xref: /openbmc/linux/drivers/thunderbolt/switch.c (revision b7b3c35e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 
18 #include "tb.h"
19 
20 /* Switch NVM support */
21 
22 #define NVM_CSS			0x10
23 
24 struct nvm_auth_status {
25 	struct list_head list;
26 	uuid_t uuid;
27 	u32 status;
28 };
29 
30 static bool clx_enabled = true;
31 module_param_named(clx, clx_enabled, bool, 0444);
32 MODULE_PARM_DESC(clx, "allow low power states on the high-speed lanes (default: true)");
33 
34 /*
35  * Hold NVM authentication failure status per switch This information
36  * needs to stay around even when the switch gets power cycled so we
37  * keep it separately.
38  */
39 static LIST_HEAD(nvm_auth_status_cache);
40 static DEFINE_MUTEX(nvm_auth_status_lock);
41 
42 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
43 {
44 	struct nvm_auth_status *st;
45 
46 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
47 		if (uuid_equal(&st->uuid, sw->uuid))
48 			return st;
49 	}
50 
51 	return NULL;
52 }
53 
54 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
55 {
56 	struct nvm_auth_status *st;
57 
58 	mutex_lock(&nvm_auth_status_lock);
59 	st = __nvm_get_auth_status(sw);
60 	mutex_unlock(&nvm_auth_status_lock);
61 
62 	*status = st ? st->status : 0;
63 }
64 
65 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
66 {
67 	struct nvm_auth_status *st;
68 
69 	if (WARN_ON(!sw->uuid))
70 		return;
71 
72 	mutex_lock(&nvm_auth_status_lock);
73 	st = __nvm_get_auth_status(sw);
74 
75 	if (!st) {
76 		st = kzalloc(sizeof(*st), GFP_KERNEL);
77 		if (!st)
78 			goto unlock;
79 
80 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
81 		INIT_LIST_HEAD(&st->list);
82 		list_add_tail(&st->list, &nvm_auth_status_cache);
83 	}
84 
85 	st->status = status;
86 unlock:
87 	mutex_unlock(&nvm_auth_status_lock);
88 }
89 
90 static void nvm_clear_auth_status(const struct tb_switch *sw)
91 {
92 	struct nvm_auth_status *st;
93 
94 	mutex_lock(&nvm_auth_status_lock);
95 	st = __nvm_get_auth_status(sw);
96 	if (st) {
97 		list_del(&st->list);
98 		kfree(st);
99 	}
100 	mutex_unlock(&nvm_auth_status_lock);
101 }
102 
103 static int nvm_validate_and_write(struct tb_switch *sw)
104 {
105 	unsigned int image_size, hdr_size;
106 	const u8 *buf = sw->nvm->buf;
107 	u16 ds_size;
108 	int ret;
109 
110 	if (!buf)
111 		return -EINVAL;
112 
113 	image_size = sw->nvm->buf_data_size;
114 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
115 		return -EINVAL;
116 
117 	/*
118 	 * FARB pointer must point inside the image and must at least
119 	 * contain parts of the digital section we will be reading here.
120 	 */
121 	hdr_size = (*(u32 *)buf) & 0xffffff;
122 	if (hdr_size + NVM_DEVID + 2 >= image_size)
123 		return -EINVAL;
124 
125 	/* Digital section start should be aligned to 4k page */
126 	if (!IS_ALIGNED(hdr_size, SZ_4K))
127 		return -EINVAL;
128 
129 	/*
130 	 * Read digital section size and check that it also fits inside
131 	 * the image.
132 	 */
133 	ds_size = *(u16 *)(buf + hdr_size);
134 	if (ds_size >= image_size)
135 		return -EINVAL;
136 
137 	if (!sw->safe_mode) {
138 		u16 device_id;
139 
140 		/*
141 		 * Make sure the device ID in the image matches the one
142 		 * we read from the switch config space.
143 		 */
144 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
145 		if (device_id != sw->config.device_id)
146 			return -EINVAL;
147 
148 		if (sw->generation < 3) {
149 			/* Write CSS headers first */
150 			ret = dma_port_flash_write(sw->dma_port,
151 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
152 				DMA_PORT_CSS_MAX_SIZE);
153 			if (ret)
154 				return ret;
155 		}
156 
157 		/* Skip headers in the image */
158 		buf += hdr_size;
159 		image_size -= hdr_size;
160 	}
161 
162 	if (tb_switch_is_usb4(sw))
163 		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
164 	else
165 		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
166 	if (!ret)
167 		sw->nvm->flushed = true;
168 	return ret;
169 }
170 
171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
172 {
173 	int ret = 0;
174 
175 	/*
176 	 * Root switch NVM upgrade requires that we disconnect the
177 	 * existing paths first (in case it is not in safe mode
178 	 * already).
179 	 */
180 	if (!sw->safe_mode) {
181 		u32 status;
182 
183 		ret = tb_domain_disconnect_all_paths(sw->tb);
184 		if (ret)
185 			return ret;
186 		/*
187 		 * The host controller goes away pretty soon after this if
188 		 * everything goes well so getting timeout is expected.
189 		 */
190 		ret = dma_port_flash_update_auth(sw->dma_port);
191 		if (!ret || ret == -ETIMEDOUT)
192 			return 0;
193 
194 		/*
195 		 * Any error from update auth operation requires power
196 		 * cycling of the host router.
197 		 */
198 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 			nvm_set_auth_status(sw, status);
201 	}
202 
203 	/*
204 	 * From safe mode we can get out by just power cycling the
205 	 * switch.
206 	 */
207 	dma_port_power_cycle(sw->dma_port);
208 	return ret;
209 }
210 
211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
212 {
213 	int ret, retries = 10;
214 
215 	ret = dma_port_flash_update_auth(sw->dma_port);
216 	switch (ret) {
217 	case 0:
218 	case -ETIMEDOUT:
219 	case -EACCES:
220 	case -EINVAL:
221 		/* Power cycle is required */
222 		break;
223 	default:
224 		return ret;
225 	}
226 
227 	/*
228 	 * Poll here for the authentication status. It takes some time
229 	 * for the device to respond (we get timeout for a while). Once
230 	 * we get response the device needs to be power cycled in order
231 	 * to the new NVM to be taken into use.
232 	 */
233 	do {
234 		u32 status;
235 
236 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 		if (ret < 0 && ret != -ETIMEDOUT)
238 			return ret;
239 		if (ret > 0) {
240 			if (status) {
241 				tb_sw_warn(sw, "failed to authenticate NVM\n");
242 				nvm_set_auth_status(sw, status);
243 			}
244 
245 			tb_sw_info(sw, "power cycling the switch now\n");
246 			dma_port_power_cycle(sw->dma_port);
247 			return 0;
248 		}
249 
250 		msleep(500);
251 	} while (--retries);
252 
253 	return -ETIMEDOUT;
254 }
255 
256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257 {
258 	struct pci_dev *root_port;
259 
260 	/*
261 	 * During host router NVM upgrade we should not allow root port to
262 	 * go into D3cold because some root ports cannot trigger PME
263 	 * itself. To be on the safe side keep the root port in D0 during
264 	 * the whole upgrade process.
265 	 */
266 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
267 	if (root_port)
268 		pm_runtime_get_noresume(&root_port->dev);
269 }
270 
271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272 {
273 	struct pci_dev *root_port;
274 
275 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
276 	if (root_port)
277 		pm_runtime_put(&root_port->dev);
278 }
279 
280 static inline bool nvm_readable(struct tb_switch *sw)
281 {
282 	if (tb_switch_is_usb4(sw)) {
283 		/*
284 		 * USB4 devices must support NVM operations but it is
285 		 * optional for hosts. Therefore we query the NVM sector
286 		 * size here and if it is supported assume NVM
287 		 * operations are implemented.
288 		 */
289 		return usb4_switch_nvm_sector_size(sw) > 0;
290 	}
291 
292 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 	return !!sw->dma_port;
294 }
295 
296 static inline bool nvm_upgradeable(struct tb_switch *sw)
297 {
298 	if (sw->no_nvm_upgrade)
299 		return false;
300 	return nvm_readable(sw);
301 }
302 
303 static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 			   void *buf, size_t size)
305 {
306 	if (tb_switch_is_usb4(sw))
307 		return usb4_switch_nvm_read(sw, address, buf, size);
308 	return dma_port_flash_read(sw->dma_port, address, buf, size);
309 }
310 
311 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
312 {
313 	int ret;
314 
315 	if (tb_switch_is_usb4(sw)) {
316 		if (auth_only) {
317 			ret = usb4_switch_nvm_set_offset(sw, 0);
318 			if (ret)
319 				return ret;
320 		}
321 		sw->nvm->authenticating = true;
322 		return usb4_switch_nvm_authenticate(sw);
323 	} else if (auth_only) {
324 		return -EOPNOTSUPP;
325 	}
326 
327 	sw->nvm->authenticating = true;
328 	if (!tb_route(sw)) {
329 		nvm_authenticate_start_dma_port(sw);
330 		ret = nvm_authenticate_host_dma_port(sw);
331 	} else {
332 		ret = nvm_authenticate_device_dma_port(sw);
333 	}
334 
335 	return ret;
336 }
337 
338 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
339 			      size_t bytes)
340 {
341 	struct tb_nvm *nvm = priv;
342 	struct tb_switch *sw = tb_to_switch(nvm->dev);
343 	int ret;
344 
345 	pm_runtime_get_sync(&sw->dev);
346 
347 	if (!mutex_trylock(&sw->tb->lock)) {
348 		ret = restart_syscall();
349 		goto out;
350 	}
351 
352 	ret = nvm_read(sw, offset, val, bytes);
353 	mutex_unlock(&sw->tb->lock);
354 
355 out:
356 	pm_runtime_mark_last_busy(&sw->dev);
357 	pm_runtime_put_autosuspend(&sw->dev);
358 
359 	return ret;
360 }
361 
362 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
363 			       size_t bytes)
364 {
365 	struct tb_nvm *nvm = priv;
366 	struct tb_switch *sw = tb_to_switch(nvm->dev);
367 	int ret;
368 
369 	if (!mutex_trylock(&sw->tb->lock))
370 		return restart_syscall();
371 
372 	/*
373 	 * Since writing the NVM image might require some special steps,
374 	 * for example when CSS headers are written, we cache the image
375 	 * locally here and handle the special cases when the user asks
376 	 * us to authenticate the image.
377 	 */
378 	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
379 	mutex_unlock(&sw->tb->lock);
380 
381 	return ret;
382 }
383 
384 static int tb_switch_nvm_add(struct tb_switch *sw)
385 {
386 	struct tb_nvm *nvm;
387 	u32 val;
388 	int ret;
389 
390 	if (!nvm_readable(sw))
391 		return 0;
392 
393 	/*
394 	 * The NVM format of non-Intel hardware is not known so
395 	 * currently restrict NVM upgrade for Intel hardware. We may
396 	 * relax this in the future when we learn other NVM formats.
397 	 */
398 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
399 	    sw->config.vendor_id != 0x8087) {
400 		dev_info(&sw->dev,
401 			 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
402 			 sw->config.vendor_id);
403 		return 0;
404 	}
405 
406 	nvm = tb_nvm_alloc(&sw->dev);
407 	if (IS_ERR(nvm))
408 		return PTR_ERR(nvm);
409 
410 	/*
411 	 * If the switch is in safe-mode the only accessible portion of
412 	 * the NVM is the non-active one where userspace is expected to
413 	 * write new functional NVM.
414 	 */
415 	if (!sw->safe_mode) {
416 		u32 nvm_size, hdr_size;
417 
418 		ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
419 		if (ret)
420 			goto err_nvm;
421 
422 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
423 		nvm_size = (SZ_1M << (val & 7)) / 8;
424 		nvm_size = (nvm_size - hdr_size) / 2;
425 
426 		ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
427 		if (ret)
428 			goto err_nvm;
429 
430 		nvm->major = val >> 16;
431 		nvm->minor = val >> 8;
432 
433 		ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
434 		if (ret)
435 			goto err_nvm;
436 	}
437 
438 	if (!sw->no_nvm_upgrade) {
439 		ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
440 					    tb_switch_nvm_write);
441 		if (ret)
442 			goto err_nvm;
443 	}
444 
445 	sw->nvm = nvm;
446 	return 0;
447 
448 err_nvm:
449 	tb_nvm_free(nvm);
450 	return ret;
451 }
452 
453 static void tb_switch_nvm_remove(struct tb_switch *sw)
454 {
455 	struct tb_nvm *nvm;
456 
457 	nvm = sw->nvm;
458 	sw->nvm = NULL;
459 
460 	if (!nvm)
461 		return;
462 
463 	/* Remove authentication status in case the switch is unplugged */
464 	if (!nvm->authenticating)
465 		nvm_clear_auth_status(sw);
466 
467 	tb_nvm_free(nvm);
468 }
469 
470 /* port utility functions */
471 
472 static const char *tb_port_type(const struct tb_regs_port_header *port)
473 {
474 	switch (port->type >> 16) {
475 	case 0:
476 		switch ((u8) port->type) {
477 		case 0:
478 			return "Inactive";
479 		case 1:
480 			return "Port";
481 		case 2:
482 			return "NHI";
483 		default:
484 			return "unknown";
485 		}
486 	case 0x2:
487 		return "Ethernet";
488 	case 0x8:
489 		return "SATA";
490 	case 0xe:
491 		return "DP/HDMI";
492 	case 0x10:
493 		return "PCIe";
494 	case 0x20:
495 		return "USB";
496 	default:
497 		return "unknown";
498 	}
499 }
500 
501 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
502 {
503 	const struct tb_regs_port_header *regs = &port->config;
504 
505 	tb_dbg(tb,
506 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
507 	       regs->port_number, regs->vendor_id, regs->device_id,
508 	       regs->revision, regs->thunderbolt_version, tb_port_type(regs),
509 	       regs->type);
510 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
511 	       regs->max_in_hop_id, regs->max_out_hop_id);
512 	tb_dbg(tb, "  Max counters: %d\n", regs->max_counters);
513 	tb_dbg(tb, "  NFC Credits: %#x\n", regs->nfc_credits);
514 	tb_dbg(tb, "  Credits (total/control): %u/%u\n", port->total_credits,
515 	       port->ctl_credits);
516 }
517 
518 /**
519  * tb_port_state() - get connectedness state of a port
520  * @port: the port to check
521  *
522  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
523  *
524  * Return: Returns an enum tb_port_state on success or an error code on failure.
