1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - switch/port utility functions 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2018, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/idr.h> 11 #include <linux/nvmem-provider.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 #include <linux/vmalloc.h> 17 18 #include "tb.h" 19 20 /* Switch NVM support */ 21 22 #define NVM_DEVID 0x05 23 #define NVM_VERSION 0x08 24 #define NVM_CSS 0x10 25 #define NVM_FLASH_SIZE 0x45 26 27 #define NVM_MIN_SIZE SZ_32K 28 #define NVM_MAX_SIZE SZ_512K 29 30 static DEFINE_IDA(nvm_ida); 31 32 struct nvm_auth_status { 33 struct list_head list; 34 uuid_t uuid; 35 u32 status; 36 }; 37 38 /* 39 * Hold NVM authentication failure status per switch This information 40 * needs to stay around even when the switch gets power cycled so we 41 * keep it separately. 42 */ 43 static LIST_HEAD(nvm_auth_status_cache); 44 static DEFINE_MUTEX(nvm_auth_status_lock); 45 46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 47 { 48 struct nvm_auth_status *st; 49 50 list_for_each_entry(st, &nvm_auth_status_cache, list) { 51 if (uuid_equal(&st->uuid, sw->uuid)) 52 return st; 53 } 54 55 return NULL; 56 } 57 58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 59 { 60 struct nvm_auth_status *st; 61 62 mutex_lock(&nvm_auth_status_lock); 63 st = __nvm_get_auth_status(sw); 64 mutex_unlock(&nvm_auth_status_lock); 65 66 *status = st ? st->status : 0; 67 } 68 69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 70 { 71 struct nvm_auth_status *st; 72 73 if (WARN_ON(!sw->uuid)) 74 return; 75 76 mutex_lock(&nvm_auth_status_lock); 77 st = __nvm_get_auth_status(sw); 78 79 if (!st) { 80 st = kzalloc(sizeof(*st), GFP_KERNEL); 81 if (!st) 82 goto unlock; 83 84 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 85 INIT_LIST_HEAD(&st->list); 86 list_add_tail(&st->list, &nvm_auth_status_cache); 87 } 88 89 st->status = status; 90 unlock: 91 mutex_unlock(&nvm_auth_status_lock); 92 } 93 94 static void nvm_clear_auth_status(const struct tb_switch *sw) 95 { 96 struct nvm_auth_status *st; 97 98 mutex_lock(&nvm_auth_status_lock); 99 st = __nvm_get_auth_status(sw); 100 if (st) { 101 list_del(&st->list); 102 kfree(st); 103 } 104 mutex_unlock(&nvm_auth_status_lock); 105 } 106 107 static int nvm_validate_and_write(struct tb_switch *sw) 108 { 109 unsigned int image_size, hdr_size; 110 const u8 *buf = sw->nvm->buf; 111 u16 ds_size; 112 int ret; 113 114 if (!buf) 115 return -EINVAL; 116 117 image_size = sw->nvm->buf_data_size; 118 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) 119 return -EINVAL; 120 121 /* 122 * FARB pointer must point inside the image and must at least 123 * contain parts of the digital section we will be reading here. 124 */ 125 hdr_size = (*(u32 *)buf) & 0xffffff; 126 if (hdr_size + NVM_DEVID + 2 >= image_size) 127 return -EINVAL; 128 129 /* Digital section start should be aligned to 4k page */ 130 if (!IS_ALIGNED(hdr_size, SZ_4K)) 131 return -EINVAL; 132 133 /* 134 * Read digital section size and check that it also fits inside 135 * the image. 136 */ 137 ds_size = *(u16 *)(buf + hdr_size); 138 if (ds_size >= image_size) 139 return -EINVAL; 140 141 if (!sw->safe_mode) { 142 u16 device_id; 143 144 /* 145 * Make sure the device ID in the image matches the one 146 * we read from the switch config space. 147 */ 148 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID); 149 if (device_id != sw->config.device_id) 150 return -EINVAL; 151 152 if (sw->generation < 3) { 153 /* Write CSS headers first */ 154 ret = dma_port_flash_write(sw->dma_port, 155 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS, 156 DMA_PORT_CSS_MAX_SIZE); 157 if (ret) 158 return ret; 159 } 160 161 /* Skip headers in the image */ 162 buf += hdr_size; 163 image_size -= hdr_size; 164 } 165 166 if (tb_switch_is_usb4(sw)) 167 return usb4_switch_nvm_write(sw, 0, buf, image_size); 168 return dma_port_flash_write(sw->dma_port, 0, buf, image_size); 169 } 170 171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw) 172 { 173 int ret = 0; 174 175 /* 176 * Root switch NVM upgrade requires that we disconnect the 177 * existing paths first (in case it is not in safe mode 178 * already). 179 */ 180 if (!sw->safe_mode) { 181 u32 status; 182 183 ret = tb_domain_disconnect_all_paths(sw->tb); 184 if (ret) 185 return ret; 186 /* 187 * The host controller goes away pretty soon after this if 188 * everything goes well so getting timeout is expected. 189 */ 190 ret = dma_port_flash_update_auth(sw->dma_port); 191 if (!ret || ret == -ETIMEDOUT) 192 return 0; 193 194 /* 195 * Any error from update auth operation requires power 196 * cycling of the host router. 197 */ 198 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n"); 199 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0) 200 nvm_set_auth_status(sw, status); 201 } 202 203 /* 204 * From safe mode we can get out by just power cycling the 205 * switch. 206 */ 207 dma_port_power_cycle(sw->dma_port); 208 return ret; 209 } 210 211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw) 212 { 213 int ret, retries = 10; 214 215 ret = dma_port_flash_update_auth(sw->dma_port); 216 switch (ret) { 217 case 0: 218 case -ETIMEDOUT: 219 case -EACCES: 220 case -EINVAL: 221 /* Power cycle is required */ 222 break; 223 default: 224 return ret; 225 } 226 227 /* 228 * Poll here for the authentication status. It takes some time 229 * for the device to respond (we get timeout for a while). Once 230 * we get response the device needs to be power cycled in order 231 * to the new NVM to be taken into use. 232 */ 233 do { 234 u32 status; 235 236 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 237 if (ret < 0 && ret != -ETIMEDOUT) 238 return ret; 239 if (ret > 0) { 240 if (status) { 241 tb_sw_warn(sw, "failed to authenticate NVM\n"); 242 nvm_set_auth_status(sw, status); 243 } 244 245 tb_sw_info(sw, "power cycling the switch now\n"); 246 dma_port_power_cycle(sw->dma_port); 247 return 0; 248 } 249 250 msleep(500); 251 } while (--retries); 252 253 return -ETIMEDOUT; 254 } 255 256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw) 257 { 258 struct pci_dev *root_port; 259 260 /* 261 * During host router NVM upgrade we should not allow root port to 262 * go into D3cold because some root ports cannot trigger PME 263 * itself. To be on the safe side keep the root port in D0 during 264 * the whole upgrade process. 265 */ 266 root_port = pcie_find_root_port(sw->tb->nhi->pdev); 267 if (root_port) 268 pm_runtime_get_noresume(&root_port->dev); 269 } 270 271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw) 272 { 273 struct pci_dev *root_port; 274 275 root_port = pcie_find_root_port(sw->tb->nhi->pdev); 276 if (root_port) 277 pm_runtime_put(&root_port->dev); 278 } 279 280 static inline bool nvm_readable(struct tb_switch *sw) 281 { 282 if (tb_switch_is_usb4(sw)) { 283 /* 284 * USB4 devices must support NVM operations but it is 285 * optional for hosts. Therefore we query the NVM sector 286 * size here and if it is supported assume NVM 287 * operations are implemented. 288 */ 289 return usb4_switch_nvm_sector_size(sw) > 0; 290 } 291 292 /* Thunderbolt 2 and 3 devices support NVM through DMA port */ 293 return !!sw->dma_port; 294 } 295 296 static inline bool nvm_upgradeable(struct tb_switch *sw) 297 { 298 if (sw->no_nvm_upgrade) 299 return false; 300 return nvm_readable(sw); 301 } 302 303 static inline int nvm_read(struct tb_switch *sw, unsigned int address, 304 void *buf, size_t size) 305 { 306 if (tb_switch_is_usb4(sw)) 307 return usb4_switch_nvm_read(sw, address, buf, size); 308 return dma_port_flash_read(sw->dma_port, address, buf, size); 309 } 310 311 static int nvm_authenticate(struct tb_switch *sw) 312 { 313 int ret; 314 315 if (tb_switch_is_usb4(sw)) 316 return usb4_switch_nvm_authenticate(sw); 317 318 if (!tb_route(sw)) { 319 nvm_authenticate_start_dma_port(sw); 320 ret = nvm_authenticate_host_dma_port(sw); 321 } else { 322 ret = nvm_authenticate_device_dma_port(sw); 323 } 324 325 return ret; 326 } 327 328 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val, 329 size_t bytes) 330 { 331 struct tb_switch *sw = priv; 332 int ret; 333 334 pm_runtime_get_sync(&sw->dev); 335 336 if (!mutex_trylock(&sw->tb->lock)) { 337 ret = restart_syscall(); 338 goto out; 339 } 340 341 ret = nvm_read(sw, offset, val, bytes); 342 mutex_unlock(&sw->tb->lock); 343 344 out: 345 pm_runtime_mark_last_busy(&sw->dev); 346 pm_runtime_put_autosuspend(&sw->dev); 347 348 return ret; 349 } 350 351 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val, 352 size_t bytes) 353 { 354 struct tb_switch *sw = priv; 355 int ret = 0; 356 357 if (!mutex_trylock(&sw->tb->lock)) 358 return restart_syscall(); 359 360 /* 361 * Since writing the NVM image might require some special steps, 362 * for example when CSS headers are written, we cache the image 363 * locally here and handle the special cases when the user asks 364 * us to authenticate the image. 