 if (tb_is_upstream_port(&sw->ports[i])) 1358 continue; 1359 if (sw->ports[i].remote) 1360 tb_switch_remove(sw->ports[i].remote->sw); 1361 sw->ports[i].remote = NULL; 1362 } 1363 1364 if (!sw->is_unplugged) 1365 tb_plug_events_active(sw, false); 1366 1367 tb_switch_nvm_remove(sw); 1368 device_unregister(&sw->dev); 1369 } 1370 1371 /** 1372 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 1373 */ 1374 void tb_sw_set_unplugged(struct tb_switch *sw) 1375 { 1376 int i; 1377 if (sw == sw->tb->root_switch) { 1378 tb_sw_WARN(sw, "cannot unplug root switch\n"); 1379 return; 1380 } 1381 if (sw->is_unplugged) { 1382 tb_sw_WARN(sw, "is_unplugged already set\n"); 1383 return; 1384 } 1385 sw->is_unplugged = true; 1386 for (i = 0; i <= sw->config.max_port_number; i++) { 1387 if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote) 1388 tb_sw_set_unplugged(sw->ports[i].remote->sw); 1389 } 1390 } 1391 1392 int tb_switch_resume(struct tb_switch *sw) 1393 { 1394 int i, err; 1395 tb_sw_info(sw, "resuming switch\n"); 1396 1397 /* 1398 * Check for UID of the connected switches except for root 1399 * switch which we assume cannot be removed. 1400 */ 1401 if (tb_route(sw)) { 1402 u64 uid; 1403 1404 err = tb_drom_read_uid_only(sw, &uid); 1405 if (err) { 1406 tb_sw_warn(sw, "uid read failed\n"); 1407 return err; 1408 } 1409 if (sw->uid != uid) { 1410 tb_sw_info(sw, 1411 "changed while suspended (uid %#llx -> %#llx)\n", 1412 sw->uid, uid); 1413 return -ENODEV; 1414 } 1415 } 1416 1417 /* upload configuration */ 1418 err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3); 1419 if (err) 1420 return err; 1421 1422 err = tb_plug_events_active(sw, true); 1423 if (err) 1424 return err; 1425 1426 /* check for surviving downstream switches */ 1427 for (i = 1; i <= sw->config.max_port_number; i++) { 1428 struct tb_port *port = &sw->ports[i]; 1429 if (tb_is_upstream_port(port)) 1430 continue; 1431 if (!port->remote) 1432 continue; 1433 if (tb_wait_for_port(port, true) <= 0 1434 || tb_switch_resume(port->remote->sw)) { 1435 tb_port_warn(port, 1436 "lost during suspend, disconnecting\n"); 1437 tb_sw_set_unplugged(port->remote->sw); 1438 } 1439 } 1440 return 0; 1441 } 1442 1443 void tb_switch_suspend(struct tb_switch *sw) 1444 { 1445 int i, err; 1446 err = tb_plug_events_active(sw, false); 1447 if (err) 1448 return; 1449 1450 for (i = 1; i <= sw->config.max_port_number; i++) { 1451 if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote) 1452 tb_switch_suspend(sw->ports[i].remote->sw); 1453 } 1454 /* 1455 * TODO: invoke tb_cfg_prepare_to_sleep here? does not seem to have any 1456 * effect? 1457 */ 1458 } 1459 1460 struct tb_sw_lookup { 1461 struct tb *tb; 1462 u8 link; 1463 u8 depth; 1464 const uuid_t *uuid; 1465 }; 1466 1467 static int tb_switch_match(struct device *dev, void *data) 1468 { 1469 struct tb_switch *sw = tb_to_switch(dev); 1470 struct tb_sw_lookup *lookup = data; 1471 1472 if (!sw) 1473 return 0; 1474 if (sw->tb != lookup->tb) 1475 return 0; 1476 1477 if (lookup->uuid) 1478 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 1479 1480 /* Root switch is matched only by depth */ 1481 if (!lookup->depth) 1482 return !sw->depth; 1483 1484 return sw->link == lookup->link && sw->depth == lookup->depth; 1485 } 1486 1487 /** 1488 * tb_switch_find_by_link_depth() - Find switch by link and depth 1489 * @tb: Domain the switch belongs 1490 * @link: Link number the switch is connected 1491 * @depth: Depth of the switch in link 1492 * 1493 * Returned switch has reference count increased so the caller needs to 1494 * call tb_switch_put() when done with the switch. 1495 */ 1496 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 1497 { 1498 struct tb_sw_lookup lookup; 1499 struct device *dev; 1500 1501 memset(&lookup, 0, sizeof(lookup)); 1502 lookup.tb = tb; 1503 lookup.link = link; 1504 lookup.depth = depth; 1505 1506 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 1507 if (dev) 1508 return tb_to_switch(dev); 1509 1510 return NULL; 1511 } 1512 1513 /** 1514 * tb_switch_find_by_link_depth() - Find switch by UUID 1515 * @tb: Domain the switch belongs 1516 * @uuid: UUID to look for 1517 * 1518 * Returned switch has reference count increased so the caller needs to 1519 * call tb_switch_put() when done with the switch. 1520 */ 1521 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) 1522 { 1523 struct tb_sw_lookup lookup; 1524 struct device *dev; 1525 1526 memset(&lookup, 0, sizeof(lookup)); 1527 lookup.tb = tb; 1528 lookup.uuid = uuid; 1529 1530 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 1531 if (dev) 1532 return tb_to_switch(dev); 1533 1534 return NULL; 1535 } 1536 1537 void tb_switch_exit(void) 1538 { 1539 ida_destroy(&nvm_ida); 1540 } 1541