xref: /openbmc/linux/drivers/thunderbolt/switch.c (revision ccd51b9f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 
18 #include "tb.h"
19 
20 /* Switch NVM support */
21 
22 #define NVM_DEVID		0x05
23 #define NVM_VERSION		0x08
24 #define NVM_CSS			0x10
25 #define NVM_FLASH_SIZE		0x45
26 
27 #define NVM_MIN_SIZE		SZ_32K
28 #define NVM_MAX_SIZE		SZ_512K
29 
30 static DEFINE_IDA(nvm_ida);
31 
32 struct nvm_auth_status {
33 	struct list_head list;
34 	uuid_t uuid;
35 	u32 status;
36 };
37 
38 /*
39  * Hold NVM authentication failure status per switch This information
40  * needs to stay around even when the switch gets power cycled so we
41  * keep it separately.
42  */
43 static LIST_HEAD(nvm_auth_status_cache);
44 static DEFINE_MUTEX(nvm_auth_status_lock);
45 
46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
47 {
48 	struct nvm_auth_status *st;
49 
50 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
51 		if (uuid_equal(&st->uuid, sw->uuid))
52 			return st;
53 	}
54 
55 	return NULL;
56 }
57 
58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
59 {
60 	struct nvm_auth_status *st;
61 
62 	mutex_lock(&nvm_auth_status_lock);
63 	st = __nvm_get_auth_status(sw);
64 	mutex_unlock(&nvm_auth_status_lock);
65 
66 	*status = st ? st->status : 0;
67 }
68 
69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
70 {
71 	struct nvm_auth_status *st;
72 
73 	if (WARN_ON(!sw->uuid))
74 		return;
75 
76 	mutex_lock(&nvm_auth_status_lock);
77 	st = __nvm_get_auth_status(sw);
78 
79 	if (!st) {
80 		st = kzalloc(sizeof(*st), GFP_KERNEL);
81 		if (!st)
82 			goto unlock;
83 
84 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
85 		INIT_LIST_HEAD(&st->list);
86 		list_add_tail(&st->list, &nvm_auth_status_cache);
87 	}
88 
89 	st->status = status;
90 unlock:
91 	mutex_unlock(&nvm_auth_status_lock);
92 }
93 
94 static void nvm_clear_auth_status(const struct tb_switch *sw)
95 {
96 	struct nvm_auth_status *st;
97 
98 	mutex_lock(&nvm_auth_status_lock);
99 	st = __nvm_get_auth_status(sw);
100 	if (st) {
101 		list_del(&st->list);
102 		kfree(st);
103 	}
104 	mutex_unlock(&nvm_auth_status_lock);
105 }
106 
107 static int nvm_validate_and_write(struct tb_switch *sw)
108 {
109 	unsigned int image_size, hdr_size;
110 	const u8 *buf = sw->nvm->buf;
111 	u16 ds_size;
112 	int ret;
113 
114 	if (!buf)
115 		return -EINVAL;
116 
117 	image_size = sw->nvm->buf_data_size;
118 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
119 		return -EINVAL;
120 
121 	/*
122 	 * FARB pointer must point inside the image and must at least
123 	 * contain parts of the digital section we will be reading here.
124 	 */
125 	hdr_size = (*(u32 *)buf) & 0xffffff;
126 	if (hdr_size + NVM_DEVID + 2 >= image_size)
127 		return -EINVAL;
128 
129 	/* Digital section start should be aligned to 4k page */
130 	if (!IS_ALIGNED(hdr_size, SZ_4K))
131 		return -EINVAL;
132 
133 	/*
134 	 * Read digital section size and check that it also fits inside
135 	 * the image.
136 	 */
137 	ds_size = *(u16 *)(buf + hdr_size);
138 	if (ds_size >= image_size)
139 		return -EINVAL;
140 
141 	if (!sw->safe_mode) {
142 		u16 device_id;
143 
144 		/*
145 		 * Make sure the device ID in the image matches the one
146 		 * we read from the switch config space.
147 		 */
148 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
149 		if (device_id != sw->config.device_id)
150 			return -EINVAL;
151 
152 		if (sw->generation < 3) {
153 			/* Write CSS headers first */
154 			ret = dma_port_flash_write(sw->dma_port,
155 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
156 				DMA_PORT_CSS_MAX_SIZE);
157 			if (ret)
158 				return ret;
159 		}
160 
161 		/* Skip headers in the image */
162 		buf += hdr_size;
163 		image_size -= hdr_size;
164 	}
165 
166 	return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
167 }
168 
169 static int nvm_authenticate_host(struct tb_switch *sw)
170 {
171 	int ret;
172 
173 	/*
174 	 * Root switch NVM upgrade requires that we disconnect the
175 	 * existing paths first (in case it is not in safe mode
176 	 * already).
177 	 */
178 	if (!sw->safe_mode) {
179 		ret = tb_domain_disconnect_all_paths(sw->tb);
180 		if (ret)
181 			return ret;
182 		/*
183 		 * The host controller goes away pretty soon after this if
184 		 * everything goes well so getting timeout is expected.
185 		 */
186 		ret = dma_port_flash_update_auth(sw->dma_port);
187 		return ret == -ETIMEDOUT ? 0 : ret;
188 	}
189 
190 	/*
191 	 * From safe mode we can get out by just power cycling the
192 	 * switch.
193 	 */
194 	dma_port_power_cycle(sw->dma_port);
195 	return 0;
196 }
197 
198 static int nvm_authenticate_device(struct tb_switch *sw)
199 {
200 	int ret, retries = 10;
201 
202 	ret = dma_port_flash_update_auth(sw->dma_port);
203 	if (ret && ret != -ETIMEDOUT)
204 		return ret;
205 
206 	/*
207 	 * Poll here for the authentication status. It takes some time
208 	 * for the device to respond (we get timeout for a while). Once
209 	 * we get response the device needs to be power cycled in order
210 	 * to the new NVM to be taken into use.
211 	 */
212 	do {
213 		u32 status;
214 
215 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
216 		if (ret < 0 && ret != -ETIMEDOUT)
217 			return ret;
218 		if (ret > 0) {
219 			if (status) {
220 				tb_sw_warn(sw, "failed to authenticate NVM\n");
221 				nvm_set_auth_status(sw, status);
222 			}
223 
224 			tb_sw_info(sw, "power cycling the switch now\n");
225 			dma_port_power_cycle(sw->dma_port);
226 			return 0;
227 		}
228 
229 		msleep(500);
230 	} while (--retries);
231 
232 	return -ETIMEDOUT;
233 }
234 
235 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
236 			      size_t bytes)
237 {
238 	struct tb_switch *sw = priv;
239 	int ret;
240 
241 	pm_runtime_get_sync(&sw->dev);
242 
243 	if (!mutex_trylock(&sw->tb->lock)) {
244 		ret = restart_syscall();
245 		goto out;
246 	}
247 
248 	ret = dma_port_flash_read(sw->dma_port, offset, val, bytes);
249 	mutex_unlock(&sw->tb->lock);
250 
251 out:
252 	pm_runtime_mark_last_busy(&sw->dev);
253 	pm_runtime_put_autosuspend(&sw->dev);
254 
255 	return ret;
256 }
257 
258 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
259 			       size_t bytes)
260 {
261 	struct tb_switch *sw = priv;
262 	int ret = 0;
263 
264 	if (!mutex_trylock(&sw->tb->lock))
265 		return restart_syscall();
266 
267 	/*
268 	 * Since writing the NVM image might require some special steps,
269 	 * for example when CSS headers are written, we cache the image
270 	 * locally here and handle the special cases when the user asks
271 	 * us to authenticate the image.