525  */
526 int tb_port_state(struct tb_port *port)
527 {
528 	struct tb_cap_phy phy;
529 	int res;
530 	if (port->cap_phy == 0) {
531 		tb_port_WARN(port, "does not have a PHY\n");
532 		return -EINVAL;
533 	}
534 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
535 	if (res)
536 		return res;
537 	return phy.state;
538 }
539 
540 /**
541  * tb_wait_for_port() - wait for a port to become ready
542  * @port: Port to wait
543  * @wait_if_unplugged: Wait also when port is unplugged
544  *
545  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
546  * wait_if_unplugged is set then we also wait if the port is in state
547  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
548  * switch resume). Otherwise we only wait if a device is registered but the link
549  * has not yet been established.
550  *
551  * Return: Returns an error code on failure. Returns 0 if the port is not
552  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
553  * if the port is connected and in state TB_PORT_UP.
554  */
555 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
556 {
557 	int retries = 10;
558 	int state;
559 	if (!port->cap_phy) {
560 		tb_port_WARN(port, "does not have PHY\n");
561 		return -EINVAL;
562 	}
563 	if (tb_is_upstream_port(port)) {
564 		tb_port_WARN(port, "is the upstream port\n");
565 		return -EINVAL;
566 	}
567 
568 	while (retries--) {
569 		state = tb_port_state(port);
570 		if (state < 0)
571 			return state;
572 		if (state == TB_PORT_DISABLED) {
573 			tb_port_dbg(port, "is disabled (state: 0)\n");
574 			return 0;
575 		}
576 		if (state == TB_PORT_UNPLUGGED) {
577 			if (wait_if_unplugged) {
578 				/* used during resume */
579 				tb_port_dbg(port,
580 					    "is unplugged (state: 7), retrying...\n");
581 				msleep(100);
582 				continue;
583 			}
584 			tb_port_dbg(port, "is unplugged (state: 7)\n");
585 			return 0;
586 		}
587 		if (state == TB_PORT_UP) {
588 			tb_port_dbg(port, "is connected, link is up (state: 2)\n");
589 			return 1;
590 		}
591 
592 		/*
593 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
594 		 * time.
595 		 */
596 		tb_port_dbg(port,
597 			    "is connected, link is not up (state: %d), retrying...\n",
598 			    state);
599 		msleep(100);
600 	}
601 	tb_port_warn(port,
602 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
603 	return 0;
604 }
605 
606 /**
607  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
608  * @port: Port to add/remove NFC credits
609  * @credits: Credits to add/remove
610  *
611  * Change the number of NFC credits allocated to @port by @credits. To remove
612  * NFC credits pass a negative amount of credits.
613  *
614  * Return: Returns 0 on success or an error code on failure.
615  */
616 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
617 {
618 	u32 nfc_credits;
619 
620 	if (credits == 0 || port->sw->is_unplugged)
621 		return 0;
622 
623 	/*
624 	 * USB4 restricts programming NFC buffers to lane adapters only
625 	 * so skip other ports.
626 	 */
627 	if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
628 		return 0;
629 
630 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
631 	if (credits < 0)
632 		credits = max_t(int, -nfc_credits, credits);
633 
634 	nfc_credits += credits;
635 
636 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
637 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
638 
639 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
640 	port->config.nfc_credits |= nfc_credits;
641 
642 	return tb_port_write(port, &port->config.nfc_credits,
643 			     TB_CFG_PORT, ADP_CS_4, 1);
644 }
645 
646 /**
647  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
648  * @port: Port whose counters to clear
649  * @counter: Counter index to clear
650  *
651  * Return: Returns 0 on success or an error code on failure.
652  */
653 int tb_port_clear_counter(struct tb_port *port, int counter)
654 {
655 	u32 zero[3] = { 0, 0, 0 };
656 	tb_port_dbg(port, "clearing counter %d\n", counter);
657 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
658 }
659 
660 /**
661  * tb_port_unlock() - Unlock downstream port
662  * @port: Port to unlock
663  *
664  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
665  * downstream router accessible for CM.
666  */
667 int tb_port_unlock(struct tb_port *port)
668 {
669 	if (tb_switch_is_icm(port->sw))
670 		return 0;
671 	if (!tb_port_is_null(port))
672 		return -EINVAL;
673 	if (tb_switch_is_usb4(port->sw))
674 		return usb4_port_unlock(port);
675 	return 0;
676 }
677 
678 static int __tb_port_enable(struct tb_port *port, bool enable)
679 {
680 	int ret;
681 	u32 phy;
682 
683 	if (!tb_port_is_null(port))
684 		return -EINVAL;
685 
686 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
687 			   port->cap_phy + LANE_ADP_CS_1, 1);
688 	if (ret)
689 		return ret;
690 
691 	if (enable)
692 		phy &= ~LANE_ADP_CS_1_LD;
693 	else
694 		phy |= LANE_ADP_CS_1_LD;
695 
696 	return tb_port_write(port, &phy, TB_CFG_PORT,
697 			     port->cap_phy + LANE_ADP_CS_1, 1);
698 }
699 
700 /**
701  * tb_port_enable() - Enable lane adapter
702  * @port: Port to enable (can be %NULL)
703  *
704  * This is used for lane 0 and 1 adapters to enable it.
705  */
706 int tb_port_enable(struct tb_port *port)
707 {
708 	return __tb_port_enable(port, true);
709 }
710 
711 /**
712  * tb_port_disable() - Disable lane adapter
713  * @port: Port to disable (can be %NULL)
714  *
715  * This is used for lane 0 and 1 adapters to disable it.
716  */
717 int tb_port_disable(struct tb_port *port)
718 {
719 	return __tb_port_enable(port, false);
720 }
721 
722 /*
723  * tb_init_port() - initialize a port
724  *
725  * This is a helper method for tb_switch_alloc. Does not check or initialize
726  * any downstream switches.
727  *
728  * Return: Returns 0 on success or an error code on failure.
729  */
730 static int tb_init_port(struct tb_port *port)
731 {
732 	int res;
733 	int cap;
734 
735 	INIT_LIST_HEAD(&port->list);
736 
737 	/* Control adapter does not have configuration space */
738 	if (!port->port)
739 		return 0;
740 
741 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
742 	if (res) {
743 		if (res == -ENODEV) {
744 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
745 			       port->port);
746 			port->disabled = true;
747 			return 0;
748 		}
749 		return res;
750 	}
751 
752 	/* Port 0 is the switch itself and has no PHY. */
753 	if (port->config.type == TB_TYPE_PORT) {
754 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
755 
756 		if (cap > 0)
757 			port->cap_phy = cap;
758 		else
759 			tb_port_WARN(port, "non switch port without a PHY\n");
760 
761 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
762 		if (cap > 0)
763 			port->cap_usb4 = cap;
764 
765 		/*
766 		 * USB4 ports the buffers allocated for the control path
767 		 * can be read from the path config space. Legacy
768 		 * devices we use hard-coded value.
769 		 */
770 		if (tb_switch_is_usb4(port->sw)) {
771 			struct tb_regs_hop hop;
772 
773 			if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
774 				port->ctl_credits = hop.initial_credits;
775 		}
776 		if (!port->ctl_credits)
777 			port->ctl_credits = 2;
778 
779 	} else {
780 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
781 		if (cap > 0)
782 			port->cap_adap = cap;
783 	}
784 
785 	port->total_credits =
786 		(port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
787 		ADP_CS_4_TOTAL_BUFFERS_SHIFT;
788 
789 	tb_dump_port(port->sw->tb, port);
790 	return 0;
791 }
792 
793 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
794 			       int max_hopid)
795 {
796 	int port_max_hopid;
797 	struct ida *ida;
798 
799 	if (in) {
800 		port_max_hopid = port->config.max_in_hop_id;
801 		ida = &port->in_hopids;
802 	} else {
803 		port_max_hopid = port->config.max_out_hop_id;
804 		ida = &port->out_hopids;
805 	}
806 
807 	/*
808 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
809 	 * reserved.
810 	 */
811 	if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
812 		min_hopid = TB_PATH_MIN_HOPID;
813 
814 	if (max_hopid < 0 || max_hopid > port_max_hopid)
815 		max_hopid = port_max_hopid;
816 
817 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
818 }
819 
820 /**
821  * tb_port_alloc_in_hopid() - Allocate input HopID from port
822  * @port: Port to allocate HopID for
823  * @min_hopid: Minimum acceptable input HopID
824  * @max_hopid: Maximum acceptable input HopID
825  *
826  * Return: HopID between @min_hopid and @max_hopid or negative errno in
827  * case of error.
828  */
829 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
830 {
831 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
832 }
833 
834 /**
835  * tb_port_alloc_out_hopid() - Allocate output HopID from port
836  * @port: Port to allocate HopID for
837  * @min_hopid: Minimum acceptable output HopID
838  * @max_hopid: Maximum acceptable output HopID
839  *
840  * Return: HopID between @min_hopid and @max_hopid or negative errno in
841  * case of error.
842  */
843 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
844 {
845 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
846 }
847 
848 /**
849  * tb_port_release_in_hopid() - Release allocated input HopID from port
850  * @port: Port whose HopID to release
851  * @hopid: HopID to release
852  */
853 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
854 {
855 	ida_simple_remove(&port->in_hopids, hopid);
856 }
857 
858 /**
859  * tb_port_release_out_hopid() - Release allocated output HopID from port
860  * @port: Port whose HopID to release
861  * @hopid: HopID to release
862  */
863 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
864 {
865 	ida_simple_remove(&port->out_hopids, hopid);
866 }
867 
868 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
869 					  const struct tb_switch *sw)
870 {
871 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
872 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
873 }
874 
875 /**
876  * tb_next_port_on_path() - Return next port for given port on a path
877  * @start: Start port of the walk
878  * @end: End port of the walk
879  * @prev: Previous port (%NULL if this is the first)
880  *
881  * This function can be used to walk from one port to another if they
882  * are connected through zero or more switches. If the @prev is dual
883  * link port, the function follows that link and returns another end on
884  * that same link.
885  *
886  * If the @end port has been reached, return %NULL.
887  *
888  * Domain tb->lock must be held when this function is called.
889  */
890 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
891 				     struct tb_port *prev)
892 {
893 	struct tb_port *next;
894 
895 	if (!prev)
896 		return start;
897 
898 	if (prev->sw == end->sw) {
899 		if (prev == end)
900 			return NULL;
901 		return end;
902 	}
903 
904 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
905 		next = tb_port_at(tb_route(end->sw), prev->sw);
906 		/* Walk down the topology if next == prev */
907 		if (prev->remote &&
908 		    (next == prev || next->dual_link_port == prev))
909 			next = prev->remote;
910 	} else {
911 		if (tb_is_upstream_port(prev)) {
912 			next = prev->remote;
913 		} else {
914 			next = tb_upstream_port(prev->sw);
915 			/*
916 			 * Keep the same link if prev and next are both
917 			 * dual link ports.
918 			 */
919 			if (next->dual_link_port &&
920 			    next->link_nr != prev->link_nr) {
921 				next = next->dual_link_port;
922 			}
923 		}
924 	}
925 
926 	return next != prev ? next : NULL;
927 }
928 
929 /**
930  * tb_port_get_link_speed() - Get current link speed
931  * @port: Port to check (USB4 or CIO)
932  *
933  * Returns link speed in Gb/s or negative errno in case of failure.
934  */
935 int tb_port_get_link_speed(struct tb_port *port)
936 {
937 	u32 val, speed;
938 	int ret;
939 
940 	if (!port->cap_phy)
941 		return -EINVAL;
942 
943 	ret = tb_port_read(port, &val, TB_CFG_PORT,
944 			   port->cap_phy + LANE_ADP_CS_1, 1);
945 	if (ret)
946 		return ret;
947 
948 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
949 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
950 	return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
951 }
952 
953 /**
954  * tb_port_get_link_width() - Get current link width
955  * @port: Port to check (USB4 or CIO)
956  *
957  * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane)
958  * or negative errno in case of failure.
959  */
960 int tb_port_get_link_width(struct tb_port *port)
961 {
962 	u32 val;
963 	int ret;
964 
965 	if (!port->cap_phy)
966 		return -EINVAL;
967 
968 	ret = tb_port_read(port, &val, TB_CFG_PORT,
969 			   port->cap_phy + LANE_ADP_CS_1, 1);
970 	if (ret)
971 		return ret;
972 
973 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
974 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
975 }
976 
977 static bool tb_port_is_width_supported(struct tb_port *port, int width)
978 {
979 	u32 phy, widths;
980 	int ret;
981 
982 	if (!port->cap_phy)
983 		return false;
984 
985 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
986 			   port->cap_phy + LANE_ADP_CS_0, 1);
987 	if (ret)
988 		return false;
989 
990 	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
991 		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
992 
993 	return !!(widths & width);
994 }
995 
996 static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
997 {
998 	u32 val;
999 	int ret;
1000 
1001 	if (!port->cap_phy)
1002 		return -EINVAL;
1003 
1004 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1005 			   port->cap_phy + LANE_ADP_CS_1, 1);
1006 	if (ret)
1007 		return ret;
1008 
1009 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1010 	switch (width) {
1011 	case 1:
1012 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1013 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1014 		break;
1015 	case 2:
1016 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1017 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1018 		break;
1019 	default:
1020 		return -EINVAL;
1021 	}
1022 
1023 	val |= LANE_ADP_CS_1_LB;
1024 
1025 	return tb_port_write(port, &val, TB_CFG_PORT,
1026 			     port->cap_phy + LANE_ADP_CS_1, 1);
1027 }
1028 
1029 /**
1030  * tb_port_lane_bonding_enable() - Enable bonding on port
1031  * @port: port to enable
1032  *
1033  * Enable bonding by setting the link width of the port and the other
1034  * port in case of dual link port. Does not wait for the link to
1035  * actually reach the bonded state so caller needs to call
1036  * tb_port_wait_for_link_width() before enabling any paths through the
1037  * link to make sure the link is in expected state.
