1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - switch/port utility functions 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2018, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/idr.h> 11 #include <linux/nvmem-provider.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 #include <linux/vmalloc.h> 17 18 #include "tb.h" 19 20 /* Switch NVM support */ 21 22 #define NVM_DEVID 0x05 23 #define NVM_VERSION 0x08 24 #define NVM_CSS 0x10 25 #define NVM_FLASH_SIZE 0x45 26 27 #define NVM_MIN_SIZE SZ_32K 28 #define NVM_MAX_SIZE SZ_512K 29 30 static DEFINE_IDA(nvm_ida); 31 32 struct nvm_auth_status { 33 struct list_head list; 34 uuid_t uuid; 35 u32 status; 36 }; 37 38 /* 39 * Hold NVM authentication failure status per switch This information 40 * needs to stay around even when the switch gets power cycled so we 41 * keep it separately. 42 */ 43 static LIST_HEAD(nvm_auth_status_cache); 44 static DEFINE_MUTEX(nvm_auth_status_lock); 45 46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 47 { 48 struct nvm_auth_status *st; 49 50 list_for_each_entry(st, &nvm_auth_status_cache, list) { 51 if (uuid_equal(&st->uuid, sw->uuid)) 52 return st; 53 } 54 55 return NULL; 56 } 57 58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 59 { 60 struct nvm_auth_status *st; 61 62 mutex_lock(&nvm_auth_status_lock); 63 st = __nvm_get_auth_status(sw); 64 mutex_unlock(&nvm_auth_status_lock); 65 66 *status = st ? st->status : 0; 67 } 68 69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 70 { 71 struct nvm_auth_status *st; 72 73 if (WARN_ON(!sw->uuid)) 74 return; 75 76 mutex_lock(&nvm_auth_status_lock); 77 st = __nvm_get_auth_status(sw); 78 79 if (!st) { 80 st = kzalloc(sizeof(*st), GFP_KERNEL); 81 if (!st) 82 goto unlock; 83 84 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 85 INIT_LIST_HEAD(&st->list); 86 list_add_tail(&st->list, &nvm_auth_status_cache); 87 } 88 89 st->status = status; 90 unlock: 91 mutex_unlock(&nvm_auth_status_lock); 92 } 93 94 static void nvm_clear_auth_status(const struct tb_switch *sw) 95 { 96 struct nvm_auth_status *st; 97 98 mutex_lock(&nvm_auth_status_lock); 99 st = __nvm_get_auth_status(sw); 100 if (st) { 101 list_del(&st->list); 102 kfree(st); 103 } 104 mutex_unlock(&nvm_auth_status_lock); 105 } 106 107 static int nvm_validate_and_write(struct tb_switch *sw) 108 { 109 unsigned int image_size, hdr_size; 110 const u8 *buf = sw->nvm->buf; 111 u16 ds_size; 112 int ret; 113 114 if (!buf) 115 return -EINVAL; 116 117 image_size = sw->nvm->buf_data_size; 118 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) 119 return -EINVAL; 120 121 /* 122 * FARB pointer must point inside the image and must at least 123 * contain parts of the digital section we will be reading here. 124 */ 125 hdr_size = (*(u32 *)buf) & 0xffffff; 126 if (hdr_size + NVM_DEVID + 2 >= image_size) 127 return -EINVAL; 128 129 /* Digital section start should be aligned to 4k page */ 130 if (!IS_ALIGNED(hdr_size, SZ_4K)) 131 return -EINVAL; 132 133 /* 134 * Read digital section size and check that it also fits inside 135 * the image. 136 */ 137 ds_size = *(u16 *)(buf + hdr_size); 138 if (ds_size >= image_size) 139 return -EINVAL; 140 141 if (!sw->safe_mode) { 142 u16 device_id; 143 144 /* 145 * Make sure the device ID in the image matches the one 146 * we read from the switch config space. 147 */ 148 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID); 149 if (device_id != sw->config.device_id) 150 return -EINVAL; 151 152 if (sw->generation < 3) { 153 /* Write CSS headers first */ 154 ret = dma_port_flash_write(sw->dma_port, 155 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS, 156 DMA_PORT_CSS_MAX_SIZE); 157 if (ret) 158 return ret; 159 } 160 161 /* Skip headers in the image */ 162 buf += hdr_size; 163 image_size -= hdr_size; 164 } 165 166 return dma_port_flash_write(sw->dma_port, 0, buf, image_size); 167 } 168 169 static int nvm_authenticate_host(struct tb_switch *sw) 170 { 171 int ret; 172 173 /* 174 * Root switch NVM upgrade requires that we disconnect the 175 * existing paths first (in case it is not in safe mode 176 * already). 177 */ 178 if (!sw->safe_mode) { 179 ret = tb_domain_disconnect_all_paths(sw->tb); 180 if (ret) 181 return ret; 182 /* 183 * The host controller goes away pretty soon after this if 184 * everything goes well so getting timeout is expected. 185 */ 186 ret = dma_port_flash_update_auth(sw->dma_port); 187 return ret == -ETIMEDOUT ? 0 : ret; 188 } 189 190 /* 191 * From safe mode we can get out by just power cycling the 192 * switch. 193 */ 194 dma_port_power_cycle(sw->dma_port); 195 return 0; 196 } 197 198 static int nvm_authenticate_device(struct tb_switch *sw) 199 { 200 int ret, retries = 10; 201 202 ret = dma_port_flash_update_auth(sw->dma_port); 203 if (ret && ret != -ETIMEDOUT) 204 return ret; 205 206 /* 207 * Poll here for the authentication status. It takes some time 208 * for the device to respond (we get timeout for a while). Once 209 * we get response the device needs to be power cycled in order 210 * to the new NVM to be taken into use. 211 */ 212 do { 213 u32 status; 214 215 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 216 if (ret < 0 && ret != -ETIMEDOUT) 217 return ret; 218 if (ret > 0) { 219 if (status) { 220 tb_sw_warn(sw, "failed to authenticate NVM\n"); 221 nvm_set_auth_status(sw, status); 222 } 223 224 tb_sw_info(sw, "power cycling the switch now\n"); 225 dma_port_power_cycle(sw->dma_port); 226 return 0; 227 } 228 229 msleep(500); 230 } while (--retries); 231 232 return -ETIMEDOUT; 233 } 234 235 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val, 236 size_t bytes) 237 { 238 struct tb_switch *sw = priv; 239 int ret; 240 241 pm_runtime_get_sync(&sw->dev); 242 243 if (!mutex_trylock(&sw->tb->lock)) { 244 ret = restart_syscall(); 245 goto out; 246 } 247 248 ret = dma_port_flash_read(sw->dma_port, offset, val, bytes); 249 mutex_unlock(&sw->tb->lock); 250 251 out: 252 pm_runtime_mark_last_busy(&sw->dev); 253 pm_runtime_put_autosuspend(&sw->dev); 254 255 return ret; 256 } 257 258 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val, 259 size_t bytes) 260 { 261 struct tb_switch *sw = priv; 262 int ret = 0; 263 264 if (!mutex_trylock(&sw->tb->lock)) 265 return restart_syscall(); 266 267 /* 268 * Since writing the NVM image might require some special steps, 269 * for example when CSS headers are written, we cache the image 270 * locally here and handle the special cases when the user asks 271 * us to authenticate the image. 