272 	 */
273 	if (!sw->nvm->buf) {
274 		sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
275 		if (!sw->nvm->buf) {
276 			ret = -ENOMEM;
277 			goto unlock;
278 		}
279 	}
280 
281 	sw->nvm->buf_data_size = offset + bytes;
282 	memcpy(sw->nvm->buf + offset, val, bytes);
283 
284 unlock:
285 	mutex_unlock(&sw->tb->lock);
286 
287 	return ret;
288 }
289 
290 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
291 					   size_t size, bool active)
292 {
293 	struct nvmem_config config;
294 
295 	memset(&config, 0, sizeof(config));
296 
297 	if (active) {
298 		config.name = "nvm_active";
299 		config.reg_read = tb_switch_nvm_read;
300 		config.read_only = true;
301 	} else {
302 		config.name = "nvm_non_active";
303 		config.reg_write = tb_switch_nvm_write;
304 		config.root_only = true;
305 	}
306 
307 	config.id = id;
308 	config.stride = 4;
309 	config.word_size = 4;
310 	config.size = size;
311 	config.dev = &sw->dev;
312 	config.owner = THIS_MODULE;
313 	config.priv = sw;
314 
315 	return nvmem_register(&config);
316 }
317 
318 static int tb_switch_nvm_add(struct tb_switch *sw)
319 {
320 	struct nvmem_device *nvm_dev;
321 	struct tb_switch_nvm *nvm;
322 	u32 val;
323 	int ret;
324 
325 	if (!sw->dma_port)
326 		return 0;
327 
328 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
329 	if (!nvm)
330 		return -ENOMEM;
331 
332 	nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
333 
334 	/*
335 	 * If the switch is in safe-mode the only accessible portion of
336 	 * the NVM is the non-active one where userspace is expected to
337 	 * write new functional NVM.
338 	 */
339 	if (!sw->safe_mode) {
340 		u32 nvm_size, hdr_size;
341 
342 		ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
343 					  sizeof(val));
344 		if (ret)
345 			goto err_ida;
346 
347 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
348 		nvm_size = (SZ_1M << (val & 7)) / 8;
349 		nvm_size = (nvm_size - hdr_size) / 2;
350 
351 		ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
352 					  sizeof(val));
353 		if (ret)
354 			goto err_ida;
355 
356 		nvm->major = val >> 16;
357 		nvm->minor = val >> 8;
358 
359 		nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
360 		if (IS_ERR(nvm_dev)) {
361 			ret = PTR_ERR(nvm_dev);
362 			goto err_ida;
363 		}
364 		nvm->active = nvm_dev;
365 	}
366 
367 	nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
368 	if (IS_ERR(nvm_dev)) {
369 		ret = PTR_ERR(nvm_dev);
370 		goto err_nvm_active;
371 	}
372 	nvm->non_active = nvm_dev;
373 
374 	sw->nvm = nvm;
375 	return 0;
376 
377 err_nvm_active:
378 	if (nvm->active)
379 		nvmem_unregister(nvm->active);
380 err_ida:
381 	ida_simple_remove(&nvm_ida, nvm->id);
382 	kfree(nvm);
383 
384 	return ret;
385 }
386 
387 static void tb_switch_nvm_remove(struct tb_switch *sw)
388 {
389 	struct tb_switch_nvm *nvm;
390 
391 	nvm = sw->nvm;
392 	sw->nvm = NULL;
393 
394 	if (!nvm)
395 		return;
396 
397 	/* Remove authentication status in case the switch is unplugged */
398 	if (!nvm->authenticating)
399 		nvm_clear_auth_status(sw);
400 
401 	nvmem_unregister(nvm->non_active);
402 	if (nvm->active)
403 		nvmem_unregister(nvm->active);
404 	ida_simple_remove(&nvm_ida, nvm->id);
405 	vfree(nvm->buf);
406 	kfree(nvm);
407 }
408 
409 /* port utility functions */
410 
411 static const char *tb_port_type(struct tb_regs_port_header *port)
412 {
413 	switch (port->type >> 16) {
414 	case 0:
415 		switch ((u8) port->type) {
416 		case 0:
417 			return "Inactive";
418 		case 1:
419 			return "Port";
420 		case 2:
421 			return "NHI";
422 		default:
423 			return "unknown";
424 		}
425 	case 0x2:
426 		return "Ethernet";
427 	case 0x8:
428 		return "SATA";
429 	case 0xe:
430 		return "DP/HDMI";
431 	case 0x10:
432 		return "PCIe";
433 	case 0x20:
434 		return "USB";
435 	default:
436 		return "unknown";
437 	}
438 }
439 
440 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
441 {
442 	tb_dbg(tb,
443 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
444 	       port->port_number, port->vendor_id, port->device_id,
445 	       port->revision, port->thunderbolt_version, tb_port_type(port),
446 	       port->type);
447 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
448 	       port->max_in_hop_id, port->max_out_hop_id);
449 	tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
450 	tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
451 }
452 
453 /**
454  * tb_port_state() - get connectedness state of a port
455  *
456  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
457  *
458  * Return: Returns an enum tb_port_state on success or an error code on failure.
459  */
460 static int tb_port_state(struct tb_port *port)
461 {
462 	struct tb_cap_phy phy;
463 	int res;
464 	if (port->cap_phy == 0) {
465 		tb_port_WARN(port, "does not have a PHY\n");
466 		return -EINVAL;
467 	}
468 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
469 	if (res)
470 		return res;
471 	return phy.state;
472 }
473 
474 /**
475  * tb_wait_for_port() - wait for a port to become ready
476  *
477  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
478  * wait_if_unplugged is set then we also wait if the port is in state
479  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
480  * switch resume). Otherwise we only wait if a device is registered but the link
481  * has not yet been established.
482  *
483  * Return: Returns an error code on failure. Returns 0 if the port is not
484  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
485  * if the port is connected and in state TB_PORT_UP.
486  */
487 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
488 {
489 	int retries = 10;
490 	int state;
491 	if (!port->cap_phy) {
492 		tb_port_WARN(port, "does not have PHY\n");
493 		return -EINVAL;
494 	}
495 	if (tb_is_upstream_port(port)) {
496 		tb_port_WARN(port, "is the upstream port\n");
497 		return -EINVAL;
498 	}
499 
500 	while (retries--) {
501 		state = tb_port_state(port);
502 		if (state < 0)
503 			return state;
504 		if (state == TB_PORT_DISABLED) {
505 			tb_port_dbg(port, "is disabled (state: 0)\n");
506 			return 0;
507 		}
508 		if (state == TB_PORT_UNPLUGGED) {
509 			if (wait_if_unplugged) {
510 				/* used during resume */
511 				tb_port_dbg(port,
512 					    "is unplugged (state: 7), retrying...\n");
513 				msleep(100);
514 				continue;
515 			}
516 			tb_port_dbg(port, "is unplugged (state: 7)\n");
517 			return 0;
518 		}
519 		if (state == TB_PORT_UP) {
520 			tb_port_dbg(port, "is connected, link is up (state: 2)\n");
521 			return 1;
522 		}
523 
524 		/*
525 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
526 		 * time.
527 		 */
528 		tb_port_dbg(port,
529 			    "is connected, link is not up (state: %d), retrying...\n",
530 			    state);
531 		msleep(100);
532 	}
533 	tb_port_warn(port,
534 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
535 	return 0;
536 }
537 
538 /**
539  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
540  *
541  * Change the number of NFC credits allocated to @port by @credits. To remove
542  * NFC credits pass a negative amount of credits.
543  *
544  * Return: Returns 0 on success or an error code on failure.