365 */ 366 if (!sw->nvm->buf) { 367 sw->nvm->buf = vmalloc(NVM_MAX_SIZE); 368 if (!sw->nvm->buf) { 369 ret = -ENOMEM; 370 goto unlock; 371 } 372 } 373 374 sw->nvm->buf_data_size = offset + bytes; 375 memcpy(sw->nvm->buf + offset, val, bytes); 376 377 unlock: 378 mutex_unlock(&sw->tb->lock); 379 380 return ret; 381 } 382 383 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id, 384 size_t size, bool active) 385 { 386 struct nvmem_config config; 387 388 memset(&config, 0, sizeof(config)); 389 390 if (active) { 391 config.name = "nvm_active"; 392 config.reg_read = tb_switch_nvm_read; 393 config.read_only = true; 394 } else { 395 config.name = "nvm_non_active"; 396 config.reg_write = tb_switch_nvm_write; 397 config.root_only = true; 398 } 399 400 config.id = id; 401 config.stride = 4; 402 config.word_size = 4; 403 config.size = size; 404 config.dev = &sw->dev; 405 config.owner = THIS_MODULE; 406 config.priv = sw; 407 408 return nvmem_register(&config); 409 } 410 411 static int tb_switch_nvm_add(struct tb_switch *sw) 412 { 413 struct nvmem_device *nvm_dev; 414 struct tb_switch_nvm *nvm; 415 u32 val; 416 int ret; 417 418 if (!nvm_readable(sw)) 419 return 0; 420 421 /* 422 * The NVM format of non-Intel hardware is not known so 423 * currently restrict NVM upgrade for Intel hardware. We may 424 * relax this in the future when we learn other NVM formats. 425 */ 426 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) { 427 dev_info(&sw->dev, 428 "NVM format of vendor %#x is not known, disabling NVM upgrade\n", 429 sw->config.vendor_id); 430 return 0; 431 } 432 433 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 434 if (!nvm) 435 return -ENOMEM; 436 437 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL); 438 439 /* 440 * If the switch is in safe-mode the only accessible portion of 441 * the NVM is the non-active one where userspace is expected to 442 * write new functional NVM. 443 */ 444 if (!sw->safe_mode) { 445 u32 nvm_size, hdr_size; 446 447 ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val)); 448 if (ret) 449 goto err_ida; 450 451 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; 452 nvm_size = (SZ_1M << (val & 7)) / 8; 453 nvm_size = (nvm_size - hdr_size) / 2; 454 455 ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val)); 456 if (ret) 457 goto err_ida; 458 459 nvm->major = val >> 16; 460 nvm->minor = val >> 8; 461 462 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true); 463 if (IS_ERR(nvm_dev)) { 464 ret = PTR_ERR(nvm_dev); 465 goto err_ida; 466 } 467 nvm->active = nvm_dev; 468 } 469 470 if (!sw->no_nvm_upgrade) { 471 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false); 472 if (IS_ERR(nvm_dev)) { 473 ret = PTR_ERR(nvm_dev); 474 goto err_nvm_active; 475 } 476 nvm->non_active = nvm_dev; 477 } 478 479 sw->nvm = nvm; 480 return 0; 481 482 err_nvm_active: 483 if (nvm->active) 484 nvmem_unregister(nvm->active); 485 err_ida: 486 ida_simple_remove(&nvm_ida, nvm->id); 487 kfree(nvm); 488 489 return ret; 490 } 491 492 static void tb_switch_nvm_remove(struct tb_switch *sw) 493 { 494 struct tb_switch_nvm *nvm; 495 496 nvm = sw->nvm; 497 sw->nvm = NULL; 498 499 if (!nvm) 500 return; 501 502 /* Remove authentication status in case the switch is unplugged */ 503 if (!nvm->authenticating) 504 nvm_clear_auth_status(sw); 505 506 if (nvm->non_active) 507 nvmem_unregister(nvm->non_active); 508 if (nvm->active) 509 nvmem_unregister(nvm->active); 510 ida_simple_remove(&nvm_ida, nvm->id); 511 vfree(nvm->buf); 512 kfree(nvm); 513 } 514 515 /* port utility functions */ 516 517 static const char *tb_port_type(struct tb_regs_port_header *port) 518 { 519 switch (port->type >> 16) { 520 case 0: 521 switch ((u8) port->type) { 522 case 0: 523 return "Inactive"; 524 case 1: 525 return "Port"; 526 case 2: 527 return "NHI"; 528 default: 529 return "unknown"; 530 } 531 case 0x2: 532 return "Ethernet"; 533 case 0x8: 534 return "SATA"; 535 case 0xe: 536 return "DP/HDMI"; 537 case 0x10: 538 return "PCIe"; 539 case 0x20: 540 return "USB"; 541 default: 542 return "unknown"; 543 } 544 } 545 546 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port) 547 { 548 tb_dbg(tb, 549 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 550 port->port_number, port->vendor_id, port->device_id, 551 port->revision, port->thunderbolt_version, tb_port_type(port), 552 port->type); 553 tb_dbg(tb, " Max hop id (in/out): %d/%d\n", 554 port->max_in_hop_id, port->max_out_hop_id); 555 tb_dbg(tb, " Max counters: %d\n", port->max_counters); 556 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits); 557 } 558 559 /** 560 * tb_port_state() - get connectedness state of a port 561 * 562 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 563 * 564 * Return: Returns an enum tb_port_state on success or an error code on failure. 565 */ 566 static int tb_port_state(struct tb_port *port) 567 { 568 struct tb_cap_phy phy; 569 int res; 570 if (port->cap_phy == 0) { 571 tb_port_WARN(port, "does not have a PHY\n"); 572 return -EINVAL; 573 } 574 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 575 if (res) 576 return res; 577 return phy.state; 578 } 579 580 /** 581 * tb_wait_for_port() - wait for a port to become ready 582 * 583 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 584 * wait_if_unplugged is set then we also wait if the port is in state 585 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 586 * switch resume). Otherwise we only wait if a device is registered but the link 587 * has not yet been established. 588 * 589 * Return: Returns an error code on failure. Returns 0 if the port is not 590 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 591 * if the port is connected and in state TB_PORT_UP. 592 */ 593 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 594 { 595 int retries = 10; 596 int state; 597 if (!port->cap_phy) { 598 tb_port_WARN(port, "does not have PHY\n"); 599 return -EINVAL; 600 } 601 if (tb_is_upstream_port(port)) { 602 tb_port_WARN(port, "is the upstream port\n"); 603 return -EINVAL; 604 } 605 606 while (retries--) { 607 state = tb_port_state(port); 608 if (state < 0) 609 return state; 610 if (state == TB_PORT_DISABLED) { 611 tb_port_dbg(port, "is disabled (state: 0)\n"); 612 return 0; 613 } 614 if (state == TB_PORT_UNPLUGGED) { 615 if (wait_if_unplugged) { 616 /* used during resume */ 617 tb_port_dbg(port, 618 "is unplugged (state: 7), retrying...\n"); 619 msleep(100); 620 continue; 621 } 622 tb_port_dbg(port, "is unplugged (state: 7)\n"); 623 return 0; 624 } 625 if (state == TB_PORT_UP) { 626 tb_port_dbg(port, "is connected, link is up (state: 2)\n"); 627 return 1; 628 } 629 630 /* 631 * After plug-in the state is TB_PORT_CONNECTING. Give it some 632 * time. 633 */ 634 tb_port_dbg(port, 635 "is connected, link is not up (state: %d), retrying...\n", 636 state); 637 msleep(100); 638 } 639 tb_port_warn(port, 640 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 641 return 0; 642 } 643 644 /** 645 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 646 * 647 * Change the number of NFC credits allocated to @port by @credits. To remove 648 * NFC credits pass a negative amount of credits. 649 * 650 * Return: Returns 0 on success or an error code on failure. 651 */ 652 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 653 { 654 u32 nfc_credits; 655 656 if (credits == 0 || port->sw->is_unplugged) 657 return 0; 658 659 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK; 660 nfc_credits += credits; 661 662 tb_port_dbg(port, "adding %d NFC credits to %lu", credits, 663 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK); 664 665 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK; 666 port->config.nfc_credits |= nfc_credits; 667 668 return tb_port_write(port, &port->config.nfc_credits, 669 TB_CFG_PORT, ADP_CS_4, 1); 670 } 671 672 /** 673 * tb_port_set_initial_credits() - Set initial port link credits allocated 674 * @port: Port to set the initial credits 675 * @credits: Number of credits to to allocate 676 * 677 * Set initial credits value to be used for ingress shared buffering. 678 */ 679 int tb_port_set_initial_credits(struct tb_port *port, u32 credits) 680 { 681 u32 data; 682 int ret; 683 684 ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1); 685 if (ret) 686 return ret; 687 688 data &= ~ADP_CS_5_LCA_MASK; 689 data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK; 690 691 return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1); 692 } 693 694 /** 695 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 696 * 697 * Return: Returns 0 on success or an error code on failure. 698 */ 699 int tb_port_clear_counter(struct tb_port *port, int counter) 700 { 701 u32 zero[3] = { 0, 0, 0 }; 702 tb_port_dbg(port, "clearing counter %d\n", counter); 703 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 704 } 705 706 /** 707 * tb_port_unlock() - Unlock downstream port 708 * @port: Port to unlock 709 * 710 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the 711 * downstream router accessible for CM. 712 */ 713 int tb_port_unlock(struct tb_port *port) 714 { 715 if (tb_switch_is_icm(port->sw)) 716 return 0; 717 if (!tb_port_is_null(port)) 718 return -EINVAL; 719 if (tb_switch_is_usb4(port->sw)) 720 return usb4_port_unlock(port); 721 return 0; 722 } 723 724 /** 725 * tb_init_port() - initialize a port 726 * 727 * This is a helper method for tb_switch_alloc. Does not check or initialize 728 * any downstream switches. 