272 */ 273 if (!sw->nvm->buf) { 274 sw->nvm->buf = vmalloc(NVM_MAX_SIZE); 275 if (!sw->nvm->buf) { 276 ret = -ENOMEM; 277 goto unlock; 278 } 279 } 280 281 sw->nvm->buf_data_size = offset + bytes; 282 memcpy(sw->nvm->buf + offset, val, bytes); 283 284 unlock: 285 mutex_unlock(&sw->tb->lock); 286 287 return ret; 288 } 289 290 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id, 291 size_t size, bool active) 292 { 293 struct nvmem_config config; 294 295 memset(&config, 0, sizeof(config)); 296 297 if (active) { 298 config.name = "nvm_active"; 299 config.reg_read = tb_switch_nvm_read; 300 config.read_only = true; 301 } else { 302 config.name = "nvm_non_active"; 303 config.reg_write = tb_switch_nvm_write; 304 config.root_only = true; 305 } 306 307 config.id = id; 308 config.stride = 4; 309 config.word_size = 4; 310 config.size = size; 311 config.dev = &sw->dev; 312 config.owner = THIS_MODULE; 313 config.priv = sw; 314 315 return nvmem_register(&config); 316 } 317 318 static int tb_switch_nvm_add(struct tb_switch *sw) 319 { 320 struct nvmem_device *nvm_dev; 321 struct tb_switch_nvm *nvm; 322 u32 val; 323 int ret; 324 325 if (!sw->dma_port) 326 return 0; 327 328 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 329 if (!nvm) 330 return -ENOMEM; 331 332 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL); 333 334 /* 335 * If the switch is in safe-mode the only accessible portion of 336 * the NVM is the non-active one where userspace is expected to 337 * write new functional NVM. 338 */ 339 if (!sw->safe_mode) { 340 u32 nvm_size, hdr_size; 341 342 ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val, 343 sizeof(val)); 344 if (ret) 345 goto err_ida; 346 347 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; 348 nvm_size = (SZ_1M << (val & 7)) / 8; 349 nvm_size = (nvm_size - hdr_size) / 2; 350 351 ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val, 352 sizeof(val)); 353 if (ret) 354 goto err_ida; 355 356 nvm->major = val >> 16; 357 nvm->minor = val >> 8; 358 359 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true); 360 if (IS_ERR(nvm_dev)) { 361 ret = PTR_ERR(nvm_dev); 362 goto err_ida; 363 } 364 nvm->active = nvm_dev; 365 } 366 367 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false); 368 if (IS_ERR(nvm_dev)) { 369 ret = PTR_ERR(nvm_dev); 370 goto err_nvm_active; 371 } 372 nvm->non_active = nvm_dev; 373 374 sw->nvm = nvm; 375 return 0; 376 377 err_nvm_active: 378 if (nvm->active) 379 nvmem_unregister(nvm->active); 380 err_ida: 381 ida_simple_remove(&nvm_ida, nvm->id); 382 kfree(nvm); 383 384 return ret; 385 } 386 387 static void tb_switch_nvm_remove(struct tb_switch *sw) 388 { 389 struct tb_switch_nvm *nvm; 390 391 nvm = sw->nvm; 392 sw->nvm = NULL; 393 394 if (!nvm) 395 return; 396 397 /* Remove authentication status in case the switch is unplugged */ 398 if (!nvm->authenticating) 399 nvm_clear_auth_status(sw); 400 401 nvmem_unregister(nvm->non_active); 402 if (nvm->active) 403 nvmem_unregister(nvm->active); 404 ida_simple_remove(&nvm_ida, nvm->id); 405 vfree(nvm->buf); 406 kfree(nvm); 407 } 408 409 /* port utility functions */ 410 411 static const char *tb_port_type(struct tb_regs_port_header *port) 412 { 413 switch (port->type >> 16) { 414 case 0: 415 switch ((u8) port->type) { 416 case 0: 417 return "Inactive"; 418 case 1: 419 return "Port"; 420 case 2: 421 return "NHI"; 422 default: 423 return "unknown"; 424 } 425 case 0x2: 426 return "Ethernet"; 427 case 0x8: 428 return "SATA"; 429 case 0xe: 430 return "DP/HDMI"; 431 case 0x10: 432 return "PCIe"; 433 case 0x20: 434 return "USB"; 435 default: 436 return "unknown"; 437 } 438 } 439 440 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port) 441 { 442 tb_dbg(tb, 443 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 444 port->port_number, port->vendor_id, port->device_id, 445 port->revision, port->thunderbolt_version, tb_port_type(port), 446 port->type); 447 tb_dbg(tb, " Max hop id (in/out): %d/%d\n", 448 port->max_in_hop_id, port->max_out_hop_id); 449 tb_dbg(tb, " Max counters: %d\n", port->max_counters); 450 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits); 451 } 452 453 /** 454 * tb_port_state() - get connectedness state of a port 455 * 456 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 457 * 458 * Return: Returns an enum tb_port_state on success or an error code on failure. 459 */ 460 static int tb_port_state(struct tb_port *port) 461 { 462 struct tb_cap_phy phy; 463 int res; 464 if (port->cap_phy == 0) { 465 tb_port_WARN(port, "does not have a PHY\n"); 466 return -EINVAL; 467 } 468 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 469 if (res) 470 return res; 471 return phy.state; 472 } 473 474 /** 475 * tb_wait_for_port() - wait for a port to become ready 476 * 477 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 478 * wait_if_unplugged is set then we also wait if the port is in state 479 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 480 * switch resume). Otherwise we only wait if a device is registered but the link 481 * has not yet been established. 482 * 483 * Return: Returns an error code on failure. Returns 0 if the port is not 484 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 485 * if the port is connected and in state TB_PORT_UP. 486 */ 487 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 488 { 489 int retries = 10; 490 int state; 491 if (!port->cap_phy) { 492 tb_port_WARN(port, "does not have PHY\n"); 493 return -EINVAL; 494 } 495 if (tb_is_upstream_port(port)) { 496 tb_port_WARN(port, "is the upstream port\n"); 497 return -EINVAL; 498 } 499 500 while (retries--) { 501 state = tb_port_state(port); 502 if (state < 0) 503 return state; 504 if (state == TB_PORT_DISABLED) { 505 tb_port_dbg(port, "is disabled (state: 0)\n"); 506 return 0; 507 } 508 if (state == TB_PORT_UNPLUGGED) { 509 if (wait_if_unplugged) { 510 /* used during resume */ 511 tb_port_dbg(port, 512 "is unplugged (state: 7), retrying...\n"); 513 msleep(100); 514 continue; 515 } 516 tb_port_dbg(port, "is unplugged (state: 7)\n"); 517 return 0; 518 } 519 if (state == TB_PORT_UP) { 520 tb_port_dbg(port, "is connected, link is up (state: 2)\n"); 521 return 1; 522 } 523 524 /* 525 * After plug-in the state is TB_PORT_CONNECTING. Give it some 526 * time. 527 */ 528 tb_port_dbg(port, 529 "is connected, link is not up (state: %d), retrying...\n", 530 state); 531 msleep(100); 532 } 533 tb_port_warn(port, 534 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 535 return 0; 536 } 537 538 /** 539 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 540 * 541 * Change the number of NFC credits allocated to @port by @credits. To remove 542 * NFC credits pass a negative amount of credits. 543 * 544 * Return: Returns 0 on success or an error code on failure. 