1038  *
1039  * Return: %0 in case of success and negative errno in case of error
1040  */
1041 int tb_port_lane_bonding_enable(struct tb_port *port)
1042 {
1043 	int ret;
1044 
1045 	/*
1046 	 * Enable lane bonding for both links if not already enabled by
1047 	 * for example the boot firmware.
1048 	 */
1049 	ret = tb_port_get_link_width(port);
1050 	if (ret == 1) {
1051 		ret = tb_port_set_link_width(port, 2);
1052 		if (ret)
1053 			return ret;
1054 	}
1055 
1056 	ret = tb_port_get_link_width(port->dual_link_port);
1057 	if (ret == 1) {
1058 		ret = tb_port_set_link_width(port->dual_link_port, 2);
1059 		if (ret) {
1060 			tb_port_set_link_width(port, 1);
1061 			return ret;
1062 		}
1063 	}
1064 
1065 	port->bonded = true;
1066 	port->dual_link_port->bonded = true;
1067 
1068 	return 0;
1069 }
1070 
1071 /**
1072  * tb_port_lane_bonding_disable() - Disable bonding on port
1073  * @port: port to disable
1074  *
1075  * Disable bonding by setting the link width of the port and the
1076  * other port in case of dual link port.
1077  *
1078  */
1079 void tb_port_lane_bonding_disable(struct tb_port *port)
1080 {
1081 	port->dual_link_port->bonded = false;
1082 	port->bonded = false;
1083 
1084 	tb_port_set_link_width(port->dual_link_port, 1);
1085 	tb_port_set_link_width(port, 1);
1086 }
1087 
1088 /**
1089  * tb_port_wait_for_link_width() - Wait until link reaches specific width
1090  * @port: Port to wait for
1091  * @width: Expected link width (%1 or %2)
1092  * @timeout_msec: Timeout in ms how long to wait
1093  *
1094  * Should be used after both ends of the link have been bonded (or
1095  * bonding has been disabled) to wait until the link actually reaches
1096  * the expected state. Returns %-ETIMEDOUT if the @width was not reached
1097  * within the given timeout, %0 if it did.
1098  */
1099 int tb_port_wait_for_link_width(struct tb_port *port, int width,
1100 				int timeout_msec)
1101 {
1102 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1103 	int ret;
1104 
1105 	do {
1106 		ret = tb_port_get_link_width(port);
1107 		if (ret < 0)
1108 			return ret;
1109 		else if (ret == width)
1110 			return 0;
1111 
1112 		usleep_range(1000, 2000);
1113 	} while (ktime_before(ktime_get(), timeout));
1114 
1115 	return -ETIMEDOUT;
1116 }
1117 
1118 static int tb_port_do_update_credits(struct tb_port *port)
1119 {
1120 	u32 nfc_credits;
1121 	int ret;
1122 
1123 	ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1124 	if (ret)
1125 		return ret;
1126 
1127 	if (nfc_credits != port->config.nfc_credits) {
1128 		u32 total;
1129 
1130 		total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1131 			ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1132 
1133 		tb_port_dbg(port, "total credits changed %u -> %u\n",
1134 			    port->total_credits, total);
1135 
1136 		port->config.nfc_credits = nfc_credits;
1137 		port->total_credits = total;
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 /**
1144  * tb_port_update_credits() - Re-read port total credits
1145  * @port: Port to update
1146  *
1147  * After the link is bonded (or bonding was disabled) the port total
1148  * credits may change, so this function needs to be called to re-read
1149  * the credits. Updates also the second lane adapter.
1150  */
1151 int tb_port_update_credits(struct tb_port *port)
1152 {
1153 	int ret;
1154 
1155 	ret = tb_port_do_update_credits(port);
1156 	if (ret)
1157 		return ret;
1158 	return tb_port_do_update_credits(port->dual_link_port);
1159 }
1160 
1161 static int tb_port_start_lane_initialization(struct tb_port *port)
1162 {
1163 	int ret;
1164 
1165 	if (tb_switch_is_usb4(port->sw))
1166 		return 0;
1167 
1168 	ret = tb_lc_start_lane_initialization(port);
1169 	return ret == -EINVAL ? 0 : ret;
1170 }
1171 
1172 /*
1173  * Returns true if the port had something (router, XDomain) connected
1174  * before suspend.
1175  */
1176 static bool tb_port_resume(struct tb_port *port)
1177 {
1178 	bool has_remote = tb_port_has_remote(port);
1179 
1180 	if (port->usb4) {
1181 		usb4_port_device_resume(port->usb4);
1182 	} else if (!has_remote) {
1183 		/*
1184 		 * For disconnected downstream lane adapters start lane
1185 		 * initialization now so we detect future connects.
1186 		 *
1187 		 * For XDomain start the lane initialzation now so the
1188 		 * link gets re-established.
1189 		 *
1190 		 * This is only needed for non-USB4 ports.
1191 		 */
1192 		if (!tb_is_upstream_port(port) || port->xdomain)
1193 			tb_port_start_lane_initialization(port);
1194 	}
1195 
1196 	return has_remote || port->xdomain;
1197 }
1198 
1199 /**
1200  * tb_port_is_enabled() - Is the adapter port enabled
1201  * @port: Port to check
1202  */
1203 bool tb_port_is_enabled(struct tb_port *port)
1204 {
1205 	switch (port->config.type) {
1206 	case TB_TYPE_PCIE_UP:
1207 	case TB_TYPE_PCIE_DOWN:
1208 		return tb_pci_port_is_enabled(port);
1209 
1210 	case TB_TYPE_DP_HDMI_IN:
1211 	case TB_TYPE_DP_HDMI_OUT:
1212 		return tb_dp_port_is_enabled(port);
1213 
1214 	case TB_TYPE_USB3_UP:
1215 	case TB_TYPE_USB3_DOWN:
1216 		return tb_usb3_port_is_enabled(port);
1217 
1218 	default:
1219 		return false;
1220 	}
1221 }
1222 
1223 /**
1224  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1225  * @port: USB3 adapter port to check
1226  */
1227 bool tb_usb3_port_is_enabled(struct tb_port *port)
1228 {
1229 	u32 data;
1230 
1231 	if (tb_port_read(port, &data, TB_CFG_PORT,
1232 			 port->cap_adap + ADP_USB3_CS_0, 1))
1233 		return false;
1234 
1235 	return !!(data & ADP_USB3_CS_0_PE);
1236 }
1237 
1238 /**
1239  * tb_usb3_port_enable() - Enable USB3 adapter port
1240  * @port: USB3 adapter port to enable
1241  * @enable: Enable/disable the USB3 adapter
1242  */
1243 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1244 {
1245 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1246 			  : ADP_USB3_CS_0_V;
1247 
1248 	if (!port->cap_adap)
1249 		return -ENXIO;
1250 	return tb_port_write(port, &word, TB_CFG_PORT,
1251 			     port->cap_adap + ADP_USB3_CS_0, 1);
1252 }
1253 
1254 /**
1255  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1256  * @port: PCIe port to check
1257  */
1258 bool tb_pci_port_is_enabled(struct tb_port *port)
1259 {
1260 	u32 data;
1261 
1262 	if (tb_port_read(port, &data, TB_CFG_PORT,
1263 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1264 		return false;
1265 
1266 	return !!(data & ADP_PCIE_CS_0_PE);
1267 }
1268 
1269 /**
1270  * tb_pci_port_enable() - Enable PCIe adapter port
1271  * @port: PCIe port to enable
1272  * @enable: Enable/disable the PCIe adapter
1273  */
1274 int tb_pci_port_enable(struct tb_port *port, bool enable)
1275 {
1276 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1277 	if (!port->cap_adap)
1278 		return -ENXIO;
1279 	return tb_port_write(port, &word, TB_CFG_PORT,
1280 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1281 }
1282 
1283 /**
1284  * tb_dp_port_hpd_is_active() - Is HPD already active
1285  * @port: DP out port to check
1286  *
1287  * Checks if the DP OUT adapter port has HDP bit already set.
1288  */
1289 int tb_dp_port_hpd_is_active(struct tb_port *port)
1290 {
1291 	u32 data;
1292 	int ret;
1293 
1294 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1295 			   port->cap_adap + ADP_DP_CS_2, 1);
1296 	if (ret)
1297 		return ret;
1298 
1299 	return !!(data & ADP_DP_CS_2_HDP);
1300 }
1301 
1302 /**
1303  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1304  * @port: Port to clear HPD
1305  *
1306  * If the DP IN port has HDP set, this function can be used to clear it.
1307  */
1308 int tb_dp_port_hpd_clear(struct tb_port *port)
1309 {
1310 	u32 data;
1311 	int ret;
1312 
1313 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1314 			   port->cap_adap + ADP_DP_CS_3, 1);
1315 	if (ret)
1316 		return ret;
1317 
1318 	data |= ADP_DP_CS_3_HDPC;
1319 	return tb_port_write(port, &data, TB_CFG_PORT,
1320 			     port->cap_adap + ADP_DP_CS_3, 1);
1321 }
1322 
1323 /**
1324  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1325  * @port: DP IN/OUT port to set hops
1326  * @video: Video Hop ID
1327  * @aux_tx: AUX TX Hop ID
1328  * @aux_rx: AUX RX Hop ID
1329  *
1330  * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1331  * router DP adapters too but does not program the values as the fields
1332  * are read-only.
1333  */
1334 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1335 			unsigned int aux_tx, unsigned int aux_rx)
1336 {
1337 	u32 data[2];
1338 	int ret;
1339 
1340 	if (tb_switch_is_usb4(port->sw))
1341 		return 0;
1342 
1343 	ret = tb_port_read(port, data, TB_CFG_PORT,
1344 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1345 	if (ret)
1346 		return ret;
1347 
1348 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1349 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1350 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1351 
1352 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1353 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1354 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1355 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1356 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1357 
1358 	return tb_port_write(port, data, TB_CFG_PORT,
1359 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1360 }
1361 
1362 /**
1363  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1364  * @port: DP adapter port to check
1365  */
1366 bool tb_dp_port_is_enabled(struct tb_port *port)
1367 {
1368 	u32 data[2];
1369 
1370 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1371 			 ARRAY_SIZE(data)))
1372 		return false;
1373 
1374 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1375 }
1376 
1377 /**
1378  * tb_dp_port_enable() - Enables/disables DP paths of a port
1379  * @port: DP IN/OUT port
1380  * @enable: Enable/disable DP path
1381  *
1382  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1383  * calling this function.
1384  */
1385 int tb_dp_port_enable(struct tb_port *port, bool enable)
1386 {
1387 	u32 data[2];
1388 	int ret;
1389 
1390 	ret = tb_port_read(port, data, TB_CFG_PORT,
1391 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1392 	if (ret)
1393 		return ret;
1394 
1395 	if (enable)
1396 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1397 	else
1398 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1399 
1400 	return tb_port_write(port, data, TB_CFG_PORT,
1401 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1402 }
1403 
1404 /* switch utility functions */
1405 
1406 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1407 {
1408 	switch (sw->generation) {
1409 	case 1:
1410 		return "Thunderbolt 1";
1411 	case 2:
1412 		return "Thunderbolt 2";
1413 	case 3:
1414 		return "Thunderbolt 3";
1415 	case 4:
1416 		return "USB4";
1417 	default:
1418 		return "Unknown";
1419 	}
1420 }
1421 
1422 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1423 {
1424 	const struct tb_regs_switch_header *regs = &sw->config;
1425 
1426 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1427 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1428 	       regs->revision, regs->thunderbolt_version);
1429 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1430 	tb_dbg(tb, "  Config:\n");
1431 	tb_dbg(tb,
1432 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1433 	       regs->upstream_port_number, regs->depth,
1434 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1435 	       regs->enabled, regs->plug_events_delay);
1436 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1437 	       regs->__unknown1, regs->__unknown4);
1438 }
1439 
1440 /**
1441  * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1442  * @sw: Switch to reset
1443  *
1444  * Return: Returns 0 on success or an error code on failure.
1445  */
1446 int tb_switch_reset(struct tb_switch *sw)
1447 {
1448 	struct tb_cfg_result res;
1449 
1450 	if (sw->generation > 1)
1451 		return 0;
1452 
1453 	tb_sw_dbg(sw, "resetting switch\n");
1454 
1455 	res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1456 			      TB_CFG_SWITCH, 2, 2);
1457 	if (res.err)
1458 		return res.err;
1459 	res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1460 	if (res.err > 0)
1461 		return -EIO;
1462 	return res.err;
1463 }
1464 
1465 /**
1466  * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1467  * @sw: Router to read the offset value from
1468  * @offset: Offset in the router config space to read from
1469  * @bit: Bit mask in the offset to wait for
1470  * @value: Value of the bits to wait for
1471  * @timeout_msec: Timeout in ms how long to wait
1472  *
1473  * Wait till the specified bits in specified offset reach specified value.
1474  * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1475  * within the given timeout or a negative errno in case of failure.