729 * 730 * Return: Returns 0 on success or an error code on failure. 731 */ 732 static int tb_init_port(struct tb_port *port) 733 { 734 int res; 735 int cap; 736 737 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 738 if (res) { 739 if (res == -ENODEV) { 740 tb_dbg(port->sw->tb, " Port %d: not implemented\n", 741 port->port); 742 return 0; 743 } 744 return res; 745 } 746 747 /* Port 0 is the switch itself and has no PHY. */ 748 if (port->config.type == TB_TYPE_PORT && port->port != 0) { 749 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 750 751 if (cap > 0) 752 port->cap_phy = cap; 753 else 754 tb_port_WARN(port, "non switch port without a PHY\n"); 755 756 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4); 757 if (cap > 0) 758 port->cap_usb4 = cap; 759 } else if (port->port != 0) { 760 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP); 761 if (cap > 0) 762 port->cap_adap = cap; 763 } 764 765 tb_dump_port(port->sw->tb, &port->config); 766 767 /* Control port does not need HopID allocation */ 768 if (port->port) { 769 ida_init(&port->in_hopids); 770 ida_init(&port->out_hopids); 771 } 772 773 INIT_LIST_HEAD(&port->list); 774 return 0; 775 776 } 777 778 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid, 779 int max_hopid) 780 { 781 int port_max_hopid; 782 struct ida *ida; 783 784 if (in) { 785 port_max_hopid = port->config.max_in_hop_id; 786 ida = &port->in_hopids; 787 } else { 788 port_max_hopid = port->config.max_out_hop_id; 789 ida = &port->out_hopids; 790 } 791 792 /* HopIDs 0-7 are reserved */ 793 if (min_hopid < TB_PATH_MIN_HOPID) 794 min_hopid = TB_PATH_MIN_HOPID; 795 796 if (max_hopid < 0 || max_hopid > port_max_hopid) 797 max_hopid = port_max_hopid; 798 799 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL); 800 } 801 802 /** 803 * tb_port_alloc_in_hopid() - Allocate input HopID from port 804 * @port: Port to allocate HopID for 805 * @min_hopid: Minimum acceptable input HopID 806 * @max_hopid: Maximum acceptable input HopID 807 * 808 * Return: HopID between @min_hopid and @max_hopid or negative errno in 809 * case of error. 810 */ 811 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid) 812 { 813 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid); 814 } 815 816 /** 817 * tb_port_alloc_out_hopid() - Allocate output HopID from port 818 * @port: Port to allocate HopID for 819 * @min_hopid: Minimum acceptable output HopID 820 * @max_hopid: Maximum acceptable output HopID 821 * 822 * Return: HopID between @min_hopid and @max_hopid or negative errno in 823 * case of error. 824 */ 825 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid) 826 { 827 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid); 828 } 829 830 /** 831 * tb_port_release_in_hopid() - Release allocated input HopID from port 832 * @port: Port whose HopID to release 833 * @hopid: HopID to release 834 */ 835 void tb_port_release_in_hopid(struct tb_port *port, int hopid) 836 { 837 ida_simple_remove(&port->in_hopids, hopid); 838 } 839 840 /** 841 * tb_port_release_out_hopid() - Release allocated output HopID from port 842 * @port: Port whose HopID to release 843 * @hopid: HopID to release 844 */ 845 void tb_port_release_out_hopid(struct tb_port *port, int hopid) 846 { 847 ida_simple_remove(&port->out_hopids, hopid); 848 } 849 850 /** 851 * tb_next_port_on_path() - Return next port for given port on a path 852 * @start: Start port of the walk 853 * @end: End port of the walk 854 * @prev: Previous port (%NULL if this is the first) 855 * 856 * This function can be used to walk from one port to another if they 857 * are connected through zero or more switches. If the @prev is dual 858 * link port, the function follows that link and returns another end on 859 * that same link. 860 * 861 * If the @end port has been reached, return %NULL. 862 * 863 * Domain tb->lock must be held when this function is called. 864 */ 865 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end, 866 struct tb_port *prev) 867 { 868 struct tb_port *next; 869 870 if (!prev) 871 return start; 872 873 if (prev->sw == end->sw) { 874 if (prev == end) 875 return NULL; 876 return end; 877 } 878 879 if (start->sw->config.depth < end->sw->config.depth) { 880 if (prev->remote && 881 prev->remote->sw->config.depth > prev->sw->config.depth) 882 next = prev->remote; 883 else 884 next = tb_port_at(tb_route(end->sw), prev->sw); 885 } else { 886 if (tb_is_upstream_port(prev)) { 887 next = prev->remote; 888 } else { 889 next = tb_upstream_port(prev->sw); 890 /* 891 * Keep the same link if prev and next are both 892 * dual link ports. 893 */ 894 if (next->dual_link_port && 895 next->link_nr != prev->link_nr) { 896 next = next->dual_link_port; 897 } 898 } 899 } 900 901 return next; 902 } 903 904 static int tb_port_get_link_speed(struct tb_port *port) 905 { 906 u32 val, speed; 907 int ret; 908 909 if (!port->cap_phy) 910 return -EINVAL; 911 912 ret = tb_port_read(port, &val, TB_CFG_PORT, 913 port->cap_phy + LANE_ADP_CS_1, 1); 914 if (ret) 915 return ret; 916 917 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >> 918 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT; 919 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10; 920 } 921 922 static int tb_port_get_link_width(struct tb_port *port) 923 { 924 u32 val; 925 int ret; 926 927 if (!port->cap_phy) 928 return -EINVAL; 929 930 ret = tb_port_read(port, &val, TB_CFG_PORT, 931 port->cap_phy + LANE_ADP_CS_1, 1); 932 if (ret) 933 return ret; 934 935 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >> 936 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT; 937 } 938 939 static bool tb_port_is_width_supported(struct tb_port *port, int width) 940 { 941 u32 phy, widths; 942 int ret; 943 944 if (!port->cap_phy) 945 return false; 946 947 ret = tb_port_read(port, &phy, TB_CFG_PORT, 948 port->cap_phy + LANE_ADP_CS_0, 1); 949 if (ret) 950 return false; 951 952 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >> 953 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT; 954 955 return !!(widths & width); 956 } 957 958 static int tb_port_set_link_width(struct tb_port *port, unsigned int width) 959 { 960 u32 val; 961 int ret; 962 963 if (!port->cap_phy) 964 return -EINVAL; 965 966 ret = tb_port_read(port, &val, TB_CFG_PORT, 967 port->cap_phy + LANE_ADP_CS_1, 1); 968 if (ret) 969 return ret; 970 971 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK; 972 switch (width) { 973 case 1: 974 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE << 975 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 976 break; 977 case 2: 978 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL << 979 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 980 break; 981 default: 982 return -EINVAL; 983 } 984 985 val |= LANE_ADP_CS_1_LB; 986 987 return tb_port_write(port, &val, TB_CFG_PORT, 988 port->cap_phy + LANE_ADP_CS_1, 1); 989 } 990 991 static int tb_port_lane_bonding_enable(struct tb_port *port) 992 { 993 int ret; 994 995 /* 996 * Enable lane bonding for both links if not already enabled by 997 * for example the boot firmware. 998 */ 999 ret = tb_port_get_link_width(port); 1000 if (ret == 1) { 1001 ret = tb_port_set_link_width(port, 2); 1002 if (ret) 1003 return ret; 1004 } 1005 1006 ret = tb_port_get_link_width(port->dual_link_port); 1007 if (ret == 1) { 1008 ret = tb_port_set_link_width(port->dual_link_port, 2); 1009 if (ret) { 1010 tb_port_set_link_width(port, 1); 1011 return ret; 1012 } 1013 } 1014 1015 port->bonded = true; 1016 port->dual_link_port->bonded = true; 1017 1018 return 0; 1019 } 1020 1021 static void tb_port_lane_bonding_disable(struct tb_port *port) 1022 { 1023 port->dual_link_port->bonded = false; 1024 port->bonded = false; 1025 1026 tb_port_set_link_width(port->dual_link_port, 1); 1027 tb_port_set_link_width(port, 1); 1028 } 1029 1030 /** 1031 * tb_port_is_enabled() - Is the adapter port enabled 1032 * @port: Port to check 1033 */ 1034 bool tb_port_is_enabled(struct tb_port *port) 1035 { 1036 switch (port->config.type) { 1037 case TB_TYPE_PCIE_UP: 1038 case TB_TYPE_PCIE_DOWN: 1039 return tb_pci_port_is_enabled(port); 1040 1041 case TB_TYPE_DP_HDMI_IN: 1042 case TB_TYPE_DP_HDMI_OUT: 1043 return tb_dp_port_is_enabled(port); 1044 1045 case TB_TYPE_USB3_UP: 1046 case TB_TYPE_USB3_DOWN: 1047 return tb_usb3_port_is_enabled(port); 1048 1049 default: 1050 return false; 1051 } 1052 } 1053 1054 /** 1055 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled 1056 * @port: USB3 adapter port to check 1057 */ 1058 bool tb_usb3_port_is_enabled(struct tb_port *port) 1059 { 1060 u32 data; 1061 1062 if (tb_port_read(port, &data, TB_CFG_PORT, 1063 port->cap_adap + ADP_USB3_CS_0, 1)) 1064 return false; 1065 1066 return !!(data & ADP_USB3_CS_0_PE); 1067 } 1068 1069 /** 1070 * tb_usb3_port_enable() - Enable USB3 adapter port 1071 * @port: USB3 adapter port to enable 1072 * @enable: Enable/disable the USB3 adapter 1073 */ 1074 int tb_usb3_port_enable(struct tb_port *port, bool enable) 1075 { 1076 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V) 1077 : ADP_USB3_CS_0_V; 1078 1079 if (!port->cap_adap) 1080 return -ENXIO; 1081 return tb_port_write(port, &word, TB_CFG_PORT, 1082 port->cap_adap + ADP_USB3_CS_0, 1); 1083 } 1084 1085 /** 1086 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled 1087 * @port: PCIe port to check 1088 */ 1089 bool tb_pci_port_is_enabled(struct tb_port *port) 1090 { 1091 u32 data; 1092 1093 if (tb_port_read(port, &data, TB_CFG_PORT, 1094 port->cap_adap + ADP_PCIE_CS_0, 1)) 1095 return false; 1096 1097 return !!