1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - switch/port utility functions 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2018, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/idr.h> 11 #include <linux/nvmem-provider.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 17 #include "tb.h" 18 19 /* Switch NVM support */ 20 21 #define NVM_CSS 0x10 22 23 struct nvm_auth_status { 24 struct list_head list; 25 uuid_t uuid; 26 u32 status; 27 }; 28 29 enum nvm_write_ops { 30 WRITE_AND_AUTHENTICATE = 1, 31 WRITE_ONLY = 2, 32 }; 33 34 /* 35 * Hold NVM authentication failure status per switch This information 36 * needs to stay around even when the switch gets power cycled so we 37 * keep it separately. 38 */ 39 static LIST_HEAD(nvm_auth_status_cache); 40 static DEFINE_MUTEX(nvm_auth_status_lock); 41 42 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 43 { 44 struct nvm_auth_status *st; 45 46 list_for_each_entry(st, &nvm_auth_status_cache, list) { 47 if (uuid_equal(&st->uuid, sw->uuid)) 48 return st; 49 } 50 51 return NULL; 52 } 53 54 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 55 { 56 struct nvm_auth_status *st; 57 58 mutex_lock(&nvm_auth_status_lock); 59 st = __nvm_get_auth_status(sw); 60 mutex_unlock(&nvm_auth_status_lock); 61 62 *status = st ? st->status : 0; 63 } 64 65 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 66 { 67 struct nvm_auth_status *st; 68 69 if (WARN_ON(!sw->uuid)) 70 return; 71 72 mutex_lock(&nvm_auth_status_lock); 73 st = __nvm_get_auth_status(sw); 74 75 if (!st) { 76 st = kzalloc(sizeof(*st), GFP_KERNEL); 77 if (!st) 78 goto unlock; 79 80 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 81 INIT_LIST_HEAD(&st->list); 82 list_add_tail(&st->list, &nvm_auth_status_cache); 83 } 84 85 st->status = status; 86 unlock: 87 mutex_unlock(&nvm_auth_status_lock); 88 } 89 90 static void nvm_clear_auth_status(const struct tb_switch *sw) 91 { 92 struct nvm_auth_status *st; 93 94 mutex_lock(&nvm_auth_status_lock); 95 st = __nvm_get_auth_status(sw); 96 if (st) { 97 list_del(&st->list); 98 kfree(st); 99 } 100 mutex_unlock(&nvm_auth_status_lock); 101 } 102 103 static int nvm_validate_and_write(struct tb_switch *sw) 104 { 105 unsigned int image_size, hdr_size; 106 const u8 *buf = sw->nvm->buf; 107 u16 ds_size; 108 int ret; 109 110 if (!buf) 111 return -EINVAL; 112 113 image_size = sw->nvm->buf_data_size; 114 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) 115 return -EINVAL; 116 117 /* 118 * FARB pointer must point inside the image and must at least 119 * contain parts of the digital section we will be reading here. 120 */ 121 hdr_size = (*(u32 *)buf) & 0xffffff; 122 if (hdr_size + NVM_DEVID + 2 >= image_size) 123 return -EINVAL; 124 125 /* Digital section start should be aligned to 4k page */ 126 if (!IS_ALIGNED(hdr_size, SZ_4K)) 127 return -EINVAL; 128 129 /* 130 * Read digital section size and check that it also fits inside 131 * the image. 132 */ 133 ds_size = *(u16 *)(buf + hdr_size); 134 if (ds_size >= image_size) 135 return -EINVAL; 136 137 if (!sw->safe_mode) { 138 u16 device_id; 139 140 /* 141 * Make sure the device ID in the image matches the one 142 * we read from the switch config space. 143 */ 144 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID); 145 if (device_id != sw->config.device_id) 146 return -EINVAL; 147 148 if (sw->generation < 3) { 149 /* Write CSS headers first */ 150 ret = dma_port_flash_write(sw->dma_port, 151 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS, 152 DMA_PORT_CSS_MAX_SIZE); 153 if (ret) 154 return ret; 155 } 156 157 /* Skip headers in the image */ 158 buf += hdr_size; 159 image_size -= hdr_size; 160 } 161 162 if (tb_switch_is_usb4(sw)) 163 ret = usb4_switch_nvm_write(sw, 0, buf, image_size); 164 else 165 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size); 166 if (!ret) 167 sw->nvm->flushed = true; 168 return ret; 169 } 170 171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw) 172 { 173 int ret = 0; 174 175 /* 176 * Root switch NVM upgrade requires that we disconnect the 177 * existing paths first (in case it is not in safe mode 178 * already). 179 */ 180 if (!sw->safe_mode) { 181 u32 status; 182 183 ret = tb_domain_disconnect_all_paths(sw->tb); 184 if (ret) 185 return ret; 186 /* 187 * The host controller goes away pretty soon after this if 188 * everything goes well so getting timeout is expected. 189 */ 190 ret = dma_port_flash_update_auth(sw->dma_port); 191 if (!ret || ret == -ETIMEDOUT) 192 return 0; 193 194 /* 195 * Any error from update auth operation requires power 196 * cycling of the host router. 197 */ 198 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n"); 199 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0) 200 nvm_set_auth_status(sw, status); 201 } 202 203 /* 204 * From safe mode we can get out by just power cycling the 205 * switch. 206 */ 207 dma_port_power_cycle(sw->dma_port); 208 return ret; 209 } 210 211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw) 212 { 213 int ret, retries = 10; 214 215 ret = dma_port_flash_update_auth(sw->dma_port); 216 switch (ret) { 217 case 0: 218 case -ETIMEDOUT: 219 case -EACCES: 220 case -EINVAL: 221 /* Power cycle is required */ 222 break; 223 default: 224 return ret; 225 } 226 227 /* 228 * Poll here for the authentication status. It takes some time 229 * for the device to respond (we get timeout for a while). Once 230 * we get response the device needs to be power cycled in order 231 * to the new NVM to be taken into use. 232 */ 233 do { 234 u32 status; 235 236 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 237 if (ret < 0 && ret != -ETIMEDOUT) 238 return ret; 239 if (ret > 0) { 240 if (status) { 241 tb_sw_warn(sw, "failed to authenticate NVM\n"); 242 nvm_set_auth_status(sw, status); 243 } 244 245 tb_sw_info(sw, "power cycling the switch now\n"); 246 dma_port_power_cycle(sw->dma_port); 247 return 0; 248 } 249 250 msleep(500); 251 } while (--retries); 252 253 return -ETIMEDOUT; 254 } 255 256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw) 257 { 258 struct pci_dev *root_port; 259 260 /* 261 * During host router NVM upgrade we should not allow root port to 262 * go into D3cold because some root ports cannot trigger PME 263 * itself. To be on the safe side keep the root port in D0 during 264 * the whole upgrade process. 265 */ 266 root_port = pcie_find_root_port(sw->tb->nhi->pdev); 267 if (root_port) 268 pm_runtime_get_noresume(&root_port->dev); 269 } 270 271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw) 272 { 273 struct pci_dev *root_port; 274 275 root_port = pcie_find_root_port(sw->tb->nhi->pdev); 276 if (root_port) 277 pm_runtime_put(&root_port->dev); 278 } 279 280 static inline bool nvm_readable(struct tb_switch *sw) 281 { 282 if (tb_switch_is_usb4(sw)) { 283 /* 284 * USB4 devices must support NVM operations but it is 285 * optional for hosts. Therefore we query the NVM sector 286 * size here and if it is supported assume NVM 287 * operations are implemented. 