1476  */
1477 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1478 			   u32 value, int timeout_msec)
1479 {
1480 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1481 
1482 	do {
1483 		u32 val;
1484 		int ret;
1485 
1486 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1487 		if (ret)
1488 			return ret;
1489 
1490 		if ((val & bit) == value)
1491 			return 0;
1492 
1493 		usleep_range(50, 100);
1494 	} while (ktime_before(ktime_get(), timeout));
1495 
1496 	return -ETIMEDOUT;
1497 }
1498 
1499 /*
1500  * tb_plug_events_active() - enable/disable plug events on a switch
1501  *
1502  * Also configures a sane plug_events_delay of 255ms.
1503  *
1504  * Return: Returns 0 on success or an error code on failure.
1505  */
1506 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1507 {
1508 	u32 data;
1509 	int res;
1510 
1511 	if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1512 		return 0;
1513 
1514 	sw->config.plug_events_delay = 0xff;
1515 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1516 	if (res)
1517 		return res;
1518 
1519 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1520 	if (res)
1521 		return res;
1522 
1523 	if (active) {
1524 		data = data & 0xFFFFFF83;
1525 		switch (sw->config.device_id) {
1526 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1527 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1528 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1529 			break;
1530 		default:
1531 			data |= 4;
1532 		}
1533 	} else {
1534 		data = data | 0x7c;
1535 	}
1536 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1537 			   sw->cap_plug_events + 1, 1);
1538 }
1539 
1540 static ssize_t authorized_show(struct device *dev,
1541 			       struct device_attribute *attr,
1542 			       char *buf)
1543 {
1544 	struct tb_switch *sw = tb_to_switch(dev);
1545 
1546 	return sprintf(buf, "%u\n", sw->authorized);
1547 }
1548 
1549 static int disapprove_switch(struct device *dev, void *not_used)
1550 {
1551 	char *envp[] = { "AUTHORIZED=0", NULL };
1552 	struct tb_switch *sw;
1553 
1554 	sw = tb_to_switch(dev);
1555 	if (sw && sw->authorized) {
1556 		int ret;
1557 
1558 		/* First children */
1559 		ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1560 		if (ret)
1561 			return ret;
1562 
1563 		ret = tb_domain_disapprove_switch(sw->tb, sw);
1564 		if (ret)
1565 			return ret;
1566 
1567 		sw->authorized = 0;
1568 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1569 	}
1570 
1571 	return 0;
1572 }
1573 
1574 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1575 {
1576 	char envp_string[13];
1577 	int ret = -EINVAL;
1578 	char *envp[] = { envp_string, NULL };
1579 
1580 	if (!mutex_trylock(&sw->tb->lock))
1581 		return restart_syscall();
1582 
1583 	if (!!sw->authorized == !!val)
1584 		goto unlock;
1585 
1586 	switch (val) {
1587 	/* Disapprove switch */
1588 	case 0:
1589 		if (tb_route(sw)) {
1590 			ret = disapprove_switch(&sw->dev, NULL);
1591 			goto unlock;
1592 		}
1593 		break;
1594 
1595 	/* Approve switch */
1596 	case 1:
1597 		if (sw->key)
1598 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1599 		else
1600 			ret = tb_domain_approve_switch(sw->tb, sw);
1601 		break;
1602 
1603 	/* Challenge switch */
1604 	case 2:
1605 		if (sw->key)
1606 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1607 		break;
1608 
1609 	default:
1610 		break;
1611 	}
1612 
1613 	if (!ret) {
1614 		sw->authorized = val;
1615 		/*
1616 		 * Notify status change to the userspace, informing the new
1617 		 * value of /sys/bus/thunderbolt/devices/.../authorized.
1618 		 */
1619 		sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1620 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1621 	}
1622 
1623 unlock:
1624 	mutex_unlock(&sw->tb->lock);
1625 	return ret;
1626 }
1627 
1628 static ssize_t authorized_store(struct device *dev,
1629 				struct device_attribute *attr,
1630 				const char *buf, size_t count)
1631 {
1632 	struct tb_switch *sw = tb_to_switch(dev);
1633 	unsigned int val;
1634 	ssize_t ret;
1635 
1636 	ret = kstrtouint(buf, 0, &val);
1637 	if (ret)
1638 		return ret;
1639 	if (val > 2)
1640 		return -EINVAL;
1641 
1642 	pm_runtime_get_sync(&sw->dev);
1643 	ret = tb_switch_set_authorized(sw, val);
1644 	pm_runtime_mark_last_busy(&sw->dev);
1645 	pm_runtime_put_autosuspend(&sw->dev);
1646 
1647 	return ret ? ret : count;
1648 }
1649 static DEVICE_ATTR_RW(authorized);
1650 
1651 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1652 			 char *buf)
1653 {
1654 	struct tb_switch *sw = tb_to_switch(dev);
1655 
1656 	return sprintf(buf, "%u\n", sw->boot);
1657 }
1658 static DEVICE_ATTR_RO(boot);
1659 
1660 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1661 			   char *buf)
1662 {
1663 	struct tb_switch *sw = tb_to_switch(dev);
1664 
1665 	return sprintf(buf, "%#x\n", sw->device);
1666 }
1667 static DEVICE_ATTR_RO(device);
1668 
1669 static ssize_t
1670 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1671 {
1672 	struct tb_switch *sw = tb_to_switch(dev);
1673 
1674 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1675 }
1676 static DEVICE_ATTR_RO(device_name);
1677 
1678 static ssize_t
1679 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1680 {
1681 	struct tb_switch *sw = tb_to_switch(dev);
1682 
1683 	return sprintf(buf, "%u\n", sw->generation);
1684 }
1685 static DEVICE_ATTR_RO(generation);
1686 
1687 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1688 			char *buf)
1689 {
1690 	struct tb_switch *sw = tb_to_switch(dev);
1691 	ssize_t ret;
1692 
1693 	if (!mutex_trylock(&sw->tb->lock))
1694 		return restart_syscall();
1695 
1696 	if (sw->key)
1697 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1698 	else
1699 		ret = sprintf(buf, "\n");
1700 
1701 	mutex_unlock(&sw->tb->lock);
1702 	return ret;
1703 }
1704 
1705 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1706 			 const char *buf, size_t count)
1707 {
1708 	struct tb_switch *sw = tb_to_switch(dev);
1709 	u8 key[TB_SWITCH_KEY_SIZE];
1710 	ssize_t ret = count;
1711 	bool clear = false;
1712 
1713 	if (!strcmp(buf, "\n"))
1714 		clear = true;
1715 	else if (hex2bin(key, buf, sizeof(key)))
1716 		return -EINVAL;
1717 
1718 	if (!mutex_trylock(&sw->tb->lock))
1719 		return restart_syscall();
1720 
1721 	if (sw->authorized) {
1722 		ret = -EBUSY;
1723 	} else {
1724 		kfree(sw->key);
1725 		if (clear) {
1726 			sw->key = NULL;
1727 		} else {
1728 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1729 			if (!sw->key)
1730 				ret = -ENOMEM;
1731 		}
1732 	}
1733 
1734 	mutex_unlock(&sw->tb->lock);
1735 	return ret;
1736 }
1737 static DEVICE_ATTR(key, 0600, key_show, key_store);
1738 
1739 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1740 			  char *buf)
1741 {
1742 	struct tb_switch *sw = tb_to_switch(dev);
1743 
1744 	return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1745 }
1746 
1747 /*
1748  * Currently all lanes must run at the same speed but we expose here
1749  * both directions to allow possible asymmetric links in the future.
1750  */
1751 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1752 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1753 
1754 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1755 			  char *buf)
1756 {
1757 	struct tb_switch *sw = tb_to_switch(dev);
1758 
1759 	return sprintf(buf, "%u\n", sw->link_width);
1760 }
1761 
1762 /*
1763  * Currently link has same amount of lanes both directions (1 or 2) but
1764  * expose them separately to allow possible asymmetric links in the future.
1765  */
1766 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1767 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1768 
1769 static ssize_t nvm_authenticate_show(struct device *dev,
1770 	struct device_attribute *attr, char *buf)
1771 {
1772 	struct tb_switch *sw = tb_to_switch(dev);
1773 	u32 status;
1774 
1775 	nvm_get_auth_status(sw, &status);
1776 	return sprintf(buf, "%#x\n", status);
1777 }
1778 
1779 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1780 				      bool disconnect)
1781 {
1782 	struct tb_switch *sw = tb_to_switch(dev);
1783 	int val, ret;
1784 
1785 	pm_runtime_get_sync(&sw->dev);
1786 
1787 	if (!mutex_trylock(&sw->tb->lock)) {
1788 		ret = restart_syscall();
1789 		goto exit_rpm;
1790 	}
1791 
1792 	/* If NVMem devices are not yet added */
1793 	if (!sw->nvm) {
1794 		ret = -EAGAIN;
1795 		goto exit_unlock;
1796 	}
1797 
1798 	ret = kstrtoint(buf, 10, &val);
1799 	if (ret)
1800 		goto exit_unlock;
1801 
1802 	/* Always clear the authentication status */
1803 	nvm_clear_auth_status(sw);
1804 
1805 	if (val > 0) {
1806 		if (val == AUTHENTICATE_ONLY) {
1807 			if (disconnect)
1808 				ret = -EINVAL;
1809 			else
1810 				ret = nvm_authenticate(sw, true);
1811 		} else {
1812 			if (!sw->nvm->flushed) {
1813 				if (!sw->nvm->buf) {
1814 					ret = -EINVAL;
1815 					goto exit_unlock;
1816 				}
1817 
1818 				ret = nvm_validate_and_write(sw);
1819 				if (ret || val == WRITE_ONLY)
1820 					goto exit_unlock;
1821 			}
1822 			if (val == WRITE_AND_AUTHENTICATE) {
1823 				if (disconnect)
1824 					ret = tb_lc_force_power(sw);
1825 				else
1826 					ret = nvm_authenticate(sw, false);
1827 			}
1828 		}
1829 	}
1830 
1831 exit_unlock:
1832 	mutex_unlock(&sw->tb->lock);
1833 exit_rpm:
1834 	pm_runtime_mark_last_busy(&sw->dev);
1835 	pm_runtime_put_autosuspend(&sw->dev);
1836 
1837 	return ret;
1838 }
1839 
1840 static ssize_t nvm_authenticate_store(struct device *dev,
1841 	struct device_attribute *attr, const char *buf, size_t count)
1842 {
1843 	int ret = nvm_authenticate_sysfs(dev, buf, false);
1844 	if (ret)
1845 		return ret;
1846 	return count;
1847 }
1848 static DEVICE_ATTR_RW(nvm_authenticate);
1849 
1850 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1851 	struct device_attribute *attr, char *buf)
1852 {
1853 	return nvm_authenticate_show(dev, attr, buf);
1854 }
1855 
1856 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1857 	struct device_attribute *attr, const char *buf, size_t count)
1858 {
1859 	int ret;
1860 
1861 	ret = nvm_authenticate_sysfs(dev, buf, true);
1862 	return ret ? ret : count;
1863 }
1864 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1865 
1866 static ssize_t nvm_version_show(struct device *dev,
1867 				struct device_attribute *attr, char *buf)
1868 {
1869 	struct tb_switch *sw = tb_to_switch(dev);
1870 	int ret;
1871 
1872 	if (!mutex_trylock(&sw->tb->lock))
1873 		return restart_syscall();
1874 
1875 	if (sw->safe_mode)
1876 		ret = -ENODATA;
1877 	else if (!sw->nvm)
1878 		ret = -EAGAIN;
1879 	else
1880 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1881 
1882 	mutex_unlock(&sw->tb->lock);
1883 
1884 	return ret;
1885 }
1886 static DEVICE_ATTR_RO(nvm_version);
1887 
1888 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1889 			   char *buf)
1890 {
1891 	struct tb_switch *sw = tb_to_switch(dev);
1892 
1893 	return sprintf(buf, "%#x\n", sw->vendor);
1894 }
1895 static DEVICE_ATTR_RO(vendor);
1896 
1897 static ssize_t
1898 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1899 {
1900 	struct tb_switch *sw = tb_to_switch(dev);
1901 
1902 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1903 }
1904 static DEVICE_ATTR_RO(vendor_name);
1905 
1906 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1907 			      char *buf)
1908 {
1909 	struct tb_switch *sw = tb_to_switch(dev);
1910 
1911 	return sprintf(buf, "%pUb\n", sw->uuid);
1912 }
1913 static DEVICE_ATTR_RO(unique_id);
1914 
1915 static struct attribute *switch_attrs[] = {
1916 	&dev_attr_authorized.attr,
1917 	&dev_attr_boot.attr,
1918 	&dev_attr_device.attr,
1919 	&dev_attr_device_name.attr,
1920 	&dev_attr_generation.attr,
1921 	&dev_attr_key.attr,
1922 	&dev_attr_nvm_authenticate.attr,
1923 	&dev_attr_nvm_authenticate_on_disconnect.attr,
1924 	&dev_attr_nvm_version.attr,
1925 	&dev_attr_rx_speed.attr,
1926 	&dev_attr_rx_lanes.attr,
1927 	&dev_attr_tx_speed.attr,
1928 	&dev_attr_tx_lanes.attr,
1929 	&dev_attr_vendor.attr,
1930 	&dev_attr_vendor_name.attr,
1931 	&dev_attr_unique_id.attr,
1932 	NULL,
1933 };
1934 
1935 static umode_t switch_attr_is_visible(struct kobject *kobj,
1936 				      struct attribute *attr, int n)
1937 {
1938 	struct device *dev = kobj_to_dev(kobj);
1939 	struct tb_switch *sw = tb_to_switch(dev);
1940 
1941 	if (attr == &dev_attr_authorized.attr) {
1942 		if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
1943 		    sw->tb->security_level == TB_SECURITY_DPONLY)
1944 			return 0;
1945 	} else if (attr == &dev_attr_device.attr) {
1946 		if (!sw->device)
1947 			return 0;
1948 	} else if (attr == &dev_attr_device_name.attr) {
1949 		if (!sw->device_name)
1950 			return 0;
1951 	} else if (attr == &dev_attr_vendor.attr)  {
1952 		if (!sw->vendor)
1953 			return 0;
1954 	} else if (attr == &dev_attr_vendor_name.attr)  {
1955 		if (!sw->vendor_name)
1956 			return 0;
1957 	} else if (attr == &dev_attr_key.attr) {
1958 		if (tb_route(sw) &&
1959 		    sw->tb->security_level == TB_SECURITY_SECURE &&
1960 		    sw->security_level == TB_SECURITY_SECURE)
1961 			return attr->mode;
1962 		return 0;
1963 	} else if (attr == &dev_attr_rx_speed.attr ||
1964 		   attr == &dev_attr_rx_lanes.attr ||
1965 		   attr == &dev_attr_tx_speed.attr ||
1966 		   attr == &dev_attr_tx_lanes.attr) {
1967 		if (tb_route(sw))
1968 			return attr->mode;
1969 		return 0;
1970 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
1971 		if (nvm_upgradeable(sw))
1972 			return attr->mode;
1973 		return 0;
1974 	} else if (attr == &dev_attr_nvm_version.attr) {
1975 		if (nvm_readable(sw))
1976 			return attr->mode;
1977 		return 0;
1978 	} else if (attr == &dev_attr_boot.attr) {
1979 		if (tb_route(sw))
1980 			return attr->mode;
1981 		return 0;
1982 	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1983 		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1984 			return attr->mode;
1985 		return 0;
1986 	}
1987 
1988 	return sw->safe_mode ? 0 : attr->mode;
1989 }
1990 
1991 static const struct attribute_group switch_group = {
1992 	.is_visible = switch_attr_is_visible,
1993 	.attrs = switch_attrs,
1994 };
1995 
1996 static const struct attribute_group *switch_groups[] = {
1997 	&switch_group,
1998 	NULL,
1999 };
2000 
2001 static void tb_switch_release(struct device *dev)
2002 {
2003 	struct tb_switch *sw = tb_to_switch(dev);
2004 	struct tb_port *port;
2005 
2006 	dma_port_free(sw->dma_port);
2007 
2008 	tb_switch_for_each_port(sw, port) {
2009 		ida_destroy(&port->in_hopids);
2010 		ida_destroy(&port->out_hopids);
2011 	}
2012 
2013 	kfree(sw->uuid);
2014 	kfree(sw->device_name);
2015 	kfree(sw->vendor_name);
2016 	kfree(sw->ports);
2017 	kfree(sw->drom);
2018 	kfree(sw->key);
2019 	kfree(sw);
2020 }
2021 
2022 static int tb_switch_uevent(struct device *dev, struct kobj_uevent_env *env)
2023 {
2024 	struct tb_switch *sw = tb_to_switch(dev);
2025 	const char *type;
2026 
2027 	if (sw->config.thunderbolt_version == USB4_VERSION_1_0) {
2028 		if (add_uevent_var(env, "USB4_VERSION=1.0"))
2029 			return -ENOMEM;
2030 	}
2031 
2032 	if (!tb_route(sw)) {
2033 		type = "host";
2034 	} else {
2035 		const struct tb_port *port;
2036 		bool hub = false;
2037 
2038 		/* Device is hub if it has any downstream ports */
2039 		tb_switch_for_each_port(sw, port) {
2040 			if (!port->disabled && !tb_is_upstream_port(port) &&
2041 			     tb_port_is_null(port)) {
2042 				hub = true;
2043 				break;
2044 			}
2045 		}
2046 
2047 		type = hub ? "hub" : "device";
2048 	}
2049 
2050 	if (add_uevent_var(env, "USB4_TYPE=%s", type))
2051 		return -ENOMEM;
2052 	return 0;
2053 }
2054 
2055 /*
2056  * Currently only need to provide the callbacks. Everything else is handled
2057  * in the connection manager.
