1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - switch/port utility functions 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2018, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/idr.h> 11 #include <linux/nvmem-provider.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/sizes.h> 14 #include <linux/slab.h> 15 #include <linux/vmalloc.h> 16 17 #include "tb.h" 18 19 /* Switch authorization from userspace is serialized by this lock */ 20 static DEFINE_MUTEX(switch_lock); 21 22 /* Switch NVM support */ 23 24 #define NVM_DEVID 0x05 25 #define NVM_VERSION 0x08 26 #define NVM_CSS 0x10 27 #define NVM_FLASH_SIZE 0x45 28 29 #define NVM_MIN_SIZE SZ_32K 30 #define NVM_MAX_SIZE SZ_512K 31 32 static DEFINE_IDA(nvm_ida); 33 34 struct nvm_auth_status { 35 struct list_head list; 36 uuid_t uuid; 37 u32 status; 38 }; 39 40 /* 41 * Hold NVM authentication failure status per switch This information 42 * needs to stay around even when the switch gets power cycled so we 43 * keep it separately. 44 */ 45 static LIST_HEAD(nvm_auth_status_cache); 46 static DEFINE_MUTEX(nvm_auth_status_lock); 47 48 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 49 { 50 struct nvm_auth_status *st; 51 52 list_for_each_entry(st, &nvm_auth_status_cache, list) { 53 if (uuid_equal(&st->uuid, sw->uuid)) 54 return st; 55 } 56 57 return NULL; 58 } 59 60 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 61 { 62 struct nvm_auth_status *st; 63 64 mutex_lock(&nvm_auth_status_lock); 65 st = __nvm_get_auth_status(sw); 66 mutex_unlock(&nvm_auth_status_lock); 67 68 *status = st ? st->status : 0; 69 } 70 71 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 72 { 73 struct nvm_auth_status *st; 74 75 if (WARN_ON(!sw->uuid)) 76 return; 77 78 mutex_lock(&nvm_auth_status_lock); 79 st = __nvm_get_auth_status(sw); 80 81 if (!st) { 82 st = kzalloc(sizeof(*st), GFP_KERNEL); 83 if (!st) 84 goto unlock; 85 86 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 87 INIT_LIST_HEAD(&st->list); 88 list_add_tail(&st->list, &nvm_auth_status_cache); 89 } 90 91 st->status = status; 92 unlock: 93 mutex_unlock(&nvm_auth_status_lock); 94 } 95 96 static void nvm_clear_auth_status(const struct tb_switch *sw) 97 { 98 struct nvm_auth_status *st; 99 100 mutex_lock(&nvm_auth_status_lock); 101 st = __nvm_get_auth_status(sw); 102 if (st) { 103 list_del(&st->list); 104 kfree(st); 105 } 106 mutex_unlock(&nvm_auth_status_lock); 107 } 108 109 static int nvm_validate_and_write(struct tb_switch *sw) 110 { 111 unsigned int image_size, hdr_size; 112 const u8 *buf = sw->nvm->buf; 113 u16 ds_size; 114 int ret; 115 116 if (!buf) 117 return -EINVAL; 118 119 image_size = sw->nvm->buf_data_size; 120 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) 121 return -EINVAL; 122 123 /* 124 * FARB pointer must point inside the image and must at least 125 * contain parts of the digital section we will be reading here. 126 */ 127 hdr_size = (*(u32 *)buf) & 0xffffff; 128 if (hdr_size + NVM_DEVID + 2 >= image_size) 129 return -EINVAL; 130 131 /* Digital section start should be aligned to 4k page */ 132 if (!IS_ALIGNED(hdr_size, SZ_4K)) 133 return -EINVAL; 134 135 /* 136 * Read digital section size and check that it also fits inside 137 * the image. 138 */ 139 ds_size = *(u16 *)(buf + hdr_size); 140 if (ds_size >= image_size) 141 return -EINVAL; 142 143 if (!sw->safe_mode) { 144 u16 device_id; 145 146 /* 147 * Make sure the device ID in the image matches the one 148 * we read from the switch config space. 149 */ 150 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID); 151 if (device_id != sw->config.device_id) 152 return -EINVAL; 153 154 if (sw->generation < 3) { 155 /* Write CSS headers first */ 156 ret = dma_port_flash_write(sw->dma_port, 157 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS, 158 DMA_PORT_CSS_MAX_SIZE); 159 if (ret) 160 return ret; 161 } 162 163 /* Skip headers in the image */ 164 buf += hdr_size; 165 image_size -= hdr_size; 166 } 167 168 return dma_port_flash_write(sw->dma_port, 0, buf, image_size); 169 } 170 171 static int nvm_authenticate_host(struct tb_switch *sw) 172 { 173 int ret; 174 175 /* 176 * Root switch NVM upgrade requires that we disconnect the 177 * existing paths first (in case it is not in safe mode 178 * already). 179 */ 180 if (!sw->safe_mode) { 181 ret = tb_domain_disconnect_all_paths(sw->tb); 182 if (ret) 183 return ret; 184 /* 185 * The host controller goes away pretty soon after this if 186 * everything goes well so getting timeout is expected. 187 */ 188 ret = dma_port_flash_update_auth(sw->dma_port); 189 return ret == -ETIMEDOUT ? 0 : ret; 190 } 191 192 /* 193 * From safe mode we can get out by just power cycling the 194 * switch. 195 */ 196 dma_port_power_cycle(sw->dma_port); 197 return 0; 198 } 199 200 static int nvm_authenticate_device(struct tb_switch *sw) 201 { 202 int ret, retries = 10; 203 204 ret = dma_port_flash_update_auth(sw->dma_port); 205 if (ret && ret != -ETIMEDOUT) 206 return ret; 207 208 /* 209 * Poll here for the authentication status. It takes some time 210 * for the device to respond (we get timeout for a while). Once 211 * we get response the device needs to be power cycled in order 212 * to the new NVM to be taken into use. 213 */ 214 do { 215 u32 status; 216 217 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 218 if (ret < 0 && ret != -ETIMEDOUT) 219 return ret; 220 if (ret > 0) { 221 if (status) { 222 tb_sw_warn(sw, "failed to authenticate NVM\n"); 223 nvm_set_auth_status(sw, status); 224 } 225 226 tb_sw_info(sw, "power cycling the switch now\n"); 227 dma_port_power_cycle(sw->dma_port); 228 