(data & ADP_PCIE_CS_0_PE); 1098 } 1099 1100 /** 1101 * tb_pci_port_enable() - Enable PCIe adapter port 1102 * @port: PCIe port to enable 1103 * @enable: Enable/disable the PCIe adapter 1104 */ 1105 int tb_pci_port_enable(struct tb_port *port, bool enable) 1106 { 1107 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0; 1108 if (!port->cap_adap) 1109 return -ENXIO; 1110 return tb_port_write(port, &word, TB_CFG_PORT, 1111 port->cap_adap + ADP_PCIE_CS_0, 1); 1112 } 1113 1114 /** 1115 * tb_dp_port_hpd_is_active() - Is HPD already active 1116 * @port: DP out port to check 1117 * 1118 * Checks if the DP OUT adapter port has HDP bit already set. 1119 */ 1120 int tb_dp_port_hpd_is_active(struct tb_port *port) 1121 { 1122 u32 data; 1123 int ret; 1124 1125 ret = tb_port_read(port, &data, TB_CFG_PORT, 1126 port->cap_adap + ADP_DP_CS_2, 1); 1127 if (ret) 1128 return ret; 1129 1130 return !!(data & ADP_DP_CS_2_HDP); 1131 } 1132 1133 /** 1134 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port 1135 * @port: Port to clear HPD 1136 * 1137 * If the DP IN port has HDP set, this function can be used to clear it. 1138 */ 1139 int tb_dp_port_hpd_clear(struct tb_port *port) 1140 { 1141 u32 data; 1142 int ret; 1143 1144 ret = tb_port_read(port, &data, TB_CFG_PORT, 1145 port->cap_adap + ADP_DP_CS_3, 1); 1146 if (ret) 1147 return ret; 1148 1149 data |= ADP_DP_CS_3_HDPC; 1150 return tb_port_write(port, &data, TB_CFG_PORT, 1151 port->cap_adap + ADP_DP_CS_3, 1); 1152 } 1153 1154 /** 1155 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port 1156 * @port: DP IN/OUT port to set hops 1157 * @video: Video Hop ID 1158 * @aux_tx: AUX TX Hop ID 1159 * @aux_rx: AUX RX Hop ID 1160 * 1161 * Programs specified Hop IDs for DP IN/OUT port. 1162 */ 1163 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video, 1164 unsigned int aux_tx, unsigned int aux_rx) 1165 { 1166 u32 data[2]; 1167 int ret; 1168 1169 ret = tb_port_read(port, data, TB_CFG_PORT, 1170 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1171 if (ret) 1172 return ret; 1173 1174 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK; 1175 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1176 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1177 1178 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) & 1179 ADP_DP_CS_0_VIDEO_HOPID_MASK; 1180 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK; 1181 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) & 1182 ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1183 1184 return tb_port_write(port, data, TB_CFG_PORT, 1185 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1186 } 1187 1188 /** 1189 * tb_dp_port_is_enabled() - Is DP adapter port enabled 1190 * @port: DP adapter port to check 1191 */ 1192 bool tb_dp_port_is_enabled(struct tb_port *port) 1193 { 1194 u32 data[2]; 1195 1196 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0, 1197 ARRAY_SIZE(data))) 1198 return false; 1199 1200 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE)); 1201 } 1202 1203 /** 1204 * tb_dp_port_enable() - Enables/disables DP paths of a port 1205 * @port: DP IN/OUT port 1206 * @enable: Enable/disable DP path 1207 * 1208 * Once Hop IDs are programmed DP paths can be enabled or disabled by 1209 * calling this function. 1210 */ 1211 int tb_dp_port_enable(struct tb_port *port, bool enable) 1212 { 1213 u32 data[2]; 1214 int ret; 1215 1216 ret = tb_port_read(port, data, TB_CFG_PORT, 1217 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1218 if (ret) 1219 return ret; 1220 1221 if (enable) 1222 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE; 1223 else 1224 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE); 1225 1226 return tb_port_write(port, data, TB_CFG_PORT, 1227 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1228 } 1229 1230 /* switch utility functions */ 1231 1232 static const char *tb_switch_generation_name(const struct tb_switch *sw) 1233 { 1234 switch (sw->generation) { 1235 case 1: 1236 return "Thunderbolt 1"; 1237 case 2: 1238 return "Thunderbolt 2"; 1239 case 3: 1240 return "Thunderbolt 3"; 1241 case 4: 1242 return "USB4"; 1243 default: 1244 return "Unknown"; 1245 } 1246 } 1247 1248 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw) 1249 { 1250 const struct tb_regs_switch_header *regs = &sw->config; 1251 1252 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n", 1253 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id, 1254 regs->revision, regs->thunderbolt_version); 1255 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number); 1256 tb_dbg(tb, " Config:\n"); 1257 tb_dbg(tb, 1258 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 1259 regs->upstream_port_number, regs->depth, 1260 (((u64) regs->route_hi) << 32) | regs->route_lo, 1261 regs->enabled, regs->plug_events_delay); 1262 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n", 1263 regs->__unknown1, regs->__unknown4); 1264 } 1265 1266 /** 1267 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET 1268 * 1269 * Return: Returns 0 on success or an error code on failure. 1270 */ 1271 int tb_switch_reset(struct tb *tb, u64 route) 1272 { 1273 struct tb_cfg_result res; 1274 struct tb_regs_switch_header header = { 1275 header.route_hi = route >> 32, 1276 header.route_lo = route, 1277 header.enabled = true, 1278 }; 1279 tb_dbg(tb, "resetting switch at %llx\n", route); 1280 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route, 1281 0, 2, 2, 2); 1282 if (res.err) 1283 return res.err; 1284 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT); 1285 if (res.err > 0) 1286 return -EIO; 1287 return res.err; 1288 } 1289 1290 /** 1291 * tb_plug_events_active() - enable/disable plug events on a switch 1292 * 1293 * Also configures a sane plug_events_delay of 255ms. 1294 * 1295 * Return: Returns 0 on success or an error code on failure. 1296 */ 1297 static int tb_plug_events_active(struct tb_switch *sw, bool active) 1298 { 1299 u32 data; 1300 int res; 1301 1302 if (tb_switch_is_icm(sw)) 1303 return 0; 1304 1305 sw->config.plug_events_delay = 0xff; 1306 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 1307 if (res) 1308 return res; 1309 1310 /* Plug events are always enabled in USB4 */ 1311 if (tb_switch_is_usb4(sw)) 1312 return 0; 1313 1314 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 1315 if (res) 1316 return res; 1317 1318 if (active) { 1319 data = data & 0xFFFFFF83; 1320 switch (sw->config.device_id) { 1321 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1322 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1323 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1324 break; 1325 default: 1326 data |= 4; 1327 } 1328 } else { 1329 data = data | 0x7c; 1330 } 1331 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 1332 sw->cap_plug_events + 1, 1); 1333 } 1334 1335 static ssize_t authorized_show(struct device *dev, 1336 struct device_attribute *attr, 1337 char *buf) 1338 { 1339 struct tb_switch *sw = tb_to_switch(dev); 1340 1341 return sprintf(buf, "%u\n", sw->authorized); 1342 } 1343 1344 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 1345 { 1346 int ret = -EINVAL; 1347 1348 if (!mutex_trylock(&sw->tb->lock)) 1349 return restart_syscall(); 1350 1351 if (sw->authorized) 1352 goto unlock; 1353 1354 switch (val) { 1355 /* Approve switch */ 1356 case 1: 1357 if (sw->key) 1358 ret = tb_domain_approve_switch_key(sw->tb, sw); 1359 else 1360 ret = tb_domain_approve_switch(sw->tb, sw); 1361 break; 1362 1363 /* Challenge switch */ 1364 case 2: 1365 if (sw->key) 1366 ret = tb_domain_challenge_switch_key(sw->tb, sw); 1367 break; 1368 1369 default: 1370 break; 1371 } 1372 1373 if (!ret) { 1374 sw->authorized = val; 1375 /* Notify status change to the userspace */ 1376 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 1377 } 1378 1379 unlock: 1380 mutex_unlock(&sw->tb->lock); 1381 return ret; 1382 } 1383 1384 static ssize_t authorized_store(struct device *dev, 1385 struct device_attribute *attr, 1386 const char *buf, size_t count) 1387 { 1388 struct tb_switch *sw = tb_to_switch(dev); 1389 unsigned int val; 1390 ssize_t ret; 1391 1392 ret = kstrtouint(buf, 0, &val); 1393 if (ret) 1394 return ret; 1395 if (val > 2) 1396 return -EINVAL; 1397 1398 pm_runtime_get_sync(&sw->dev); 1399 ret = tb_switch_set_authorized(sw, val); 1400 pm_runtime_mark_last_busy(&sw->dev); 1401 pm_runtime_put_autosuspend(&sw->dev); 1402 1403 return ret ? ret : count; 1404 } 1405 static DEVICE_ATTR_RW(authorized); 1406 1407 static ssize_t boot_show(struct device *dev, struct device_attribute *attr, 1408 char *buf) 1409 { 1410 struct tb_switch *sw = tb_to_switch(dev); 1411 1412 return sprintf(buf, "%u\n", sw->boot); 1413 } 1414 static DEVICE_ATTR_RO(boot); 1415 1416 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 1417 char *buf) 1418 { 1419 struct tb_switch *sw = tb_to_switch(dev); 