2058  */
2059 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2060 {
2061 	struct tb_switch *sw = tb_to_switch(dev);
2062 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2063 
2064 	if (cm_ops->runtime_suspend_switch)
2065 		return cm_ops->runtime_suspend_switch(sw);
2066 
2067 	return 0;
2068 }
2069 
2070 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2071 {
2072 	struct tb_switch *sw = tb_to_switch(dev);
2073 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2074 
2075 	if (cm_ops->runtime_resume_switch)
2076 		return cm_ops->runtime_resume_switch(sw);
2077 	return 0;
2078 }
2079 
2080 static const struct dev_pm_ops tb_switch_pm_ops = {
2081 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2082 			   NULL)
2083 };
2084 
2085 struct device_type tb_switch_type = {
2086 	.name = "thunderbolt_device",
2087 	.release = tb_switch_release,
2088 	.uevent = tb_switch_uevent,
2089 	.pm = &tb_switch_pm_ops,
2090 };
2091 
2092 static int tb_switch_get_generation(struct tb_switch *sw)
2093 {
2094 	switch (sw->config.device_id) {
2095 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2096 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2097 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2098 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2099 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2100 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2101 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2102 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2103 		return 1;
2104 
2105 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2106 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2107 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2108 		return 2;
2109 
2110 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2111 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2112 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2113 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2114 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2115 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2116 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2117 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2118 	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2119 	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2120 		return 3;
2121 
2122 	default:
2123 		if (tb_switch_is_usb4(sw))
2124 			return 4;
2125 
2126 		/*
2127 		 * For unknown switches assume generation to be 1 to be
2128 		 * on the safe side.
2129 		 */
2130 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
2131 			   sw->config.device_id);
2132 		return 1;
2133 	}
2134 }
2135 
2136 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2137 {
2138 	int max_depth;
2139 
2140 	if (tb_switch_is_usb4(sw) ||
2141 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2142 		max_depth = USB4_SWITCH_MAX_DEPTH;
2143 	else
2144 		max_depth = TB_SWITCH_MAX_DEPTH;
2145 
2146 	return depth > max_depth;
2147 }
2148 
2149 /**
2150  * tb_switch_alloc() - allocate a switch
2151  * @tb: Pointer to the owning domain
2152  * @parent: Parent device for this switch
2153  * @route: Route string for this switch
2154  *
2155  * Allocates and initializes a switch. Will not upload configuration to
2156  * the switch. For that you need to call tb_switch_configure()
2157  * separately. The returned switch should be released by calling
2158  * tb_switch_put().
2159  *
2160  * Return: Pointer to the allocated switch or ERR_PTR() in case of
2161  * failure.
2162  */
2163 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2164 				  u64 route)
2165 {
2166 	struct tb_switch *sw;
2167 	int upstream_port;
2168 	int i, ret, depth;
2169 
2170 	/* Unlock the downstream port so we can access the switch below */
2171 	if (route) {
2172 		struct tb_switch *parent_sw = tb_to_switch(parent);
2173 		struct tb_port *down;
2174 
2175 		down = tb_port_at(route, parent_sw);
2176 		tb_port_unlock(down);
2177 	}
2178 
2179 	depth = tb_route_length(route);
2180 
2181 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2182 	if (upstream_port < 0)
2183 		return ERR_PTR(upstream_port);
2184 
2185 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2186 	if (!sw)
2187 		return ERR_PTR(-ENOMEM);
2188 
2189 	sw->tb = tb;
2190 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2191 	if (ret)
2192 		goto err_free_sw_ports;
2193 
2194 	sw->generation = tb_switch_get_generation(sw);
2195 
2196 	tb_dbg(tb, "current switch config:\n");
2197 	tb_dump_switch(tb, sw);
2198 
2199 	/* configure switch */
2200 	sw->config.upstream_port_number = upstream_port;
2201 	sw->config.depth = depth;
2202 	sw->config.route_hi = upper_32_bits(route);
2203 	sw->config.route_lo = lower_32_bits(route);
2204 	sw->config.enabled = 0;
2205 
2206 	/* Make sure we do not exceed maximum topology limit */
2207 	if (tb_switch_exceeds_max_depth(sw, depth)) {
2208 		ret = -EADDRNOTAVAIL;
2209 		goto err_free_sw_ports;
2210 	}
2211 
2212 	/* initialize ports */
2213 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2214 				GFP_KERNEL);
2215 	if (!sw->ports) {
2216 		ret = -ENOMEM;
2217 		goto err_free_sw_ports;
2218 	}
2219 
2220 	for (i = 0; i <= sw->config.max_port_number; i++) {
2221 		/* minimum setup for tb_find_cap and tb_drom_read to work */
2222 		sw->ports[i].sw = sw;
2223 		sw->ports[i].port = i;
2224 
2225 		/* Control port does not need HopID allocation */
2226 		if (i) {
2227 			ida_init(&sw->ports[i].in_hopids);
2228 			ida_init(&sw->ports[i].out_hopids);
2229 		}
2230 	}
2231 
2232 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2233 	if (ret > 0)
2234 		sw->cap_plug_events = ret;
2235 
2236 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2237 	if (ret > 0)
2238 		sw->cap_vsec_tmu = ret;
2239 
2240 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2241 	if (ret > 0)
2242 		sw->cap_lc = ret;
2243 
2244 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2245 	if (ret > 0)
2246 		sw->cap_lp = ret;
2247 
2248 	/* Root switch is always authorized */
2249 	if (!route)
2250 		sw->authorized = true;
2251 
2252 	device_initialize(&sw->dev);
2253 	sw->dev.parent = parent;
2254 	sw->dev.bus = &tb_bus_type;
2255 	sw->dev.type = &tb_switch_type;
2256 	sw->dev.groups = switch_groups;
2257 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2258 
2259 	return sw;
2260 
2261 err_free_sw_ports:
2262 	kfree(sw->ports);
2263 	kfree(sw);
2264 
2265 	return ERR_PTR(ret);
2266 }
2267 
2268 /**
2269  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2270  * @tb: Pointer to the owning domain
2271  * @parent: Parent device for this switch
2272  * @route: Route string for this switch
2273  *
2274  * This creates a switch in safe mode. This means the switch pretty much
2275  * lacks all capabilities except DMA configuration port before it is
2276  * flashed with a valid NVM firmware.
2277  *
2278  * The returned switch must be released by calling tb_switch_put().
2279  *
2280  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2281  */
2282 struct tb_switch *
2283 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2284 {
2285 	struct tb_switch *sw;
2286 
2287 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2288 	if (!sw)
2289 		return ERR_PTR(-ENOMEM);
2290 
2291 	sw->tb = tb;
2292 	sw->config.depth = tb_route_length(route);
2293 	sw->config.route_hi = upper_32_bits(route);
2294 	sw->config.route_lo = lower_32_bits(route);
2295 	sw->safe_mode = true;
2296 
2297 	device_initialize(&sw->dev);
2298 	sw->dev.parent = parent;
2299 	sw->dev.bus = &tb_bus_type;
2300 	sw->dev.type = &tb_switch_type;
2301 	sw->dev.groups = switch_groups;
2302 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2303 
2304 	return sw;
2305 }
2306 
2307 /**
2308  * tb_switch_configure() - Uploads configuration to the switch
2309  * @sw: Switch to configure
2310  *
2311  * Call this function before the switch is added to the system. It will
2312  * upload configuration to the switch and makes it available for the
2313  * connection manager to use. Can be called to the switch again after
2314  * resume from low power states to re-initialize it.
2315  *
2316  * Return: %0 in case of success and negative errno in case of failure
2317  */
2318 int tb_switch_configure(struct tb_switch *sw)
2319 {
2320 	struct tb *tb = sw->tb;
2321 	u64 route;
2322 	int ret;
2323 
2324 	route = tb_route(sw);
2325 
2326 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2327 	       sw->config.enabled ? "restoring" : "initializing", route,
2328 	       tb_route_length(route), sw->config.upstream_port_number);
2329 
2330 	sw->config.enabled = 1;
2331 
2332 	if (tb_switch_is_usb4(sw)) {
2333 		/*
2334 		 * For USB4 devices, we need to program the CM version
2335 		 * accordingly so that it knows to expose all the
2336 		 * additional capabilities.
2337 		 */
2338 		sw->config.cmuv = USB4_VERSION_1_0;
2339 
2340 		/* Enumerate the switch */
2341 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2342 				  ROUTER_CS_1, 4);
2343 		if (ret)
2344 			return ret;
2345 
2346 		ret = usb4_switch_setup(sw);
2347 	} else {
2348 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2349 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2350 				   sw->config.vendor_id);
2351 
2352 		if (!sw->cap_plug_events) {
2353 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2354 			return -ENODEV;
2355 		}
2356 
2357 		/* Enumerate the switch */
2358 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2359 				  ROUTER_CS_1, 3);
2360 	}
2361 	if (ret)
2362 		return ret;
2363 
2364 	return tb_plug_events_active(sw, true);
2365 }
2366 
2367 static int tb_switch_set_uuid(struct tb_switch *sw)
2368 {
2369 	bool uid = false;
2370 	u32 uuid[4];
2371 	int ret;
2372 
2373 	if (sw->uuid)
2374 		return 0;
2375 
2376 	if (tb_switch_is_usb4(sw)) {
2377 		ret = usb4_switch_read_uid(sw, &sw->uid);
2378 		if (ret)
2379 			return ret;
2380 		uid = true;
2381 	} else {
2382 		/*
2383 		 * The newer controllers include fused UUID as part of
2384 		 * link controller specific registers
2385 		 */
2386 		ret = tb_lc_read_uuid(sw, uuid);
2387 		if (ret) {
2388 			if (ret != -EINVAL)
2389 				return ret;
2390 			uid = true;
2391 		}
2392 	}
2393 
2394 	if (uid) {
2395 		/*
2396 		 * ICM generates UUID based on UID and fills the upper
2397 		 * two words with ones. This is not strictly following
2398 		 * UUID format but we want to be compatible with it so
2399 		 * we do the same here.