return 0; 229 } 230 231 msleep(500); 232 } while (--retries); 233 234 return -ETIMEDOUT; 235 } 236 237 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val, 238 size_t bytes) 239 { 240 struct tb_switch *sw = priv; 241 int ret; 242 243 pm_runtime_get_sync(&sw->dev); 244 ret = dma_port_flash_read(sw->dma_port, offset, val, bytes); 245 pm_runtime_mark_last_busy(&sw->dev); 246 pm_runtime_put_autosuspend(&sw->dev); 247 248 return ret; 249 } 250 251 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val, 252 size_t bytes) 253 { 254 struct tb_switch *sw = priv; 255 int ret = 0; 256 257 if (mutex_lock_interruptible(&switch_lock)) 258 return -ERESTARTSYS; 259 260 /* 261 * Since writing the NVM image might require some special steps, 262 * for example when CSS headers are written, we cache the image 263 * locally here and handle the special cases when the user asks 264 * us to authenticate the image. 265 */ 266 if (!sw->nvm->buf) { 267 sw->nvm->buf = vmalloc(NVM_MAX_SIZE); 268 if (!sw->nvm->buf) { 269 ret = -ENOMEM; 270 goto unlock; 271 } 272 } 273 274 sw->nvm->buf_data_size = offset + bytes; 275 memcpy(sw->nvm->buf + offset, val, bytes); 276 277 unlock: 278 mutex_unlock(&switch_lock); 279 280 return ret; 281 } 282 283 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id, 284 size_t size, bool active) 285 { 286 struct nvmem_config config; 287 288 memset(&config, 0, sizeof(config)); 289 290 if (active) { 291 config.name = "nvm_active"; 292 config.reg_read = tb_switch_nvm_read; 293 config.read_only = true; 294 } else { 295 config.name = "nvm_non_active"; 296 config.reg_write = tb_switch_nvm_write; 297 config.root_only = true; 298 } 299 300 config.id = id; 301 config.stride = 4; 302 config.word_size = 4; 303 config.size = size; 304 config.dev = &sw->dev; 305 config.owner = THIS_MODULE; 306 config.priv = sw; 307 308 return nvmem_register(&config); 309 } 310 311 static int tb_switch_nvm_add(struct tb_switch *sw) 312 { 313 struct nvmem_device *nvm_dev; 314 struct tb_switch_nvm *nvm; 315 u32 val; 316 int ret; 317 318 if (!sw->dma_port) 319 return 0; 320 321 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 322 if (!nvm) 323 return -ENOMEM; 324 325 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL); 326 327 /* 328 * If the switch is in safe-mode the only accessible portion of 329 * the NVM is the non-active one where userspace is expected to 330 * write new functional NVM. 331 */ 332 if (!sw->safe_mode) { 333 u32 nvm_size, hdr_size; 334 335 ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val, 336 sizeof(val)); 337 if (ret) 338 goto err_ida; 339 340 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; 341 nvm_size = (SZ_1M << (val & 7)) / 8; 342 nvm_size = (nvm_size - hdr_size) / 2; 343 344 ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val, 345 sizeof(val)); 346 if (ret) 347 goto err_ida; 348 349 nvm->major = val >> 16; 350 nvm->minor = val >> 8; 351 352 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true); 353 if (IS_ERR(nvm_dev)) { 354 ret = PTR_ERR(nvm_dev); 355 goto err_ida; 356 } 357 nvm->active = nvm_dev; 358 } 359 360 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false); 361 if (IS_ERR(nvm_dev)) { 362 ret = PTR_ERR(nvm_dev); 363 goto err_nvm_active; 364 } 365 nvm->non_active = nvm_dev; 366 367 mutex_lock(&switch_lock); 368 sw->nvm = nvm; 369 mutex_unlock(&switch_lock); 370 371 return 0; 372 373 err_nvm_active: 374 if (nvm->active) 375 nvmem_unregister(nvm->active); 376 err_ida: 377 ida_simple_remove(&nvm_ida, nvm->id); 378 kfree(nvm); 379 380 return ret; 381 } 382 383 static void tb_switch_nvm_remove(struct tb_switch *sw) 384 { 385 struct tb_switch_nvm *nvm; 386 387 mutex_lock(&switch_lock); 388 nvm = sw->nvm; 389 sw->nvm = NULL; 390 mutex_unlock(&switch_lock); 391 392 if (!nvm) 393 return; 394 395 /* Remove authentication status in case the switch is unplugged */ 396 if (!nvm->authenticating) 397 nvm_clear_auth_status(sw); 398 399 nvmem_unregister(nvm->non_active); 400 if (nvm->active) 401 nvmem_unregister(nvm->active); 402 ida_simple_remove(&nvm_ida, nvm->id); 403 vfree(nvm->buf); 404 kfree(nvm); 405 } 406 407 /* port utility functions */ 408 409 static const char *tb_port_type(struct tb_regs_port_header *port) 410 { 411 switch (port->type >> 16) { 412 case 0: 413 switch ((u8) port->type) { 414 case 0: 415 return "Inactive"; 416 case 1: 417 return "Port"; 418 case 2: 419 return "NHI"; 420 default: 421 return "unknown"; 422 } 423 case 0x2: 424 return "Ethernet"; 425 case 0x8: 426 return "SATA"; 427 case 0xe: 428 return "DP/HDMI"; 429 case 0x10: 430 return "PCIe"; 431 case 0x20: 432 return "USB"; 433 default: 434 return "unknown"; 435 } 436 } 437 438 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port) 439 { 440 tb_dbg(tb, 441 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 442 port->port_number, port->vendor_id, port->device_id, 443 port->revision, port->thunderbolt_version, tb_port_type(port), 444 port->type); 445 tb_dbg(tb, " Max hop id (in/out): %d/%d\n", 446 port->max_in_hop_id, port->max_out_hop_id); 447 tb_dbg(tb, " Max counters: %d\n", port->max_counters); 448 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits); 449 } 450 451 /** 452 * tb_port_state() - get connectedness state of a port 453 * 454 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 455 * 456 * Return: Returns an enum tb_port_state on success or an error code on failure. 