1420 1421 return sprintf(buf, "%#x\n", sw->device); 1422 } 1423 static DEVICE_ATTR_RO(device); 1424 1425 static ssize_t 1426 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1427 { 1428 struct tb_switch *sw = tb_to_switch(dev); 1429 1430 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : ""); 1431 } 1432 static DEVICE_ATTR_RO(device_name); 1433 1434 static ssize_t 1435 generation_show(struct device *dev, struct device_attribute *attr, char *buf) 1436 { 1437 struct tb_switch *sw = tb_to_switch(dev); 1438 1439 return sprintf(buf, "%u\n", sw->generation); 1440 } 1441 static DEVICE_ATTR_RO(generation); 1442 1443 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 1444 char *buf) 1445 { 1446 struct tb_switch *sw = tb_to_switch(dev); 1447 ssize_t ret; 1448 1449 if (!mutex_trylock(&sw->tb->lock)) 1450 return restart_syscall(); 1451 1452 if (sw->key) 1453 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 1454 else 1455 ret = sprintf(buf, "\n"); 1456 1457 mutex_unlock(&sw->tb->lock); 1458 return ret; 1459 } 1460 1461 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 1462 const char *buf, size_t count) 1463 { 1464 struct tb_switch *sw = tb_to_switch(dev); 1465 u8 key[TB_SWITCH_KEY_SIZE]; 1466 ssize_t ret = count; 1467 bool clear = false; 1468 1469 if (!strcmp(buf, "\n")) 1470 clear = true; 1471 else if (hex2bin(key, buf, sizeof(key))) 1472 return -EINVAL; 1473 1474 if (!mutex_trylock(&sw->tb->lock)) 1475 return restart_syscall(); 1476 1477 if (sw->authorized) { 1478 ret = -EBUSY; 1479 } else { 1480 kfree(sw->key); 1481 if (clear) { 1482 sw->key = NULL; 1483 } else { 1484 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 1485 if (!sw->key) 1486 ret = -ENOMEM; 1487 } 1488 } 1489 1490 mutex_unlock(&sw->tb->lock); 1491 return ret; 1492 } 1493 static DEVICE_ATTR(key, 0600, key_show, key_store); 1494 1495 static ssize_t speed_show(struct device *dev, struct device_attribute *attr, 1496 char *buf) 1497 { 1498 struct tb_switch *sw = tb_to_switch(dev); 1499 1500 return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed); 1501 } 1502 1503 /* 1504 * Currently all lanes must run at the same speed but we expose here 1505 * both directions to allow possible asymmetric links in the future. 1506 */ 1507 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL); 1508 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL); 1509 1510 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr, 1511 char *buf) 1512 { 1513 struct tb_switch *sw = tb_to_switch(dev); 1514 1515 return sprintf(buf, "%u\n", sw->link_width); 1516 } 1517 1518 /* 1519 * Currently link has same amount of lanes both directions (1 or 2) but 1520 * expose them separately to allow possible asymmetric links in the future. 1521 */ 1522 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL); 1523 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL); 1524 1525 static ssize_t nvm_authenticate_show(struct device *dev, 1526 struct device_attribute *attr, char *buf) 1527 { 1528 struct tb_switch *sw = tb_to_switch(dev); 1529 u32 status; 1530 1531 nvm_get_auth_status(sw, &status); 1532 return sprintf(buf, "%#x\n", status); 1533 } 1534 1535 static ssize_t nvm_authenticate_store(struct device *dev, 1536 struct device_attribute *attr, const char *buf, size_t count) 1537 { 1538 struct tb_switch *sw = tb_to_switch(dev); 1539 bool val; 1540 int ret; 1541 1542 pm_runtime_get_sync(&sw->dev); 1543 1544 if (!mutex_trylock(&sw->tb->lock)) { 1545 ret = restart_syscall(); 1546 goto exit_rpm; 1547 } 1548 1549 /* If NVMem devices are not yet added */ 1550 if (!sw->nvm) { 1551 ret = -EAGAIN; 1552 goto exit_unlock; 1553 } 1554 1555 ret = kstrtobool(buf, &val); 1556 if (ret) 1557 goto exit_unlock; 1558 1559 /* Always clear the authentication status */ 1560 nvm_clear_auth_status(sw); 1561 1562 if (val) { 1563 if (!sw->nvm->buf) { 1564 ret = -EINVAL; 1565 goto exit_unlock; 1566 } 1567 1568 ret = nvm_validate_and_write(sw); 1569 if (ret) 1570 goto exit_unlock; 1571 1572 sw->nvm->authenticating = true; 1573 ret = nvm_authenticate(sw); 1574 } 1575 1576 exit_unlock: 1577 mutex_unlock(&sw->tb->lock); 1578 exit_rpm: 1579 pm_runtime_mark_last_busy(&sw->dev); 1580 pm_runtime_put_autosuspend(&sw->dev); 1581 1582 if (ret) 1583 return ret; 1584 return count; 1585 } 1586 static DEVICE_ATTR_RW(nvm_authenticate); 1587 1588 static ssize_t nvm_version_show(struct device *dev, 1589 struct device_attribute *attr, char *buf) 1590 { 1591 struct tb_switch *sw = tb_to_switch(dev); 1592 int ret; 1593 1594 if (!mutex_trylock(&sw->tb->lock)) 1595 return restart_syscall(); 1596 1597 if (sw->safe_mode) 1598 ret = -ENODATA; 1599 else if (!sw->nvm) 1600 ret = -EAGAIN; 1601 else 1602 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 1603 1604 mutex_unlock(&sw->tb->lock); 1605 1606 return ret; 1607 } 1608 static DEVICE_ATTR_RO(nvm_version); 1609 1610 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 1611 char *buf) 1612 { 1613 struct tb_switch *sw = tb_to_switch(dev); 1614 1615 return sprintf(buf, "%#x\n", sw->vendor); 1616 } 1617 static DEVICE_ATTR_RO(vendor); 1618 1619 static ssize_t 1620 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1621 { 1622 struct tb_switch *sw = tb_to_switch(dev); 1623 1624 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : ""); 1625 } 1626 static DEVICE_ATTR_RO(vendor_name); 1627 1628 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 1629 char *buf) 1630 { 1631 struct tb_switch *sw = tb_to_switch(dev); 1632 1633 return sprintf(buf, "%pUb\n", sw->uuid); 1634 } 1635 static DEVICE_ATTR_RO(unique_id); 1636 1637 static struct attribute *switch_attrs[] = { 1638 &dev_attr_authorized.attr, 1639 &dev_attr_boot.attr, 1640 &dev_attr_device.attr, 1641 &dev_attr_device_name.attr, 1642 &dev_attr_generation.attr, 1643 &dev_attr_key.attr, 1644 &dev_attr_nvm_authenticate.attr, 1645 &dev_attr_nvm_version.attr, 1646 &dev_attr_rx_speed.attr, 1647 &dev_attr_rx_lanes.attr, 1648 &dev_attr_tx_speed.attr, 1649 &dev_attr_tx_lanes.attr, 1650 &dev_attr_vendor.attr, 1651 &dev_attr_vendor_name.attr, 1652 &dev_attr_unique_id.attr, 1653 NULL, 1654 }; 1655 1656 static umode_t switch_attr_is_visible(struct kobject *kobj, 1657 struct attribute *attr, int n) 1658 { 1659 struct device *dev = container_of(kobj, struct device, kobj); 1660 struct tb_switch *sw = tb_to_switch(dev); 1661 1662 if (attr == &dev_attr_device.attr) { 1663 if (!sw->device) 1664 return 0; 1665 } else if (attr == &dev_attr_device_name.attr) { 1666 if (!sw->device_name) 1667 return 0; 1668 } else if (attr == &dev_attr_vendor.attr) { 1669 if (!sw->vendor) 1670 return 0; 1671 } else if (attr == &dev_attr_vendor_name.attr) { 1672 if (!sw->vendor_name) 1673 return 0; 1674 } else if (attr == &dev_attr_key.attr) { 1675 if (tb_route(sw) && 1676 sw->tb->security_level == TB_SECURITY_SECURE && 1677 sw->security_level == TB_SECURITY_SECURE) 1678 return attr->mode; 1679 return 0; 1680 } else if (attr == &dev_attr_rx_speed.attr || 1681 attr == &dev_attr_rx_lanes.attr || 1682 attr == &dev_attr_tx_speed.attr || 1683 attr == &dev_attr_tx_lanes.attr) { 1684 if (tb_route(sw)) 1685 return attr->mode; 1686 return 0; 1687 } else if (attr == &dev_attr_nvm_authenticate.attr) { 1688 if (nvm_upgradeable(sw)) 1689 return attr->mode; 1690 return 0; 1691 } else if (attr == &dev_attr_nvm_version.attr) { 1692 if (nvm_readable(sw)) 1693 return attr->mode; 1694 return 0; 1695 } else if (attr == &dev_attr_boot.attr) { 1696 if (tb_route(sw)) 1697 return attr->mode; 1698 return 0; 1699 } 1700 1701 return sw->safe_mode ? 0 : attr->mode; 1702 } 1703 1704 static struct attribute_group switch_group = { 1705 .is_visible = switch_attr_is_visible, 1706 .attrs = switch_attrs, 1707 }; 1708 1709 static const struct attribute_group *switch_groups[] = { 1710 &switch_group, 1711 NULL, 1712 }; 1713 1714 static void tb_switch_release(struct device *dev) 1715 { 1716 struct tb_switch *sw = tb_to_switch(dev); 1717 struct tb_port *port; 1718 1719 dma_port_free(sw->dma_port); 1720 1721 tb_switch_for_each_port(sw, port) { 1722 if (!port->disabled) { 1723 ida_destroy(&port->in_hopids); 1724 ida_destroy(&port->out_hopids); 1725 } 1726 } 1727 1728 kfree(sw->uuid); 1729 kfree(sw->device_name); 1730 kfree(sw->vendor_name); 1731 kfree(sw->ports); 1732 kfree(sw->drom); 1733 kfree(sw->key); 1734 kfree(sw); 1735 } 1736 1737 /* 1738 * Currently only need to provide the callbacks. Everything else is handled 1739 * in the connection manager. 