2400 		 */
2401 		uuid[0] = sw->uid & 0xffffffff;
2402 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2403 		uuid[2] = 0xffffffff;
2404 		uuid[3] = 0xffffffff;
2405 	}
2406 
2407 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2408 	if (!sw->uuid)
2409 		return -ENOMEM;
2410 	return 0;
2411 }
2412 
2413 static int tb_switch_add_dma_port(struct tb_switch *sw)
2414 {
2415 	u32 status;
2416 	int ret;
2417 
2418 	switch (sw->generation) {
2419 	case 2:
2420 		/* Only root switch can be upgraded */
2421 		if (tb_route(sw))
2422 			return 0;
2423 
2424 		fallthrough;
2425 	case 3:
2426 	case 4:
2427 		ret = tb_switch_set_uuid(sw);
2428 		if (ret)
2429 			return ret;
2430 		break;
2431 
2432 	default:
2433 		/*
2434 		 * DMA port is the only thing available when the switch
2435 		 * is in safe mode.
2436 		 */
2437 		if (!sw->safe_mode)
2438 			return 0;
2439 		break;
2440 	}
2441 
2442 	if (sw->no_nvm_upgrade)
2443 		return 0;
2444 
2445 	if (tb_switch_is_usb4(sw)) {
2446 		ret = usb4_switch_nvm_authenticate_status(sw, &status);
2447 		if (ret)
2448 			return ret;
2449 
2450 		if (status) {
2451 			tb_sw_info(sw, "switch flash authentication failed\n");
2452 			nvm_set_auth_status(sw, status);
2453 		}
2454 
2455 		return 0;
2456 	}
2457 
2458 	/* Root switch DMA port requires running firmware */
2459 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2460 		return 0;
2461 
2462 	sw->dma_port = dma_port_alloc(sw);
2463 	if (!sw->dma_port)
2464 		return 0;
2465 
2466 	/*
2467 	 * If there is status already set then authentication failed
2468 	 * when the dma_port_flash_update_auth() returned. Power cycling
2469 	 * is not needed (it was done already) so only thing we do here
2470 	 * is to unblock runtime PM of the root port.
2471 	 */
2472 	nvm_get_auth_status(sw, &status);
2473 	if (status) {
2474 		if (!tb_route(sw))
2475 			nvm_authenticate_complete_dma_port(sw);
2476 		return 0;
2477 	}
2478 
2479 	/*
2480 	 * Check status of the previous flash authentication. If there
2481 	 * is one we need to power cycle the switch in any case to make
2482 	 * it functional again.
2483 	 */
2484 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2485 	if (ret <= 0)
2486 		return ret;
2487 
2488 	/* Now we can allow root port to suspend again */
2489 	if (!tb_route(sw))
2490 		nvm_authenticate_complete_dma_port(sw);
2491 
2492 	if (status) {
2493 		tb_sw_info(sw, "switch flash authentication failed\n");
2494 		nvm_set_auth_status(sw, status);
2495 	}
2496 
2497 	tb_sw_info(sw, "power cycling the switch now\n");
2498 	dma_port_power_cycle(sw->dma_port);
2499 
2500 	/*
2501 	 * We return error here which causes the switch adding failure.
2502 	 * It should appear back after power cycle is complete.
2503 	 */
2504 	return -ESHUTDOWN;
2505 }
2506 
2507 static void tb_switch_default_link_ports(struct tb_switch *sw)
2508 {
2509 	int i;
2510 
2511 	for (i = 1; i <= sw->config.max_port_number; i++) {
2512 		struct tb_port *port = &sw->ports[i];
2513 		struct tb_port *subordinate;
2514 
2515 		if (!tb_port_is_null(port))
2516 			continue;
2517 
2518 		/* Check for the subordinate port */
2519 		if (i == sw->config.max_port_number ||
2520 		    !tb_port_is_null(&sw->ports[i + 1]))
2521 			continue;
2522 
2523 		/* Link them if not already done so (by DROM) */
2524 		subordinate = &sw->ports[i + 1];
2525 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2526 			port->link_nr = 0;
2527 			port->dual_link_port = subordinate;
2528 			subordinate->link_nr = 1;
2529 			subordinate->dual_link_port = port;
2530 
2531 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2532 				  port->port, subordinate->port);
2533 		}
2534 	}
2535 }
2536 
2537 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2538 {
2539 	const struct tb_port *up = tb_upstream_port(sw);
2540 
2541 	if (!up->dual_link_port || !up->dual_link_port->remote)
2542 		return false;
2543 
2544 	if (tb_switch_is_usb4(sw))
2545 		return usb4_switch_lane_bonding_possible(sw);
2546 	return tb_lc_lane_bonding_possible(sw);
2547 }
2548 
2549 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2550 {
2551 	struct tb_port *up;
2552 	bool change = false;
2553 	int ret;
2554 
2555 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2556 		return 0;
2557 
2558 	up = tb_upstream_port(sw);
2559 
2560 	ret = tb_port_get_link_speed(up);
2561 	if (ret < 0)
2562 		return ret;
2563 	if (sw->link_speed != ret)
2564 		change = true;
2565 	sw->link_speed = ret;
2566 
2567 	ret = tb_port_get_link_width(up);
2568 	if (ret < 0)
2569 		return ret;
2570 	if (sw->link_width != ret)
2571 		change = true;
2572 	sw->link_width = ret;
2573 
2574 	/* Notify userspace that there is possible link attribute change */
2575 	if (device_is_registered(&sw->dev) && change)
2576 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2577 
2578 	return 0;
2579 }
2580 
2581 /**
2582  * tb_switch_lane_bonding_enable() - Enable lane bonding
2583  * @sw: Switch to enable lane bonding
2584  *
2585  * Connection manager can call this function to enable lane bonding of a
2586  * switch. If conditions are correct and both switches support the feature,
2587  * lanes are bonded. It is safe to call this to any switch.
2588  */
2589 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2590 {
2591 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2592 	struct tb_port *up, *down;
2593 	u64 route = tb_route(sw);
2594 	int ret;
2595 
2596 	if (!route)
2597 		return 0;
2598 
2599 	if (!tb_switch_lane_bonding_possible(sw))
2600 		return 0;
2601 
2602 	up = tb_upstream_port(sw);
2603 	down = tb_port_at(route, parent);
2604 
2605 	if (!tb_port_is_width_supported(up, 2) ||
2606 	    !tb_port_is_width_supported(down, 2))
2607 		return 0;
2608 
2609 	ret = tb_port_lane_bonding_enable(up);
2610 	if (ret) {
2611 		tb_port_warn(up, "failed to enable lane bonding\n");
2612 		return ret;
2613 	}
2614 
2615 	ret = tb_port_lane_bonding_enable(down);
2616 	if (ret) {
2617 		tb_port_warn(down, "failed to enable lane bonding\n");
2618 		tb_port_lane_bonding_disable(up);
2619 		return ret;
2620 	}
2621 
2622 	ret = tb_port_wait_for_link_width(down, 2, 100);
2623 	if (ret) {
2624 		tb_port_warn(down, "timeout enabling lane bonding\n");
2625 		return ret;
2626 	}
2627 
2628 	tb_port_update_credits(down);
2629 	tb_port_update_credits(up);
2630 	tb_switch_update_link_attributes(sw);
2631 
2632 	tb_sw_dbg(sw, "lane bonding enabled\n");
2633 	return ret;
2634 }
2635 
2636 /**
2637  * tb_switch_lane_bonding_disable() - Disable lane bonding
2638  * @sw: Switch whose lane bonding to disable
2639  *
2640  * Disables lane bonding between @sw and parent. This can be called even
2641  * if lanes were not bonded originally.
2642  */
2643 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2644 {
2645 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2646 	struct tb_port *up, *down;
2647 
2648 	if (!tb_route(sw))
2649 		return;
2650 
2651 	up = tb_upstream_port(sw);
2652 	if (!up->bonded)
2653 		return;
2654 
2655 	down = tb_port_at(tb_route(sw), parent);
2656 
2657 	tb_port_lane_bonding_disable(up);
2658 	tb_port_lane_bonding_disable(down);
2659 
2660 	/*
2661 	 * It is fine if we get other errors as the router might have
2662 	 * been unplugged.
2663 	 */
2664 	if (tb_port_wait_for_link_width(down, 1, 100) == -ETIMEDOUT)
2665 		tb_sw_warn(sw, "timeout disabling lane bonding\n");
2666 
2667 	tb_port_update_credits(down);
2668 	tb_port_update_credits(up);
2669 	tb_switch_update_link_attributes(sw);
2670 
2671 	tb_sw_dbg(sw, "lane bonding disabled\n");
2672 }
2673 
2674 /**
2675  * tb_switch_configure_link() - Set link configured
2676  * @sw: Switch whose link is configured
2677  *
2678  * Sets the link upstream from @sw configured (from both ends) so that
2679  * it will not be disconnected when the domain exits sleep. Can be
2680  * called for any switch.
2681  *
2682  * It is recommended that this is called after lane bonding is enabled.
2683  *
2684  * Returns %0 on success and negative errno in case of error.
2685  */
2686 int tb_switch_configure_link(struct tb_switch *sw)
2687 {
2688 	struct tb_port *up, *down;
2689 	int ret;
2690 
2691 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2692 		return 0;
2693 
2694 	up = tb_upstream_port(sw);
2695 	if (tb_switch_is_usb4(up->sw))
2696 		ret = usb4_port_configure(up);
2697 	else
2698 		ret = tb_lc_configure_port(up);
2699 	if (ret)
2700 		return ret;
2701 
2702 	down = up->remote;
2703 	if (tb_switch_is_usb4(down->sw))
2704 		return usb4_port_configure(down);
2705 	return tb_lc_configure_port(down);
2706 }
2707 
2708 /**
2709  * tb_switch_unconfigure_link() - Unconfigure link
2710  * @sw: Switch whose link is unconfigured
2711  *
2712  * Sets the link unconfigured so the @sw will be disconnected if the
2713  * domain exists sleep.
2714  */
2715 void tb_switch_unconfigure_link(struct tb_switch *sw)
2716 {
2717 	struct tb_port *up, *down;
2718 
2719 	if (sw->is_unplugged)
2720 		return;
2721 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2722 		return;
2723 
2724 	up = tb_upstream_port(sw);
2725 	if (tb_switch_is_usb4(up->sw))
2726 		usb4_port_unconfigure(up);
2727 	else
2728 		tb_lc_unconfigure_port(up);
2729 
2730 	down = up->remote;
2731 	if (tb_switch_is_usb4(down->sw))
2732 		usb4_port_unconfigure(down);
2733 	else
2734 		tb_lc_unconfigure_port(down);
2735 }
2736 
2737 static void tb_switch_credits_init(struct tb_switch *sw)
2738 {
2739 	if (tb_switch_is_icm(sw))
2740 		return;
2741 	if (!tb_switch_is_usb4(sw))
2742 		return;
2743 	if (usb4_switch_credits_init(sw))
2744 		tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
2745 }
2746 
2747 /**
2748  * tb_switch_add() - Add a switch to the domain
2749  * @sw: Switch to add
2750  *
2751  * This is the last step in adding switch to the domain. It will read
2752  * identification information from DROM and initializes ports so that
2753  * they can be used to connect other switches. The switch will be
2754  * exposed to the userspace when this function successfully returns. To
2755  * remove and release the switch, call tb_switch_remove().
2756  *
2757  * Return: %0 in case of success and negative errno in case of failure
2758  */
2759 int tb_switch_add(struct tb_switch *sw)
2760 {
2761 	int i, ret;
2762 
2763 	/*
2764 	 * Initialize DMA control port now before we read DROM. Recent
2765 	 * host controllers have more complete DROM on NVM that includes
2766 	 * vendor and model identification strings which we then expose
2767 	 * to the userspace. NVM can be accessed through DMA
2768 	 * configuration based mailbox.
2769 	 */
2770 	ret = tb_switch_add_dma_port(sw);
2771 	if (ret) {
2772 		dev_err(&sw->dev, "failed to add DMA port\n");
2773 		return ret;
2774 	}
2775 
2776 	if (!sw->safe_mode) {
2777 		tb_switch_credits_init(sw);
2778 
2779 		/* read drom */
2780 		ret = tb_drom_read(sw);
2781 		if (ret) {
2782 			dev_err(&sw->dev, "reading DROM failed\n");
2783 			return ret;
2784 		}
2785 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2786 
2787 		tb_check_quirks(sw);
2788 
2789 		ret = tb_switch_set_uuid(sw);
2790 		if (ret) {
2791 			dev_err(&sw->dev, "failed to set UUID\n");
2792 			return ret;
2793 		}
2794 
2795 		for (i = 0; i <= sw->config.max_port_number; i++) {
2796 			if (sw->ports[i].disabled) {
2797 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2798 				continue;
2799 			}
2800 			ret = tb_init_port(&sw->ports[i]);
2801 			if (ret) {
2802 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
2803 				return ret;
2804 			}
2805 		}
2806 
2807 		tb_switch_default_link_ports(sw);
2808 
2809 		ret = tb_switch_update_link_attributes(sw);
2810 		if (ret)
2811 			return ret;
2812 
2813 		ret = tb_switch_tmu_init(sw);
2814 		if (ret)
2815 			return ret;
2816 	}
2817 
2818 	ret = device_add(&sw->dev);
2819 	if (ret) {
2820 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
2821 		return ret;
2822 	}
2823 
2824 	if (tb_route(sw)) {
2825 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2826 			 sw->vendor, sw->device);
2827 		if (sw->vendor_name && sw->device_name)
2828 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2829 				 sw->device_name);
2830 	}
2831 
2832 	ret = usb4_switch_add_ports(sw);
2833 	if (ret) {
2834 		dev_err(&sw->dev, "failed to add USB4 ports\n");
2835 		goto err_del;
2836 	}
2837 
2838 	ret = tb_switch_nvm_add(sw);
2839 	if (ret) {
2840 		dev_err(&sw->dev, "failed to add NVM devices\n");
2841 		goto err_ports;
2842 	}
2843 
2844 	/*
2845 	 * Thunderbolt routers do not generate wakeups themselves but
2846 	 * they forward wakeups from tunneled protocols, so enable it
2847 	 * here.