545  */
546 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
547 {
548 	u32 nfc_credits;
549 
550 	if (credits == 0 || port->sw->is_unplugged)
551 		return 0;
552 
553 	nfc_credits = port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK;
554 	nfc_credits += credits;
555 
556 	tb_port_dbg(port, "adding %d NFC credits to %lu",
557 		    credits, port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK);
558 
559 	port->config.nfc_credits &= ~TB_PORT_NFC_CREDITS_MASK;
560 	port->config.nfc_credits |= nfc_credits;
561 
562 	return tb_port_write(port, &port->config.nfc_credits,
563 			     TB_CFG_PORT, 4, 1);
564 }
565 
566 /**
567  * tb_port_set_initial_credits() - Set initial port link credits allocated
568  * @port: Port to set the initial credits
569  * @credits: Number of credits to to allocate
570  *
571  * Set initial credits value to be used for ingress shared buffering.
572  */
573 int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
574 {
575 	u32 data;
576 	int ret;
577 
578 	ret = tb_port_read(port, &data, TB_CFG_PORT, 5, 1);
579 	if (ret)
580 		return ret;
581 
582 	data &= ~TB_PORT_LCA_MASK;
583 	data |= (credits << TB_PORT_LCA_SHIFT) & TB_PORT_LCA_MASK;
584 
585 	return tb_port_write(port, &data, TB_CFG_PORT, 5, 1);
586 }
587 
588 /**
589  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
590  *
591  * Return: Returns 0 on success or an error code on failure.
592  */
593 int tb_port_clear_counter(struct tb_port *port, int counter)
594 {
595 	u32 zero[3] = { 0, 0, 0 };
596 	tb_port_dbg(port, "clearing counter %d\n", counter);
597 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
598 }
599 
600 /**
601  * tb_init_port() - initialize a port
602  *
603  * This is a helper method for tb_switch_alloc. Does not check or initialize
604  * any downstream switches.
605  *
606  * Return: Returns 0 on success or an error code on failure.
607  */
608 static int tb_init_port(struct tb_port *port)
609 {
610 	int res;
611 	int cap;
612 
613 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
614 	if (res)
615 		return res;
616 
617 	/* Port 0 is the switch itself and has no PHY. */
618 	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
619 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
620 
621 		if (cap > 0)
622 			port->cap_phy = cap;
623 		else
624 			tb_port_WARN(port, "non switch port without a PHY\n");
625 	} else if (port->port != 0) {
626 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
627 		if (cap > 0)
628 			port->cap_adap = cap;
629 	}
630 
631 	tb_dump_port(port->sw->tb, &port->config);
632 
633 	/* Control port does not need HopID allocation */
634 	if (port->port) {
635 		ida_init(&port->in_hopids);
636 		ida_init(&port->out_hopids);
637 	}
638 
639 	return 0;
640 
641 }
642 
643 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
644 			       int max_hopid)
645 {
646 	int port_max_hopid;
647 	struct ida *ida;
648 
649 	if (in) {
650 		port_max_hopid = port->config.max_in_hop_id;
651 		ida = &port->in_hopids;
652 	} else {
653 		port_max_hopid = port->config.max_out_hop_id;
654 		ida = &port->out_hopids;
655 	}
656 
657 	/* HopIDs 0-7 are reserved */
658 	if (min_hopid < TB_PATH_MIN_HOPID)
659 		min_hopid = TB_PATH_MIN_HOPID;
660 
661 	if (max_hopid < 0 || max_hopid > port_max_hopid)
662 		max_hopid = port_max_hopid;
663 
664 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
665 }
666 
667 /**
668  * tb_port_alloc_in_hopid() - Allocate input HopID from port
669  * @port: Port to allocate HopID for
670  * @min_hopid: Minimum acceptable input HopID
671  * @max_hopid: Maximum acceptable input HopID
672  *
673  * Return: HopID between @min_hopid and @max_hopid or negative errno in
674  * case of error.
675  */
676 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
677 {
678 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
679 }
680 
681 /**
682  * tb_port_alloc_out_hopid() - Allocate output HopID from port
683  * @port: Port to allocate HopID for
684  * @min_hopid: Minimum acceptable output HopID
685  * @max_hopid: Maximum acceptable output HopID
686  *
687  * Return: HopID between @min_hopid and @max_hopid or negative errno in
688  * case of error.
689  */
690 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
691 {
692 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
693 }
694 
695 /**
696  * tb_port_release_in_hopid() - Release allocated input HopID from port
697  * @port: Port whose HopID to release
698  * @hopid: HopID to release
699  */
700 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
701 {
702 	ida_simple_remove(&port->in_hopids, hopid);
703 }
704 
705 /**
706  * tb_port_release_out_hopid() - Release allocated output HopID from port
707  * @port: Port whose HopID to release
708  * @hopid: HopID to release
709  */
710 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
711 {
712 	ida_simple_remove(&port->out_hopids, hopid);
713 }
714 
715 /**
716  * tb_next_port_on_path() - Return next port for given port on a path
717  * @start: Start port of the walk
718  * @end: End port of the walk
719  * @prev: Previous port (%NULL if this is the first)
720  *
721  * This function can be used to walk from one port to another if they
722  * are connected through zero or more switches. If the @prev is dual
723  * link port, the function follows that link and returns another end on
724  * that same link.
725  *
726  * If the @end port has been reached, return %NULL.
727  *
728  * Domain tb->lock must be held when this function is called.
729  */
730 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
731 				     struct tb_port *prev)
732 {
733 	struct tb_port *next;
734 
735 	if (!prev)
736 		return start;
737 
738 	if (prev->sw == end->sw) {
739 		if (prev == end)
740 			return NULL;
741 		return end;
742 	}
743 
744 	if (start->sw->config.depth < end->sw->config.depth) {
745 		if (prev->remote &&
746 		    prev->remote->sw->config.depth > prev->sw->config.depth)
747 			next = prev->remote;
748 		else
749 			next = tb_port_at(tb_route(end->sw), prev->sw);
750 	} else {
751 		if (tb_is_upstream_port(prev)) {
752 			next = prev->remote;
753 		} else {
754 			next = tb_upstream_port(prev->sw);
755 			/*
756 			 * Keep the same link if prev and next are both
757 			 * dual link ports.
758 			 */
759 			if (next->dual_link_port &&
760 			    next->link_nr != prev->link_nr) {
761 				next = next->dual_link_port;
762 			}
763 		}
764 	}
765 
766 	return next;
767 }
768 
769 /**
770  * tb_port_is_enabled() - Is the adapter port enabled
771  * @port: Port to check
772  */
773 bool tb_port_is_enabled(struct tb_port *port)
774 {
775 	switch (port->config.type) {
776 	case TB_TYPE_PCIE_UP:
777 	case TB_TYPE_PCIE_DOWN:
778 		return tb_pci_port_is_enabled(port);
779 
780 	case TB_TYPE_DP_HDMI_IN:
781 	case TB_TYPE_DP_HDMI_OUT:
782 		return tb_dp_port_is_enabled(port);
783 
784 	default:
785 		return false;
786 	}
787 }
788 
789 /**
790  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
791  * @port: PCIe port to check
792  */
793 bool tb_pci_port_is_enabled(struct tb_port *port)
794 {
795 	u32 data;
796 
797 	if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1))
798 		return false;
799 
800 	return !!(data & TB_PCI_EN);
801 }
802 
803 /**
804  * tb_pci_port_enable() - Enable PCIe adapter port
805  * @port: PCIe port to enable
806  * @enable: Enable/disable the PCIe adapter
807  */
808 int tb_pci_port_enable(struct tb_port *port, bool enable)
809 {
810 	u32 word = enable ? TB_PCI_EN : 0x0;
811 	if (!port->cap_adap)
812 		return -ENXIO;
813 	return tb_port_write(port, &word, TB_CFG_PORT, port->cap_adap, 1);
814 }
815 
816 /**
817  * tb_dp_port_hpd_is_active() - Is HPD already active
818  * @port: DP out port to check
819  *
820  * Checks if the DP OUT adapter port has HDP bit already set.