545 */ 546 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 547 { 548 u32 nfc_credits; 549 550 if (credits == 0 || port->sw->is_unplugged) 551 return 0; 552 553 nfc_credits = port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK; 554 nfc_credits += credits; 555 556 tb_port_dbg(port, "adding %d NFC credits to %lu", 557 credits, port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK); 558 559 port->config.nfc_credits &= ~TB_PORT_NFC_CREDITS_MASK; 560 port->config.nfc_credits |= nfc_credits; 561 562 return tb_port_write(port, &port->config.nfc_credits, 563 TB_CFG_PORT, 4, 1); 564 } 565 566 /** 567 * tb_port_set_initial_credits() - Set initial port link credits allocated 568 * @port: Port to set the initial credits 569 * @credits: Number of credits to to allocate 570 * 571 * Set initial credits value to be used for ingress shared buffering. 572 */ 573 int tb_port_set_initial_credits(struct tb_port *port, u32 credits) 574 { 575 u32 data; 576 int ret; 577 578 ret = tb_port_read(port, &data, TB_CFG_PORT, 5, 1); 579 if (ret) 580 return ret; 581 582 data &= ~TB_PORT_LCA_MASK; 583 data |= (credits << TB_PORT_LCA_SHIFT) & TB_PORT_LCA_MASK; 584 585 return tb_port_write(port, &data, TB_CFG_PORT, 5, 1); 586 } 587 588 /** 589 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 590 * 591 * Return: Returns 0 on success or an error code on failure. 592 */ 593 int tb_port_clear_counter(struct tb_port *port, int counter) 594 { 595 u32 zero[3] = { 0, 0, 0 }; 596 tb_port_dbg(port, "clearing counter %d\n", counter); 597 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 598 } 599 600 /** 601 * tb_init_port() - initialize a port 602 * 603 * This is a helper method for tb_switch_alloc. Does not check or initialize 604 * any downstream switches. 605 * 606 * Return: Returns 0 on success or an error code on failure. 607 */ 608 static int tb_init_port(struct tb_port *port) 609 { 610 int res; 611 int cap; 612 613 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 614 if (res) 615 return res; 616 617 /* Port 0 is the switch itself and has no PHY. */ 618 if (port->config.type == TB_TYPE_PORT && port->port != 0) { 619 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 620 621 if (cap > 0) 622 port->cap_phy = cap; 623 else 624 tb_port_WARN(port, "non switch port without a PHY\n"); 625 } else if (port->port != 0) { 626 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP); 627 if (cap > 0) 628 port->cap_adap = cap; 629 } 630 631 tb_dump_port(port->sw->tb, &port->config); 632 633 /* Control port does not need HopID allocation */ 634 if (port->port) { 635 ida_init(&port->in_hopids); 636 ida_init(&port->out_hopids); 637 } 638 639 return 0; 640 641 } 642 643 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid, 644 int max_hopid) 645 { 646 int port_max_hopid; 647 struct ida *ida; 648 649 if (in) { 650 port_max_hopid = port->config.max_in_hop_id; 651 ida = &port->in_hopids; 652 } else { 653 port_max_hopid = port->config.max_out_hop_id; 654 ida = &port->out_hopids; 655 } 656 657 /* HopIDs 0-7 are reserved */ 658 if (min_hopid < TB_PATH_MIN_HOPID) 659 min_hopid = TB_PATH_MIN_HOPID; 660 661 if (max_hopid < 0 || max_hopid > port_max_hopid) 662 max_hopid = port_max_hopid; 663 664 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL); 665 } 666 667 /** 668 * tb_port_alloc_in_hopid() - Allocate input HopID from port 669 * @port: Port to allocate HopID for 670 * @min_hopid: Minimum acceptable input HopID 671 * @max_hopid: Maximum acceptable input HopID 672 * 673 * Return: HopID between @min_hopid and @max_hopid or negative errno in 674 * case of error. 675 */ 676 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid) 677 { 678 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid); 679 } 680 681 /** 682 * tb_port_alloc_out_hopid() - Allocate output HopID from port 683 * @port: Port to allocate HopID for 684 * @min_hopid: Minimum acceptable output HopID 685 * @max_hopid: Maximum acceptable output HopID 686 * 687 * Return: HopID between @min_hopid and @max_hopid or negative errno in 688 * case of error. 689 */ 690 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid) 691 { 692 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid); 693 } 694 695 /** 696 * tb_port_release_in_hopid() - Release allocated input HopID from port 697 * @port: Port whose HopID to release 698 * @hopid: HopID to release 699 */ 700 void tb_port_release_in_hopid(struct tb_port *port, int hopid) 701 { 702 ida_simple_remove(&port->in_hopids, hopid); 703 } 704 705 /** 706 * tb_port_release_out_hopid() - Release allocated output HopID from port 707 * @port: Port whose HopID to release 708 * @hopid: HopID to release 709 */ 710 void tb_port_release_out_hopid(struct tb_port *port, int hopid) 711 { 712 ida_simple_remove(&port->out_hopids, hopid); 713 } 714 715 /** 716 * tb_next_port_on_path() - Return next port for given port on a path 717 * @start: Start port of the walk 718 * @end: End port of the walk 719 * @prev: Previous port (%NULL if this is the first) 720 * 721 * This function can be used to walk from one port to another if they 722 * are connected through zero or more switches. If the @prev is dual 723 * link port, the function follows that link and returns another end on 724 * that same link. 725 * 726 * If the @end port has been reached, return %NULL. 727 * 728 * Domain tb->lock must be held when this function is called. 729 */ 730 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end, 731 struct tb_port *prev) 732 { 733 struct tb_port *next; 734 735 if (!prev) 736 return start; 737 738 if (prev->sw == end->sw) { 739 if (prev == end) 740 return NULL; 741 return end; 742 } 743 744 if (start->sw->config.depth < end->sw->config.depth) { 745 if (prev->remote && 746 prev->remote->sw->config.depth > prev->sw->config.depth) 747 next = prev->remote; 748 else 749 next = tb_port_at(tb_route(end->sw), prev->sw); 750 } else { 751 if (tb_is_upstream_port(prev)) { 752 next = prev->remote; 753 } else { 754 next = tb_upstream_port(prev->sw); 755 /* 756 * Keep the same link if prev and next are both 757 * dual link ports. 758 */ 759 if (next->dual_link_port && 760 next->link_nr != prev->link_nr) { 761 next = next->dual_link_port; 762 } 763 } 764 } 765 766 return next; 767 } 768 769 /** 770 * tb_port_is_enabled() - Is the adapter port enabled 771 * @port: Port to check 772 */ 773 bool tb_port_is_enabled(struct tb_port *port) 774 { 775 switch (port->config.type) { 776 case TB_TYPE_PCIE_UP: 777 case TB_TYPE_PCIE_DOWN: 778 return tb_pci_port_is_enabled(port); 779 780 case TB_TYPE_DP_HDMI_IN: 781 case TB_TYPE_DP_HDMI_OUT: 782 return tb_dp_port_is_enabled(port); 783 784 default: 785 return false; 786 } 787 } 788 789 /** 790 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled 791 * @port: PCIe port to check 792 */ 793 bool tb_pci_port_is_enabled(struct tb_port *port) 794 { 795 u32 data; 796 797 if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1)) 798 return false; 799 800 return !!