2848 	 */
2849 	device_init_wakeup(&sw->dev, true);
2850 
2851 	pm_runtime_set_active(&sw->dev);
2852 	if (sw->rpm) {
2853 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2854 		pm_runtime_use_autosuspend(&sw->dev);
2855 		pm_runtime_mark_last_busy(&sw->dev);
2856 		pm_runtime_enable(&sw->dev);
2857 		pm_request_autosuspend(&sw->dev);
2858 	}
2859 
2860 	tb_switch_debugfs_init(sw);
2861 	return 0;
2862 
2863 err_ports:
2864 	usb4_switch_remove_ports(sw);
2865 err_del:
2866 	device_del(&sw->dev);
2867 
2868 	return ret;
2869 }
2870 
2871 /**
2872  * tb_switch_remove() - Remove and release a switch
2873  * @sw: Switch to remove
2874  *
2875  * This will remove the switch from the domain and release it after last
2876  * reference count drops to zero. If there are switches connected below
2877  * this switch, they will be removed as well.
2878  */
2879 void tb_switch_remove(struct tb_switch *sw)
2880 {
2881 	struct tb_port *port;
2882 
2883 	tb_switch_debugfs_remove(sw);
2884 
2885 	if (sw->rpm) {
2886 		pm_runtime_get_sync(&sw->dev);
2887 		pm_runtime_disable(&sw->dev);
2888 	}
2889 
2890 	/* port 0 is the switch itself and never has a remote */
2891 	tb_switch_for_each_port(sw, port) {
2892 		if (tb_port_has_remote(port)) {
2893 			tb_switch_remove(port->remote->sw);
2894 			port->remote = NULL;
2895 		} else if (port->xdomain) {
2896 			tb_xdomain_remove(port->xdomain);
2897 			port->xdomain = NULL;
2898 		}
2899 
2900 		/* Remove any downstream retimers */
2901 		tb_retimer_remove_all(port);
2902 	}
2903 
2904 	if (!sw->is_unplugged)
2905 		tb_plug_events_active(sw, false);
2906 
2907 	tb_switch_nvm_remove(sw);
2908 	usb4_switch_remove_ports(sw);
2909 
2910 	if (tb_route(sw))
2911 		dev_info(&sw->dev, "device disconnected\n");
2912 	device_unregister(&sw->dev);
2913 }
2914 
2915 /**
2916  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2917  * @sw: Router to mark unplugged
2918  */
2919 void tb_sw_set_unplugged(struct tb_switch *sw)
2920 {
2921 	struct tb_port *port;
2922 
2923 	if (sw == sw->tb->root_switch) {
2924 		tb_sw_WARN(sw, "cannot unplug root switch\n");
2925 		return;
2926 	}
2927 	if (sw->is_unplugged) {
2928 		tb_sw_WARN(sw, "is_unplugged already set\n");
2929 		return;
2930 	}
2931 	sw->is_unplugged = true;
2932 	tb_switch_for_each_port(sw, port) {
2933 		if (tb_port_has_remote(port))
2934 			tb_sw_set_unplugged(port->remote->sw);
2935 		else if (port->xdomain)
2936 			port->xdomain->is_unplugged = true;
2937 	}
2938 }
2939 
2940 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
2941 {
2942 	if (flags)
2943 		tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
2944 	else
2945 		tb_sw_dbg(sw, "disabling wakeup\n");
2946 
2947 	if (tb_switch_is_usb4(sw))
2948 		return usb4_switch_set_wake(sw, flags);
2949 	return tb_lc_set_wake(sw, flags);
2950 }
2951 
2952 int tb_switch_resume(struct tb_switch *sw)
2953 {
2954 	struct tb_port *port;
2955 	int err;
2956 
2957 	tb_sw_dbg(sw, "resuming switch\n");
2958 
2959 	/*
2960 	 * Check for UID of the connected switches except for root
2961 	 * switch which we assume cannot be removed.
2962 	 */
2963 	if (tb_route(sw)) {
2964 		u64 uid;
2965 
2966 		/*
2967 		 * Check first that we can still read the switch config
2968 		 * space. It may be that there is now another domain
2969 		 * connected.
2970 		 */
2971 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2972 		if (err < 0) {
2973 			tb_sw_info(sw, "switch not present anymore\n");
2974 			return err;
2975 		}
2976 
2977 		if (tb_switch_is_usb4(sw))
2978 			err = usb4_switch_read_uid(sw, &uid);
2979 		else
2980 			err = tb_drom_read_uid_only(sw, &uid);
2981 		if (err) {
2982 			tb_sw_warn(sw, "uid read failed\n");
2983 			return err;
2984 		}
2985 		if (sw->uid != uid) {
2986 			tb_sw_info(sw,
2987 				"changed while suspended (uid %#llx -> %#llx)\n",
2988 				sw->uid, uid);
2989 			return -ENODEV;
2990 		}
2991 	}
2992 
2993 	err = tb_switch_configure(sw);
2994 	if (err)
2995 		return err;
2996 
2997 	/* Disable wakes */
2998 	tb_switch_set_wake(sw, 0);
2999 
3000 	err = tb_switch_tmu_init(sw);
3001 	if (err)
3002 		return err;
3003 
3004 	/* check for surviving downstream switches */
3005 	tb_switch_for_each_port(sw, port) {
3006 		if (!tb_port_is_null(port))
3007 			continue;
3008 
3009 		if (!tb_port_resume(port))
3010 			continue;
3011 
3012 		if (tb_wait_for_port(port, true) <= 0) {
3013 			tb_port_warn(port,
3014 				     "lost during suspend, disconnecting\n");
3015 			if (tb_port_has_remote(port))
3016 				tb_sw_set_unplugged(port->remote->sw);
3017 			else if (port->xdomain)
3018 				port->xdomain->is_unplugged = true;
3019 		} else {
3020 			/*
3021 			 * Always unlock the port so the downstream
3022 			 * switch/domain is accessible.
3023 			 */
3024 			if (tb_port_unlock(port))
3025 				tb_port_warn(port, "failed to unlock port\n");
3026 			if (port->remote && tb_switch_resume(port->remote->sw)) {
3027 				tb_port_warn(port,
3028 					     "lost during suspend, disconnecting\n");
3029 				tb_sw_set_unplugged(port->remote->sw);
3030 			}
3031 		}
3032 	}
3033 	return 0;
3034 }
3035 
3036 /**
3037  * tb_switch_suspend() - Put a switch to sleep
3038  * @sw: Switch to suspend
3039  * @runtime: Is this runtime suspend or system sleep
3040  *
3041  * Suspends router and all its children. Enables wakes according to
3042  * value of @runtime and then sets sleep bit for the router. If @sw is
3043  * host router the domain is ready to go to sleep once this function
3044  * returns.
3045  */
3046 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3047 {
3048 	unsigned int flags = 0;
3049 	struct tb_port *port;
3050 	int err;
3051 
3052 	tb_sw_dbg(sw, "suspending switch\n");
3053 
3054 	/*
3055 	 * Actually only needed for Titan Ridge but for simplicity can be
3056 	 * done for USB4 device too as CLx is re-enabled at resume.
3057 	 */
3058 	if (tb_switch_disable_clx(sw, TB_CL0S))
3059 		tb_sw_warn(sw, "failed to disable CLx on upstream port\n");
3060 
3061 	err = tb_plug_events_active(sw, false);
3062 	if (err)
3063 		return;
3064 
3065 	tb_switch_for_each_port(sw, port) {
3066 		if (tb_port_has_remote(port))
3067 			tb_switch_suspend(port->remote->sw, runtime);
3068 	}
3069 
3070 	if (runtime) {
3071 		/* Trigger wake when something is plugged in/out */
3072 		flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3073 		flags |= TB_WAKE_ON_USB4;
3074 		flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3075 	} else if (device_may_wakeup(&sw->dev)) {
3076 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3077 	}
3078 
3079 	tb_switch_set_wake(sw, flags);
3080 
3081 	if (tb_switch_is_usb4(sw))
3082 		usb4_switch_set_sleep(sw);
3083 	else
3084 		tb_lc_set_sleep(sw);
3085 }
3086 
3087 /**
3088  * tb_switch_query_dp_resource() - Query availability of DP resource
3089  * @sw: Switch whose DP resource is queried
3090  * @in: DP IN port
3091  *
3092  * Queries availability of DP resource for DP tunneling using switch
3093  * specific means. Returns %true if resource is available.
3094  */
3095 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3096 {
3097 	if (tb_switch_is_usb4(sw))
3098 		return usb4_switch_query_dp_resource(sw, in);
3099 	return tb_lc_dp_sink_query(sw, in);
3100 }
3101 
3102 /**
3103  * tb_switch_alloc_dp_resource() - Allocate available DP resource
3104  * @sw: Switch whose DP resource is allocated
3105  * @in: DP IN port
3106  *
3107  * Allocates DP resource for DP tunneling. The resource must be
3108  * available for this to succeed (see tb_switch_query_dp_resource()).
3109  * Returns %0 in success and negative errno otherwise.
3110  */
3111 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3112 {
3113 	int ret;
3114 
3115 	if (tb_switch_is_usb4(sw))
3116 		ret = usb4_switch_alloc_dp_resource(sw, in);
3117 	else
3118 		ret = tb_lc_dp_sink_alloc(sw, in);
3119 
3120 	if (ret)
3121 		tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3122 			   in->port);
3123 	else
3124 		tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3125 
3126 	return ret;
3127 }
3128 
3129 /**
3130  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3131  * @sw: Switch whose DP resource is de-allocated
3132  * @in: DP IN port
3133  *
3134  * De-allocates DP resource that was previously allocated for DP
3135  * tunneling.
3136  */
3137 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3138 {
3139 	int ret;
3140 
3141 	if (tb_switch_is_usb4(sw))
3142 		ret = usb4_switch_dealloc_dp_resource(sw, in);
3143 	else
3144 		ret = tb_lc_dp_sink_dealloc(sw, in);
3145 
3146 	if (ret)
3147 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3148 			   in->port);
3149 	else
3150 		tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3151 }
3152 
3153 struct tb_sw_lookup {
3154 	struct tb *tb;
3155 	u8 link;
3156 	u8 depth;
3157 	const uuid_t *uuid;
3158 	u64 route;
3159 };
3160 
3161 static int tb_switch_match(struct device *dev, const void *data)
3162 {
3163 	struct tb_switch *sw = tb_to_switch(dev);
3164 	const struct tb_sw_lookup *lookup = data;
3165 
3166 	if (!sw)
3167 		return 0;
3168 	if (sw->tb != lookup->tb)
3169 		return 0;
3170 
3171 	if (lookup->uuid)
3172 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3173 
3174 	if (lookup->route) {
3175 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
3176 		       sw->config.route_hi == upper_32_bits(lookup->route);
3177 	}
3178 
3179 	/* Root switch is matched only by depth */
3180 	if (!lookup->depth)
3181 		return !sw->depth;
3182 
3183 	return sw->link == lookup->link && sw->depth == lookup->depth;
3184 }
3185 
3186 /**
3187  * tb_switch_find_by_link_depth() - Find switch by link and depth
3188  * @tb: Domain the switch belongs
3189  * @link: Link number the switch is connected
3190  * @depth: Depth of the switch in link
3191  *
3192  * Returned switch has reference count increased so the caller needs to
3193  * call tb_switch_put() when done with the switch.
3194  */
3195 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3196 {
3197 	struct tb_sw_lookup lookup;
3198 	struct device *dev;
3199 
3200 	memset(&lookup, 0, sizeof(lookup));
3201 	lookup.tb = tb;
3202 	lookup.link = link;
3203 	lookup.depth = depth;
3204 
3205 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3206 	if (dev)
3207 		return tb_to_switch(dev);
3208 
3209 	return NULL;
3210 }
3211 
3212 /**
3213  * tb_switch_find_by_uuid() - Find switch by UUID
3214  * @tb: Domain the switch belongs
3215  * @uuid: UUID to look for
3216  *
3217  * Returned switch has reference count increased so the caller needs to
3218  * call tb_switch_put() when done with the switch.
3219  */
3220 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3221 {
3222 	struct tb_sw_lookup lookup;
3223 	struct device *dev;
3224 
3225 	memset(&lookup, 0, sizeof(lookup));
3226 	lookup.tb = tb;
3227 	lookup.uuid = uuid;
3228 
3229 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3230 	if (dev)
3231 		return tb_to_switch(dev);
3232 
3233 	return NULL;
3234 }
3235 
3236 /**
3237  * tb_switch_find_by_route() - Find switch by route string
3238  * @tb: Domain the switch belongs
3239  * @route: Route string to look for
3240  *
3241  * Returned switch has reference count increased so the caller needs to
3242  * call tb_switch_put() when done with the switch.