288 */ 289 return usb4_switch_nvm_sector_size(sw) > 0; 290 } 291 292 /* Thunderbolt 2 and 3 devices support NVM through DMA port */ 293 return !!sw->dma_port; 294 } 295 296 static inline bool nvm_upgradeable(struct tb_switch *sw) 297 { 298 if (sw->no_nvm_upgrade) 299 return false; 300 return nvm_readable(sw); 301 } 302 303 static inline int nvm_read(struct tb_switch *sw, unsigned int address, 304 void *buf, size_t size) 305 { 306 if (tb_switch_is_usb4(sw)) 307 return usb4_switch_nvm_read(sw, address, buf, size); 308 return dma_port_flash_read(sw->dma_port, address, buf, size); 309 } 310 311 static int nvm_authenticate(struct tb_switch *sw) 312 { 313 int ret; 314 315 if (tb_switch_is_usb4(sw)) 316 return usb4_switch_nvm_authenticate(sw); 317 318 if (!tb_route(sw)) { 319 nvm_authenticate_start_dma_port(sw); 320 ret = nvm_authenticate_host_dma_port(sw); 321 } else { 322 ret = nvm_authenticate_device_dma_port(sw); 323 } 324 325 return ret; 326 } 327 328 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val, 329 size_t bytes) 330 { 331 struct tb_nvm *nvm = priv; 332 struct tb_switch *sw = tb_to_switch(nvm->dev); 333 int ret; 334 335 pm_runtime_get_sync(&sw->dev); 336 337 if (!mutex_trylock(&sw->tb->lock)) { 338 ret = restart_syscall(); 339 goto out; 340 } 341 342 ret = nvm_read(sw, offset, val, bytes); 343 mutex_unlock(&sw->tb->lock); 344 345 out: 346 pm_runtime_mark_last_busy(&sw->dev); 347 pm_runtime_put_autosuspend(&sw->dev); 348 349 return ret; 350 } 351 352 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val, 353 size_t bytes) 354 { 355 struct tb_nvm *nvm = priv; 356 struct tb_switch *sw = tb_to_switch(nvm->dev); 357 int ret; 358 359 if (!mutex_trylock(&sw->tb->lock)) 360 return restart_syscall(); 361 362 /* 363 * Since writing the NVM image might require some special steps, 364 * for example when CSS headers are written, we cache the image 365 * locally here and handle the special cases when the user asks 366 * us to authenticate the image. 367 */ 368 ret = tb_nvm_write_buf(nvm, offset, val, bytes); 369 mutex_unlock(&sw->tb->lock); 370 371 return ret; 372 } 373 374 static int tb_switch_nvm_add(struct tb_switch *sw) 375 { 376 struct tb_nvm *nvm; 377 u32 val; 378 int ret; 379 380 if (!nvm_readable(sw)) 381 return 0; 382 383 /* 384 * The NVM format of non-Intel hardware is not known so 385 * currently restrict NVM upgrade for Intel hardware. We may 386 * relax this in the future when we learn other NVM formats. 387 */ 388 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL && 389 sw->config.vendor_id != 0x8087) { 390 dev_info(&sw->dev, 391 "NVM format of vendor %#x is not known, disabling NVM upgrade\n", 392 sw->config.vendor_id); 393 return 0; 394 } 395 396 nvm = tb_nvm_alloc(&sw->dev); 397 if (IS_ERR(nvm)) 398 return PTR_ERR(nvm); 399 400 /* 401 * If the switch is in safe-mode the only accessible portion of 402 * the NVM is the non-active one where userspace is expected to 403 * write new functional NVM. 404 */ 405 if (!sw->safe_mode) { 406 u32 nvm_size, hdr_size; 407 408 ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val)); 409 if (ret) 410 goto err_nvm; 411 412 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; 413 nvm_size = (SZ_1M << (val & 7)) / 8; 414 nvm_size = (nvm_size - hdr_size) / 2; 415 416 ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val)); 417 if (ret) 418 goto err_nvm; 419 420 nvm->major = val >> 16; 421 nvm->minor = val >> 8; 422 423 ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read); 424 if (ret) 425 goto err_nvm; 426 } 427 428 if (!sw->no_nvm_upgrade) { 429 ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE, 430 tb_switch_nvm_write); 431 if (ret) 432 goto err_nvm; 433 } 434 435 sw->nvm = nvm; 436 return 0; 437 438 err_nvm: 439 tb_nvm_free(nvm); 440 return ret; 441 } 442 443 static void tb_switch_nvm_remove(struct tb_switch *sw) 444 { 445 struct tb_nvm *nvm; 446 447 nvm = sw->nvm; 448 sw->nvm = NULL; 449 450 if (!nvm) 451 return; 452 453 /* Remove authentication status in case the switch is unplugged */ 454 if (!nvm->authenticating) 455 nvm_clear_auth_status(sw); 456 457 tb_nvm_free(nvm); 458 } 459 460 /* port utility functions */ 461 462 static const char *tb_port_type(struct tb_regs_port_header *port) 463 { 464 switch (port->type >> 16) { 465 case 0: 466 switch ((u8) port->type) { 467 case 0: 468 return "Inactive"; 469 case 1: 470 return "Port"; 471 case 2: 472 return "NHI"; 473 default: 474 return "unknown"; 475 } 476 case 0x2: 477 return "Ethernet"; 478 case 0x8: 479 return "SATA"; 480 case 0xe: 481 return "DP/HDMI"; 482 case 0x10: 483 return "PCIe"; 484 case 0x20: 485 return "USB"; 486 default: 487 return "unknown"; 488 } 489 } 490 491 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port) 492 { 493 tb_dbg(tb, 494 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 495 port->port_number, port->vendor_id, port->device_id, 496 port->revision, port->thunderbolt_version, tb_port_type(port), 497 port->type); 498 tb_dbg(tb, " Max hop id (in/out): %d/%d\n", 499 port->max_in_hop_id, port->max_out_hop_id); 500 tb_dbg(tb, " Max counters: %d\n", port->max_counters); 501 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits); 502 } 503 504 /** 505 * tb_port_state() - get connectedness state of a port 506 * 507 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 508 * 509 * Return: Returns an enum tb_port_state on success or an error code on failure. 510 */ 511 static int tb_port_state(struct tb_port *port) 512 { 513 struct tb_cap_phy phy; 514 int res; 515 if (port->cap_phy == 0) { 516 tb_port_WARN(port, "does not have a PHY\n"); 517 return -EINVAL; 518 } 519 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 520 if (res) 521 return res; 522 return phy.state; 523 } 524 525 /** 526 * tb_wait_for_port() - wait for a port to become ready 527 * 528 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 529 * wait_if_unplugged is set then we also wait if the port is in state 530 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 531 * switch resume). Otherwise we only wait if a device is registered but the link 532 * has not yet been established. 533 * 534 * Return: Returns an error code on failure. Returns 0 if the port is not 535 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 536 * if the port is connected and in state TB_PORT_UP. 537 */ 538 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 539 { 540 int retries = 10; 541 int state; 542 if (!port->cap_phy) { 543 tb_port_WARN(port, "does not have PHY\n"); 544 return -EINVAL; 545 } 546 if (tb_is_upstream_port(port)) { 547 tb_port_WARN(port, "is the upstream port\n"); 548 return -EINVAL; 549 } 550 551 while (retries--) { 552 state = tb_port_state(port); 553 if (state < 0) 554 return state; 555 if (state == TB_PORT_DISABLED) { 556 tb_port_dbg(port, "is disabled (state: 0)\n"); 557 return 0; 558 } 559 if (state == TB_PORT_UNPLUGGED) { 560 if (wait_if_unplugged) { 561 /* used during resume */ 562 tb_port_dbg(port, 563 "is unplugged (state: 7), retrying...\n"); 564 msleep(100); 565 continue; 566 } 567 tb_port_dbg(port, "is unplugged (state: 7)\n"); 568 return 0; 569 } 570 if (state == TB_PORT_UP) { 571 tb_port_dbg(port, "is connected, link is up (state: 2)\n"); 572 return 1; 573 } 574 575 /* 576 * After plug-in the state is TB_PORT_CONNECTING. Give it some 577 * time. 578 */ 579 tb_port_dbg(port, 580 "is connected, link is not up (state: %d), retrying...\n", 581 state); 582 msleep(100); 583 } 584 tb_port_warn(port, 585 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 586 return 0; 587 } 588 589 /** 590 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 591 * 592 * Change the number of NFC credits allocated to @port by @credits. To remove 593 * NFC credits pass a negative amount of credits. 594 * 595 * Return: Returns 0 on success or an error code on failure. 