1740 */ 1741 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev) 1742 { 1743 struct tb_switch *sw = tb_to_switch(dev); 1744 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 1745 1746 if (cm_ops->runtime_suspend_switch) 1747 return cm_ops->runtime_suspend_switch(sw); 1748 1749 return 0; 1750 } 1751 1752 static int __maybe_unused tb_switch_runtime_resume(struct device *dev) 1753 { 1754 struct tb_switch *sw = tb_to_switch(dev); 1755 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 1756 1757 if (cm_ops->runtime_resume_switch) 1758 return cm_ops->runtime_resume_switch(sw); 1759 return 0; 1760 } 1761 1762 static const struct dev_pm_ops tb_switch_pm_ops = { 1763 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume, 1764 NULL) 1765 }; 1766 1767 struct device_type tb_switch_type = { 1768 .name = "thunderbolt_device", 1769 .release = tb_switch_release, 1770 .pm = &tb_switch_pm_ops, 1771 }; 1772 1773 static int tb_switch_get_generation(struct tb_switch *sw) 1774 { 1775 switch (sw->config.device_id) { 1776 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1777 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1778 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 1779 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 1780 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 1781 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1782 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 1783 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 1784 return 1; 1785 1786 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 1787 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 1788 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 1789 return 2; 1790 1791 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 1792 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 1793 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 1794 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 1795 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 1796 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: 1797 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: 1798 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: 1799 case PCI_DEVICE_ID_INTEL_ICL_NHI0: 1800 case PCI_DEVICE_ID_INTEL_ICL_NHI1: 1801 return 3; 1802 1803 default: 1804 if (tb_switch_is_usb4(sw)) 1805 return 4; 1806 1807 /* 1808 * For unknown switches assume generation to be 1 to be 1809 * on the safe side. 1810 */ 1811 tb_sw_warn(sw, "unsupported switch device id %#x\n", 1812 sw->config.device_id); 1813 return 1; 1814 } 1815 } 1816 1817 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth) 1818 { 1819 int max_depth; 1820 1821 if (tb_switch_is_usb4(sw) || 1822 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch))) 1823 max_depth = USB4_SWITCH_MAX_DEPTH; 1824 else 1825 max_depth = TB_SWITCH_MAX_DEPTH; 1826 1827 return depth > max_depth; 1828 } 1829 1830 /** 1831 * tb_switch_alloc() - allocate a switch 1832 * @tb: Pointer to the owning domain 1833 * @parent: Parent device for this switch 1834 * @route: Route string for this switch 1835 * 1836 * Allocates and initializes a switch. Will not upload configuration to 1837 * the switch. For that you need to call tb_switch_configure() 1838 * separately. The returned switch should be released by calling 1839 * tb_switch_put(). 1840 * 1841 * Return: Pointer to the allocated switch or ERR_PTR() in case of 1842 * failure. 1843 */ 1844 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 1845 u64 route) 1846 { 1847 struct tb_switch *sw; 1848 int upstream_port; 1849 int i, ret, depth; 1850 1851 /* Unlock the downstream port so we can access the switch below */ 1852 if (route) { 1853 struct tb_switch *parent_sw = tb_to_switch(parent); 1854 struct tb_port *down; 1855 1856 down = tb_port_at(route, parent_sw); 1857 tb_port_unlock(down); 1858 } 1859 1860 depth = tb_route_length(route); 1861 1862 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 1863 if (upstream_port < 0) 1864 return ERR_PTR(upstream_port); 1865 1866 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1867 if (!sw) 1868 return ERR_PTR(-ENOMEM); 1869 1870 sw->tb = tb; 1871 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5); 1872 if (ret) 1873 goto err_free_sw_ports; 1874 1875 sw->generation = tb_switch_get_generation(sw); 1876 1877 tb_dbg(tb, "current switch config:\n"); 1878 tb_dump_switch(tb, sw); 1879 1880 /* configure switch */ 1881 sw->config.upstream_port_number = upstream_port; 1882 sw->config.depth = depth; 1883 sw->config.route_hi = upper_32_bits(route); 1884 sw->config.route_lo = lower_32_bits(route); 1885 sw->config.enabled = 0; 1886 1887 /* Make sure we do not exceed maximum topology limit */ 1888 if (tb_switch_exceeds_max_depth(sw, depth)) { 1889 ret = -EADDRNOTAVAIL; 1890 goto err_free_sw_ports; 1891 } 1892 1893 /* initialize ports */ 1894 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 1895 GFP_KERNEL); 1896 if (!sw->ports) { 1897 ret = -ENOMEM; 1898 goto err_free_sw_ports; 1899 } 1900 1901 for (i = 0; i <= sw->config.max_port_number; i++) { 1902 /* minimum setup for tb_find_cap and tb_drom_read to work */ 1903 sw->ports[i].sw = sw; 1904 sw->ports[i].port = i; 1905 } 1906 1907 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 1908 if (ret > 0) 1909 sw->cap_plug_events = ret; 1910 1911 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 1912 if (ret > 0) 1913 sw->cap_lc = ret; 1914 1915 /* Root switch is always authorized */ 1916 if (!route) 1917 sw->authorized = true; 1918 1919 device_initialize(&sw->dev); 1920 sw->dev.parent = parent; 1921 sw->dev.bus = &tb_bus_type; 1922 sw->dev.type = &tb_switch_type; 1923 sw->dev.groups = switch_groups; 1924 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1925 1926 return sw; 1927 1928 err_free_sw_ports: 1929 kfree(sw->ports); 1930 kfree(sw); 1931 1932 return ERR_PTR(ret); 1933 } 1934 1935 /** 1936 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 1937 * @tb: Pointer to the owning domain 1938 * @parent: Parent device for this switch 1939 * @route: Route string for this switch 1940 * 1941 * This creates a switch in safe mode. This means the switch pretty much 1942 * lacks all capabilities except DMA configuration port before it is 1943 * flashed with a valid NVM firmware. 1944 * 1945 * The returned switch must be released by calling tb_switch_put(). 1946 * 1947 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure 1948 */ 1949 struct tb_switch * 1950 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 1951 { 1952 struct tb_switch *sw; 1953 1954 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1955 if (!sw) 1956 return ERR_PTR(-ENOMEM); 1957 1958 sw->tb = tb; 1959 sw->config.depth = tb_route_length(route); 1960 sw->config.route_hi = upper_32_bits(route); 1961 sw->config.route_lo = lower_32_bits(route); 1962 sw->safe_mode = true; 1963 1964 device_initialize(&sw->dev); 1965 sw->dev.parent = parent; 1966 sw->dev.bus = &tb_bus_type; 1967 sw->dev.type = &tb_switch_type; 1968 sw->dev.groups = switch_groups; 1969 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1970 1971 return sw; 1972 } 1973 1974 /** 1975 * tb_switch_configure() - Uploads configuration to the switch 1976 * @sw: Switch to configure 1977 * 1978 * Call this function before the switch is added to the system. It will 1979 * upload configuration to the switch and makes it available for the 1980 * connection manager to use. Can be called to the switch again after 1981 * resume from low power states to re-initialize it. 1982 * 1983 * Return: %0 in case of success and negative errno in case of failure 1984 */ 1985 int tb_switch_configure(struct tb_switch *sw) 1986 { 1987 struct tb *tb = sw->tb; 1988 u64 route; 1989 int ret; 1990 1991 route = tb_route(sw); 1992 1993 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n", 1994 sw->config.enabled ? "restoring " : "initializing", route, 1995 tb_route_length(route), sw->config.upstream_port_number); 1996 1997 sw->config.enabled = 1; 1998 1999 if (tb_switch_is_usb4(sw)) { 2000 /* 2001 * For USB4 devices, we need to program the CM version 2002 * accordingly so that it knows to expose all the 2003 * additional capabilities. 2004 */ 2005 sw->config.cmuv = USB4_VERSION_1_0; 2006 2007 /* Enumerate the switch */ 2008 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2009 ROUTER_CS_1, 4); 2010 if (ret) 2011 return ret; 2012 2013 ret = usb4_switch_setup(sw); 2014 if (ret) 2015 return ret; 2016 2017 ret = usb4_switch_configure_link(sw); 2018 } else { 2019 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 2020 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 2021 sw->config.vendor_id); 2022 2023 if (!sw->cap_plug_events) { 2024 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 2025 return -ENODEV; 2026 } 2027 2028 /* Enumerate the switch */ 2029 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2030 ROUTER_CS_1, 3); 2031 if (ret) 2032 return ret; 2033 2034 ret = tb_lc_configure_link(sw); 2035 } 2036 if (ret) 2037 return ret; 2038 2039 return tb_plug_events_active(sw, true); 2040 } 2041 2042 static int tb_switch_set_uuid(struct tb_switch *sw) 2043 { 2044 bool uid = false; 2045 u32 uuid[4]; 2046 int ret; 2047 2048 if (sw->uuid) 2049 return 0; 2050 2051 if (tb_switch_is_usb4(sw)) { 2052 ret = usb4_switch_read_uid(sw, &sw->uid); 2053 if (ret) 2054 return ret; 2055 uid = true; 2056 } else { 2057 /* 2058 * The newer controllers include fused UUID as part of 2059 * link controller specific registers 2060 */ 2061 ret = tb_lc_read_uuid(sw, uuid); 2062 if (ret) { 2063 if (ret != -EINVAL) 2064 return ret; 2065 uid = true; 2066 } 2067 } 2068 2069 if (uid) { 2070 /* 2071 * ICM generates UUID based on UID and fills the upper 2072 * two words with ones. This is not strictly following 2073 * UUID format but we want to be compatible with it so 2074 * we do the same here. 2075 */ 2076 uuid[0] = sw->uid & 0xffffffff; 2077 uuid[1] = (sw->uid >> 32) & 0xffffffff; 2078 uuid[2] = 0xffffffff; 2079 uuid[3] = 