3243  */
3244 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3245 {
3246 	struct tb_sw_lookup lookup;
3247 	struct device *dev;
3248 
3249 	if (!route)
3250 		return tb_switch_get(tb->root_switch);
3251 
3252 	memset(&lookup, 0, sizeof(lookup));
3253 	lookup.tb = tb;
3254 	lookup.route = route;
3255 
3256 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3257 	if (dev)
3258 		return tb_to_switch(dev);
3259 
3260 	return NULL;
3261 }
3262 
3263 /**
3264  * tb_switch_find_port() - return the first port of @type on @sw or NULL
3265  * @sw: Switch to find the port from
3266  * @type: Port type to look for
3267  */
3268 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3269 				    enum tb_port_type type)
3270 {
3271 	struct tb_port *port;
3272 
3273 	tb_switch_for_each_port(sw, port) {
3274 		if (port->config.type == type)
3275 			return port;
3276 	}
3277 
3278 	return NULL;
3279 }
3280 
3281 static int __tb_port_pm_secondary_set(struct tb_port *port, bool secondary)
3282 {
3283 	u32 phy;
3284 	int ret;
3285 
3286 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
3287 			   port->cap_phy + LANE_ADP_CS_1, 1);
3288 	if (ret)
3289 		return ret;
3290 
3291 	if (secondary)
3292 		phy |= LANE_ADP_CS_1_PMS;
3293 	else
3294 		phy &= ~LANE_ADP_CS_1_PMS;
3295 
3296 	return tb_port_write(port, &phy, TB_CFG_PORT,
3297 			     port->cap_phy + LANE_ADP_CS_1, 1);
3298 }
3299 
3300 static int tb_port_pm_secondary_enable(struct tb_port *port)
3301 {
3302 	return __tb_port_pm_secondary_set(port, true);
3303 }
3304 
3305 static int tb_port_pm_secondary_disable(struct tb_port *port)
3306 {
3307 	return __tb_port_pm_secondary_set(port, false);
3308 }
3309 
3310 static int tb_switch_pm_secondary_resolve(struct tb_switch *sw)
3311 {
3312 	struct tb_switch *parent = tb_switch_parent(sw);
3313 	struct tb_port *up, *down;
3314 	int ret;
3315 
3316 	if (!tb_route(sw))
3317 		return 0;
3318 
3319 	up = tb_upstream_port(sw);
3320 	down = tb_port_at(tb_route(sw), parent);
3321 	ret = tb_port_pm_secondary_enable(up);
3322 	if (ret)
3323 		return ret;
3324 
3325 	return tb_port_pm_secondary_disable(down);
3326 }
3327 
3328 /* Called for USB4 or Titan Ridge routers only */
3329 static bool tb_port_clx_supported(struct tb_port *port, enum tb_clx clx)
3330 {
3331 	u32 mask, val;
3332 	bool ret;
3333 
3334 	/* Don't enable CLx in case of two single-lane links */
3335 	if (!port->bonded && port->dual_link_port)
3336 		return false;
3337 
3338 	/* Don't enable CLx in case of inter-domain link */
3339 	if (port->xdomain)
3340 		return false;
3341 
3342 	if (tb_switch_is_usb4(port->sw)) {
3343 		if (!usb4_port_clx_supported(port))
3344 			return false;
3345 	} else if (!tb_lc_is_clx_supported(port)) {
3346 		return false;
3347 	}
3348 
3349 	switch (clx) {
3350 	case TB_CL0S:
3351 		/* CL0s support requires also CL1 support */
3352 		mask = LANE_ADP_CS_0_CL0S_SUPPORT | LANE_ADP_CS_0_CL1_SUPPORT;
3353 		break;
3354 
3355 	/* For now we support only CL0s. Not CL1, CL2 */
3356 	case TB_CL1:
3357 	case TB_CL2:
3358 	default:
3359 		return false;
3360 	}
3361 
3362 	ret = tb_port_read(port, &val, TB_CFG_PORT,
3363 			   port->cap_phy + LANE_ADP_CS_0, 1);
3364 	if (ret)
3365 		return false;
3366 
3367 	return !!(val & mask);
3368 }
3369 
3370 static inline bool tb_port_cl0s_supported(struct tb_port *port)
3371 {
3372 	return tb_port_clx_supported(port, TB_CL0S);
3373 }
3374 
3375 static int __tb_port_cl0s_set(struct tb_port *port, bool enable)
3376 {
3377 	u32 phy, mask;
3378 	int ret;
3379 
3380 	/* To enable CL0s also required to enable CL1 */
3381 	mask = LANE_ADP_CS_1_CL0S_ENABLE | LANE_ADP_CS_1_CL1_ENABLE;
3382 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
3383 			   port->cap_phy + LANE_ADP_CS_1, 1);
3384 	if (ret)
3385 		return ret;
3386 
3387 	if (enable)
3388 		phy |= mask;
3389 	else
3390 		phy &= ~mask;
3391 
3392 	return tb_port_write(port, &phy, TB_CFG_PORT,
3393 			     port->cap_phy + LANE_ADP_CS_1, 1);
3394 }
3395 
3396 static int tb_port_cl0s_disable(struct tb_port *port)
3397 {
3398 	return __tb_port_cl0s_set(port, false);
3399 }
3400 
3401 static int tb_port_cl0s_enable(struct tb_port *port)
3402 {
3403 	return __tb_port_cl0s_set(port, true);
3404 }
3405 
3406 static int tb_switch_enable_cl0s(struct tb_switch *sw)
3407 {
3408 	struct tb_switch *parent = tb_switch_parent(sw);
3409 	bool up_cl0s_support, down_cl0s_support;
3410 	struct tb_port *up, *down;
3411 	int ret;
3412 
3413 	if (!tb_switch_is_clx_supported(sw))
3414 		return 0;
3415 
3416 	/*
3417 	 * Enable CLx for host router's downstream port as part of the
3418 	 * downstream router enabling procedure.
3419 	 */
3420 	if (!tb_route(sw))
3421 		return 0;
3422 
3423 	/* Enable CLx only for first hop router (depth = 1) */
3424 	if (tb_route(parent))
3425 		return 0;
3426 
3427 	ret = tb_switch_pm_secondary_resolve(sw);
3428 	if (ret)
3429 		return ret;
3430 
3431 	up = tb_upstream_port(sw);
3432 	down = tb_port_at(tb_route(sw), parent);
3433 
3434 	up_cl0s_support = tb_port_cl0s_supported(up);
3435 	down_cl0s_support = tb_port_cl0s_supported(down);
3436 
3437 	tb_port_dbg(up, "CL0s %ssupported\n",
3438 		    up_cl0s_support ? "" : "not ");
3439 	tb_port_dbg(down, "CL0s %ssupported\n",
3440 		    down_cl0s_support ? "" : "not ");
3441 
3442 	if (!up_cl0s_support || !down_cl0s_support)
3443 		return -EOPNOTSUPP;
3444 
3445 	ret = tb_port_cl0s_enable(up);
3446 	if (ret)
3447 		return ret;
3448 
3449 	ret = tb_port_cl0s_enable(down);
3450 	if (ret) {
3451 		tb_port_cl0s_disable(up);
3452 		return ret;
3453 	}
3454 
3455 	ret = tb_switch_mask_clx_objections(sw);
3456 	if (ret) {
3457 		tb_port_cl0s_disable(up);
3458 		tb_port_cl0s_disable(down);
3459 		return ret;
3460 	}
3461 
3462 	sw->clx = TB_CL0S;
3463 
3464 	tb_port_dbg(up, "CL0s enabled\n");
3465 	return 0;
3466 }
3467 
3468 /**
3469  * tb_switch_enable_clx() - Enable CLx on upstream port of specified router
3470  * @sw: Router to enable CLx for
3471  * @clx: The CLx state to enable
3472  *
3473  * Enable CLx state only for first hop router. That is the most common
3474  * use-case, that is intended for better thermal management, and so helps
3475  * to improve performance. CLx is enabled only if both sides of the link
3476  * support CLx, and if both sides of the link are not configured as two
3477  * single lane links and only if the link is not inter-domain link. The
3478  * complete set of conditions is descibed in CM Guide 1.0 section 8.1.
3479  *
3480  * Return: Returns 0 on success or an error code on failure.
3481  */
3482 int tb_switch_enable_clx(struct tb_switch *sw, enum tb_clx clx)
3483 {
3484 	struct tb_switch *root_sw = sw->tb->root_switch;
3485 
3486 	if (!clx_enabled)
3487 		return 0;
3488 
3489 	/*
3490 	 * CLx is not enabled and validated on Intel USB4 platforms before
3491 	 * Alder Lake.
3492 	 */
3493 	if (root_sw->generation < 4 || tb_switch_is_tiger_lake(root_sw))
3494 		return 0;
3495 
3496 	switch (clx) {
3497 	case TB_CL0S:
3498 		return tb_switch_enable_cl0s(sw);
3499 
3500 	default:
3501 		return -EOPNOTSUPP;
3502 	}
3503 }
3504 
3505 static int tb_switch_disable_cl0s(struct tb_switch *sw)
3506 {
3507 	struct tb_switch *parent = tb_switch_parent(sw);
3508 	struct tb_port *up, *down;
3509 	int ret;
3510 
3511 	if (!tb_switch_is_clx_supported(sw))
3512 		return 0;
3513 
3514 	/*
3515 	 * Disable CLx for host router's downstream port as part of the
3516 	 * downstream router enabling procedure.
3517 	 */
3518 	if (!tb_route(sw))
3519 		return 0;
3520 
3521 	/* Disable CLx only for first hop router (depth = 1) */
3522 	if (tb_route(parent))
3523 		return 0;
3524 
3525 	up = tb_upstream_port(sw);
3526 	down = tb_port_at(tb_route(sw), parent);
3527 	ret = tb_port_cl0s_disable(up);
3528 	if (ret)
3529 		return ret;
3530 
3531 	ret = tb_port_cl0s_disable(down);
3532 	if (ret)
3533 		return ret;
3534 
3535 	sw->clx = TB_CLX_DISABLE;
3536 
3537 	tb_port_dbg(up, "CL0s disabled\n");
3538 	return 0;
3539 }
3540 
3541 /**
3542  * tb_switch_disable_clx() - Disable CLx on upstream port of specified router
3543  * @sw: Router to disable CLx for
3544  * @clx: The CLx state to disable
3545  *
3546  * Return: Returns 0 on success or an error code on failure.
3547  */
3548 int tb_switch_disable_clx(struct tb_switch *sw, enum tb_clx clx)
3549 {
3550 	if (!clx_enabled)
3551 		return 0;
3552 
3553 	switch (clx) {
3554 	case TB_CL0S:
3555 		return tb_switch_disable_cl0s(sw);
3556 
3557 	default:
3558 		return -EOPNOTSUPP;
3559 	}
3560 }
3561 
3562 /**
3563  * tb_switch_mask_clx_objections() - Mask CLx objections for a router
3564  * @sw: Router to mask objections for
3565  *
3566  * Mask the objections coming from the second depth routers in order to
3567  * stop these objections from interfering with the CLx states of the first
3568  * depth link.
3569  */
3570 int tb_switch_mask_clx_objections(struct tb_switch *sw)
3571 {
3572 	int up_port = sw->config.upstream_port_number;
3573 	u32 offset, val[2], mask_obj, unmask_obj;
3574 	int ret, i;
3575 
3576 	/* Only Titan Ridge of pre-USB4 devices support CLx states */
3577 	if (!tb_switch_is_titan_ridge(sw))
3578 		return 0;
3579 
3580 	if (!tb_route(sw))
3581 		return 0;
3582 
3583 	/*
3584 	 * In Titan Ridge there are only 2 dual-lane Thunderbolt ports:
3585 	 * Port A consists of lane adapters 1,2 and
3586 	 * Port B consists of lane adapters 3,4
3587 	 * If upstream port is A, (lanes are 1,2), we mask objections from
3588 	 * port B (lanes 3,4) and unmask objections from Port A and vice-versa.
3589 	 */
3590 	if (up_port == 1) {
3591 		mask_obj = TB_LOW_PWR_C0_PORT_B_MASK;
3592 		unmask_obj = TB_LOW_PWR_C1_PORT_A_MASK;
3593 		offset = TB_LOW_PWR_C1_CL1;
3594 	} else {
3595 		mask_obj = TB_LOW_PWR_C1_PORT_A_MASK;
3596 		unmask_obj = TB_LOW_PWR_C0_PORT_B_MASK;
3597 		offset = TB_LOW_PWR_C3_CL1;
3598 	}
3599 
3600 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH,
3601 			 sw->cap_lp + offset, ARRAY_SIZE(val));
3602 	if (ret)
3603 		return ret;
3604 
3605 	for (i = 0; i < ARRAY_SIZE(val); i++) {
3606 		val[i] |= mask_obj;
3607 		val[i] &= ~unmask_obj;
3608 	}
3609 
3610 	return tb_sw_write(sw, &val, TB_CFG_SWITCH,
3611 			   sw->cap_lp + offset, ARRAY_SIZE(val));
3612 }
3613 
3614 /*
3615  * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3616  * device. For now used only for Titan Ridge.
3617  */
3618 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3619 				       unsigned int pcie_offset, u32 value)
3620 {
3621 	u32 offset, command, val;
3622 	int ret;
3623 
3624 	if (sw->generation != 3)
3625 		return -EOPNOTSUPP;
3626 
3627 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3628 	ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3629 	if (ret)
3630 		return ret;
3631 
3632 	command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3633 	command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3634 	command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3635 	command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3636 			<< TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3637 	command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3638 
3639 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3640 
3641 	ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3642 	if (ret)
3643 		return ret;
3644 
3645 	ret = tb_switch_wait_for_bit(sw, offset,
3646 				     TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3647 	if (ret)
3648 		return ret;
3649 
3650 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3651 	if (ret)
3652 		return ret;
3653 
3654 	if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3655 		return -ETIMEDOUT;
3656 
3657 	return 0;
3658 }
3659 
3660 /**
3661  * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3662  * @sw: Router to enable PCIe L1
3663  *
3664  * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3665  * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3666  * was configured. Due to Intel platforms limitation, shall be called only
3667  * for first hop switch.
3668  */
3669 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3670 {
3671 	struct tb_switch *parent = tb_switch_parent(sw);
3672 	int ret;
3673 
3674 	if (!tb_route(sw))
3675 		return 0;
3676 
3677 	if (!tb_switch_is_titan_ridge(sw))
3678 		return 0;
3679 
3680 	/* Enable PCIe L1 enable only for first hop router (depth = 1) */
3681 	if (tb_route(parent))
3682 		return 0;
3683 
3684 	/* Write to downstream PCIe bridge #5 aka Dn4 */
3685 	ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3686 	if (ret)
3687 		return ret;
3688 
3689 	/* Write to Upstream PCIe bridge #0 aka Up0 */
3690 	return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3691 }
3692