(data & TB_PCI_EN); 801 } 802 803 /** 804 * tb_pci_port_enable() - Enable PCIe adapter port 805 * @port: PCIe port to enable 806 * @enable: Enable/disable the PCIe adapter 807 */ 808 int tb_pci_port_enable(struct tb_port *port, bool enable) 809 { 810 u32 word = enable ? TB_PCI_EN : 0x0; 811 if (!port->cap_adap) 812 return -ENXIO; 813 return tb_port_write(port, &word, TB_CFG_PORT, port->cap_adap, 1); 814 } 815 816 /** 817 * tb_dp_port_hpd_is_active() - Is HPD already active 818 * @port: DP out port to check 819 * 820 * Checks if the DP OUT adapter port has HDP bit already set. 821 */ 822 int tb_dp_port_hpd_is_active(struct tb_port *port) 823 { 824 u32 data; 825 int ret; 826 827 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 2, 1); 828 if (ret) 829 return ret; 830 831 return !!(data & TB_DP_HDP); 832 } 833 834 /** 835 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port 836 * @port: Port to clear HPD 837 * 838 * If the DP IN port has HDP set, this function can be used to clear it. 839 */ 840 int tb_dp_port_hpd_clear(struct tb_port *port) 841 { 842 u32 data; 843 int ret; 844 845 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1); 846 if (ret) 847 return ret; 848 849 data |= TB_DP_HPDC; 850 return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1); 851 } 852 853 /** 854 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port 855 * @port: DP IN/OUT port to set hops 856 * @video: Video Hop ID 857 * @aux_tx: AUX TX Hop ID 858 * @aux_rx: AUX RX Hop ID 859 * 860 * Programs specified Hop IDs for DP IN/OUT port. 861 */ 862 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video, 863 unsigned int aux_tx, unsigned int aux_rx) 864 { 865 u32 data[2]; 866 int ret; 867 868 ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap, 869 ARRAY_SIZE(data)); 870 if (ret) 871 return ret; 872 873 data[0] &= ~TB_DP_VIDEO_HOPID_MASK; 874 data[1] &= ~(TB_DP_AUX_RX_HOPID_MASK | TB_DP_AUX_TX_HOPID_MASK); 875 876 data[0] |= (video << TB_DP_VIDEO_HOPID_SHIFT) & TB_DP_VIDEO_HOPID_MASK; 877 data[1] |= aux_tx & TB_DP_AUX_TX_HOPID_MASK; 878 data[1] |= (aux_rx << TB_DP_AUX_RX_HOPID_SHIFT) & TB_DP_AUX_RX_HOPID_MASK; 879 880 return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap, 881 ARRAY_SIZE(data)); 882 } 883 884 /** 885 * tb_dp_port_is_enabled() - Is DP adapter port enabled 886 * @port: DP adapter port to check 887 */ 888 bool tb_dp_port_is_enabled(struct tb_port *port) 889 { 890 u32 data; 891 892 if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1)) 893 return false; 894 895 return !!(data & (TB_DP_VIDEO_EN | TB_DP_AUX_EN)); 896 } 897 898 /** 899 * tb_dp_port_enable() - Enables/disables DP paths of a port 900 * @port: DP IN/OUT port 901 * @enable: Enable/disable DP path 902 * 903 * Once Hop IDs are programmed DP paths can be enabled or disabled by 904 * calling this function. 905 */ 906 int tb_dp_port_enable(struct tb_port *port, bool enable) 907 { 908 u32 data; 909 int ret; 910 911 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1); 912 if (ret) 913 return ret; 914 915 if (enable) 916 data |= TB_DP_VIDEO_EN | TB_DP_AUX_EN; 917 else 918 data &= ~(TB_DP_VIDEO_EN | TB_DP_AUX_EN); 919 920 return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap, 1); 921 } 922 923 /* switch utility functions */ 924 925 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw) 926 { 927 tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n", 928 sw->vendor_id, sw->device_id, sw->revision, 929 sw->thunderbolt_version); 930 tb_dbg(tb, " Max Port Number: %d\n", sw->max_port_number); 931 tb_dbg(tb, " Config:\n"); 932 tb_dbg(tb, 933 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 934 sw->upstream_port_number, sw->depth, 935 (((u64) sw->route_hi) << 32) | sw->route_lo, 936 sw->enabled, sw->plug_events_delay); 937 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n", 938 sw->__unknown1, sw->__unknown4); 939 } 940 941 /** 942 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET 943 * 944 * Return: Returns 0 on success or an error code on failure. 945 */ 946 int tb_switch_reset(struct tb *tb, u64 route) 947 { 948 struct tb_cfg_result res; 949 struct tb_regs_switch_header header = { 950 header.route_hi = route >> 32, 951 header.route_lo = route, 952 header.enabled = true, 953 }; 954 tb_dbg(tb, "resetting switch at %llx\n", route); 955 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route, 956 0, 2, 2, 2); 957 if (res.err) 958 return res.err; 959 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT); 960 if (res.err > 0) 961 return -EIO; 962 return res.err; 963 } 964 965 /** 966 * tb_plug_events_active() - enable/disable plug events on a switch 967 * 968 * Also configures a sane plug_events_delay of 255ms. 969 * 970 * Return: Returns 0 on success or an error code on failure. 971 */ 972 static int tb_plug_events_active(struct tb_switch *sw, bool active) 973 { 974 u32 data; 975 int res; 976 977 if (!sw->config.enabled) 978 return 0; 979 980 sw->config.plug_events_delay = 0xff; 981 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 982 if (res) 983 return res; 984 985 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 986 if (res) 987 return res; 988 989 if (active) { 990 data = data & 0xFFFFFF83; 991 switch (sw->config.device_id) { 992 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 993 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 994 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 995 break; 996 default: 997 data |= 4; 998 } 999 } else { 1000 data = data | 0x7c; 1001 } 1002 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 1003 sw->cap_plug_events + 1, 1); 1004 } 1005 1006 static ssize_t authorized_show(struct device *dev, 1007 struct device_attribute *attr, 1008 char *buf) 1009 { 1010 struct tb_switch *sw = tb_to_switch(dev); 1011 1012 return sprintf(buf, "%u\n", sw->authorized); 1013 } 1014 1015 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 1016 { 1017 int ret = -EINVAL; 1018 1019 if (!mutex_trylock(&sw->tb->lock)) 1020 return restart_syscall(); 1021 1022 if (sw->authorized) 1023 goto unlock; 1024 1025 /* 1026 * Make sure there is no PCIe rescan ongoing when a new PCIe 1027 * tunnel is created. Otherwise the PCIe rescan code might find 1028 * the new tunnel too early. 