457 */ 458 static int tb_port_state(struct tb_port *port) 459 { 460 struct tb_cap_phy phy; 461 int res; 462 if (port->cap_phy == 0) { 463 tb_port_WARN(port, "does not have a PHY\n"); 464 return -EINVAL; 465 } 466 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 467 if (res) 468 return res; 469 return phy.state; 470 } 471 472 /** 473 * tb_wait_for_port() - wait for a port to become ready 474 * 475 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 476 * wait_if_unplugged is set then we also wait if the port is in state 477 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 478 * switch resume). Otherwise we only wait if a device is registered but the link 479 * has not yet been established. 480 * 481 * Return: Returns an error code on failure. Returns 0 if the port is not 482 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 483 * if the port is connected and in state TB_PORT_UP. 484 */ 485 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 486 { 487 int retries = 10; 488 int state; 489 if (!port->cap_phy) { 490 tb_port_WARN(port, "does not have PHY\n"); 491 return -EINVAL; 492 } 493 if (tb_is_upstream_port(port)) { 494 tb_port_WARN(port, "is the upstream port\n"); 495 return -EINVAL; 496 } 497 498 while (retries--) { 499 state = tb_port_state(port); 500 if (state < 0) 501 return state; 502 if (state == TB_PORT_DISABLED) { 503 tb_port_info(port, "is disabled (state: 0)\n"); 504 return 0; 505 } 506 if (state == TB_PORT_UNPLUGGED) { 507 if (wait_if_unplugged) { 508 /* used during resume */ 509 tb_port_info(port, 510 "is unplugged (state: 7), retrying...\n"); 511 msleep(100); 512 continue; 513 } 514 tb_port_info(port, "is unplugged (state: 7)\n"); 515 return 0; 516 } 517 if (state == TB_PORT_UP) { 518 tb_port_info(port, 519 "is connected, link is up (state: 2)\n"); 520 return 1; 521 } 522 523 /* 524 * After plug-in the state is TB_PORT_CONNECTING. Give it some 525 * time. 526 */ 527 tb_port_info(port, 528 "is connected, link is not up (state: %d), retrying...\n", 529 state); 530 msleep(100); 531 } 532 tb_port_warn(port, 533 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 534 return 0; 535 } 536 537 /** 538 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 539 * 540 * Change the number of NFC credits allocated to @port by @credits. To remove 541 * NFC credits pass a negative amount of credits. 542 * 543 * Return: Returns 0 on success or an error code on failure. 544 */ 545 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 546 { 547 if (credits == 0) 548 return 0; 549 tb_port_info(port, 550 "adding %#x NFC credits (%#x -> %#x)", 551 credits, 552 port->config.nfc_credits, 553 port->config.nfc_credits + credits); 554 port->config.nfc_credits += credits; 555 return tb_port_write(port, &port->config.nfc_credits, 556 TB_CFG_PORT, 4, 1); 557 } 558 559 /** 560 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 561 * 562 * Return: Returns 0 on success or an error code on failure. 563 */ 564 int tb_port_clear_counter(struct tb_port *port, int counter) 565 { 566 u32 zero[3] = { 0, 0, 0 }; 567 tb_port_info(port, "clearing counter %d\n", counter); 568 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 569 } 570 571 /** 572 * tb_init_port() - initialize a port 573 * 574 * This is a helper method for tb_switch_alloc. Does not check or initialize 575 * any downstream switches. 576 * 577 * Return: Returns 0 on success or an error code on failure. 578 */ 579 static int tb_init_port(struct tb_port *port) 580 { 581 int res; 582 int cap; 583 584 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 585 if (res) 586 return res; 587 588 /* Port 0 is the switch itself and has no PHY. */ 589 if (port->config.type == TB_TYPE_PORT && port->port != 0) { 590 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 591 592 if (cap > 0) 593 port->cap_phy = cap; 594 else 595 tb_port_WARN(port, "non switch port without a PHY\n"); 596 } 597 598 tb_dump_port(port->sw->tb, &port->config); 599 600 /* TODO: Read dual link port, DP port and more from EEPROM. */ 601 return 0; 602 603 } 604 605 /* switch utility functions */ 606 607 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw) 608 { 609 tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n", 610 sw->vendor_id, sw->device_id, sw->revision, 611 sw->thunderbolt_version); 612 tb_dbg(tb, " Max Port Number: %d\n", sw->max_port_number); 613 tb_dbg(tb, " Config:\n"); 614 tb_dbg(tb, 615 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 616 sw->upstream_port_number, sw->depth, 617 (((u64) sw->route_hi) << 32) | sw->route_lo, 618 sw->enabled, sw->plug_events_delay); 619 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n", 620 sw->__unknown1, sw->__unknown4); 621 } 622 623 /** 624 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET 625 * 626 * Return: Returns 0 on success or an error code on failure. 627 */ 628 int tb_switch_reset(struct tb *tb, u64 route) 629 { 630 struct tb_cfg_result res; 631 struct tb_regs_switch_header header = { 632 header.route_hi = route >> 32, 633 header.route_lo = route, 634 header.enabled = true, 635 }; 636 tb_dbg(tb, "resetting switch at %llx\n", route); 637 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route, 638 0, 2, 2, 2); 639 if (res.err) 640 return res.err; 641 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT); 642 if (res.err > 0) 643 return -EIO; 644 return res.err; 645 } 646 647 struct tb_switch *get_switch_at_route(struct tb_switch *sw, u64 route) 648 { 649 u8 next_port = route; /* 650 * Routes use a stride of 8 bits, 651 * eventhough a port index has 6 bits at most. 652 * */ 653 if (route == 0) 654 return sw; 655 if (next_port > sw->config.max_port_number) 656 return NULL; 657 if (tb_is_upstream_port(&sw->ports[next_port])) 658 return NULL; 659 if (!sw->ports[next_port].remote) 660 return NULL; 661 return get_switch_at_route(sw->ports[next_port].remote->sw, 662 route >> TB_ROUTE_SHIFT); 663 } 664 665 /** 666 * tb_plug_events_active() - enable/disable plug events on a switch 667 * 668 * Also configures a sane plug_events_delay of 255ms. 669 * 670 * Return: Returns 0 on success or an error code on failure. 