596 */ 597 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 598 { 599 u32 nfc_credits; 600 601 if (credits == 0 || port->sw->is_unplugged) 602 return 0; 603 604 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK; 605 nfc_credits += credits; 606 607 tb_port_dbg(port, "adding %d NFC credits to %lu", credits, 608 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK); 609 610 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK; 611 port->config.nfc_credits |= nfc_credits; 612 613 return tb_port_write(port, &port->config.nfc_credits, 614 TB_CFG_PORT, ADP_CS_4, 1); 615 } 616 617 /** 618 * tb_port_set_initial_credits() - Set initial port link credits allocated 619 * @port: Port to set the initial credits 620 * @credits: Number of credits to to allocate 621 * 622 * Set initial credits value to be used for ingress shared buffering. 623 */ 624 int tb_port_set_initial_credits(struct tb_port *port, u32 credits) 625 { 626 u32 data; 627 int ret; 628 629 ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1); 630 if (ret) 631 return ret; 632 633 data &= ~ADP_CS_5_LCA_MASK; 634 data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK; 635 636 return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1); 637 } 638 639 /** 640 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 641 * 642 * Return: Returns 0 on success or an error code on failure. 643 */ 644 int tb_port_clear_counter(struct tb_port *port, int counter) 645 { 646 u32 zero[3] = { 0, 0, 0 }; 647 tb_port_dbg(port, "clearing counter %d\n", counter); 648 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 649 } 650 651 /** 652 * tb_port_unlock() - Unlock downstream port 653 * @port: Port to unlock 654 * 655 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the 656 * downstream router accessible for CM. 657 */ 658 int tb_port_unlock(struct tb_port *port) 659 { 660 if (tb_switch_is_icm(port->sw)) 661 return 0; 662 if (!tb_port_is_null(port)) 663 return -EINVAL; 664 if (tb_switch_is_usb4(port->sw)) 665 return usb4_port_unlock(port); 666 return 0; 667 } 668 669 /** 670 * tb_init_port() - initialize a port 671 * 672 * This is a helper method for tb_switch_alloc. Does not check or initialize 673 * any downstream switches. 674 * 675 * Return: Returns 0 on success or an error code on failure. 676 */ 677 static int tb_init_port(struct tb_port *port) 678 { 679 int res; 680 int cap; 681 682 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 683 if (res) { 684 if (res == -ENODEV) { 685 tb_dbg(port->sw->tb, " Port %d: not implemented\n", 686 port->port); 687 return 0; 688 } 689 return res; 690 } 691 692 /* Port 0 is the switch itself and has no PHY. */ 693 if (port->config.type == TB_TYPE_PORT && port->port != 0) { 694 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 695 696 if (cap > 0) 697 port->cap_phy = cap; 698 else 699 tb_port_WARN(port, "non switch port without a PHY\n"); 700 701 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4); 702 if (cap > 0) 703 port->cap_usb4 = cap; 704 } else if (port->port != 0) { 705 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP); 706 if (cap > 0) 707 port->cap_adap = cap; 708 } 709 710 tb_dump_port(port->sw->tb, &port->config); 711 712 /* Control port does not need HopID allocation */ 713 if (port->port) { 714 ida_init(&port->in_hopids); 715 ida_init(&port->out_hopids); 716 } 717 718 INIT_LIST_HEAD(&port->list); 719 return 0; 720 721 } 722 723 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid, 724 int max_hopid) 725 { 726 int port_max_hopid; 727 struct ida *ida; 728 729 if (in) { 730 port_max_hopid = port->config.max_in_hop_id; 731 ida = &port->in_hopids; 732 } else { 733 port_max_hopid = port->config.max_out_hop_id; 734 ida = &port->out_hopids; 735 } 736 737 /* 738 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are 739 * reserved. 740 */ 741 if (port->config.type != TB_TYPE_NHI && min_hopid < TB_PATH_MIN_HOPID) 742 min_hopid = TB_PATH_MIN_HOPID; 743 744 if (max_hopid < 0 || max_hopid > port_max_hopid) 745 max_hopid = port_max_hopid; 746 747 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL); 748 } 749 750 /** 751 * tb_port_alloc_in_hopid() - Allocate input HopID from port 752 * @port: Port to allocate HopID for 753 * @min_hopid: Minimum acceptable input HopID 754 * @max_hopid: Maximum acceptable input HopID 755 * 756 * Return: HopID between @min_hopid and @max_hopid or negative errno in 757 * case of error. 758 */ 759 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid) 760 { 761 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid); 762 } 763 764 /** 765 * tb_port_alloc_out_hopid() - Allocate output HopID from port 766 * @port: Port to allocate HopID for 767 * @min_hopid: Minimum acceptable output HopID 768 * @max_hopid: Maximum acceptable output HopID 769 * 770 * Return: HopID between @min_hopid and @max_hopid or negative errno in 771 * case of error. 772 */ 773 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid) 774 { 775 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid); 776 } 777 778 /** 779 * tb_port_release_in_hopid() - Release allocated input HopID from port 780 * @port: Port whose HopID to release 781 * @hopid: HopID to release 782 */ 783 void tb_port_release_in_hopid(struct tb_port *port, int hopid) 784 { 785 ida_simple_remove(&port->in_hopids, hopid); 786 } 787 788 /** 789 * tb_port_release_out_hopid() - Release allocated output HopID from port 790 * @port: Port whose HopID to release 791 * @hopid: HopID to release 792 */ 793 void tb_port_release_out_hopid(struct tb_port *port, int hopid) 794 { 795 ida_simple_remove(&port->out_hopids, hopid); 796 } 797 798 static inline bool tb_switch_is_reachable(const struct tb_switch *parent, 799 const struct tb_switch *sw) 800 { 801 u64 mask = (1ULL << parent->config.depth * 8) - 1; 802 return (tb_route(parent) & mask) == (tb_route(sw) & mask); 803 } 804 805 /** 806 * tb_next_port_on_path() - Return next port for given port on a path 807 * @start: Start port of the walk 808 * @end: End port of the walk 809 * @prev: Previous port (%NULL if this is the first) 810 * 811 * This function can be used to walk from one port to another if they 812 * are connected through zero or more switches. If the @prev is dual 813 * link port, the function follows that link and returns another end on 814 * that same link. 815 * 816 * If the @end port has been reached, return %NULL. 817 * 818 * Domain tb->lock must be held when this function is called. 819 */ 820 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end, 821 struct tb_port *prev) 822 { 823 struct tb_port *next; 824 825 if (!prev) 826 return start; 827 828 if (prev->sw == end->sw) { 829 if (prev == end) 830 return NULL; 831 return end; 832 } 833 834 if (tb_switch_is_reachable(prev->sw, end->sw)) { 835 next = tb_port_at(tb_route(end->sw), prev->sw); 836 /* Walk down the topology if next == prev */ 837 if (prev->remote && 838 (next == prev || next->dual_link_port == prev)) 839 next = prev->remote; 840 } else { 841 if (tb_is_upstream_port(prev)) { 842 next = prev->remote; 843 } else { 844 next = tb_upstream_port(prev->sw); 845 /* 846 * Keep the same link if prev and next are both 847 * dual link ports. 848 */ 849 if (next->dual_link_port && 850 next->link_nr != prev->link_nr) { 851 next = next->dual_link_port; 852 } 853 } 854 } 855 856 return next != prev ? next : NULL; 857 } 858 859 /** 860 * tb_port_get_link_speed() - Get current link speed 861 * @port: Port to check (USB4 or CIO) 862 * 863 * Returns link speed in Gb/s or negative errno in case of failure. 