821  */
822 int tb_dp_port_hpd_is_active(struct tb_port *port)
823 {
824 	u32 data;
825 	int ret;
826 
827 	ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 2, 1);
828 	if (ret)
829 		return ret;
830 
831 	return !!(data & TB_DP_HDP);
832 }
833 
834 /**
835  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
836  * @port: Port to clear HPD
837  *
838  * If the DP IN port has HDP set, this function can be used to clear it.
839  */
840 int tb_dp_port_hpd_clear(struct tb_port *port)
841 {
842 	u32 data;
843 	int ret;
844 
845 	ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1);
846 	if (ret)
847 		return ret;
848 
849 	data |= TB_DP_HPDC;
850 	return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1);
851 }
852 
853 /**
854  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
855  * @port: DP IN/OUT port to set hops
856  * @video: Video Hop ID
857  * @aux_tx: AUX TX Hop ID
858  * @aux_rx: AUX RX Hop ID
859  *
860  * Programs specified Hop IDs for DP IN/OUT port.
861  */
862 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
863 			unsigned int aux_tx, unsigned int aux_rx)
864 {
865 	u32 data[2];
866 	int ret;
867 
868 	ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap,
869 			   ARRAY_SIZE(data));
870 	if (ret)
871 		return ret;
872 
873 	data[0] &= ~TB_DP_VIDEO_HOPID_MASK;
874 	data[1] &= ~(TB_DP_AUX_RX_HOPID_MASK | TB_DP_AUX_TX_HOPID_MASK);
875 
876 	data[0] |= (video << TB_DP_VIDEO_HOPID_SHIFT) & TB_DP_VIDEO_HOPID_MASK;
877 	data[1] |= aux_tx & TB_DP_AUX_TX_HOPID_MASK;
878 	data[1] |= (aux_rx << TB_DP_AUX_RX_HOPID_SHIFT) & TB_DP_AUX_RX_HOPID_MASK;
879 
880 	return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap,
881 			     ARRAY_SIZE(data));
882 }
883 
884 /**
885  * tb_dp_port_is_enabled() - Is DP adapter port enabled
886  * @port: DP adapter port to check
887  */
888 bool tb_dp_port_is_enabled(struct tb_port *port)
889 {
890 	u32 data;
891 
892 	if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1))
893 		return false;
894 
895 	return !!(data & (TB_DP_VIDEO_EN | TB_DP_AUX_EN));
896 }
897 
898 /**
899  * tb_dp_port_enable() - Enables/disables DP paths of a port
900  * @port: DP IN/OUT port
901  * @enable: Enable/disable DP path
902  *
903  * Once Hop IDs are programmed DP paths can be enabled or disabled by
904  * calling this function.
905  */
906 int tb_dp_port_enable(struct tb_port *port, bool enable)
907 {
908 	u32 data;
909 	int ret;
910 
911 	ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1);
912 	if (ret)
913 		return ret;
914 
915 	if (enable)
916 		data |= TB_DP_VIDEO_EN | TB_DP_AUX_EN;
917 	else
918 		data &= ~(TB_DP_VIDEO_EN | TB_DP_AUX_EN);
919 
920 	return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap, 1);
921 }
922 
923 /* switch utility functions */
924 
925 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
926 {
927 	tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n",
928 	       sw->vendor_id, sw->device_id, sw->revision,
929 	       sw->thunderbolt_version);
930 	tb_dbg(tb, "  Max Port Number: %d\n", sw->max_port_number);
931 	tb_dbg(tb, "  Config:\n");
932 	tb_dbg(tb,
933 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
934 	       sw->upstream_port_number, sw->depth,
935 	       (((u64) sw->route_hi) << 32) | sw->route_lo,
936 	       sw->enabled, sw->plug_events_delay);
937 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
938 	       sw->__unknown1, sw->__unknown4);
939 }
940 
941 /**
942  * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
943  *
944  * Return: Returns 0 on success or an error code on failure.
945  */
946 int tb_switch_reset(struct tb *tb, u64 route)
947 {
948 	struct tb_cfg_result res;
949 	struct tb_regs_switch_header header = {
950 		header.route_hi = route >> 32,
951 		header.route_lo = route,
952 		header.enabled = true,
953 	};
954 	tb_dbg(tb, "resetting switch at %llx\n", route);
955 	res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
956 			0, 2, 2, 2);
957 	if (res.err)
958 		return res.err;
959 	res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
960 	if (res.err > 0)
961 		return -EIO;
962 	return res.err;
963 }
964 
965 /**
966  * tb_plug_events_active() - enable/disable plug events on a switch
967  *
968  * Also configures a sane plug_events_delay of 255ms.
969  *
970  * Return: Returns 0 on success or an error code on failure.
971  */
972 static int tb_plug_events_active(struct tb_switch *sw, bool active)
973 {
974 	u32 data;
975 	int res;
976 
977 	if (!sw->config.enabled)
978 		return 0;
979 
980 	sw->config.plug_events_delay = 0xff;
981 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
982 	if (res)
983 		return res;
984 
985 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
986 	if (res)
987 		return res;
988 
989 	if (active) {
990 		data = data & 0xFFFFFF83;
991 		switch (sw->config.device_id) {
992 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
993 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
994 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
995 			break;
996 		default:
997 			data |= 4;
998 		}
999 	} else {
1000 		data = data | 0x7c;
1001 	}
1002 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1003 			   sw->cap_plug_events + 1, 1);
1004 }
1005 
1006 static ssize_t authorized_show(struct device *dev,
1007 			       struct device_attribute *attr,
1008 			       char *buf)
1009 {
1010 	struct tb_switch *sw = tb_to_switch(dev);
1011 
1012 	return sprintf(buf, "%u\n", sw->authorized);
1013 }
1014 
1015 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1016 {
1017 	int ret = -EINVAL;
1018 
1019 	if (!mutex_trylock(&sw->tb->lock))
1020 		return restart_syscall();
1021 
1022 	if (sw->authorized)
1023 		goto unlock;
1024 
1025 	/*
1026 	 * Make sure there is no PCIe rescan ongoing when a new PCIe
1027 	 * tunnel is created. Otherwise the PCIe rescan code might find
1028 	 * the new tunnel too early.