671 */ 672 static int tb_plug_events_active(struct tb_switch *sw, bool active) 673 { 674 u32 data; 675 int res; 676 677 if (!sw->config.enabled) 678 return 0; 679 680 sw->config.plug_events_delay = 0xff; 681 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 682 if (res) 683 return res; 684 685 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 686 if (res) 687 return res; 688 689 if (active) { 690 data = data & 0xFFFFFF83; 691 switch (sw->config.device_id) { 692 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 693 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 694 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 695 break; 696 default: 697 data |= 4; 698 } 699 } else { 700 data = data | 0x7c; 701 } 702 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 703 sw->cap_plug_events + 1, 1); 704 } 705 706 static ssize_t authorized_show(struct device *dev, 707 struct device_attribute *attr, 708 char *buf) 709 { 710 struct tb_switch *sw = tb_to_switch(dev); 711 712 return sprintf(buf, "%u\n", sw->authorized); 713 } 714 715 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 716 { 717 int ret = -EINVAL; 718 719 if (mutex_lock_interruptible(&switch_lock)) 720 return -ERESTARTSYS; 721 722 if (sw->authorized) 723 goto unlock; 724 725 /* 726 * Make sure there is no PCIe rescan ongoing when a new PCIe 727 * tunnel is created. Otherwise the PCIe rescan code might find 728 * the new tunnel too early. 729 */ 730 pci_lock_rescan_remove(); 731 pm_runtime_get_sync(&sw->dev); 732 733 switch (val) { 734 /* Approve switch */ 735 case 1: 736 if (sw->key) 737 ret = tb_domain_approve_switch_key(sw->tb, sw); 738 else 739 ret = tb_domain_approve_switch(sw->tb, sw); 740 break; 741 742 /* Challenge switch */ 743 case 2: 744 if (sw->key) 745 ret = tb_domain_challenge_switch_key(sw->tb, sw); 746 break; 747 748 default: 749 break; 750 } 751 752 pm_runtime_mark_last_busy(&sw->dev); 753 pm_runtime_put_autosuspend(&sw->dev); 754 pci_unlock_rescan_remove(); 755 756 if (!ret) { 757 sw->authorized = val; 758 /* Notify status change to the userspace */ 759 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 760 } 761 762 unlock: 763 mutex_unlock(&switch_lock); 764 return ret; 765 } 766 767 static ssize_t authorized_store(struct device *dev, 768 struct device_attribute *attr, 769 const char *buf, size_t count) 770 { 771 struct tb_switch *sw = tb_to_switch(dev); 772 unsigned int val; 773 ssize_t ret; 774 775 ret = kstrtouint(buf, 0, &val); 776 if (ret) 777 return ret; 778 if (val > 2) 779 return -EINVAL; 780 781 ret = tb_switch_set_authorized(sw, val); 782 783 return ret ? ret : count; 784 } 785 static DEVICE_ATTR_RW(authorized); 786 787 static ssize_t boot_show(struct device *dev, struct device_attribute *attr, 788 char *buf) 789 { 790 struct tb_switch *sw = tb_to_switch(dev); 791 792 return sprintf(buf, "%u\n", sw->boot); 793 } 794 static DEVICE_ATTR_RO(boot); 795 796 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 797 char *buf) 798 { 799 struct tb_switch *sw = tb_to_switch(dev); 800 801 return sprintf(buf, "%#x\n", sw->device); 802 } 803 static DEVICE_ATTR_RO(device); 804 805 static ssize_t 806 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 807 { 808 struct tb_switch *sw = tb_to_switch(dev); 809 810 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : ""); 811 } 812 static DEVICE_ATTR_RO(device_name); 813 814 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 815 char *buf) 816 { 817 struct tb_switch *sw = tb_to_switch(dev); 818 ssize_t ret; 819 820 if (mutex_lock_interruptible(&switch_lock)) 821 return -ERESTARTSYS; 822 823 if (sw->key) 824 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 825 else 826 ret = sprintf(buf, "\n"); 827 828 mutex_unlock(&switch_lock); 829 return ret; 830 } 831 832 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 833 const char *buf, size_t count) 834 { 835 struct tb_switch *sw = tb_to_switch(dev); 836 u8 key[TB_SWITCH_KEY_SIZE]; 837 ssize_t ret = count; 838 bool clear = false; 839 840 if (!strcmp(buf, "\n")) 841 clear = true; 842 else if (hex2bin(key, buf, sizeof(key))) 843 return -EINVAL; 844 845 if (mutex_lock_interruptible(&switch_lock)) 846 return -ERESTARTSYS; 847 848 if (sw->authorized) { 849 ret = -EBUSY; 850 } else { 851 kfree(sw->key); 852 if (clear) { 853 sw->key = NULL; 854 } else { 855 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 856 if (!sw->key) 857 ret = -ENOMEM; 858 } 859 } 860 861 mutex_unlock(&switch_lock); 862 return ret; 863 } 864 static DEVICE_ATTR(key, 0600, key_show, key_store); 865 866 static void nvm_authenticate_start(struct tb_switch *sw) 867 { 868 struct pci_dev *root_port; 869 870 /* 871 * During host router NVM upgrade we should not allow root port to 872 * go into D3cold because some root ports cannot trigger PME 873 * itself. To be on the safe side keep the root port in D0 during 874 * the whole upgrade process. 