864 */ 865 int tb_port_get_link_speed(struct tb_port *port) 866 { 867 u32 val, speed; 868 int ret; 869 870 if (!port->cap_phy) 871 return -EINVAL; 872 873 ret = tb_port_read(port, &val, TB_CFG_PORT, 874 port->cap_phy + LANE_ADP_CS_1, 1); 875 if (ret) 876 return ret; 877 878 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >> 879 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT; 880 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10; 881 } 882 883 static int tb_port_get_link_width(struct tb_port *port) 884 { 885 u32 val; 886 int ret; 887 888 if (!port->cap_phy) 889 return -EINVAL; 890 891 ret = tb_port_read(port, &val, TB_CFG_PORT, 892 port->cap_phy + LANE_ADP_CS_1, 1); 893 if (ret) 894 return ret; 895 896 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >> 897 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT; 898 } 899 900 static bool tb_port_is_width_supported(struct tb_port *port, int width) 901 { 902 u32 phy, widths; 903 int ret; 904 905 if (!port->cap_phy) 906 return false; 907 908 ret = tb_port_read(port, &phy, TB_CFG_PORT, 909 port->cap_phy + LANE_ADP_CS_0, 1); 910 if (ret) 911 return false; 912 913 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >> 914 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT; 915 916 return !!(widths & width); 917 } 918 919 static int tb_port_set_link_width(struct tb_port *port, unsigned int width) 920 { 921 u32 val; 922 int ret; 923 924 if (!port->cap_phy) 925 return -EINVAL; 926 927 ret = tb_port_read(port, &val, TB_CFG_PORT, 928 port->cap_phy + LANE_ADP_CS_1, 1); 929 if (ret) 930 return ret; 931 932 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK; 933 switch (width) { 934 case 1: 935 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE << 936 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 937 break; 938 case 2: 939 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL << 940 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 941 break; 942 default: 943 return -EINVAL; 944 } 945 946 val |= LANE_ADP_CS_1_LB; 947 948 return tb_port_write(port, &val, TB_CFG_PORT, 949 port->cap_phy + LANE_ADP_CS_1, 1); 950 } 951 952 static int tb_port_lane_bonding_enable(struct tb_port *port) 953 { 954 int ret; 955 956 /* 957 * Enable lane bonding for both links if not already enabled by 958 * for example the boot firmware. 959 */ 960 ret = tb_port_get_link_width(port); 961 if (ret == 1) { 962 ret = tb_port_set_link_width(port, 2); 963 if (ret) 964 return ret; 965 } 966 967 ret = tb_port_get_link_width(port->dual_link_port); 968 if (ret == 1) { 969 ret = tb_port_set_link_width(port->dual_link_port, 2); 970 if (ret) { 971 tb_port_set_link_width(port, 1); 972 return ret; 973 } 974 } 975 976 port->bonded = true; 977 port->dual_link_port->bonded = true; 978 979 return 0; 980 } 981 982 static void tb_port_lane_bonding_disable(struct tb_port *port) 983 { 984 port->dual_link_port->bonded = false; 985 port->bonded = false; 986 987 tb_port_set_link_width(port->dual_link_port, 1); 988 tb_port_set_link_width(port, 1); 989 } 990 991 /** 992 * tb_port_is_enabled() - Is the adapter port enabled 993 * @port: Port to check 994 */ 995 bool tb_port_is_enabled(struct tb_port *port) 996 { 997 switch (port->config.type) { 998 case TB_TYPE_PCIE_UP: 999 case TB_TYPE_PCIE_DOWN: 1000 return tb_pci_port_is_enabled(port); 1001 1002 case TB_TYPE_DP_HDMI_IN: 1003 case TB_TYPE_DP_HDMI_OUT: 1004 return tb_dp_port_is_enabled(port); 1005 1006 case TB_TYPE_USB3_UP: 1007 case TB_TYPE_USB3_DOWN: 1008 return tb_usb3_port_is_enabled(port); 1009 1010 default: 1011 return false; 1012 } 1013 } 1014 1015 /** 1016 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled 1017 * @port: USB3 adapter port to check 1018 */ 1019 bool tb_usb3_port_is_enabled(struct tb_port *port) 1020 { 1021 u32 data; 1022 1023 if (tb_port_read(port, &data, TB_CFG_PORT, 1024 port->cap_adap + ADP_USB3_CS_0, 1)) 1025 return false; 1026 1027 return !!(data & ADP_USB3_CS_0_PE); 1028 } 1029 1030 /** 1031 * tb_usb3_port_enable() - Enable USB3 adapter port 1032 * @port: USB3 adapter port to enable 1033 * @enable: Enable/disable the USB3 adapter 1034 */ 1035 int tb_usb3_port_enable(struct tb_port *port, bool enable) 1036 { 1037 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V) 1038 : ADP_USB3_CS_0_V; 1039 1040 if (!port->cap_adap) 1041 return -ENXIO; 1042 return tb_port_write(port, &word, TB_CFG_PORT, 1043 port->cap_adap + ADP_USB3_CS_0, 1); 1044 } 1045 1046 /** 1047 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled 1048 * @port: PCIe port to check 1049 */ 1050 bool tb_pci_port_is_enabled(struct tb_port *port) 1051 { 1052 u32 data; 1053 1054 if (tb_port_read(port, &data, TB_CFG_PORT, 1055 port->cap_adap + ADP_PCIE_CS_0, 1)) 1056 return false; 1057 1058 return !!(data & ADP_PCIE_CS_0_PE); 1059 } 1060 1061 /** 1062 * tb_pci_port_enable() - Enable PCIe adapter port 1063 * @port: PCIe port to enable 1064 * @enable: Enable/disable the PCIe adapter 1065 */ 1066 int tb_pci_port_enable(struct tb_port *port, bool enable) 1067 { 1068 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0; 1069 if (!port->cap_adap) 1070 return -ENXIO; 1071 return tb_port_write(port, &word, TB_CFG_PORT, 1072 port->cap_adap + ADP_PCIE_CS_0, 1); 1073 } 1074 1075 /** 1076 * tb_dp_port_hpd_is_active() - Is HPD already active 1077 * @port: DP out port to check 1078 * 1079 * Checks if the DP OUT adapter port has HDP bit already set. 1080 */ 1081 int tb_dp_port_hpd_is_active(struct tb_port *port) 1082 { 1083 u32 data; 1084 int ret; 1085 1086 ret = tb_port_read(port, &data, TB_CFG_PORT, 1087 port->cap_adap + ADP_DP_CS_2, 1); 1088 if (ret) 1089 return ret; 1090 1091 return !!(data & ADP_DP_CS_2_HDP); 1092 } 1093 1094 /** 1095 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port 1096 * @port: Port to clear HPD 1097 * 1098 * If the DP IN port has HDP set, this function can be used to clear it. 1099 */ 1100 int tb_dp_port_hpd_clear(struct tb_port *port) 1101 { 1102 u32 data; 1103 int ret; 1104 1105 ret = tb_port_read(port, &data, TB_CFG_PORT, 1106 port->cap_adap + ADP_DP_CS_3, 1); 1107 if (ret) 1108 return ret; 1109 1110 data |= ADP_DP_CS_3_HDPC; 1111 return tb_port_write(port, &data, TB_CFG_PORT, 1112 port->cap_adap + ADP_DP_CS_3, 1); 1113 } 1114 1115 /** 1116 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port 1117 * @port: DP IN/OUT port to set hops 1118 * @video: Video Hop ID 1119 * @aux_tx: AUX TX Hop ID 1120 * @aux_rx: AUX RX Hop ID 1121 * 1122 * Programs specified Hop IDs for DP IN/OUT port. 1123 */ 1124 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video, 1125 unsigned int aux_tx, unsigned int aux_rx) 1126 { 1127 u32 data[2]; 1128 int ret; 1129 1130 ret = tb_port_read(port, data, TB_CFG_PORT, 1131 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1132 if (ret) 1133 return ret; 1134 1135 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK; 1136 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1137 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1138 1139 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) & 1140 ADP_DP_CS_0_VIDEO_HOPID_MASK; 1141 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK; 1142 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) & 1143 ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1144 1145 return tb_port_write(port, data, TB_CFG_PORT, 1146 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1147 } 1148 1149 /** 1150 * tb_dp_port_is_enabled() - Is DP adapter port enabled 1151 * @port: DP adapter port to check 1152 */ 1153 bool tb_dp_port_is_enabled(struct tb_port *port) 1154 { 1155 u32 data[2]; 1156 1157 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0, 1158 ARRAY_SIZE(data))) 1159 return false; 1160 1161 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE)); 1162 } 1163 1164 /** 1165 * tb_dp_port_enable() - Enables/disables DP paths of a port 1166 * @port: DP IN/OUT port 1167 * @enable: Enable/disable DP path 1168 * 1169 * Once Hop IDs are programmed DP paths can be enabled or disabled by 1170 * calling this function. 