1029 	 */
1030 	pci_lock_rescan_remove();
1031 
1032 	switch (val) {
1033 	/* Approve switch */
1034 	case 1:
1035 		if (sw->key)
1036 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1037 		else
1038 			ret = tb_domain_approve_switch(sw->tb, sw);
1039 		break;
1040 
1041 	/* Challenge switch */
1042 	case 2:
1043 		if (sw->key)
1044 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1045 		break;
1046 
1047 	default:
1048 		break;
1049 	}
1050 
1051 	pci_unlock_rescan_remove();
1052 
1053 	if (!ret) {
1054 		sw->authorized = val;
1055 		/* Notify status change to the userspace */
1056 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1057 	}
1058 
1059 unlock:
1060 	mutex_unlock(&sw->tb->lock);
1061 	return ret;
1062 }
1063 
1064 static ssize_t authorized_store(struct device *dev,
1065 				struct device_attribute *attr,
1066 				const char *buf, size_t count)
1067 {
1068 	struct tb_switch *sw = tb_to_switch(dev);
1069 	unsigned int val;
1070 	ssize_t ret;
1071 
1072 	ret = kstrtouint(buf, 0, &val);
1073 	if (ret)
1074 		return ret;
1075 	if (val > 2)
1076 		return -EINVAL;
1077 
1078 	pm_runtime_get_sync(&sw->dev);
1079 	ret = tb_switch_set_authorized(sw, val);
1080 	pm_runtime_mark_last_busy(&sw->dev);
1081 	pm_runtime_put_autosuspend(&sw->dev);
1082 
1083 	return ret ? ret : count;
1084 }
1085 static DEVICE_ATTR_RW(authorized);
1086 
1087 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1088 			 char *buf)
1089 {
1090 	struct tb_switch *sw = tb_to_switch(dev);
1091 
1092 	return sprintf(buf, "%u\n", sw->boot);
1093 }
1094 static DEVICE_ATTR_RO(boot);
1095 
1096 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1097 			   char *buf)
1098 {
1099 	struct tb_switch *sw = tb_to_switch(dev);
1100 
1101 	return sprintf(buf, "%#x\n", sw->device);
1102 }
1103 static DEVICE_ATTR_RO(device);
1104 
1105 static ssize_t
1106 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1107 {
1108 	struct tb_switch *sw = tb_to_switch(dev);
1109 
1110 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1111 }
1112 static DEVICE_ATTR_RO(device_name);
1113 
1114 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1115 			char *buf)
1116 {
1117 	struct tb_switch *sw = tb_to_switch(dev);
1118 	ssize_t ret;
1119 
1120 	if (!mutex_trylock(&sw->tb->lock))
1121 		return restart_syscall();
1122 
1123 	if (sw->key)
1124 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1125 	else
1126 		ret = sprintf(buf, "\n");
1127 
1128 	mutex_unlock(&sw->tb->lock);
1129 	return ret;
1130 }
1131 
1132 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1133 			 const char *buf, size_t count)
1134 {
1135 	struct tb_switch *sw = tb_to_switch(dev);
1136 	u8 key[TB_SWITCH_KEY_SIZE];
1137 	ssize_t ret = count;
1138 	bool clear = false;
1139 
1140 	if (!strcmp(buf, "\n"))
1141 		clear = true;
1142 	else if (hex2bin(key, buf, sizeof(key)))
1143 		return -EINVAL;
1144 
1145 	if (!mutex_trylock(&sw->tb->lock))
1146 		return restart_syscall();
1147 
1148 	if (sw->authorized) {
1149 		ret = -EBUSY;
1150 	} else {
1151 		kfree(sw->key);
1152 		if (clear) {
1153 			sw->key = NULL;
1154 		} else {
1155 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1156 			if (!sw->key)
1157 				ret = -ENOMEM;
1158 		}
1159 	}
1160 
1161 	mutex_unlock(&sw->tb->lock);
1162 	return ret;
1163 }
1164 static DEVICE_ATTR(key, 0600, key_show, key_store);
1165 
1166 static void nvm_authenticate_start(struct tb_switch *sw)
1167 {
1168 	struct pci_dev *root_port;
1169 
1170 	/*
1171 	 * During host router NVM upgrade we should not allow root port to
1172 	 * go into D3cold because some root ports cannot trigger PME
1173 	 * itself. To be on the safe side keep the root port in D0 during
1174 	 * the whole upgrade process.
1175 	 */
1176 	root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
1177 	if (root_port)
1178 		pm_runtime_get_noresume(&root_port->dev);
1179 }
1180 
1181 static void nvm_authenticate_complete(struct tb_switch *sw)
1182 {
1183 	struct pci_dev *root_port;
1184 
1185 	root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
1186 	if (root_port)
1187 		pm_runtime_put(&root_port->dev);
1188 }
1189 
1190 static ssize_t nvm_authenticate_show(struct device *dev,
1191 	struct device_attribute *attr, char *buf)
1192 {
1193 	struct tb_switch *sw = tb_to_switch(dev);
1194 	u32 status;
1195 
1196 	nvm_get_auth_status(sw, &status);
1197 	return sprintf(buf, "%#x\n", status);
1198 }
1199 
1200 static ssize_t nvm_authenticate_store(struct device *dev,
1201 	struct device_attribute *attr, const char *buf, size_t count)
1202 {
1203 	struct tb_switch *sw = tb_to_switch(dev);
1204 	bool val;
1205 	int ret;
1206 
1207 	pm_runtime_get_sync(&sw->dev);
1208 
1209 	if (!mutex_trylock(&sw->tb->lock)) {
1210 		ret = restart_syscall();
1211 		goto exit_rpm;
1212 	}
1213 
1214 	/* If NVMem devices are not yet added */
1215 	if (!sw->nvm) {
1216 		ret = -EAGAIN;
1217 		goto exit_unlock;
1218 	}
1219 
1220 	ret = kstrtobool(buf, &val);
1221 	if (ret)
1222 		goto exit_unlock;
1223 
1224 	/* Always clear the authentication status */
1225 	nvm_clear_auth_status(sw);
1226 
1227 	if (val) {
1228 		if (!sw->nvm->buf) {
1229 			ret = -EINVAL;
1230 			goto exit_unlock;
1231 		}
1232 
1233 		ret = nvm_validate_and_write(sw);
1234 		if (ret)
1235 			goto exit_unlock;
1236 
1237 		sw->nvm->authenticating = true;
1238 
1239 		if (!tb_route(sw)) {
1240 			/*
1241 			 * Keep root port from suspending as long as the
1242 			 * NVM upgrade process is running.
1243 			 */
1244 			nvm_authenticate_start(sw);
1245 			ret = nvm_authenticate_host(sw);
1246 			if (ret)
1247 				nvm_authenticate_complete(sw);
1248 		} else {
1249 			ret = nvm_authenticate_device(sw);
1250 		}
1251 	}
1252 
1253 exit_unlock:
1254 	mutex_unlock(&sw->tb->lock);
1255 exit_rpm:
1256 	pm_runtime_mark_last_busy(&sw->dev);
1257 	pm_runtime_put_autosuspend(&sw->dev);
1258 
1259 	if (ret)
1260 		return ret;
1261 	return count;
1262 }
1263 static DEVICE_ATTR_RW(nvm_authenticate);
1264 
1265 static ssize_t nvm_version_show(struct device *dev,
1266 				struct device_attribute *attr, char *buf)
1267 {
1268 	struct tb_switch *sw = tb_to_switch(dev);
1269 	int ret;
1270 
1271 	if (!mutex_trylock(&sw->tb->lock))
1272 		return restart_syscall();
1273 
1274 	if (sw->safe_mode)
1275 		ret = -ENODATA;
1276 	else if (!sw->nvm)
1277 		ret = -EAGAIN;
1278 	else
1279 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1280 
1281 	mutex_unlock(&sw->tb->lock);
1282 
1283 	return ret;
1284 }
1285 static DEVICE_ATTR_RO(nvm_version);
1286 
1287 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1288 			   char *buf)
1289 {
1290 	struct tb_switch *sw = tb_to_switch(dev);
1291 
1292 	return sprintf(buf, "%#x\n", sw->vendor);
1293 }
1294 static DEVICE_ATTR_RO(vendor);
1295 
1296 static ssize_t
1297 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1298 {
1299 	struct tb_switch *sw = tb_to_switch(dev);
1300 
1301 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1302 }
1303 static DEVICE_ATTR_RO(vendor_name);
1304 
1305 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1306 			      char *buf)
1307 {
1308 	struct tb_switch *sw = tb_to_switch(dev);
1309 
1310 	return sprintf(buf, "%pUb\n", sw->uuid);
1311 }
1312 static DEVICE_ATTR_RO(unique_id);
1313 
1314 static struct attribute *switch_attrs[] = {
1315 	&dev_attr_authorized.attr,
1316 	&dev_attr_boot.attr,
1317 	&dev_attr_device.attr,
1318 	&dev_attr_device_name.attr,
1319 	&dev_attr_key.attr,
1320 	&dev_attr_nvm_authenticate.attr,
1321 	&dev_attr_nvm_version.attr,
1322 	&dev_attr_vendor.attr,
1323 	&dev_attr_vendor_name.attr,
1324 	&dev_attr_unique_id.attr,
1325 	NULL,
1326 };
1327 
1328 static umode_t switch_attr_is_visible(struct kobject *kobj,
1329 				      struct attribute *attr, int n)
1330 {
1331 	struct device *dev = container_of(kobj, struct device, kobj);
1332 	struct tb_switch *sw = tb_to_switch(dev);
1333 
1334 	if (attr == &dev_attr_key.attr) {
1335 		if (tb_route(sw) &&
1336 		    sw->tb->security_level == TB_SECURITY_SECURE &&
1337 		    sw->security_level == TB_SECURITY_SECURE)
1338 			return attr->mode;
1339 		return 0;
1340 	} else if (attr == &dev_attr_nvm_authenticate.attr ||
1341 		   attr == &dev_attr_nvm_version.attr) {
1342 		if (sw->dma_port)
1343 			return attr->mode;
1344 		return 0;
1345 	} else if (attr == &dev_attr_boot.attr) {
1346 		if (tb_route(sw))
1347 			return attr->mode;
1348 		return 0;
1349 	}
1350 
1351 	return sw->safe_mode ? 0 : attr->mode;
1352 }
1353 
1354 static struct attribute_group switch_group = {
1355 	.is_visible = switch_attr_is_visible,
1356 	.attrs = switch_attrs,
1357 };
1358 
1359 static const struct attribute_group *switch_groups[] = {
1360 	&switch_group,
1361 	NULL,
1362 };
1363 
1364 static void tb_switch_release(struct device *dev)
1365 {
1366 	struct tb_switch *sw = tb_to_switch(dev);
1367 	int i;
1368 
1369 	dma_port_free(sw->dma_port);
1370 
1371 	for (i = 1; i <= sw->config.max_port_number; i++) {
1372 		if (!sw->ports[i].disabled) {
1373 			ida_destroy(&sw->ports[i].in_hopids);
1374 			ida_destroy(&sw->ports[i].out_hopids);
1375 		}
1376 	}
1377 
1378 	kfree(sw->uuid);
1379 	kfree(sw->device_name);
1380 	kfree(sw->vendor_name);
1381 	kfree(sw->ports);
1382 	kfree(sw->drom);
1383 	kfree(sw->key);
1384 	kfree(sw);
1385 }
1386 
1387 /*
1388  * Currently only need to provide the callbacks. Everything else is handled
1389  * in the connection manager.