875 */ 876 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev); 877 if (root_port) 878 pm_runtime_get_noresume(&root_port->dev); 879 } 880 881 static void nvm_authenticate_complete(struct tb_switch *sw) 882 { 883 struct pci_dev *root_port; 884 885 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev); 886 if (root_port) 887 pm_runtime_put(&root_port->dev); 888 } 889 890 static ssize_t nvm_authenticate_show(struct device *dev, 891 struct device_attribute *attr, char *buf) 892 { 893 struct tb_switch *sw = tb_to_switch(dev); 894 u32 status; 895 896 nvm_get_auth_status(sw, &status); 897 return sprintf(buf, "%#x\n", status); 898 } 899 900 static ssize_t nvm_authenticate_store(struct device *dev, 901 struct device_attribute *attr, const char *buf, size_t count) 902 { 903 struct tb_switch *sw = tb_to_switch(dev); 904 bool val; 905 int ret; 906 907 if (mutex_lock_interruptible(&switch_lock)) 908 return -ERESTARTSYS; 909 910 /* If NVMem devices are not yet added */ 911 if (!sw->nvm) { 912 ret = -EAGAIN; 913 goto exit_unlock; 914 } 915 916 ret = kstrtobool(buf, &val); 917 if (ret) 918 goto exit_unlock; 919 920 /* Always clear the authentication status */ 921 nvm_clear_auth_status(sw); 922 923 if (val) { 924 if (!sw->nvm->buf) { 925 ret = -EINVAL; 926 goto exit_unlock; 927 } 928 929 pm_runtime_get_sync(&sw->dev); 930 ret = nvm_validate_and_write(sw); 931 if (ret) { 932 pm_runtime_mark_last_busy(&sw->dev); 933 pm_runtime_put_autosuspend(&sw->dev); 934 goto exit_unlock; 935 } 936 937 sw->nvm->authenticating = true; 938 939 if (!tb_route(sw)) { 940 /* 941 * Keep root port from suspending as long as the 942 * NVM upgrade process is running. 943 */ 944 nvm_authenticate_start(sw); 945 ret = nvm_authenticate_host(sw); 946 if (ret) 947 nvm_authenticate_complete(sw); 948 } else { 949 ret = nvm_authenticate_device(sw); 950 } 951 pm_runtime_mark_last_busy(&sw->dev); 952 pm_runtime_put_autosuspend(&sw->dev); 953 } 954 955 exit_unlock: 956 mutex_unlock(&switch_lock); 957 958 if (ret) 959 return ret; 960 return count; 961 } 962 static DEVICE_ATTR_RW(nvm_authenticate); 963 964 static ssize_t nvm_version_show(struct device *dev, 965 struct device_attribute *attr, char *buf) 966 { 967 struct tb_switch *sw = tb_to_switch(dev); 968 int ret; 969 970 if (mutex_lock_interruptible(&switch_lock)) 971 return -ERESTARTSYS; 972 973 if (sw->safe_mode) 974 ret = -ENODATA; 975 else if (!sw->nvm) 976 ret = -EAGAIN; 977 else 978 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 979 980 mutex_unlock(&switch_lock); 981 982 return ret; 983 } 984 static DEVICE_ATTR_RO(nvm_version); 985 986 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 987 char *buf) 988 { 989 struct tb_switch *sw = tb_to_switch(dev); 990 991 return sprintf(buf, "%#x\n", sw->vendor); 992 } 993 static DEVICE_ATTR_RO(vendor); 994 995 static ssize_t 996 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 997 { 998 struct tb_switch *sw = tb_to_switch(dev); 999 1000 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : ""); 1001 } 1002 static DEVICE_ATTR_RO(vendor_name); 1003 1004 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 1005 char *buf) 1006 { 1007 struct tb_switch *sw = tb_to_switch(dev); 1008 1009 return sprintf(buf, "%pUb\n", sw->uuid); 1010 } 1011 static DEVICE_ATTR_RO(unique_id); 1012 1013 static struct attribute *switch_attrs[] = { 1014 &dev_attr_authorized.attr, 1015 &dev_attr_boot.attr, 1016 &dev_attr_device.attr, 1017 &dev_attr_device_name.attr, 1018 &dev_attr_key.attr, 1019 &dev_attr_nvm_authenticate.attr, 1020 &dev_attr_nvm_version.attr, 1021 &dev_attr_vendor.attr, 1022 &dev_attr_vendor_name.attr, 1023 &dev_attr_unique_id.attr, 1024 NULL, 1025 }; 1026 1027 static umode_t switch_attr_is_visible(struct kobject *kobj, 1028 struct attribute *attr, int n) 1029 { 1030 struct device *dev = container_of(kobj, struct device, kobj); 1031 struct tb_switch *sw = tb_to_switch(dev); 1032 1033 if (attr == &dev_attr_key.attr) { 1034 if (tb_route(sw) && 1035 sw->tb->security_level == TB_SECURITY_SECURE && 1036 sw->security_level == TB_SECURITY_SECURE) 1037 return attr->mode; 1038 return 0; 1039 } else if (attr == &dev_attr_nvm_authenticate.attr || 1040 attr == &dev_attr_nvm_version.attr) { 1041 if (sw->dma_port) 1042 return attr->mode; 1043 return 0; 1044 } else if (attr == &dev_attr_boot.attr) { 1045 if (tb_route(sw)) 1046 return attr->mode; 1047 return 0; 1048 } 1049 1050 return sw->safe_mode ? 0 : attr->mode; 1051 } 1052 1053 static struct attribute_group switch_group = { 1054 .is_visible = switch_attr_is_visible, 1055 .attrs = switch_attrs, 1056 }; 1057 1058 static const struct attribute_group *switch_groups[] = { 1059 &switch_group, 1060 NULL, 1061 }; 1062 1063 static void tb_switch_release(struct device *dev) 1064 { 1065 struct tb_switch *sw = tb_to_switch(dev); 1066 1067 dma_port_free(sw->dma_port); 1068 1069 kfree(sw->uuid); 1070 kfree(sw->device_name); 1071 kfree(sw->vendor_name); 1072 kfree(sw->ports); 1073 kfree(sw->drom); 1074 kfree(sw->key); 1075 kfree(sw); 1076 } 1077 1078 /* 1079 * Currently only need to provide the callbacks. Everything else is handled 1080 * in the connection manager. 1081 */ 1082 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev) 1083 { 1084 return 0; 1085 } 1086 1087 static int __maybe_unused tb_switch_runtime_resume(struct device *dev) 1088 { 1089 return 0; 1090 } 1091 1092 static const struct dev_pm_ops tb_switch_pm_ops = { 1093 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume, 1094 NULL) 1095 }; 1096 1097 struct device_type tb_switch_type = { 1098 .name = "thunderbolt_device", 1099 .release = tb_switch_release, 1100 .pm = &tb_switch_pm_ops, 1101 }; 1102 1103 static int tb_switch_get_generation(struct tb_switch *sw) 1104 { 1105 switch (sw->config.device_id) { 1106 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1107 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1108 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 1109 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 1110 