1029 */ 1030 pci_lock_rescan_remove(); 1031 1032 switch (val) { 1033 /* Approve switch */ 1034 case 1: 1035 if (sw->key) 1036 ret = tb_domain_approve_switch_key(sw->tb, sw); 1037 else 1038 ret = tb_domain_approve_switch(sw->tb, sw); 1039 break; 1040 1041 /* Challenge switch */ 1042 case 2: 1043 if (sw->key) 1044 ret = tb_domain_challenge_switch_key(sw->tb, sw); 1045 break; 1046 1047 default: 1048 break; 1049 } 1050 1051 pci_unlock_rescan_remove(); 1052 1053 if (!ret) { 1054 sw->authorized = val; 1055 /* Notify status change to the userspace */ 1056 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 1057 } 1058 1059 unlock: 1060 mutex_unlock(&sw->tb->lock); 1061 return ret; 1062 } 1063 1064 static ssize_t authorized_store(struct device *dev, 1065 struct device_attribute *attr, 1066 const char *buf, size_t count) 1067 { 1068 struct tb_switch *sw = tb_to_switch(dev); 1069 unsigned int val; 1070 ssize_t ret; 1071 1072 ret = kstrtouint(buf, 0, &val); 1073 if (ret) 1074 return ret; 1075 if (val > 2) 1076 return -EINVAL; 1077 1078 pm_runtime_get_sync(&sw->dev); 1079 ret = tb_switch_set_authorized(sw, val); 1080 pm_runtime_mark_last_busy(&sw->dev); 1081 pm_runtime_put_autosuspend(&sw->dev); 1082 1083 return ret ? ret : count; 1084 } 1085 static DEVICE_ATTR_RW(authorized); 1086 1087 static ssize_t boot_show(struct device *dev, struct device_attribute *attr, 1088 char *buf) 1089 { 1090 struct tb_switch *sw = tb_to_switch(dev); 1091 1092 return sprintf(buf, "%u\n", sw->boot); 1093 } 1094 static DEVICE_ATTR_RO(boot); 1095 1096 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 1097 char *buf) 1098 { 1099 struct tb_switch *sw = tb_to_switch(dev); 1100 1101 return sprintf(buf, "%#x\n", sw->device); 1102 } 1103 static DEVICE_ATTR_RO(device); 1104 1105 static ssize_t 1106 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1107 { 1108 struct tb_switch *sw = tb_to_switch(dev); 1109 1110 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : ""); 1111 } 1112 static DEVICE_ATTR_RO(device_name); 1113 1114 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 1115 char *buf) 1116 { 1117 struct tb_switch *sw = tb_to_switch(dev); 1118 ssize_t ret; 1119 1120 if (!mutex_trylock(&sw->tb->lock)) 1121 return restart_syscall(); 1122 1123 if (sw->key) 1124 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 1125 else 1126 ret = sprintf(buf, "\n"); 1127 1128 mutex_unlock(&sw->tb->lock); 1129 return ret; 1130 } 1131 1132 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 1133 const char *buf, size_t count) 1134 { 1135 struct tb_switch *sw = tb_to_switch(dev); 1136 u8 key[TB_SWITCH_KEY_SIZE]; 1137 ssize_t ret = count; 1138 bool clear = false; 1139 1140 if (!strcmp(buf, "\n")) 1141 clear = true; 1142 else if (hex2bin(key, buf, sizeof(key))) 1143 return -EINVAL; 1144 1145 if (!mutex_trylock(&sw->tb->lock)) 1146 return restart_syscall(); 1147 1148 if (sw->authorized) { 1149 ret = -EBUSY; 1150 } else { 1151 kfree(sw->key); 1152 if (clear) { 1153 sw->key = NULL; 1154 } else { 1155 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 1156 if (!sw->key) 1157 ret = -ENOMEM; 1158 } 1159 } 1160 1161 mutex_unlock(&sw->tb->lock); 1162 return ret; 1163 } 1164 static DEVICE_ATTR(key, 0600, key_show, key_store); 1165 1166 static void nvm_authenticate_start(struct tb_switch *sw) 1167 { 1168 struct pci_dev *root_port; 1169 1170 /* 1171 * During host router NVM upgrade we should not allow root port to 1172 * go into D3cold because some root ports cannot trigger PME 1173 * itself. To be on the safe side keep the root port in D0 during 1174 * the whole upgrade process. 1175 */ 1176 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev); 1177 if (root_port) 1178 pm_runtime_get_noresume(&root_port->dev); 1179 } 1180 1181 static void nvm_authenticate_complete(struct tb_switch *sw) 1182 { 1183 struct pci_dev *root_port; 1184 1185 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev); 1186 if (root_port) 1187 pm_runtime_put(&root_port->dev); 1188 } 1189 1190 static ssize_t nvm_authenticate_show(struct device *dev, 1191 struct device_attribute *attr, char *buf) 1192 { 1193 struct tb_switch *sw = tb_to_switch(dev); 1194 u32 status; 1195 1196 nvm_get_auth_status(sw, &status); 1197 return sprintf(buf, "%#x\n", status); 1198 } 1199 1200 static ssize_t nvm_authenticate_store(struct device *dev, 1201 struct device_attribute *attr, const char *buf, size_t count) 1202 { 1203 struct tb_switch *sw = tb_to_switch(dev); 1204 bool val; 1205 int ret; 1206 1207 pm_runtime_get_sync(&sw->dev); 1208 1209 if (!mutex_trylock(&sw->tb->lock)) { 1210 ret = restart_syscall(); 1211 goto exit_rpm; 1212 } 1213 1214 /* If NVMem devices are not yet added */ 1215 if (!sw->nvm) { 1216 ret = -EAGAIN; 1217 goto exit_unlock; 1218 } 1219 1220 ret = kstrtobool(buf, &val); 1221 if (ret) 1222 goto exit_unlock; 1223 1224 /* Always clear the authentication status */ 1225 nvm_clear_auth_status(sw); 1226 1227 if (val) { 1228 if (!sw->nvm->buf) { 1229 ret = -EINVAL; 1230 goto exit_unlock; 1231 } 1232 1233 ret = nvm_validate_and_write(sw); 1234 if (ret) 1235 goto exit_unlock; 1236 1237 sw->nvm->authenticating = true; 1238 1239 if (!tb_route(sw)) { 1240 /* 1241 * Keep root port from suspending as long as the 1242 * NVM upgrade process is running. 1243 */ 1244 nvm_authenticate_start(sw); 1245 ret = nvm_authenticate_host(sw); 1246 if (ret) 1247 nvm_authenticate_complete(sw); 1248 } else { 1249 ret = nvm_authenticate_device(sw); 1250 } 1251 } 1252 1253 exit_unlock: 1254 mutex_unlock(&sw->tb->lock); 1255 exit_rpm: 1256 pm_runtime_mark_last_busy(&sw->dev); 1257 pm_runtime_put_autosuspend(&sw->dev); 1258 1259 if (ret) 1260 return ret; 1261 return count; 1262 } 1263 static DEVICE_ATTR_RW(nvm_authenticate); 1264 1265 static ssize_t nvm_version_show(struct device *dev, 1266 struct device_attribute *attr, char *buf) 1267 { 1268 struct tb_switch *sw = tb_to_switch(dev); 1269 int ret; 1270 1271 if (!mutex_trylock(&sw->tb->lock)) 1272 return restart_syscall(); 1273 1274 if (sw->safe_mode) 1275 ret = -ENODATA; 1276 else if (!sw->nvm) 1277 ret = -EAGAIN; 1278 else 1279 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 1280 1281 mutex_unlock(&sw->tb->lock); 1282 1283 return ret; 1284 } 1285 static DEVICE_ATTR_RO(nvm_version); 1286 1287 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 1288 char *buf) 1289 { 1290 struct tb_switch *sw = tb_to_switch(dev); 1291 1292 return sprintf(buf, "%#x\n", sw->vendor); 1293 } 1294 static DEVICE_ATTR_RO(vendor); 1295 1296 static ssize_t 1297 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1298 { 1299 struct tb_switch *sw = tb_to_switch(dev); 1300 1301 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : ""); 1302 } 1303 static DEVICE_ATTR_RO(vendor_name); 1304 1305 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 1306 char *buf) 1307 { 1308 struct tb_switch *sw = tb_to_switch(dev); 1309 1310 return sprintf(buf, "%pUb\n", sw->uuid); 1311 } 1312 static DEVICE_ATTR_RO(unique_id); 1313 1314 static struct attribute *switch_attrs[] = { 1315 &dev_attr_authorized.attr, 1316 &dev_attr_boot.attr, 1317 &dev_attr_device.attr, 1318 &dev_attr_device_name.attr, 1319 &dev_attr_key.attr, 1320 &dev_attr_nvm_authenticate.attr, 1321 &dev_attr_nvm_version.attr, 1322 &dev_attr_vendor.attr, 1323 &dev_attr_vendor_name.attr, 1324 &dev_attr_unique_id.attr, 1325 NULL, 1326 }; 1327 1328 static umode_t switch_attr_is_visible(struct kobject *kobj, 1329 struct attribute *attr, int n) 1330 { 1331 struct device *dev = container_of(kobj, struct device, kobj); 1332 struct tb_switch *sw = tb_to_switch(dev); 1333 1334 if (attr == &dev_attr_key.attr) { 1335 if (tb_route(sw) && 1336 sw->tb->security_level == TB_SECURITY_SECURE && 1337 sw->security_level == TB_SECURITY_SECURE) 1338 return attr->mode; 1339 return 0; 1340 } else if (attr == &dev_attr_nvm_authenticate.attr || 1341 attr == &dev_attr_nvm_version.attr) { 1342 if (sw->dma_port) 1343 return attr->mode; 1344 return 0; 1345 } else if (attr == &dev_attr_boot.attr) { 1346 if (tb_route(sw)) 1347 return attr->mode; 1348 return 0; 1349 } 1350 1351 return sw->safe_mode ? 