1390  */
1391 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1392 {
1393 	struct tb_switch *sw = tb_to_switch(dev);
1394 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1395 
1396 	if (cm_ops->runtime_suspend_switch)
1397 		return cm_ops->runtime_suspend_switch(sw);
1398 
1399 	return 0;
1400 }
1401 
1402 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1403 {
1404 	struct tb_switch *sw = tb_to_switch(dev);
1405 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1406 
1407 	if (cm_ops->runtime_resume_switch)
1408 		return cm_ops->runtime_resume_switch(sw);
1409 	return 0;
1410 }
1411 
1412 static const struct dev_pm_ops tb_switch_pm_ops = {
1413 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1414 			   NULL)
1415 };
1416 
1417 struct device_type tb_switch_type = {
1418 	.name = "thunderbolt_device",
1419 	.release = tb_switch_release,
1420 	.pm = &tb_switch_pm_ops,
1421 };
1422 
1423 static int tb_switch_get_generation(struct tb_switch *sw)
1424 {
1425 	switch (sw->config.device_id) {
1426 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1427 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1428 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1429 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1430 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1431 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1432 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1433 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1434 		return 1;
1435 
1436 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1437 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1438 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1439 		return 2;
1440 
1441 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1442 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1443 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1444 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1445 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1446 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1447 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1448 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1449 		return 3;
1450 
1451 	default:
1452 		/*
1453 		 * For unknown switches assume generation to be 1 to be
1454 		 * on the safe side.
1455 		 */
1456 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
1457 			   sw->config.device_id);
1458 		return 1;
1459 	}
1460 }
1461 
1462 /**
1463  * tb_switch_alloc() - allocate a switch
1464  * @tb: Pointer to the owning domain
1465  * @parent: Parent device for this switch
1466  * @route: Route string for this switch
1467  *
1468  * Allocates and initializes a switch. Will not upload configuration to
1469  * the switch. For that you need to call tb_switch_configure()
1470  * separately. The returned switch should be released by calling
1471  * tb_switch_put().
1472  *
1473  * Return: Pointer to the allocated switch or ERR_PTR() in case of
1474  * failure.
1475  */
1476 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1477 				  u64 route)
1478 {
1479 	struct tb_switch *sw;
1480 	int upstream_port;
1481 	int i, ret, depth;
1482 
1483 	/* Make sure we do not exceed maximum topology limit */
1484 	depth = tb_route_length(route);
1485 	if (depth > TB_SWITCH_MAX_DEPTH)
1486 		return ERR_PTR(-EADDRNOTAVAIL);
1487 
1488 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1489 	if (upstream_port < 0)
1490 		return ERR_PTR(upstream_port);
1491 
1492 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1493 	if (!sw)
1494 		return ERR_PTR(-ENOMEM);
1495 
1496 	sw->tb = tb;
1497 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1498 	if (ret)
1499 		goto err_free_sw_ports;
1500 
1501 	tb_dbg(tb, "current switch config:\n");
1502 	tb_dump_switch(tb, &sw->config);
1503 
1504 	/* configure switch */
1505 	sw->config.upstream_port_number = upstream_port;
1506 	sw->config.depth = depth;
1507 	sw->config.route_hi = upper_32_bits(route);
1508 	sw->config.route_lo = lower_32_bits(route);
1509 	sw->config.enabled = 0;
1510 
1511 	/* initialize ports */
1512 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1513 				GFP_KERNEL);
1514 	if (!sw->ports) {
1515 		ret = -ENOMEM;
1516 		goto err_free_sw_ports;
1517 	}
1518 
1519 	for (i = 0; i <= sw->config.max_port_number; i++) {
1520 		/* minimum setup for tb_find_cap and tb_drom_read to work */
1521 		sw->ports[i].sw = sw;
1522 		sw->ports[i].port = i;
1523 	}
1524 
1525 	sw->generation = tb_switch_get_generation(sw);
1526 
1527 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1528 	if (ret < 0) {
1529 		tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1530 		goto err_free_sw_ports;
1531 	}
1532 	sw->cap_plug_events = ret;
1533 
1534 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1535 	if (ret > 0)
1536 		sw->cap_lc = ret;
1537 
1538 	/* Root switch is always authorized */
1539 	if (!route)
1540 		sw->authorized = true;
1541 
1542 	device_initialize(&sw->dev);
1543 	sw->dev.parent = parent;
1544 	sw->dev.bus = &tb_bus_type;
1545 	sw->dev.type = &tb_switch_type;
1546 	sw->dev.groups = switch_groups;
1547 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1548 
1549 	return sw;
1550 
1551 err_free_sw_ports:
1552 	kfree(sw->ports);
1553 	kfree(sw);
1554 
1555 	return ERR_PTR(ret);
1556 }
1557 
1558 /**
1559  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1560  * @tb: Pointer to the owning domain
1561  * @parent: Parent device for this switch
1562  * @route: Route string for this switch
1563  *
1564  * This creates a switch in safe mode. This means the switch pretty much
1565  * lacks all capabilities except DMA configuration port before it is
1566  * flashed with a valid NVM firmware.
1567  *
1568  * The returned switch must be released by calling tb_switch_put().
1569  *
1570  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1571  */
1572 struct tb_switch *
1573 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1574 {
1575 	struct tb_switch *sw;
1576 
1577 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1578 	if (!sw)
1579 		return ERR_PTR(-ENOMEM);
1580 
1581 	sw->tb = tb;
1582 	sw->config.depth = tb_route_length(route);
1583 	sw->config.route_hi = upper_32_bits(route);
1584 	sw->config.route_lo = lower_32_bits(route);
1585 	sw->safe_mode = true;
1586 
1587 	device_initialize(&sw->dev);
1588 	sw->dev.parent = parent;
1589 	sw->dev.bus = &tb_bus_type;
1590 	sw->dev.type = &tb_switch_type;
1591 	sw->dev.groups = switch_groups;
1592 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1593 
1594 	return sw;
1595 }
1596 
1597 /**
1598  * tb_switch_configure() - Uploads configuration to the switch
1599  * @sw: Switch to configure
1600  *
1601  * Call this function before the switch is added to the system. It will
1602  * upload configuration to the switch and makes it available for the
1603  * connection manager to use.