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 1111 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1112 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 1113 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 1114 return 1; 1115 1116 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 1117 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 1118 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 1119 return 2; 1120 1121 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 1122 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 1123 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 1124 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 1125 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 1126 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: 1127 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: 1128 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: 1129 return 3; 1130 1131 default: 1132 /* 1133 * For unknown switches assume generation to be 1 to be 1134 * on the safe side. 1135 */ 1136 tb_sw_warn(sw, "unsupported switch device id %#x\n", 1137 sw->config.device_id); 1138 return 1; 1139 } 1140 } 1141 1142 /** 1143 * tb_switch_alloc() - allocate a switch 1144 * @tb: Pointer to the owning domain 1145 * @parent: Parent device for this switch 1146 * @route: Route string for this switch 1147 * 1148 * Allocates and initializes a switch. Will not upload configuration to 1149 * the switch. For that you need to call tb_switch_configure() 1150 * separately. The returned switch should be released by calling 1151 * tb_switch_put(). 1152 * 1153 * Return: Pointer to the allocated switch or %NULL in case of failure 1154 */ 1155 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 1156 u64 route) 1157 { 1158 int i; 1159 int cap; 1160 struct tb_switch *sw; 1161 int upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 1162 if (upstream_port < 0) 1163 return NULL; 1164 1165 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1166 if (!sw) 1167 return NULL; 1168 1169 sw->tb = tb; 1170 if (tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5)) 1171 goto err_free_sw_ports; 1172 1173 tb_dbg(tb, "current switch config:\n"); 1174 tb_dump_switch(tb, &sw->config); 1175 1176 /* configure switch */ 1177 sw->config.upstream_port_number = upstream_port; 1178 sw->config.depth = tb_route_length(route); 1179 sw->config.route_lo = route; 1180 sw->config.route_hi = route >> 32; 1181 sw->config.enabled = 0; 1182 1183 /* initialize ports */ 1184 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 1185 GFP_KERNEL); 1186 if (!sw->ports) 1187 goto err_free_sw_ports; 1188 1189 for (i = 0; i <= sw->config.max_port_number; i++) { 1190 /* minimum setup for tb_find_cap and tb_drom_read to work */ 1191 sw->ports[i].sw = sw; 1192 sw->ports[i].port = i; 1193 } 1194 1195 sw->generation = tb_switch_get_generation(sw); 1196 1197 cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 1198 if (cap < 0) { 1199 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 1200 goto err_free_sw_ports; 1201 } 1202 sw->cap_plug_events = cap; 1203 1204 /* Root switch is always authorized */ 1205 if (!route) 1206 sw->authorized = true; 1207 1208 device_initialize(&sw->dev); 1209 sw->dev.parent = parent; 1210 sw->dev.bus = &tb_bus_type; 1211 sw->dev.type = &tb_switch_type; 1212 sw->dev.groups = switch_groups; 1213 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1214 1215 return sw; 1216 1217 err_free_sw_ports: 1218 kfree(sw->ports); 1219 kfree(sw); 1220 1221 return NULL; 1222 } 1223 1224 /** 1225 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 1226 * @tb: Pointer to the owning domain 1227 * @parent: Parent device for this switch 1228 * @route: Route string for this switch 1229 * 1230 * This creates a switch in safe mode. This means the switch pretty much 1231 * lacks all capabilities except DMA configuration port before it is 1232 * flashed with a valid NVM firmware. 1233 * 1234 * The returned switch must be released by calling tb_switch_put(). 1235 * 1236 * Return: Pointer to the allocated switch or %NULL in case of failure 1237 */ 1238 struct tb_switch * 1239 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 1240 { 1241 struct tb_switch *sw; 1242 1243 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1244 if (!sw) 1245 return NULL; 1246 1247 sw->tb = tb; 1248 sw->config.depth = tb_route_length(route); 1249 sw->config.route_hi = upper_32_bits(route); 1250 sw->config.route_lo = lower_32_bits(route); 1251 sw->safe_mode = true; 1252 1253 device_initialize(&sw->dev); 1254 sw->dev.parent = parent; 1255 sw->dev.bus = &tb_bus_type; 1256 sw->dev.type = &tb_switch_type; 1257 sw->dev.groups = switch_groups; 1258 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1259 1260 return sw; 1261 } 1262 1263 /** 1264 * tb_switch_configure() - Uploads configuration to the switch 1265 * @sw: Switch to configure 1266 * 1267 * Call this function before the switch is added to the system. It will 1268 * upload configuration to the switch and makes it available for the 1269 * connection manager to use. 1270 * 1271 * Return: %0 in case of success and negative errno in case of failure 1272 */ 1273 int tb_switch_configure(struct tb_switch *sw) 1274 { 1275 struct tb *tb = sw->tb; 1276 u64 route; 1277 int ret; 1278 1279 route = tb_route(sw); 1280 tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n", 1281 route, tb_route_length(route), sw->config.upstream_port_number); 1282 1283 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 1284 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 1285 sw->config.vendor_id); 