1171 */ 1172 int tb_dp_port_enable(struct tb_port *port, bool enable) 1173 { 1174 u32 data[2]; 1175 int ret; 1176 1177 ret = tb_port_read(port, data, TB_CFG_PORT, 1178 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1179 if (ret) 1180 return ret; 1181 1182 if (enable) 1183 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE; 1184 else 1185 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE); 1186 1187 return tb_port_write(port, data, TB_CFG_PORT, 1188 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1189 } 1190 1191 /* switch utility functions */ 1192 1193 static const char *tb_switch_generation_name(const struct tb_switch *sw) 1194 { 1195 switch (sw->generation) { 1196 case 1: 1197 return "Thunderbolt 1"; 1198 case 2: 1199 return "Thunderbolt 2"; 1200 case 3: 1201 return "Thunderbolt 3"; 1202 case 4: 1203 return "USB4"; 1204 default: 1205 return "Unknown"; 1206 } 1207 } 1208 1209 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw) 1210 { 1211 const struct tb_regs_switch_header *regs = &sw->config; 1212 1213 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n", 1214 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id, 1215 regs->revision, regs->thunderbolt_version); 1216 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number); 1217 tb_dbg(tb, " Config:\n"); 1218 tb_dbg(tb, 1219 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 1220 regs->upstream_port_number, regs->depth, 1221 (((u64) regs->route_hi) << 32) | regs->route_lo, 1222 regs->enabled, regs->plug_events_delay); 1223 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n", 1224 regs->__unknown1, regs->__unknown4); 1225 } 1226 1227 /** 1228 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET 1229 * 1230 * Return: Returns 0 on success or an error code on failure. 1231 */ 1232 int tb_switch_reset(struct tb *tb, u64 route) 1233 { 1234 struct tb_cfg_result res; 1235 struct tb_regs_switch_header header = { 1236 header.route_hi = route >> 32, 1237 header.route_lo = route, 1238 header.enabled = true, 1239 }; 1240 tb_dbg(tb, "resetting switch at %llx\n", route); 1241 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route, 1242 0, 2, 2, 2); 1243 if (res.err) 1244 return res.err; 1245 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT); 1246 if (res.err > 0) 1247 return -EIO; 1248 return res.err; 1249 } 1250 1251 /** 1252 * tb_plug_events_active() - enable/disable plug events on a switch 1253 * 1254 * Also configures a sane plug_events_delay of 255ms. 1255 * 1256 * Return: Returns 0 on success or an error code on failure. 1257 */ 1258 static int tb_plug_events_active(struct tb_switch *sw, bool active) 1259 { 1260 u32 data; 1261 int res; 1262 1263 if (tb_switch_is_icm(sw)) 1264 return 0; 1265 1266 sw->config.plug_events_delay = 0xff; 1267 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 1268 if (res) 1269 return res; 1270 1271 /* Plug events are always enabled in USB4 */ 1272 if (tb_switch_is_usb4(sw)) 1273 return 0; 1274 1275 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 1276 if (res) 1277 return res; 1278 1279 if (active) { 1280 data = data & 0xFFFFFF83; 1281 switch (sw->config.device_id) { 1282 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1283 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1284 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1285 break; 1286 default: 1287 data |= 4; 1288 } 1289 } else { 1290 data = data | 0x7c; 1291 } 1292 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 1293 sw->cap_plug_events + 1, 1); 1294 } 1295 1296 static ssize_t authorized_show(struct device *dev, 1297 struct device_attribute *attr, 1298 char *buf) 1299 { 1300 struct tb_switch *sw = tb_to_switch(dev); 1301 1302 return sprintf(buf, "%u\n", sw->authorized); 1303 } 1304 1305 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 1306 { 1307 int ret = -EINVAL; 1308 1309 if (!mutex_trylock(&sw->tb->lock)) 1310 return restart_syscall(); 1311 1312 if (sw->authorized) 1313 goto unlock; 1314 1315 switch (val) { 1316 /* Approve switch */ 1317 case 1: 1318 if (sw->key) 1319 ret = tb_domain_approve_switch_key(sw->tb, sw); 1320 else 1321 ret = tb_domain_approve_switch(sw->tb, sw); 1322 break; 1323 1324 /* Challenge switch */ 1325 case 2: 1326 if (sw->key) 1327 ret = tb_domain_challenge_switch_key(sw->tb, sw); 1328 break; 1329 1330 default: 1331 break; 1332 } 1333 1334 if (!ret) { 1335 sw->authorized = val; 1336 /* Notify status change to the userspace */ 1337 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 1338 } 1339 1340 unlock: 1341 mutex_unlock(&sw->tb->lock); 1342 return ret; 1343 } 1344 1345 static ssize_t authorized_store(struct device *dev, 1346 struct device_attribute *attr, 1347 const char *buf, size_t count) 1348 { 1349 struct tb_switch *sw = tb_to_switch(dev); 1350 unsigned int val; 1351 ssize_t ret; 1352 1353 ret = kstrtouint(buf, 0, &val); 1354 if (ret) 1355 return ret; 1356 if (val > 2) 1357 return -EINVAL; 1358 1359 pm_runtime_get_sync(&sw->dev); 1360 ret = tb_switch_set_authorized(sw, val); 1361 pm_runtime_mark_last_busy(&sw->dev); 1362 pm_runtime_put_autosuspend(&sw->dev); 1363 1364 return ret ? ret : count; 1365 } 1366 static DEVICE_ATTR_RW(authorized); 1367 1368 static ssize_t boot_show(struct device *dev, struct device_attribute *attr, 1369 char *buf) 1370 { 1371 struct tb_switch *sw = tb_to_switch(dev); 1372 1373 return sprintf(buf, "%u\n", sw->boot); 1374 } 1375 static DEVICE_ATTR_RO(boot); 1376 1377 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 1378 char *buf) 1379 { 1380 struct tb_switch *sw = tb_to_switch(dev); 1381 1382 return sprintf(buf, "%#x\n", sw->device); 1383 } 1384 static DEVICE_ATTR_RO(device); 1385 1386 static ssize_t 1387 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1388 { 1389 struct tb_switch *sw = tb_to_switch(dev); 1390 1391 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : ""); 1392 } 1393 static DEVICE_ATTR_RO(device_name); 1394 1395 static ssize_t 1396 generation_show(struct device *dev, struct device_attribute *attr, char *buf) 1397 { 1398 struct tb_switch *sw = tb_to_switch(dev); 1399 1400 return sprintf(buf, "%u\n", sw->generation); 1401 } 1402 static DEVICE_ATTR_RO(generation); 1403 1404 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 1405 char *buf) 1406 { 1407 struct tb_switch *sw = tb_to_switch(dev); 1408 ssize_t ret; 1409 1410 if (!mutex_trylock(&sw->tb->lock)) 1411 return restart_syscall(); 1412 1413 if (sw->key) 1414 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 1415 else 1416 ret = sprintf(buf, "\n"); 1417 1418 mutex_unlock(&sw->tb->lock); 1419 return ret; 1420 } 1421 1422 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 1423 const char *buf, size_t count) 1424 { 1425 struct tb_switch *sw = tb_to_switch(dev); 1426 u8 key[TB_SWITCH_KEY_SIZE]; 1427 ssize_t ret = count; 1428 bool clear = false; 1429 1430 if (!strcmp(buf, "\n")) 1431 clear = true; 1432 else if (hex2bin(key, buf, sizeof(key))) 1433 return -EINVAL; 1434 1435 if (!mutex_trylock(&sw->tb->lock)) 1436 return restart_syscall(); 1437 1438 if (sw->authorized) { 1439 ret = -EBUSY; 1440 } else { 1441 kfree(sw->key); 1442 if (clear) { 1443 sw->key = NULL; 1444 } else { 1445 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 1446 if (!sw->key) 1447 ret = -ENOMEM; 1448 } 1449 } 1450 1451 mutex_unlock(&sw->tb->lock); 1452 return ret; 1453 } 1454 static DEVICE_ATTR(key, 0600, key_show, key_store); 1455 1456 static ssize_t speed_show(struct device *dev, struct device_attribute *attr, 1457 char *buf) 1458 { 1459 struct tb_switch *sw = tb_to_switch(dev); 1460 1461 return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed); 1462 } 1463 1464 /* 1465 * Currently all lanes must run at the same speed but we expose here 1466 * both directions to allow possible asymmetric links in the future. 