0 : attr->mode; 1352 } 1353 1354 static struct attribute_group switch_group = { 1355 .is_visible = switch_attr_is_visible, 1356 .attrs = switch_attrs, 1357 }; 1358 1359 static const struct attribute_group *switch_groups[] = { 1360 &switch_group, 1361 NULL, 1362 }; 1363 1364 static void tb_switch_release(struct device *dev) 1365 { 1366 struct tb_switch *sw = tb_to_switch(dev); 1367 int i; 1368 1369 dma_port_free(sw->dma_port); 1370 1371 for (i = 1; i <= sw->config.max_port_number; i++) { 1372 if (!sw->ports[i].disabled) { 1373 ida_destroy(&sw->ports[i].in_hopids); 1374 ida_destroy(&sw->ports[i].out_hopids); 1375 } 1376 } 1377 1378 kfree(sw->uuid); 1379 kfree(sw->device_name); 1380 kfree(sw->vendor_name); 1381 kfree(sw->ports); 1382 kfree(sw->drom); 1383 kfree(sw->key); 1384 kfree(sw); 1385 } 1386 1387 /* 1388 * Currently only need to provide the callbacks. Everything else is handled 1389 * in the connection manager. 1390 */ 1391 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev) 1392 { 1393 struct tb_switch *sw = tb_to_switch(dev); 1394 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 1395 1396 if (cm_ops->runtime_suspend_switch) 1397 return cm_ops->runtime_suspend_switch(sw); 1398 1399 return 0; 1400 } 1401 1402 static int __maybe_unused tb_switch_runtime_resume(struct device *dev) 1403 { 1404 struct tb_switch *sw = tb_to_switch(dev); 1405 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 1406 1407 if (cm_ops->runtime_resume_switch) 1408 return cm_ops->runtime_resume_switch(sw); 1409 return 0; 1410 } 1411 1412 static const struct dev_pm_ops tb_switch_pm_ops = { 1413 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume, 1414 NULL) 1415 }; 1416 1417 struct device_type tb_switch_type = { 1418 .name = "thunderbolt_device", 1419 .release = tb_switch_release, 1420 .pm = &tb_switch_pm_ops, 1421 }; 1422 1423 static int tb_switch_get_generation(struct tb_switch *sw) 1424 { 1425 switch (sw->config.device_id) { 1426 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1427 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1428 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 1429 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 1430 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 1431 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1432 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 1433 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 1434 return 1; 1435 1436 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 1437 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 1438 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 1439 return 2; 1440 1441 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 1442 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 1443 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 1444 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 1445 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 1446 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: 1447 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: 1448 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: 1449 return 3; 1450 1451 default: 1452 /* 1453 * For unknown switches assume generation to be 1 to be 1454 * on the safe side. 1455 */ 1456 tb_sw_warn(sw, "unsupported switch device id %#x\n", 1457 sw->config.device_id); 1458 return 1; 1459 } 1460 } 1461 1462 /** 1463 * tb_switch_alloc() - allocate a switch 1464 * @tb: Pointer to the owning domain 1465 * @parent: Parent device for this switch 1466 * @route: Route string for this switch 1467 * 1468 * Allocates and initializes a switch. Will not upload configuration to 1469 * the switch. For that you need to call tb_switch_configure() 1470 * separately. The returned switch should be released by calling 1471 * tb_switch_put(). 1472 * 1473 * Return: Pointer to the allocated switch or ERR_PTR() in case of 1474 * failure. 1475 */ 1476 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 1477 u64 route) 1478 { 1479 struct tb_switch *sw; 1480 int upstream_port; 1481 int i, ret, depth; 1482 1483 /* Make sure we do not exceed maximum topology limit */ 1484 depth = tb_route_length(route); 1485 if (depth > TB_SWITCH_MAX_DEPTH) 1486 return ERR_PTR(-EADDRNOTAVAIL); 1487 1488 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 1489 if (upstream_port < 0) 1490 return ERR_PTR(upstream_port); 1491 1492 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1493 if (!sw) 1494 return ERR_PTR(-ENOMEM); 1495 1496 sw->tb = tb; 1497 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5); 1498 if (ret) 1499 goto err_free_sw_ports; 1500 1501 tb_dbg(tb, "current switch config:\n"); 1502 tb_dump_switch(tb, &sw->config); 1503 1504 /* configure switch */ 1505 sw->config.upstream_port_number = upstream_port; 1506 sw->config.depth = depth; 1507 sw->config.route_hi = upper_32_bits(route); 1508 sw->config.route_lo = lower_32_bits(route); 1509 sw->config.enabled = 0; 1510 1511 /* initialize ports */ 1512 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 1513 GFP_KERNEL); 1514 if (!sw->ports) { 1515 ret = -ENOMEM; 1516 goto err_free_sw_ports; 1517 } 1518 1519 for (i = 0; i <= sw->config.max_port_number; i++) { 1520 /* minimum setup for tb_find_cap and tb_drom_read to work */ 1521 sw->ports[i].sw = sw; 1522 sw->ports[i].port = i; 1523 } 1524 1525 sw->generation = tb_switch_get_generation(sw); 1526 1527 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 1528 if (ret < 0) { 1529 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 1530 goto err_free_sw_ports; 1531 } 1532 sw->cap_plug_events = ret; 1533 1534 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 1535 if (ret > 0) 1536 sw->cap_lc = ret; 1537 1538 /* Root switch is always authorized */ 1539 if (!route) 1540 sw->authorized = true; 1541 1542 device_initialize(&sw->dev); 1543 sw->dev.parent = parent; 1544 sw->dev.bus = &tb_bus_type; 1545 sw->dev.type = &tb_switch_type; 1546 sw->dev.groups = switch_groups; 1547 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1548 1549 return sw; 1550 1551 err_free_sw_ports: 1552 kfree(sw->ports); 1553 kfree(sw); 1554 1555 return ERR_PTR(ret); 1556 } 1557 1558 /** 1559 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 1560 * @tb: Pointer to the owning domain 1561 * @parent: Parent device for this switch 1562 * @route: Route string for this switch 1563 * 1564 * This creates a switch in safe mode. This means the switch pretty much 1565 * lacks all capabilities except DMA configuration port before it is 1566 * flashed with a valid NVM firmware. 