0xffffffff; 2080 } 2081 2082 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 2083 if (!sw->uuid) 2084 return -ENOMEM; 2085 return 0; 2086 } 2087 2088 static int tb_switch_add_dma_port(struct tb_switch *sw) 2089 { 2090 u32 status; 2091 int ret; 2092 2093 switch (sw->generation) { 2094 case 2: 2095 /* Only root switch can be upgraded */ 2096 if (tb_route(sw)) 2097 return 0; 2098 2099 /* fallthrough */ 2100 case 3: 2101 ret = tb_switch_set_uuid(sw); 2102 if (ret) 2103 return ret; 2104 break; 2105 2106 default: 2107 /* 2108 * DMA port is the only thing available when the switch 2109 * is in safe mode. 2110 */ 2111 if (!sw->safe_mode) 2112 return 0; 2113 break; 2114 } 2115 2116 /* Root switch DMA port requires running firmware */ 2117 if (!tb_route(sw) && !tb_switch_is_icm(sw)) 2118 return 0; 2119 2120 sw->dma_port = dma_port_alloc(sw); 2121 if (!sw->dma_port) 2122 return 0; 2123 2124 if (sw->no_nvm_upgrade) 2125 return 0; 2126 2127 /* 2128 * If there is status already set then authentication failed 2129 * when the dma_port_flash_update_auth() returned. Power cycling 2130 * is not needed (it was done already) so only thing we do here 2131 * is to unblock runtime PM of the root port. 2132 */ 2133 nvm_get_auth_status(sw, &status); 2134 if (status) { 2135 if (!tb_route(sw)) 2136 nvm_authenticate_complete_dma_port(sw); 2137 return 0; 2138 } 2139 2140 /* 2141 * Check status of the previous flash authentication. If there 2142 * is one we need to power cycle the switch in any case to make 2143 * it functional again. 2144 */ 2145 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 2146 if (ret <= 0) 2147 return ret; 2148 2149 /* Now we can allow root port to suspend again */ 2150 if (!tb_route(sw)) 2151 nvm_authenticate_complete_dma_port(sw); 2152 2153 if (status) { 2154 tb_sw_info(sw, "switch flash authentication failed\n"); 2155 nvm_set_auth_status(sw, status); 2156 } 2157 2158 tb_sw_info(sw, "power cycling the switch now\n"); 2159 dma_port_power_cycle(sw->dma_port); 2160 2161 /* 2162 * We return error here which causes the switch adding failure. 2163 * It should appear back after power cycle is complete. 2164 */ 2165 return -ESHUTDOWN; 2166 } 2167 2168 static void tb_switch_default_link_ports(struct tb_switch *sw) 2169 { 2170 int i; 2171 2172 for (i = 1; i <= sw->config.max_port_number; i += 2) { 2173 struct tb_port *port = &sw->ports[i]; 2174 struct tb_port *subordinate; 2175 2176 if (!tb_port_is_null(port)) 2177 continue; 2178 2179 /* Check for the subordinate port */ 2180 if (i == sw->config.max_port_number || 2181 !tb_port_is_null(&sw->ports[i + 1])) 2182 continue; 2183 2184 /* Link them if not already done so (by DROM) */ 2185 subordinate = &sw->ports[i + 1]; 2186 if (!port->dual_link_port && !subordinate->dual_link_port) { 2187 port->link_nr = 0; 2188 port->dual_link_port = subordinate; 2189 subordinate->link_nr = 1; 2190 subordinate->dual_link_port = port; 2191 2192 tb_sw_dbg(sw, "linked ports %d <-> %d\n", 2193 port->port, subordinate->port); 2194 } 2195 } 2196 } 2197 2198 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw) 2199 { 2200 const struct tb_port *up = tb_upstream_port(sw); 2201 2202 if (!up->dual_link_port || !up->dual_link_port->remote) 2203 return false; 2204 2205 if (tb_switch_is_usb4(sw)) 2206 return usb4_switch_lane_bonding_possible(sw); 2207 return tb_lc_lane_bonding_possible(sw); 2208 } 2209 2210 static int tb_switch_update_link_attributes(struct tb_switch *sw) 2211 { 2212 struct tb_port *up; 2213 bool change = false; 2214 int ret; 2215 2216 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2217 return 0; 2218 2219 up = tb_upstream_port(sw); 2220 2221 ret = tb_port_get_link_speed(up); 2222 if (ret < 0) 2223 return ret; 2224 if (sw->link_speed != ret) 2225 change = true; 2226 sw->link_speed = ret; 2227 2228 ret = tb_port_get_link_width(up); 2229 if (ret < 0) 2230 return ret; 2231 if (sw->link_width != ret) 2232 change = true; 2233 sw->link_width = ret; 2234 2235 /* Notify userspace that there is possible link attribute change */ 2236 if (device_is_registered(&sw->dev) && change) 2237 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 2238 2239 return 0; 2240 } 2241 2242 /** 2243 * tb_switch_lane_bonding_enable() - Enable lane bonding 2244 * @sw: Switch to enable lane bonding 2245 * 2246 * Connection manager can call this function to enable lane bonding of a 2247 * switch. If conditions are correct and both switches support the feature, 2248 * lanes are bonded. It is safe to call this to any switch. 2249 */ 2250 int tb_switch_lane_bonding_enable(struct tb_switch *sw) 2251 { 2252 struct tb_switch *parent = tb_to_switch(sw->dev.parent); 2253 struct tb_port *up, *down; 2254 u64 route = tb_route(sw); 2255 int ret; 2256 2257 if (!route) 2258 return 0; 2259 2260 if (!tb_switch_lane_bonding_possible(sw)) 2261 return 0; 2262 2263 up = tb_upstream_port(sw); 2264 down = tb_port_at(route, parent); 2265 2266 if (!tb_port_is_width_supported(up, 2) || 2267 !tb_port_is_width_supported(down, 2)) 2268 return 0; 2269 2270 ret = tb_port_lane_bonding_enable(up); 2271 if (ret) { 2272 tb_port_warn(up, "failed to enable lane bonding\n"); 2273 return ret; 2274 } 2275 2276 ret = tb_port_lane_bonding_enable(down); 2277 if (ret) { 2278 tb_port_warn(down, "failed to enable lane bonding\n"); 2279 tb_port_lane_bonding_disable(up); 2280 return ret; 2281 } 2282 2283 tb_switch_update_link_attributes(sw); 2284 2285 tb_sw_dbg(sw, "lane bonding enabled\n"); 2286 return ret; 2287 } 2288 2289 /** 2290 * tb_switch_lane_bonding_disable() - Disable lane bonding 2291 * @sw: Switch whose lane bonding to disable 2292 * 2293 * Disables lane bonding between @sw and parent. This can be called even 2294 * if lanes were not bonded originally. 2295 */ 2296 void tb_switch_lane_bonding_disable(struct tb_switch *sw) 2297 { 2298 struct tb_switch *parent = tb_to_switch(sw->dev.parent); 2299 struct tb_port *up, *down; 2300 2301 if (!tb_route(sw)) 2302 return; 2303 2304 up = tb_upstream_port(sw); 2305 if (!up->bonded) 2306 return; 2307 2308 down = tb_port_at(tb_route(sw), parent); 2309 2310 tb_port_lane_bonding_disable(up); 2311 tb_port_lane_bonding_disable(down); 2312 2313 tb_switch_update_link_attributes(sw); 2314 tb_sw_dbg(sw, "lane bonding disabled\n"); 2315 } 2316 2317 /** 2318 * tb_switch_add() - Add a switch to the domain 2319 * @sw: Switch to add 2320 * 2321 * This is the last step in adding switch to the domain. It will read 2322 * identification information from DROM and initializes ports so that 2323 * they can be used to connect other switches. The switch will be 2324 * exposed to the userspace when this function successfully returns. To 2325 * remove and release the switch, call tb_switch_remove(). 2326 * 2327 * Return: %0 in case of success and negative errno in case of failure 2328 */ 2329 int tb_switch_add(struct tb_switch *sw) 2330 { 2331 int i, ret; 2332 2333 /* 2334 * Initialize DMA control port now before we read DROM. Recent 2335 * host controllers have more complete DROM on NVM that includes 2336 * vendor and model identification strings which we then expose 2337 * to the userspace. NVM can be accessed through DMA 2338 * configuration based mailbox. 2339 */ 2340 ret = tb_switch_add_dma_port(sw); 2341 if (ret) { 2342 dev_err(&sw->dev, "failed to add DMA port\n"); 2343 return ret; 2344 } 2345 2346 if (!sw->safe_mode) { 2347 /* read drom */ 2348 ret = tb_drom_read(sw); 2349 if (ret) { 2350 dev_err(&sw->dev, "reading DROM failed\n"); 2351 return ret; 2352 } 2353 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid); 2354 2355 ret = tb_switch_set_uuid(sw); 2356 if (ret) { 2357 dev_err(&sw->dev, "failed to set UUID\n"); 2358 return ret; 2359 } 2360 2361 for (i = 0; i <= sw->config.max_port_number; i++) { 2362 if (sw->ports[i].disabled) { 2363 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n"); 2364 continue; 2365 } 2366 ret = tb_init_port(&sw->ports[i]); 2367 if (ret) { 2368 dev_err(&sw->dev, "failed to initialize port %d\n", i); 2369 return ret; 2370 } 2371 } 2372 2373 tb_switch_default_link_ports(sw); 2374 2375 ret = tb_switch_update_link_attributes(sw); 2376 if (ret) 2377 return ret; 2378 2379 ret = tb_switch_tmu_init(sw); 2380 if (ret) 2381 return ret; 2382 } 2383 2384 ret = device_add(&sw->dev); 2385 if (ret) { 2386 dev_err(&sw->dev, "failed to add device: %d\n", ret); 2387 return ret; 2388 } 2389 2390 if (tb_route(sw)) { 2391 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n", 2392 sw->vendor, sw->device); 2393 if (sw->vendor_name && sw->device_name) 2394 dev_info(&sw->dev, "%s %s\n", sw->vendor_name, 2395 sw->device_name); 2396 } 2397 2398 ret = tb_switch_nvm_add(sw); 2399 if (ret) { 2400 dev_err(&sw->dev, "failed to add NVM devices\n"); 2401 device_del(&sw->dev); 2402 return ret; 2403 } 2404 2405 pm_runtime_set_active(&sw->dev); 2406 if (sw->rpm) { 2407 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY); 2408 pm_runtime_use_autosuspend(&sw->dev); 2409 pm_runtime_mark_last_busy(&sw->dev); 2410 pm_runtime_enable(&sw->dev); 2411 pm_request_autosuspend(&sw->dev); 2412 } 2413 2414 return 0; 2415 } 2416 2417 /** 2418 * tb_switch_remove() - Remove and release a switch 2419 * @sw: Switch to remove 2420 * 