1467 */ 1468 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL); 1469 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL); 1470 1471 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr, 1472 char *buf) 1473 { 1474 struct tb_switch *sw = tb_to_switch(dev); 1475 1476 return sprintf(buf, "%u\n", sw->link_width); 1477 } 1478 1479 /* 1480 * Currently link has same amount of lanes both directions (1 or 2) but 1481 * expose them separately to allow possible asymmetric links in the future. 1482 */ 1483 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL); 1484 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL); 1485 1486 static ssize_t nvm_authenticate_show(struct device *dev, 1487 struct device_attribute *attr, char *buf) 1488 { 1489 struct tb_switch *sw = tb_to_switch(dev); 1490 u32 status; 1491 1492 nvm_get_auth_status(sw, &status); 1493 return sprintf(buf, "%#x\n", status); 1494 } 1495 1496 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf, 1497 bool disconnect) 1498 { 1499 struct tb_switch *sw = tb_to_switch(dev); 1500 int val; 1501 int ret; 1502 1503 pm_runtime_get_sync(&sw->dev); 1504 1505 if (!mutex_trylock(&sw->tb->lock)) { 1506 ret = restart_syscall(); 1507 goto exit_rpm; 1508 } 1509 1510 /* If NVMem devices are not yet added */ 1511 if (!sw->nvm) { 1512 ret = -EAGAIN; 1513 goto exit_unlock; 1514 } 1515 1516 ret = kstrtoint(buf, 10, &val); 1517 if (ret) 1518 goto exit_unlock; 1519 1520 /* Always clear the authentication status */ 1521 nvm_clear_auth_status(sw); 1522 1523 if (val > 0) { 1524 if (!sw->nvm->flushed) { 1525 if (!sw->nvm->buf) { 1526 ret = -EINVAL; 1527 goto exit_unlock; 1528 } 1529 1530 ret = nvm_validate_and_write(sw); 1531 if (ret || val == WRITE_ONLY) 1532 goto exit_unlock; 1533 } 1534 if (val == WRITE_AND_AUTHENTICATE) { 1535 if (disconnect) { 1536 ret = tb_lc_force_power(sw); 1537 } else { 1538 sw->nvm->authenticating = true; 1539 ret = nvm_authenticate(sw); 1540 } 1541 } 1542 } 1543 1544 exit_unlock: 1545 mutex_unlock(&sw->tb->lock); 1546 exit_rpm: 1547 pm_runtime_mark_last_busy(&sw->dev); 1548 pm_runtime_put_autosuspend(&sw->dev); 1549 1550 return ret; 1551 } 1552 1553 static ssize_t nvm_authenticate_store(struct device *dev, 1554 struct device_attribute *attr, const char *buf, size_t count) 1555 { 1556 int ret = nvm_authenticate_sysfs(dev, buf, false); 1557 if (ret) 1558 return ret; 1559 return count; 1560 } 1561 static DEVICE_ATTR_RW(nvm_authenticate); 1562 1563 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev, 1564 struct device_attribute *attr, char *buf) 1565 { 1566 return nvm_authenticate_show(dev, attr, buf); 1567 } 1568 1569 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev, 1570 struct device_attribute *attr, const char *buf, size_t count) 1571 { 1572 int ret; 1573 1574 ret = nvm_authenticate_sysfs(dev, buf, true); 1575 return ret ? ret : count; 1576 } 1577 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect); 1578 1579 static ssize_t nvm_version_show(struct device *dev, 1580 struct device_attribute *attr, char *buf) 1581 { 1582 struct tb_switch *sw = tb_to_switch(dev); 1583 int ret; 1584 1585 if (!mutex_trylock(&sw->tb->lock)) 1586 return restart_syscall(); 1587 1588 if (sw->safe_mode) 1589 ret = -ENODATA; 1590 else if (!sw->nvm) 1591 ret = -EAGAIN; 1592 else 1593 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 1594 1595 mutex_unlock(&sw->tb->lock); 1596 1597 return ret; 1598 } 1599 static DEVICE_ATTR_RO(nvm_version); 1600 1601 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 1602 char *buf) 1603 { 1604 struct tb_switch *sw = tb_to_switch(dev); 1605 1606 return sprintf(buf, "%#x\n", sw->vendor); 1607 } 1608 static DEVICE_ATTR_RO(vendor); 1609 1610 static ssize_t 1611 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1612 { 1613 struct tb_switch *sw = tb_to_switch(dev); 1614 1615 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : ""); 1616 } 1617 static DEVICE_ATTR_RO(vendor_name); 1618 1619 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 1620 char *buf) 1621 { 1622 struct tb_switch *sw = tb_to_switch(dev); 1623 1624 return sprintf(buf, "%pUb\n", sw->uuid); 1625 } 1626 static DEVICE_ATTR_RO(unique_id); 1627 1628 static struct attribute *switch_attrs[] = { 1629 &dev_attr_authorized.attr, 1630 &dev_attr_boot.attr, 1631 &dev_attr_device.attr, 1632 &dev_attr_device_name.attr, 1633 &dev_attr_generation.attr, 1634 &dev_attr_key.attr, 1635 &dev_attr_nvm_authenticate.attr, 1636 &dev_attr_nvm_authenticate_on_disconnect.attr, 1637 &dev_attr_nvm_version.attr, 1638 &dev_attr_rx_speed.attr, 1639 &dev_attr_rx_lanes.attr, 1640 &dev_attr_tx_speed.attr, 1641 &dev_attr_tx_lanes.attr, 1642 &dev_attr_vendor.attr, 1643 &dev_attr_vendor_name.attr, 1644 &dev_attr_unique_id.attr, 1645 NULL, 1646 }; 1647 1648 static umode_t switch_attr_is_visible(struct kobject *kobj, 1649 struct attribute *attr, int n) 1650 { 1651 struct device *dev = container_of(kobj, struct device, kobj); 1652 struct tb_switch *sw = tb_to_switch(dev); 1653 1654 if (attr == &dev_attr_device.attr) { 1655 if (!sw->device) 1656 return 0; 1657 } else if (attr == &dev_attr_device_name.attr) { 1658 if (!sw->device_name) 1659 return 0; 1660 } else if (attr == &dev_attr_vendor.attr) { 1661 if (!sw->vendor) 1662 return 0; 1663 } else if (attr == &dev_attr_vendor_name.attr) { 1664 if (!sw->vendor_name) 1665 return 0; 1666 } else if (attr == &dev_attr_key.attr) { 1667 if (tb_route(sw) && 1668 sw->tb->security_level == TB_SECURITY_SECURE && 1669 sw->security_level == TB_SECURITY_SECURE) 1670 return attr->mode; 1671 return 0; 1672 } else if (attr == &dev_attr_rx_speed.attr || 1673 attr == &dev_attr_rx_lanes.attr || 1674 attr == &dev_attr_tx_speed.attr || 1675 attr == &dev_attr_tx_lanes.attr) { 1676 if (tb_route(sw)) 1677 return attr->mode; 1678 return 0; 1679 } else if (attr == &dev_attr_nvm_authenticate.attr) { 1680 if (nvm_upgradeable(sw)) 1681 return attr->mode; 1682 return 0; 1683 } else if (attr == &dev_attr_nvm_version.attr) { 1684 if (nvm_readable(sw)) 1685 return attr->mode; 1686 return 0; 1687 } else if (attr == &dev_attr_boot.attr) { 1688 if (tb_route(sw)) 1689 return attr->mode; 1690 return 0; 1691 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) { 1692 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER) 1693 return attr->mode; 1694 return 0; 1695 } 1696 1697 return sw->safe_mode ? 0 : attr->mode; 1698 } 1699 1700 static struct attribute_group switch_group = { 1701 .is_visible = switch_attr_is_visible, 1702 .attrs = switch_attrs, 1703 }; 1704 1705 static const struct attribute_group *switch_groups[] = { 1706 &switch_group, 1707 NULL, 1708 }; 1709 1710 static void tb_switch_release(struct device *dev) 1711 { 1712 struct tb_switch *sw = tb_to_switch(dev); 1713 struct tb_port *port; 1714 1715 dma_port_free(sw->dma_port); 1716 1717 tb_switch_for_each_port(sw, port) { 1718 if (!port->disabled) { 1719 ida_destroy(&port->in_hopids); 1720 ida_destroy(&port->out_hopids); 1721 } 1722 } 1723 1724 kfree(sw->uuid); 1725 kfree(sw->device_name); 1726 kfree(sw->vendor_name); 1727 kfree(sw->ports); 1728 kfree(sw->drom); 1729 kfree(sw->key); 1730 kfree(sw); 1731 } 1732 1733 /* 1734 * Currently only need to provide the callbacks. Everything else is handled 1735 * in the connection manager. 