1604  *
1605  * Return: %0 in case of success and negative errno in case of failure
1606  */
1607 int tb_switch_configure(struct tb_switch *sw)
1608 {
1609 	struct tb *tb = sw->tb;
1610 	u64 route;
1611 	int ret;
1612 
1613 	route = tb_route(sw);
1614 	tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n",
1615 	       route, tb_route_length(route), sw->config.upstream_port_number);
1616 
1617 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
1618 		tb_sw_warn(sw, "unknown switch vendor id %#x\n",
1619 			   sw->config.vendor_id);
1620 
1621 	sw->config.enabled = 1;
1622 
1623 	/* upload configuration */
1624 	ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
1625 	if (ret)
1626 		return ret;
1627 
1628 	ret = tb_lc_configure_link(sw);
1629 	if (ret)
1630 		return ret;
1631 
1632 	return tb_plug_events_active(sw, true);
1633 }
1634 
1635 static int tb_switch_set_uuid(struct tb_switch *sw)
1636 {
1637 	u32 uuid[4];
1638 	int ret;
1639 
1640 	if (sw->uuid)
1641 		return 0;
1642 
1643 	/*
1644 	 * The newer controllers include fused UUID as part of link
1645 	 * controller specific registers
1646 	 */
1647 	ret = tb_lc_read_uuid(sw, uuid);
1648 	if (ret) {
1649 		/*
1650 		 * ICM generates UUID based on UID and fills the upper
1651 		 * two words with ones. This is not strictly following
1652 		 * UUID format but we want to be compatible with it so
1653 		 * we do the same here.
1654 		 */
1655 		uuid[0] = sw->uid & 0xffffffff;
1656 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
1657 		uuid[2] = 0xffffffff;
1658 		uuid[3] = 0xffffffff;
1659 	}
1660 
1661 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1662 	if (!sw->uuid)
1663 		return -ENOMEM;
1664 	return 0;
1665 }
1666 
1667 static int tb_switch_add_dma_port(struct tb_switch *sw)
1668 {
1669 	u32 status;
1670 	int ret;
1671 
1672 	switch (sw->generation) {
1673 	case 3:
1674 		break;
1675 
1676 	case 2:
1677 		/* Only root switch can be upgraded */
1678 		if (tb_route(sw))
1679 			return 0;
1680 		break;
1681 
1682 	default:
1683 		/*
1684 		 * DMA port is the only thing available when the switch
1685 		 * is in safe mode.
1686 		 */
1687 		if (!sw->safe_mode)
1688 			return 0;
1689 		break;
1690 	}
1691 
1692 	if (sw->no_nvm_upgrade)
1693 		return 0;
1694 
1695 	sw->dma_port = dma_port_alloc(sw);
1696 	if (!sw->dma_port)
1697 		return 0;
1698 
1699 	/*
1700 	 * Check status of the previous flash authentication. If there
1701 	 * is one we need to power cycle the switch in any case to make
1702 	 * it functional again.
1703 	 */
1704 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
1705 	if (ret <= 0)
1706 		return ret;
1707 
1708 	/* Now we can allow root port to suspend again */
1709 	if (!tb_route(sw))
1710 		nvm_authenticate_complete(sw);
1711 
1712 	if (status) {
1713 		tb_sw_info(sw, "switch flash authentication failed\n");
1714 		ret = tb_switch_set_uuid(sw);
1715 		if (ret)
1716 			return ret;
1717 		nvm_set_auth_status(sw, status);
1718 	}
1719 
1720 	tb_sw_info(sw, "power cycling the switch now\n");
1721 	dma_port_power_cycle(sw->dma_port);
1722 
1723 	/*
1724 	 * We return error here which causes the switch adding failure.
1725 	 * It should appear back after power cycle is complete.
1726 	 */
1727 	return -ESHUTDOWN;
1728 }
1729 
1730 /**
1731  * tb_switch_add() - Add a switch to the domain
1732  * @sw: Switch to add
1733  *
1734  * This is the last step in adding switch to the domain. It will read
1735  * identification information from DROM and initializes ports so that
1736  * they can be used to connect other switches. The switch will be
1737  * exposed to the userspace when this function successfully returns. To
1738  * remove and release the switch, call tb_switch_remove().
1739  *
1740  * Return: %0 in case of success and negative errno in case of failure
1741  */
1742 int tb_switch_add(struct tb_switch *sw)
1743 {
1744 	int i, ret;
1745 
1746 	/*
1747 	 * Initialize DMA control port now before we read DROM. Recent
1748 	 * host controllers have more complete DROM on NVM that includes
1749 	 * vendor and model identification strings which we then expose
1750 	 * to the userspace. NVM can be accessed through DMA
1751 	 * configuration based mailbox.
1752 	 */
1753 	ret = tb_switch_add_dma_port(sw);
1754 	if (ret)
1755 		return ret;
1756 
1757 	if (!sw->safe_mode) {
1758 		/* read drom */
1759 		ret = tb_drom_read(sw);
1760 		if (ret) {
1761 			tb_sw_warn(sw, "tb_eeprom_read_rom failed\n");
1762 			return ret;
1763 		}
1764 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
1765 
1766 		ret = tb_switch_set_uuid(sw);
1767 		if (ret)
1768 			return ret;
1769 
1770 		for (i = 0; i <= sw->config.max_port_number; i++) {
1771 			if (sw->ports[i].disabled) {
1772 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
1773 				continue;
1774 			}
1775 			ret = tb_init_port(&sw->ports[i]);
1776 			if (ret)
1777 				return ret;
1778 		}
1779 	}
1780 
1781 	ret = device_add(&sw->dev);
1782 	if (ret)
1783 		return ret;
1784 
1785 	if (tb_route(sw)) {
1786 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
1787 			 sw->vendor, sw->device);
1788 		if (sw->vendor_name && sw->device_name)
1789 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
1790 				 sw->device_name);
1791 	}
1792 
1793 	ret = tb_switch_nvm_add(sw);
1794 	if (ret) {
1795 		device_del(&sw->dev);
1796 		return ret;
1797 	}
1798 
1799 	pm_runtime_set_active(&sw->dev);
1800 	if (sw->rpm) {
1801 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
1802 		pm_runtime_use_autosuspend(&sw->dev);
1803 		pm_runtime_mark_last_busy(&sw->dev);
1804 		pm_runtime_enable(&sw->dev);
1805 		pm_request_autosuspend(&sw->dev);
1806 	}
1807 
1808 	return 0;
1809 }
1810 
1811 /**
1812  * tb_switch_remove() - Remove and release a switch
1813  * @sw: Switch to remove
1814  *
1815  * This will remove the switch from the domain and release it after last
1816  * reference count drops to zero. If there are switches connected below
1817  * this switch, they will be removed as well.