2421 * This will remove the switch from the domain and release it after last 2422 * reference count drops to zero. If there are switches connected below 2423 * this switch, they will be removed as well. 2424 */ 2425 void tb_switch_remove(struct tb_switch *sw) 2426 { 2427 struct tb_port *port; 2428 2429 if (sw->rpm) { 2430 pm_runtime_get_sync(&sw->dev); 2431 pm_runtime_disable(&sw->dev); 2432 } 2433 2434 /* port 0 is the switch itself and never has a remote */ 2435 tb_switch_for_each_port(sw, port) { 2436 if (tb_port_has_remote(port)) { 2437 tb_switch_remove(port->remote->sw); 2438 port->remote = NULL; 2439 } else if (port->xdomain) { 2440 tb_xdomain_remove(port->xdomain); 2441 port->xdomain = NULL; 2442 } 2443 } 2444 2445 if (!sw->is_unplugged) 2446 tb_plug_events_active(sw, false); 2447 2448 if (tb_switch_is_usb4(sw)) 2449 usb4_switch_unconfigure_link(sw); 2450 else 2451 tb_lc_unconfigure_link(sw); 2452 2453 tb_switch_nvm_remove(sw); 2454 2455 if (tb_route(sw)) 2456 dev_info(&sw->dev, "device disconnected\n"); 2457 device_unregister(&sw->dev); 2458 } 2459 2460 /** 2461 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 2462 */ 2463 void tb_sw_set_unplugged(struct tb_switch *sw) 2464 { 2465 struct tb_port *port; 2466 2467 if (sw == sw->tb->root_switch) { 2468 tb_sw_WARN(sw, "cannot unplug root switch\n"); 2469 return; 2470 } 2471 if (sw->is_unplugged) { 2472 tb_sw_WARN(sw, "is_unplugged already set\n"); 2473 return; 2474 } 2475 sw->is_unplugged = true; 2476 tb_switch_for_each_port(sw, port) { 2477 if (tb_port_has_remote(port)) 2478 tb_sw_set_unplugged(port->remote->sw); 2479 else if (port->xdomain) 2480 port->xdomain->is_unplugged = true; 2481 } 2482 } 2483 2484 int tb_switch_resume(struct tb_switch *sw) 2485 { 2486 struct tb_port *port; 2487 int err; 2488 2489 tb_sw_dbg(sw, "resuming switch\n"); 2490 2491 /* 2492 * Check for UID of the connected switches except for root 2493 * switch which we assume cannot be removed. 2494 */ 2495 if (tb_route(sw)) { 2496 u64 uid; 2497 2498 /* 2499 * Check first that we can still read the switch config 2500 * space. It may be that there is now another domain 2501 * connected. 2502 */ 2503 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw)); 2504 if (err < 0) { 2505 tb_sw_info(sw, "switch not present anymore\n"); 2506 return err; 2507 } 2508 2509 if (tb_switch_is_usb4(sw)) 2510 err = usb4_switch_read_uid(sw, &uid); 2511 else 2512 err = tb_drom_read_uid_only(sw, &uid); 2513 if (err) { 2514 tb_sw_warn(sw, "uid read failed\n"); 2515 return err; 2516 } 2517 if (sw->uid != uid) { 2518 tb_sw_info(sw, 2519 "changed while suspended (uid %#llx -> %#llx)\n", 2520 sw->uid, uid); 2521 return -ENODEV; 2522 } 2523 } 2524 2525 err = tb_switch_configure(sw); 2526 if (err) 2527 return err; 2528 2529 /* check for surviving downstream switches */ 2530 tb_switch_for_each_port(sw, port) { 2531 if (!tb_port_has_remote(port) && !port->xdomain) 2532 continue; 2533 2534 if (tb_wait_for_port(port, true) <= 0) { 2535 tb_port_warn(port, 2536 "lost during suspend, disconnecting\n"); 2537 if (tb_port_has_remote(port)) 2538 tb_sw_set_unplugged(port->remote->sw); 2539 else if (port->xdomain) 2540 port->xdomain->is_unplugged = true; 2541 } else if (tb_port_has_remote(port) || port->xdomain) { 2542 /* 2543 * Always unlock the port so the downstream 2544 * switch/domain is accessible. 2545 */ 2546 if (tb_port_unlock(port)) 2547 tb_port_warn(port, "failed to unlock port\n"); 2548 if (port->remote && tb_switch_resume(port->remote->sw)) { 2549 tb_port_warn(port, 2550 "lost during suspend, disconnecting\n"); 2551 tb_sw_set_unplugged(port->remote->sw); 2552 } 2553 } 2554 } 2555 return 0; 2556 } 2557 2558 void tb_switch_suspend(struct tb_switch *sw) 2559 { 2560 struct tb_port *port; 2561 int err; 2562 2563 err = tb_plug_events_active(sw, false); 2564 if (err) 2565 return; 2566 2567 tb_switch_for_each_port(sw, port) { 2568 if (tb_port_has_remote(port)) 2569 tb_switch_suspend(port->remote->sw); 2570 } 2571 2572 if (tb_switch_is_usb4(sw)) 2573 usb4_switch_set_sleep(sw); 2574 else 2575 tb_lc_set_sleep(sw); 2576 } 2577 2578 /** 2579 * tb_switch_query_dp_resource() - Query availability of DP resource 2580 * @sw: Switch whose DP resource is queried 2581 * @in: DP IN port 2582 * 2583 * Queries availability of DP resource for DP tunneling using switch 2584 * specific means. Returns %true if resource is available. 2585 */ 2586 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) 2587 { 2588 if (tb_switch_is_usb4(sw)) 2589 return usb4_switch_query_dp_resource(sw, in); 2590 return tb_lc_dp_sink_query(sw, in); 2591 } 2592 2593 /** 2594 * tb_switch_alloc_dp_resource() - Allocate available DP resource 2595 * @sw: Switch whose DP resource is allocated 2596 * @in: DP IN port 2597 * 2598 * Allocates DP resource for DP tunneling. The resource must be 2599 * available for this to succeed (see tb_switch_query_dp_resource()). 2600 * Returns %0 in success and negative errno otherwise. 2601 */ 2602 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 2603 { 2604 if (tb_switch_is_usb4(sw)) 2605 return usb4_switch_alloc_dp_resource(sw, in); 2606 return tb_lc_dp_sink_alloc(sw, in); 2607 } 2608 2609 /** 2610 * tb_switch_dealloc_dp_resource() - De-allocate DP resource 2611 * @sw: Switch whose DP resource is de-allocated 2612 * @in: DP IN port 2613 * 2614 * De-allocates DP resource that was previously allocated for DP 2615 * tunneling. 2616 */ 2617 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 2618 { 2619 int ret; 2620 2621 if (tb_switch_is_usb4(sw)) 2622 ret = usb4_switch_dealloc_dp_resource(sw, in); 2623 else 2624 ret = tb_lc_dp_sink_dealloc(sw, in); 2625 2626 if (ret) 2627 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n", 2628 in->port); 2629 } 2630 2631 struct tb_sw_lookup { 2632 struct tb *tb; 2633 u8 link; 2634 u8 depth; 2635 const uuid_t *uuid; 2636 u64 route; 2637 }; 2638 2639 static int tb_switch_match(struct device *dev, const void *data) 2640 { 2641 struct tb_switch *sw = tb_to_switch(dev); 2642 const struct tb_sw_lookup *lookup = data; 2643 2644 if (!sw) 2645 return 0; 2646 if (sw->tb != lookup->tb) 2647 return 0; 2648 2649 if (lookup->uuid) 2650 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 2651 2652 if (lookup->route) { 2653 return sw->config.route_lo == lower_32_bits(lookup->route) && 2654 sw->config.route_hi == upper_32_bits(lookup->route); 2655 } 2656 2657 /* Root switch is matched only by depth */ 2658 if (!lookup->depth) 2659 return !sw->depth; 2660 2661 return sw->link == lookup->link && sw->depth == lookup->depth; 2662 } 2663 2664 /** 2665 * tb_switch_find_by_link_depth() - Find switch by link and depth 2666 * @tb: Domain the switch belongs 2667 * @link: Link number the switch is connected 2668 * @depth: Depth of the switch in link 2669 * 2670 * Returned switch has reference count increased so the caller needs to 2671 * call tb_switch_put() when done with the switch. 2672 */ 2673 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 2674 { 2675 struct tb_sw_lookup lookup; 2676 struct device *dev; 2677 2678 memset(&lookup, 0, sizeof(lookup)); 2679 lookup.tb = tb; 2680 lookup.link = link; 2681 lookup.depth = depth; 2682 2683 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2684 if (dev) 2685 return tb_to_switch(dev); 2686 2687 return NULL; 2688 } 2689 2690 /** 2691 * tb_switch_find_by_uuid() - Find switch by UUID 2692 * @tb: Domain the switch belongs 2693 * @uuid: UUID to look for 2694 * 2695 * Returned switch has reference count increased so the caller needs to 2696 * call tb_switch_put() when done with the switch. 2697 */ 2698 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) 2699 { 2700 struct tb_sw_lookup lookup; 2701 struct device *dev; 2702 2703 memset(&lookup, 0, sizeof(lookup)); 2704 lookup.tb = tb; 2705 lookup.uuid = uuid; 2706 2707 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2708 if (dev) 2709 return tb_to_switch(dev); 2710 2711 return NULL; 2712 } 2713 2714 /** 2715 * tb_switch_find_by_route() - Find switch by route string 2716 * @tb: Domain the switch belongs 2717 * @route: Route string to look for 2718 * 2719 * Returned switch has reference count increased so the caller needs to 2720 * call tb_switch_put() when done with the switch. 2721 */ 2722 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route) 2723 { 2724 struct tb_sw_lookup lookup; 2725 struct device *dev; 2726 2727 if (!route) 2728 return tb_switch_get(tb->root_switch); 2729 2730 memset(&lookup, 0, sizeof(lookup)); 2731 lookup.tb = tb; 2732 lookup.route = route; 2733 2734 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2735 if (dev) 2736 return tb_to_switch(dev); 2737 2738 return NULL; 2739 } 2740 2741 /** 2742 * tb_switch_find_port() - return the first port of @type on @sw or NULL 2743 * @sw: Switch to find the port from 2744 * @type: Port type to look for 2745 */ 2746 struct tb_port *tb_switch_find_port(struct tb_switch *sw, 2747 enum tb_port_type type) 2748 { 2749 struct tb_port *port; 2750 2751 tb_switch_for_each_port(sw, port) { 2752 if (port->config.type == type) 2753 return port; 2754 } 2755 2756 return NULL; 2757 } 2758 2759 void tb_switch_exit(void) 2760 { 2761 ida_destroy(&nvm_ida); 2762 } 2763