1736 */ 1737 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev) 1738 { 1739 struct tb_switch *sw = tb_to_switch(dev); 1740 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 1741 1742 if (cm_ops->runtime_suspend_switch) 1743 return cm_ops->runtime_suspend_switch(sw); 1744 1745 return 0; 1746 } 1747 1748 static int __maybe_unused tb_switch_runtime_resume(struct device *dev) 1749 { 1750 struct tb_switch *sw = tb_to_switch(dev); 1751 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 1752 1753 if (cm_ops->runtime_resume_switch) 1754 return cm_ops->runtime_resume_switch(sw); 1755 return 0; 1756 } 1757 1758 static const struct dev_pm_ops tb_switch_pm_ops = { 1759 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume, 1760 NULL) 1761 }; 1762 1763 struct device_type tb_switch_type = { 1764 .name = "thunderbolt_device", 1765 .release = tb_switch_release, 1766 .pm = &tb_switch_pm_ops, 1767 }; 1768 1769 static int tb_switch_get_generation(struct tb_switch *sw) 1770 { 1771 switch (sw->config.device_id) { 1772 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1773 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1774 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 1775 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 1776 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 1777 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1778 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 1779 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 1780 return 1; 1781 1782 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 1783 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 1784 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 1785 return 2; 1786 1787 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 1788 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 1789 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 1790 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 1791 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 1792 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: 1793 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: 1794 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: 1795 case PCI_DEVICE_ID_INTEL_ICL_NHI0: 1796 case PCI_DEVICE_ID_INTEL_ICL_NHI1: 1797 return 3; 1798 1799 default: 1800 if (tb_switch_is_usb4(sw)) 1801 return 4; 1802 1803 /* 1804 * For unknown switches assume generation to be 1 to be 1805 * on the safe side. 1806 */ 1807 tb_sw_warn(sw, "unsupported switch device id %#x\n", 1808 sw->config.device_id); 1809 return 1; 1810 } 1811 } 1812 1813 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth) 1814 { 1815 int max_depth; 1816 1817 if (tb_switch_is_usb4(sw) || 1818 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch))) 1819 max_depth = USB4_SWITCH_MAX_DEPTH; 1820 else 1821 max_depth = TB_SWITCH_MAX_DEPTH; 1822 1823 return depth > max_depth; 1824 } 1825 1826 /** 1827 * tb_switch_alloc() - allocate a switch 1828 * @tb: Pointer to the owning domain 1829 * @parent: Parent device for this switch 1830 * @route: Route string for this switch 1831 * 1832 * Allocates and initializes a switch. Will not upload configuration to 1833 * the switch. For that you need to call tb_switch_configure() 1834 * separately. The returned switch should be released by calling 1835 * tb_switch_put(). 1836 * 1837 * Return: Pointer to the allocated switch or ERR_PTR() in case of 1838 * failure. 1839 */ 1840 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 1841 u64 route) 1842 { 1843 struct tb_switch *sw; 1844 int upstream_port; 1845 int i, ret, depth; 1846 1847 /* Unlock the downstream port so we can access the switch below */ 1848 if (route) { 1849 struct tb_switch *parent_sw = tb_to_switch(parent); 1850 struct tb_port *down; 1851 1852 down = tb_port_at(route, parent_sw); 1853 tb_port_unlock(down); 1854 } 1855 1856 depth = tb_route_length(route); 1857 1858 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 1859 if (upstream_port < 0) 1860 return ERR_PTR(upstream_port); 1861 1862 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1863 if (!sw) 1864 return ERR_PTR(-ENOMEM); 1865 1866 sw->tb = tb; 1867 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5); 1868 if (ret) 1869 goto err_free_sw_ports; 1870 1871 sw->generation = tb_switch_get_generation(sw); 1872 1873 tb_dbg(tb, "current switch config:\n"); 1874 tb_dump_switch(tb, sw); 1875 1876 /* configure switch */ 1877 sw->config.upstream_port_number = upstream_port; 1878 sw->config.depth = depth; 1879 sw->config.route_hi = upper_32_bits(route); 1880 sw->config.route_lo = lower_32_bits(route); 1881 sw->config.enabled = 0; 1882 1883 /* Make sure we do not exceed maximum topology limit */ 1884 if (tb_switch_exceeds_max_depth(sw, depth)) { 1885 ret = -EADDRNOTAVAIL; 1886 goto err_free_sw_ports; 1887 } 1888 1889 /* initialize ports */ 1890 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 1891 GFP_KERNEL); 1892 if (!sw->ports) { 1893 ret = -ENOMEM; 1894 goto err_free_sw_ports; 1895 } 1896 1897 for (i = 0; i <= sw->config.max_port_number; i++) { 1898 /* minimum setup for tb_find_cap and tb_drom_read to work */ 1899 sw->ports[i].sw = sw; 1900 sw->ports[i].port = i; 1901 } 1902 1903 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 1904 if (ret > 0) 1905 sw->cap_plug_events = ret; 1906 1907 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 1908 if (ret > 0) 1909 sw->cap_lc = ret; 1910 1911 /* Root switch is always authorized */ 1912 if (!route) 1913 sw->authorized = true; 1914 1915 device_initialize(&sw->dev); 1916 sw->dev.parent = parent; 1917 sw->dev.bus = &tb_bus_type; 1918 sw->dev.type = &tb_switch_type; 1919 sw->dev.groups = switch_groups; 1920 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1921 1922 return sw; 1923 1924 err_free_sw_ports: 1925 kfree(sw->ports); 1926 kfree(sw); 1927 1928 return ERR_PTR(ret); 1929 } 1930 1931 /** 1932 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 1933 * @tb: Pointer to the owning domain 1934 * @parent: Parent device for this switch 1935 * @route: Route string for this switch 1936 * 1937 * This creates a switch in safe mode. This means the switch pretty much 1938 * lacks all capabilities except DMA configuration port before it is 1939 * flashed with a valid NVM firmware. 1940 * 1941 * The returned switch must be released by calling tb_switch_put(). 1942 * 1943 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure 1944 */ 1945 struct tb_switch * 1946 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 1947 { 1948 struct tb_switch *sw; 1949 1950 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1951 if (!sw) 1952 return ERR_PTR(-ENOMEM); 1953 1954 sw->tb = tb; 1955 sw->config.depth = tb_route_length(route); 1956 sw->config.route_hi = upper_32_bits(route); 1957 sw->config.route_lo = lower_32_bits(route); 1958 sw->safe_mode = true; 1959 1960 device_initialize(&sw->dev); 1961 sw->dev.parent = parent; 1962 sw->dev.bus = &tb_bus_type; 1963 sw->dev.type = &tb_switch_type; 1964 sw->dev.groups = switch_groups; 1965 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1966 1967 return sw; 1968 } 1969 1970 /** 1971 * tb_switch_configure() - Uploads configuration to the switch 1972 * @sw: Switch to configure 1973 * 1974 * Call this function before the switch is added to the system. It will 1975 * upload configuration to the switch and makes it available for the 1976 * connection manager to use. Can be called to the switch again after 1977 * resume from low power states to re-initialize it. 1978 * 1979 * Return: %0 in case of success and negative errno in case of failure 1980 */ 1981 int tb_switch_configure(struct tb_switch *sw) 1982 { 1983 struct tb *tb = sw->tb; 1984 u64 route; 1985 int ret; 1986 1987 route = tb_route(sw); 1988 1989 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n", 1990 sw->config.enabled ? "restoring " : "initializing", route, 1991 tb_route_length(route), sw->config.upstream_port_number); 1992 1993 sw->config.enabled = 1; 1994 1995 if (tb_switch_is_usb4(sw)) { 1996 /* 1997 * For USB4 devices, we need to program the CM version 1998 * accordingly so that it knows to expose all the 1999 * additional capabilities. 