1286 1287 sw->config.enabled = 1; 1288 1289 /* upload configuration */ 1290 ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3); 1291 if (ret) 1292 return ret; 1293 1294 return tb_plug_events_active(sw, true); 1295 } 1296 1297 static void tb_switch_set_uuid(struct tb_switch *sw) 1298 { 1299 u32 uuid[4]; 1300 int cap; 1301 1302 if (sw->uuid) 1303 return; 1304 1305 /* 1306 * The newer controllers include fused UUID as part of link 1307 * controller specific registers 1308 */ 1309 cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 1310 if (cap > 0) { 1311 tb_sw_read(sw, uuid, TB_CFG_SWITCH, cap + 3, 4); 1312 } else { 1313 /* 1314 * ICM generates UUID based on UID and fills the upper 1315 * two words with ones. This is not strictly following 1316 * UUID format but we want to be compatible with it so 1317 * we do the same here. 1318 */ 1319 uuid[0] = sw->uid & 0xffffffff; 1320 uuid[1] = (sw->uid >> 32) & 0xffffffff; 1321 uuid[2] = 0xffffffff; 1322 uuid[3] = 0xffffffff; 1323 } 1324 1325 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 1326 } 1327 1328 static int tb_switch_add_dma_port(struct tb_switch *sw) 1329 { 1330 u32 status; 1331 int ret; 1332 1333 switch (sw->generation) { 1334 case 3: 1335 break; 1336 1337 case 2: 1338 /* Only root switch can be upgraded */ 1339 if (tb_route(sw)) 1340 return 0; 1341 break; 1342 1343 default: 1344 /* 1345 * DMA port is the only thing available when the switch 1346 * is in safe mode. 1347 */ 1348 if (!sw->safe_mode) 1349 return 0; 1350 break; 1351 } 1352 1353 if (sw->no_nvm_upgrade) 1354 return 0; 1355 1356 sw->dma_port = dma_port_alloc(sw); 1357 if (!sw->dma_port) 1358 return 0; 1359 1360 /* 1361 * Check status of the previous flash authentication. If there 1362 * is one we need to power cycle the switch in any case to make 1363 * it functional again. 1364 */ 1365 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 1366 if (ret <= 0) 1367 return ret; 1368 1369 /* Now we can allow root port to suspend again */ 1370 if (!tb_route(sw)) 1371 nvm_authenticate_complete(sw); 1372 1373 if (status) { 1374 tb_sw_info(sw, "switch flash authentication failed\n"); 1375 tb_switch_set_uuid(sw); 1376 nvm_set_auth_status(sw, status); 1377 } 1378 1379 tb_sw_info(sw, "power cycling the switch now\n"); 1380 dma_port_power_cycle(sw->dma_port); 1381 1382 /* 1383 * We return error here which causes the switch adding failure. 1384 * It should appear back after power cycle is complete. 1385 */ 1386 return -ESHUTDOWN; 1387 } 1388 1389 /** 1390 * tb_switch_add() - Add a switch to the domain 1391 * @sw: Switch to add 1392 * 1393 * This is the last step in adding switch to the domain. It will read 1394 * identification information from DROM and initializes ports so that 1395 * they can be used to connect other switches. The switch will be 1396 * exposed to the userspace when this function successfully returns. To 1397 * remove and release the switch, call tb_switch_remove(). 1398 * 1399 * Return: %0 in case of success and negative errno in case of failure 1400 */ 1401 int tb_switch_add(struct tb_switch *sw) 1402 { 1403 int i, ret; 1404 1405 /* 1406 * Initialize DMA control port now before we read DROM. Recent 1407 * host controllers have more complete DROM on NVM that includes 1408 * vendor and model identification strings which we then expose 1409 * to the userspace. NVM can be accessed through DMA 1410 * configuration based mailbox. 1411 */ 1412 ret = tb_switch_add_dma_port(sw); 1413 if (ret) 1414 return ret; 1415 1416 if (!sw->safe_mode) { 1417 /* read drom */ 1418 ret = tb_drom_read(sw); 1419 if (ret) { 1420 tb_sw_warn(sw, "tb_eeprom_read_rom failed\n"); 1421 return ret; 1422 } 1423 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid); 1424 1425 tb_switch_set_uuid(sw); 1426 1427 for (i = 0; i <= sw->config.max_port_number; i++) { 1428 if (sw->ports[i].disabled) { 1429 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n"); 1430 continue; 1431 } 1432 ret = tb_init_port(&sw->ports[i]); 1433 if (ret) 1434 return ret; 1435 } 1436 } 1437 1438 ret = device_add(&sw->dev); 1439 if (ret) 1440 return ret; 1441 1442 if (tb_route(sw)) { 1443 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n", 1444 sw->vendor, sw->device); 1445 if (sw->vendor_name && sw->device_name) 1446 dev_info(&sw->dev, "%s %s\n", sw->vendor_name, 1447 sw->device_name); 1448 } 1449 1450 ret = tb_switch_nvm_add(sw); 1451 if (ret) { 1452 device_del(&sw->dev); 1453 return ret; 1454 } 1455 1456 pm_runtime_set_active(&sw->dev); 1457 if (sw->rpm) { 1458 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY); 1459 pm_runtime_use_autosuspend(&sw->dev); 1460 pm_runtime_mark_last_busy(&sw->dev); 1461 pm_runtime_enable(&sw->dev); 1462 pm_request_autosuspend(&sw->dev); 1463 } 1464 1465 return 0; 1466 } 1467 1468 /** 1469 * tb_switch_remove() - Remove and release a switch 1470 * @sw: Switch to remove 1471 * 1472 * This will remove the switch from the domain and release it after last 1473 * reference count drops to zero. If there are switches connected below 1474 * this switch, they will be removed as well. 1475 */ 1476 void tb_switch_remove(struct tb_switch *sw) 1477 { 1478 int i; 1479 1480 if (sw->rpm) { 1481 pm_runtime_get_sync(&sw->dev); 1482 pm_runtime_disable(&sw->dev); 1483 } 1484 1485 /* port 0 is the switch itself and never has a remote */ 1486 for (i = 1; i <= sw->config.max_port_number; i++) { 1487 if (tb_is_upstream_port(&sw->ports[i])) 1488 continue; 1489 if (sw->ports[i].remote) 1490 tb_switch_remove(sw->ports[i].remote->sw); 1491 sw->ports[i].remote = NULL; 1492 if (sw->ports[i].xdomain) 1493 