1567 * 1568 * The returned switch must be released by calling tb_switch_put(). 1569 * 1570 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure 1571 */ 1572 struct tb_switch * 1573 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 1574 { 1575 struct tb_switch *sw; 1576 1577 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1578 if (!sw) 1579 return ERR_PTR(-ENOMEM); 1580 1581 sw->tb = tb; 1582 sw->config.depth = tb_route_length(route); 1583 sw->config.route_hi = upper_32_bits(route); 1584 sw->config.route_lo = lower_32_bits(route); 1585 sw->safe_mode = true; 1586 1587 device_initialize(&sw->dev); 1588 sw->dev.parent = parent; 1589 sw->dev.bus = &tb_bus_type; 1590 sw->dev.type = &tb_switch_type; 1591 sw->dev.groups = switch_groups; 1592 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1593 1594 return sw; 1595 } 1596 1597 /** 1598 * tb_switch_configure() - Uploads configuration to the switch 1599 * @sw: Switch to configure 1600 * 1601 * Call this function before the switch is added to the system. It will 1602 * upload configuration to the switch and makes it available for the 1603 * connection manager to use. 1604 * 1605 * Return: %0 in case of success and negative errno in case of failure 1606 */ 1607 int tb_switch_configure(struct tb_switch *sw) 1608 { 1609 struct tb *tb = sw->tb; 1610 u64 route; 1611 int ret; 1612 1613 route = tb_route(sw); 1614 tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n", 1615 route, tb_route_length(route), sw->config.upstream_port_number); 1616 1617 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 1618 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 1619 sw->config.vendor_id); 1620 1621 sw->config.enabled = 1; 1622 1623 /* upload configuration */ 1624 ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3); 1625 if (ret) 1626 return ret; 1627 1628 ret = tb_lc_configure_link(sw); 1629 if (ret) 1630 return ret; 1631 1632 return tb_plug_events_active(sw, true); 1633 } 1634 1635 static int tb_switch_set_uuid(struct tb_switch *sw) 1636 { 1637 u32 uuid[4]; 1638 int ret; 1639 1640 if (sw->uuid) 1641 return 0; 1642 1643 /* 1644 * The newer controllers include fused UUID as part of link 1645 * controller specific registers 1646 */ 1647 ret = tb_lc_read_uuid(sw, uuid); 1648 if (ret) { 1649 /* 1650 * ICM generates UUID based on UID and fills the upper 1651 * two words with ones. This is not strictly following 1652 * UUID format but we want to be compatible with it so 1653 * we do the same here. 1654 */ 1655 uuid[0] = sw->uid & 0xffffffff; 1656 uuid[1] = (sw->uid >> 32) & 0xffffffff; 1657 uuid[2] = 0xffffffff; 1658 uuid[3] = 0xffffffff; 1659 } 1660 1661 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 1662 if (!sw->uuid) 1663 return -ENOMEM; 1664 return 0; 1665 } 1666 1667 static int tb_switch_add_dma_port(struct tb_switch *sw) 1668 { 1669 u32 status; 1670 int ret; 1671 1672 switch (sw->generation) { 1673 case 3: 1674 break; 1675 1676 case 2: 1677 /* Only root switch can be upgraded */ 1678 if (tb_route(sw)) 1679 return 0; 1680 break; 1681 1682 default: 1683 /* 1684 * DMA port is the only thing available when the switch 1685 * is in safe mode. 1686 */ 1687 if (!sw->safe_mode) 1688 return 0; 1689 break; 1690 } 1691 1692 if (sw->no_nvm_upgrade) 1693 return 0; 1694 1695 sw->dma_port = dma_port_alloc(sw); 1696 if (!sw->dma_port) 1697 return 0; 1698 1699 /* 1700 * Check status of the previous flash authentication. If there 1701 * is one we need to power cycle the switch in any case to make 1702 * it functional again. 1703 */ 1704 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 1705 if (ret <= 0) 1706 return ret; 1707 1708 /* Now we can allow root port to suspend again */ 1709 if (!tb_route(sw)) 1710 nvm_authenticate_complete(sw); 1711 1712 if (status) { 1713 tb_sw_info(sw, "switch flash authentication failed\n"); 1714 ret = tb_switch_set_uuid(sw); 1715 if (ret) 1716 return ret; 1717 nvm_set_auth_status(sw, status); 1718 } 1719 1720 tb_sw_info(sw, "power cycling the switch now\n"); 1721 dma_port_power_cycle(sw->dma_port); 1722 1723 /* 1724 * We return error here which causes the switch adding failure. 1725 * It should appear back after power cycle is complete. 1726 */ 1727 return -ESHUTDOWN; 1728 } 1729 1730 /** 1731 * tb_switch_add() - Add a switch to the domain 1732 * @sw: Switch to add 1733 * 1734 * This is the last step in adding switch to the domain. It will read 1735 * identification information from DROM and initializes ports so that 1736 * they can be used to connect other switches. The switch will be 1737 * exposed to the userspace when this function successfully returns. To 1738 * remove and release the switch, call tb_switch_remove(). 1739 * 1740 * Return: %0 in case of success and negative errno in case of failure 1741 */ 1742 int tb_switch_add(struct tb_switch *sw) 1743 { 1744 int i, ret; 1745 1746 /* 1747 * Initialize DMA control port now before we read DROM. Recent 1748 * host controllers have more complete DROM on NVM that includes 1749 * vendor and model identification strings which we then expose 1750 * to the userspace. NVM can be accessed through DMA 1751 * configuration based mailbox. 1752 */ 1753 ret = tb_switch_add_dma_port(sw); 1754 if (ret) 1755 return ret; 1756 1757 if (!sw->safe_mode) { 1758 /* read drom */ 1759 ret = tb_drom_read(sw); 1760 if (ret) { 1761 tb_sw_warn(sw, "tb_eeprom_read_rom failed\n"); 1762 return ret; 1763 } 1764 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid); 1765 1766 ret = tb_switch_set_uuid(sw); 1767 if (ret) 1768 return ret; 1769 1770 for (i = 0; i <= sw->config.max_port_number; i++) { 1771 if (sw->ports[i].disabled) { 1772 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n"); 1773 continue; 1774 } 1775 ret = tb_init_port(&sw->ports[i]); 1776 if (ret) 1777 return ret; 1778 } 1779 } 1780 1781 ret = device_add(&sw->dev); 1782 if (ret) 1783 return ret; 1784 1785 if (tb_route(sw)) { 1786 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n", 1787 sw->vendor, sw->device); 1788 if (sw->vendor_name && sw->device_name) 1789 dev_info(&sw->dev, "%s %s\n", sw->vendor_name, 1790 sw->device_name); 1791 } 1792 1793 ret = tb_switch_nvm_add(sw); 1794 if (ret) { 1795 device_del(&sw->dev); 1796 return ret; 1797 } 1798 1799 pm_runtime_set_active(&sw->dev); 1800 if (sw->rpm) { 1801 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY); 1802 pm_runtime_use_autosuspend(&sw->dev); 1803 pm_runtime_mark_last_busy(&sw->dev); 1804 pm_runtime_enable(&sw->dev); 1805 pm_request_autosuspend(&sw->dev); 1806 } 1807 1808 return 0; 1809 } 1810 1811 /** 1812 * tb_switch_remove() - Remove and release a switch 1813 * @sw: Switch to remove 1814 * 1815 * This will remove the switch from the domain and release it after last 1816 * reference count drops to zero. If