1818  */
1819 void tb_switch_remove(struct tb_switch *sw)
1820 {
1821 	int i;
1822 
1823 	if (sw->rpm) {
1824 		pm_runtime_get_sync(&sw->dev);
1825 		pm_runtime_disable(&sw->dev);
1826 	}
1827 
1828 	/* port 0 is the switch itself and never has a remote */
1829 	for (i = 1; i <= sw->config.max_port_number; i++) {
1830 		if (tb_port_has_remote(&sw->ports[i])) {
1831 			tb_switch_remove(sw->ports[i].remote->sw);
1832 			sw->ports[i].remote = NULL;
1833 		} else if (sw->ports[i].xdomain) {
1834 			tb_xdomain_remove(sw->ports[i].xdomain);
1835 			sw->ports[i].xdomain = NULL;
1836 		}
1837 	}
1838 
1839 	if (!sw->is_unplugged)
1840 		tb_plug_events_active(sw, false);
1841 	tb_lc_unconfigure_link(sw);
1842 
1843 	tb_switch_nvm_remove(sw);
1844 
1845 	if (tb_route(sw))
1846 		dev_info(&sw->dev, "device disconnected\n");
1847 	device_unregister(&sw->dev);
1848 }
1849 
1850 /**
1851  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
1852  */
1853 void tb_sw_set_unplugged(struct tb_switch *sw)
1854 {
1855 	int i;
1856 	if (sw == sw->tb->root_switch) {
1857 		tb_sw_WARN(sw, "cannot unplug root switch\n");
1858 		return;
1859 	}
1860 	if (sw->is_unplugged) {
1861 		tb_sw_WARN(sw, "is_unplugged already set\n");
1862 		return;
1863 	}
1864 	sw->is_unplugged = true;
1865 	for (i = 0; i <= sw->config.max_port_number; i++) {
1866 		if (tb_port_has_remote(&sw->ports[i]))
1867 			tb_sw_set_unplugged(sw->ports[i].remote->sw);
1868 		else if (sw->ports[i].xdomain)
1869 			sw->ports[i].xdomain->is_unplugged = true;
1870 	}
1871 }
1872 
1873 int tb_switch_resume(struct tb_switch *sw)
1874 {
1875 	int i, err;
1876 	tb_sw_dbg(sw, "resuming switch\n");
1877 
1878 	/*
1879 	 * Check for UID of the connected switches except for root
1880 	 * switch which we assume cannot be removed.
1881 	 */
1882 	if (tb_route(sw)) {
1883 		u64 uid;
1884 
1885 		/*
1886 		 * Check first that we can still read the switch config
1887 		 * space. It may be that there is now another domain
1888 		 * connected.
1889 		 */
1890 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
1891 		if (err < 0) {
1892 			tb_sw_info(sw, "switch not present anymore\n");
1893 			return err;
1894 		}
1895 
1896 		err = tb_drom_read_uid_only(sw, &uid);
1897 		if (err) {
1898 			tb_sw_warn(sw, "uid read failed\n");
1899 			return err;
1900 		}
1901 		if (sw->uid != uid) {
1902 			tb_sw_info(sw,
1903 				"changed while suspended (uid %#llx -> %#llx)\n",
1904 				sw->uid, uid);
1905 			return -ENODEV;
1906 		}
1907 	}
1908 
1909 	/* upload configuration */
1910 	err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
1911 	if (err)
1912 		return err;
1913 
1914 	err = tb_lc_configure_link(sw);
1915 	if (err)
1916 		return err;
1917 
1918 	err = tb_plug_events_active(sw, true);
1919 	if (err)
1920 		return err;
1921 
1922 	/* check for surviving downstream switches */
1923 	for (i = 1; i <= sw->config.max_port_number; i++) {
1924 		struct tb_port *port = &sw->ports[i];
1925 
1926 		if (!tb_port_has_remote(port) && !port->xdomain)
1927 			continue;
1928 
1929 		if (tb_wait_for_port(port, true) <= 0) {
1930 			tb_port_warn(port,
1931 				     "lost during suspend, disconnecting\n");
1932 			if (tb_port_has_remote(port))
1933 				tb_sw_set_unplugged(port->remote->sw);
1934 			else if (port->xdomain)
1935 				port->xdomain->is_unplugged = true;
1936 		} else if (tb_port_has_remote(port)) {
1937 			if (tb_switch_resume(port->remote->sw)) {
1938 				tb_port_warn(port,
1939 					     "lost during suspend, disconnecting\n");
1940 				tb_sw_set_unplugged(port->remote->sw);
1941 			}
1942 		}
1943 	}
1944 	return 0;
1945 }
1946 
1947 void tb_switch_suspend(struct tb_switch *sw)
1948 {
1949 	int i, err;
1950 	err = tb_plug_events_active(sw, false);
1951 	if (err)
1952 		return;
1953 
1954 	for (i = 1; i <= sw->config.max_port_number; i++) {
1955 		if (tb_port_has_remote(&sw->ports[i]))
1956 			tb_switch_suspend(sw->ports[i].remote->sw);
1957 	}
1958 
1959 	tb_lc_set_sleep(sw);
1960 }
1961 
1962 struct tb_sw_lookup {
1963 	struct tb *tb;
1964 	u8 link;
1965 	u8 depth;
1966 	const uuid_t *uuid;
1967 	u64 route;
1968 };
1969 
1970 static int tb_switch_match(struct device *dev, const void *data)
1971 {
1972 	struct tb_switch *sw = tb_to_switch(dev);
1973 	const struct tb_sw_lookup *lookup = data;
1974 
1975 	if (!sw)
1976 		return 0;
1977 	if (sw->tb != lookup->tb)
1978 		return 0;
1979 
1980 	if (lookup->uuid)
1981 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
1982 
1983 	if (lookup->route) {
1984 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
1985 		       sw->config.route_hi == upper_32_bits(lookup->route);
1986 	}
1987 
1988 	/* Root switch is matched only by depth */
1989 	if (!lookup->depth)
1990 		return !sw->depth;
1991 
1992 	return sw->link == lookup->link && sw->depth == lookup->depth;
1993 }
1994 
1995 /**
1996  * tb_switch_find_by_link_depth() - Find switch by link and depth
1997  * @tb: Domain the switch belongs
1998  * @link: Link number the switch is connected
1999  * @depth: Depth of the switch in link
2000  *
2001  * Returned switch has reference count increased so the caller needs to
2002  * call tb_switch_put() when done with the switch.
2003  */
2004 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2005 {
2006 	struct tb_sw_lookup lookup;
2007 	struct device *dev;
2008 
2009 	memset(&lookup, 0, sizeof(lookup));
2010 	lookup.tb = tb;
2011 	lookup.link = link;
2012 	lookup.depth = depth;
2013 
2014 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2015 	if (dev)
2016 		return tb_to_switch(dev);
2017 
2018 	return NULL;
2019 }
2020 
2021 /**
2022  * tb_switch_find_by_uuid() - Find switch by UUID
2023  * @tb: Domain the switch belongs
2024  * @uuid: UUID to look for
2025  *
2026  * Returned switch has reference count increased so the caller needs to
2027  * call tb_switch_put() when done with the switch.
2028  */
2029 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2030 {
2031 	struct tb_sw_lookup lookup;
2032 	struct device *dev;
2033 
2034 	memset(&lookup, 0, sizeof(lookup));
2035 	lookup.tb = tb;
2036 	lookup.uuid = uuid;
2037 
2038 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2039 	if (dev)
2040 		return tb_to_switch(dev);
2041 
2042 	return NULL;
2043 }
2044 
2045 /**
2046  * tb_switch_find_by_route() - Find switch by route string
2047  * @tb: Domain the switch belongs
2048  * @route: Route string to look for
2049  *
2050  * Returned switch has reference count increased so the caller needs to
2051  * call tb_switch_put() when done with the switch.
2052  */
2053 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2054 {
2055 	struct tb_sw_lookup lookup;
2056 	struct device *dev;
2057 
2058 	if (!route)
2059 		return tb_switch_get(tb->root_switch);
2060 
2061 	memset(&lookup, 0, sizeof(lookup));
2062 	lookup.tb = tb;
2063 	lookup.route = route;
2064 
2065 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2066 	if (dev)
2067 		return tb_to_switch(dev);
2068 
2069 	return NULL;
2070 }
2071 
2072 void tb_switch_exit(void)
2073 {
2074 	ida_destroy(&nvm_ida);
2075 }
2076