tb_xdomain_remove(sw->ports[i].xdomain); 1494 sw->ports[i].xdomain = NULL; 1495 } 1496 1497 if (!sw->is_unplugged) 1498 tb_plug_events_active(sw, false); 1499 1500 tb_switch_nvm_remove(sw); 1501 1502 if (tb_route(sw)) 1503 dev_info(&sw->dev, "device disconnected\n"); 1504 device_unregister(&sw->dev); 1505 } 1506 1507 /** 1508 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 1509 */ 1510 void tb_sw_set_unplugged(struct tb_switch *sw) 1511 { 1512 int i; 1513 if (sw == sw->tb->root_switch) { 1514 tb_sw_WARN(sw, "cannot unplug root switch\n"); 1515 return; 1516 } 1517 if (sw->is_unplugged) { 1518 tb_sw_WARN(sw, "is_unplugged already set\n"); 1519 return; 1520 } 1521 sw->is_unplugged = true; 1522 for (i = 0; i <= sw->config.max_port_number; i++) { 1523 if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote) 1524 tb_sw_set_unplugged(sw->ports[i].remote->sw); 1525 } 1526 } 1527 1528 int tb_switch_resume(struct tb_switch *sw) 1529 { 1530 int i, err; 1531 tb_sw_dbg(sw, "resuming switch\n"); 1532 1533 /* 1534 * Check for UID of the connected switches except for root 1535 * switch which we assume cannot be removed. 1536 */ 1537 if (tb_route(sw)) { 1538 u64 uid; 1539 1540 err = tb_drom_read_uid_only(sw, &uid); 1541 if (err) { 1542 tb_sw_warn(sw, "uid read failed\n"); 1543 return err; 1544 } 1545 if (sw->uid != uid) { 1546 tb_sw_info(sw, 1547 "changed while suspended (uid %#llx -> %#llx)\n", 1548 sw->uid, uid); 1549 return -ENODEV; 1550 } 1551 } 1552 1553 /* upload configuration */ 1554 err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3); 1555 if (err) 1556 return err; 1557 1558 err = tb_plug_events_active(sw, true); 1559 if (err) 1560 return err; 1561 1562 /* check for surviving downstream switches */ 1563 for (i = 1; i <= sw->config.max_port_number; i++) { 1564 struct tb_port *port = &sw->ports[i]; 1565 if (tb_is_upstream_port(port)) 1566 continue; 1567 if (!port->remote) 1568 continue; 1569 if (tb_wait_for_port(port, true) <= 0 1570 || tb_switch_resume(port->remote->sw)) { 1571 tb_port_warn(port, 1572 "lost during suspend, disconnecting\n"); 1573 tb_sw_set_unplugged(port->remote->sw); 1574 } 1575 } 1576 return 0; 1577 } 1578 1579 void tb_switch_suspend(struct tb_switch *sw) 1580 { 1581 int i, err; 1582 err = tb_plug_events_active(sw, false); 1583 if (err) 1584 return; 1585 1586 for (i = 1; i <= sw->config.max_port_number; i++) { 1587 if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote) 1588 tb_switch_suspend(sw->ports[i].remote->sw); 1589 } 1590 /* 1591 * TODO: invoke tb_cfg_prepare_to_sleep here? does not seem to have any 1592 * effect? 1593 */ 1594 } 1595 1596 struct tb_sw_lookup { 1597 struct tb *tb; 1598 u8 link; 1599 u8 depth; 1600 const uuid_t *uuid; 1601 u64 route; 1602 }; 1603 1604 static int tb_switch_match(struct device *dev, void *data) 1605 { 1606 struct tb_switch *sw = tb_to_switch(dev); 1607 struct tb_sw_lookup *lookup = data; 1608 1609 if (!sw) 1610 return 0; 1611 if (sw->tb != lookup->tb) 1612 return 0; 1613 1614 if (lookup->uuid) 1615 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 1616 1617 if (lookup->route) { 1618 return sw->config.route_lo == lower_32_bits(lookup->route) && 1619 sw->config.route_hi == upper_32_bits(lookup->route); 1620 } 1621 1622 /* Root switch is matched only by depth */ 1623 if (!lookup->depth) 1624 return !sw->depth; 1625 1626 return sw->link == lookup->link && sw->depth == lookup->depth; 1627 } 1628 1629 /** 1630 * tb_switch_find_by_link_depth() - Find switch by link and depth 1631 * @tb: Domain the switch belongs 1632 * @link: Link number the switch is connected 1633 * @depth: Depth of the switch in link 1634 * 1635 * Returned switch has reference count increased so the caller needs to 1636 * call tb_switch_put() when done with the switch. 1637 */ 1638 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 1639 { 1640 struct tb_sw_lookup lookup; 1641 struct device *dev; 1642 1643 memset(&lookup, 0, sizeof(lookup)); 1644 lookup.tb = tb; 1645 lookup.link = link; 1646 lookup.depth = depth; 1647 1648 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 1649 if (dev) 1650 return tb_to_switch(dev); 1651 1652 return NULL; 1653 } 1654 1655 /** 1656 * tb_switch_find_by_uuid() - Find switch by UUID 1657 * @tb: Domain the switch belongs 1658 * @uuid: UUID to look for 1659 * 1660 * Returned switch has reference count increased so the caller needs to 1661 * call tb_switch_put() when done with the switch. 1662 */ 1663 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) 1664 { 1665 struct tb_sw_lookup lookup; 1666 struct device *dev; 1667 1668 memset(&lookup, 0, sizeof(lookup)); 1669 lookup.tb = tb; 1670 lookup.uuid = uuid; 1671 1672 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 1673 if (dev) 1674 return tb_to_switch(dev); 1675 1676 return NULL; 1677 } 1678 1679 /** 1680 * tb_switch_find_by_route() - Find switch by route string 1681 * @tb: Domain the switch belongs 1682 * @route: Route string to look for 1683 * 1684 * Returned switch has reference count increased so the caller needs to 1685 * call tb_switch_put() when done with the switch. 1686 */ 1687 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route) 1688 { 1689 struct tb_sw_lookup lookup; 1690 struct device *dev; 1691 1692 if (!route) 1693 return tb_switch_get(tb->root_switch); 1694 1695 memset(&lookup, 0, sizeof(lookup)); 1696 lookup.tb = tb; 1697 lookup.route = route; 1698 1699 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 1700 if (dev) 1701 return tb_to_switch(dev); 1702 1703 return NULL; 1704 } 1705 1706 void tb_switch_exit(void) 1707 { 1708 ida_destroy(&nvm_ida); 1709 } 1710