there are switches connected below 1817 * this switch, they will be removed as well. 1818 */ 1819 void tb_switch_remove(struct tb_switch *sw) 1820 { 1821 int i; 1822 1823 if (sw->rpm) { 1824 pm_runtime_get_sync(&sw->dev); 1825 pm_runtime_disable(&sw->dev); 1826 } 1827 1828 /* port 0 is the switch itself and never has a remote */ 1829 for (i = 1; i <= sw->config.max_port_number; i++) { 1830 if (tb_port_has_remote(&sw->ports[i])) { 1831 tb_switch_remove(sw->ports[i].remote->sw); 1832 sw->ports[i].remote = NULL; 1833 } else if (sw->ports[i].xdomain) { 1834 tb_xdomain_remove(sw->ports[i].xdomain); 1835 sw->ports[i].xdomain = NULL; 1836 } 1837 } 1838 1839 if (!sw->is_unplugged) 1840 tb_plug_events_active(sw, false); 1841 tb_lc_unconfigure_link(sw); 1842 1843 tb_switch_nvm_remove(sw); 1844 1845 if (tb_route(sw)) 1846 dev_info(&sw->dev, "device disconnected\n"); 1847 device_unregister(&sw->dev); 1848 } 1849 1850 /** 1851 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 1852 */ 1853 void tb_sw_set_unplugged(struct tb_switch *sw) 1854 { 1855 int i; 1856 if (sw == sw->tb->root_switch) { 1857 tb_sw_WARN(sw, "cannot unplug root switch\n"); 1858 return; 1859 } 1860 if (sw->is_unplugged) { 1861 tb_sw_WARN(sw, "is_unplugged already set\n"); 1862 return; 1863 } 1864 sw->is_unplugged = true; 1865 for (i = 0; i <= sw->config.max_port_number; i++) { 1866 if (tb_port_has_remote(&sw->ports[i])) 1867 tb_sw_set_unplugged(sw->ports[i].remote->sw); 1868 else if (sw->ports[i].xdomain) 1869 sw->ports[i].xdomain->is_unplugged = true; 1870 } 1871 } 1872 1873 int tb_switch_resume(struct tb_switch *sw) 1874 { 1875 int i, err; 1876 tb_sw_dbg(sw, "resuming switch\n"); 1877 1878 /* 1879 * Check for UID of the connected switches except for root 1880 * switch which we assume cannot be removed. 1881 */ 1882 if (tb_route(sw)) { 1883 u64 uid; 1884 1885 /* 1886 * Check first that we can still read the switch config 1887 * space. It may be that there is now another domain 1888 * connected. 1889 */ 1890 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw)); 1891 if (err < 0) { 1892 tb_sw_info(sw, "switch not present anymore\n"); 1893 return err; 1894 } 1895 1896 err = tb_drom_read_uid_only(sw, &uid); 1897 if (err) { 1898 tb_sw_warn(sw, "uid read failed\n"); 1899 return err; 1900 } 1901 if (sw->uid != uid) { 1902 tb_sw_info(sw, 1903 "changed while suspended (uid %#llx -> %#llx)\n", 1904 sw->uid, uid); 1905 return -ENODEV; 1906 } 1907 } 1908 1909 /* upload configuration */ 1910 err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3); 1911 if (err) 1912 return err; 1913 1914 err = tb_lc_configure_link(sw); 1915 if (err) 1916 return err; 1917 1918 err = tb_plug_events_active(sw, true); 1919 if (err) 1920 return err; 1921 1922 /* check for surviving downstream switches */ 1923 for (i = 1; i <= sw->config.max_port_number; i++) { 1924 struct tb_port *port = &sw->ports[i]; 1925 1926 if (!tb_port_has_remote(port) && !port->xdomain) 1927 continue; 1928 1929 if (tb_wait_for_port(port, true) <= 0) { 1930 tb_port_warn(port, 1931 "lost during suspend, disconnecting\n"); 1932 if (tb_port_has_remote(port)) 1933 tb_sw_set_unplugged(port->remote->sw); 1934 else if (port->xdomain) 1935 port->xdomain->is_unplugged = true; 1936 } else if (tb_port_has_remote(port)) { 1937 if (tb_switch_resume(port->remote->sw)) { 1938 tb_port_warn(port, 1939 "lost during suspend, disconnecting\n"); 1940 tb_sw_set_unplugged(port->remote->sw); 1941 } 1942 } 1943 } 1944 return 0; 1945 } 1946 1947 void tb_switch_suspend(struct tb_switch *sw) 1948 { 1949 int i, err; 1950 err = tb_plug_events_active(sw, false); 1951 if (err) 1952 return; 1953 1954 for (i = 1; i <= sw->config.max_port_number; i++) { 1955 if (tb_port_has_remote(&sw->ports[i])) 1956 tb_switch_suspend(sw->ports[i].remote->sw); 1957 } 1958 1959 tb_lc_set_sleep(sw); 1960 } 1961 1962 struct tb_sw_lookup { 1963 struct tb *tb; 1964 u8 link; 1965 u8 depth; 1966 const uuid_t *uuid; 1967 u64 route; 1968 }; 1969 1970 static int tb_switch_match(struct device *dev, const void *data) 1971 { 1972 struct tb_switch *sw = tb_to_switch(dev); 1973 const struct tb_sw_lookup *lookup = data; 1974 1975 if (!sw) 1976 return 0; 1977 if (sw->tb != lookup->tb) 1978 return 0; 1979 1980 if (lookup->uuid) 1981 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 1982 1983 if (lookup->route) { 1984 return sw->config.route_lo == lower_32_bits(lookup->route) && 1985 sw->config.route_hi == upper_32_bits(lookup->route); 1986 } 1987 1988 /* Root switch is matched only by depth */ 1989 if (!lookup->depth) 1990 return !sw->depth; 1991 1992 return sw->link == lookup->link && sw->depth == lookup->depth; 1993 } 1994 1995 /** 1996 * tb_switch_find_by_link_depth() - Find switch by link and depth 1997 * @tb: Domain the switch belongs 1998 * @link: Link number the switch is connected 1999 * @depth: Depth of the switch in link 2000 * 2001 * Returned switch has reference count increased so the caller needs to 2002 * call tb_switch_put() when done with the switch. 2003 */ 2004 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 2005 { 2006 struct tb_sw_lookup lookup; 2007 struct device *dev; 2008 2009 memset(&lookup, 0, sizeof(lookup)); 2010 lookup.tb = tb; 2011 lookup.link = link; 2012 lookup.depth = depth; 2013 2014 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2015 if (dev) 2016 return tb_to_switch(dev); 2017 2018 return NULL; 2019 } 2020 2021 /** 2022 * tb_switch_find_by_uuid() - Find switch by UUID 2023 * @tb: Domain the switch belongs 2024 * @uuid: UUID to look for 2025 * 2026 * Returned switch has reference count increased so the caller needs to 2027 * call tb_switch_put() when done with the switch. 2028 */ 2029 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) 2030 { 2031 struct tb_sw_lookup lookup; 2032 struct device *dev; 2033 2034 memset(&lookup, 0, sizeof(lookup)); 2035 lookup.tb = tb; 2036 lookup.uuid = uuid; 2037 2038 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2039 if (dev) 2040 return tb_to_switch(dev); 2041 2042 return NULL; 2043 } 2044 2045 /** 2046 * tb_switch_find_by_route() - Find switch by route string 2047 * @tb: Domain the switch belongs 2048 * @route: Route string to look for 2049 * 2050 * Returned switch has reference count increased so the caller needs to 2051 * call tb_switch_put() when done with the switch. 2052 */ 2053 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route) 2054 { 2055 struct tb_sw_lookup lookup; 2056 struct device *dev; 2057 2058 if (!route) 2059 return tb_switch_get(tb->root_switch); 2060 2061 memset(&lookup, 0, sizeof(lookup)); 2062 lookup.tb = tb; 2063 lookup.route = route; 2064 2065 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2066 if (dev) 2067 return tb_to_switch(dev); 2068 2069 return NULL; 2070 } 2071 2072 void tb_switch_exit(void) 2073 { 2074 ida_destroy(&nvm_ida); 2075 } 2076