2000 */ 2001 sw->config.cmuv = USB4_VERSION_1_0; 2002 2003 /* Enumerate the switch */ 2004 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2005 ROUTER_CS_1, 4); 2006 if (ret) 2007 return ret; 2008 2009 ret = usb4_switch_setup(sw); 2010 if (ret) 2011 return ret; 2012 2013 ret = usb4_switch_configure_link(sw); 2014 } else { 2015 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 2016 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 2017 sw->config.vendor_id); 2018 2019 if (!sw->cap_plug_events) { 2020 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 2021 return -ENODEV; 2022 } 2023 2024 /* Enumerate the switch */ 2025 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2026 ROUTER_CS_1, 3); 2027 if (ret) 2028 return ret; 2029 2030 ret = tb_lc_configure_link(sw); 2031 } 2032 if (ret) 2033 return ret; 2034 2035 return tb_plug_events_active(sw, true); 2036 } 2037 2038 static int tb_switch_set_uuid(struct tb_switch *sw) 2039 { 2040 bool uid = false; 2041 u32 uuid[4]; 2042 int ret; 2043 2044 if (sw->uuid) 2045 return 0; 2046 2047 if (tb_switch_is_usb4(sw)) { 2048 ret = usb4_switch_read_uid(sw, &sw->uid); 2049 if (ret) 2050 return ret; 2051 uid = true; 2052 } else { 2053 /* 2054 * The newer controllers include fused UUID as part of 2055 * link controller specific registers 2056 */ 2057 ret = tb_lc_read_uuid(sw, uuid); 2058 if (ret) { 2059 if (ret != -EINVAL) 2060 return ret; 2061 uid = true; 2062 } 2063 } 2064 2065 if (uid) { 2066 /* 2067 * ICM generates UUID based on UID and fills the upper 2068 * two words with ones. This is not strictly following 2069 * UUID format but we want to be compatible with it so 2070 * we do the same here. 2071 */ 2072 uuid[0] = sw->uid & 0xffffffff; 2073 uuid[1] = (sw->uid >> 32) & 0xffffffff; 2074 uuid[2] = 0xffffffff; 2075 uuid[3] = 0xffffffff; 2076 } 2077 2078 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 2079 if (!sw->uuid) 2080 return -ENOMEM; 2081 return 0; 2082 } 2083 2084 static int tb_switch_add_dma_port(struct tb_switch *sw) 2085 { 2086 u32 status; 2087 int ret; 2088 2089 switch (sw->generation) { 2090 case 2: 2091 /* Only root switch can be upgraded */ 2092 if (tb_route(sw)) 2093 return 0; 2094 2095 /* fallthrough */ 2096 case 3: 2097 ret = tb_switch_set_uuid(sw); 2098 if (ret) 2099 return ret; 2100 break; 2101 2102 default: 2103 /* 2104 * DMA port is the only thing available when the switch 2105 * is in safe mode. 2106 */ 2107 if (!sw->safe_mode) 2108 return 0; 2109 break; 2110 } 2111 2112 /* Root switch DMA port requires running firmware */ 2113 if (!tb_route(sw) && !tb_switch_is_icm(sw)) 2114 return 0; 2115 2116 sw->dma_port = dma_port_alloc(sw); 2117 if (!sw->dma_port) 2118 return 0; 2119 2120 if (sw->no_nvm_upgrade) 2121 return 0; 2122 2123 /* 2124 * If there is status already set then authentication failed 2125 * when the dma_port_flash_update_auth() returned. Power cycling 2126 * is not needed (it was done already) so only thing we do here 2127 * is to unblock runtime PM of the root port. 2128 */ 2129 nvm_get_auth_status(sw, &status); 2130 if (status) { 2131 if (!tb_route(sw)) 2132 nvm_authenticate_complete_dma_port(sw); 2133 return 0; 2134 } 2135 2136 /* 2137 * Check status of the previous flash authentication. If there 2138 * is one we need to power cycle the switch in any case to make 2139 * it functional again. 2140 */ 2141 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 2142 if (ret <= 0) 2143 return ret; 2144 2145 /* Now we can allow root port to suspend again */ 2146 if (!tb_route(sw)) 2147 nvm_authenticate_complete_dma_port(sw); 2148 2149 if (status) { 2150 tb_sw_info(sw, "switch flash authentication failed\n"); 2151 nvm_set_auth_status(sw, status); 2152 } 2153 2154 tb_sw_info(sw, "power cycling the switch now\n"); 2155 dma_port_power_cycle(sw->dma_port); 2156 2157 /* 2158 * We return error here which causes the switch adding failure. 2159 * It should appear back after power cycle is complete. 2160 */ 2161 return -ESHUTDOWN; 2162 } 2163 2164 static void tb_switch_default_link_ports(struct tb_switch *sw) 2165 { 2166 int i; 2167 2168 for (i = 1; i <= sw->config.max_port_number; i += 2) { 2169 struct tb_port *port = &sw->ports[i]; 2170 struct tb_port *subordinate; 2171 2172 if (!tb_port_is_null(port)) 2173 continue; 2174 2175 /* Check for the subordinate port */ 2176 if (i == sw->config.max_port_number || 2177 !tb_port_is_null(&sw->ports[i + 1])) 2178 continue; 2179 2180 /* Link them if not already done so (by DROM) */ 2181 subordinate = &sw->ports[i + 1]; 2182 if (!port->dual_link_port && !subordinate->dual_link_port) { 2183 port->link_nr = 0; 2184 port->dual_link_port = subordinate; 2185 subordinate->link_nr = 1; 2186 subordinate->dual_link_port = port; 2187 2188 tb_sw_dbg(sw, "linked ports %d <-> %d\n", 2189 port->port, subordinate->port); 2190 } 2191 } 2192 } 2193 2194 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw) 2195 { 2196 const struct tb_port *up = tb_upstream_port(sw); 2197 2198 if (!up->dual_link_port || !up->dual_link_port->remote) 2199 return false; 2200 2201 if (tb_switch_is_usb4(sw)) 2202 return usb4_switch_lane_bonding_possible(sw); 2203 return tb_lc_lane_bonding_possible(sw); 2204 } 2205 2206 static int tb_switch_update_link_attributes(struct tb_switch *sw) 2207 { 2208 struct tb_port *up; 2209 bool change = false; 2210 int ret; 2211 2212 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2213 return 0; 2214 2215 up = tb_upstream_port(sw); 2216 2217 ret = tb_port_get_link_speed(up); 2218 if (ret < 0) 2219 return ret; 2220 if (sw->link_speed != ret) 2221 change = true; 2222 sw->link_speed = ret; 2223 2224 ret = tb_port_get_link_width(up); 2225 if (ret < 0) 2226 return ret; 2227 if (sw->link_width != ret) 2228 change = true; 2229 sw->link_width = ret; 2230 2231 /* Notify userspace that there is possible link attribute change */ 2232 if (device_is_registered(&sw->dev) && change) 2233 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 2234 2235 return 0; 2236 } 2237 2238 /** 2239 * tb_switch_lane_bonding_enable() - Enable lane bonding 2240 * @sw: Switch to enable lane bonding 2241 * 2242 * Connection manager can call this function to enable lane bonding of a 2243 * switch. If conditions are correct and both switches support the feature, 2244 * lanes are bonded. It is safe to call this to any switch. 2245 */ 2246 int tb_switch_lane_bonding_enable(struct tb_switch *sw) 2247 { 2248 struct tb_switch *parent = tb_to_switch(sw->dev.parent); 2249 struct tb_port *up, *down; 2250 u64 route = tb_route(sw); 2251 int ret; 2252 2253 if (!route) 2254 return 0; 2255 2256 if (!tb_switch_lane_bonding_possible(sw)) 2257 return 0; 2258 2259 up = tb_upstream_port(sw); 2260 down = tb_port_at(route, parent); 2261 2262 if (!tb_port_is_width_supported(up, 2) || 2263 !tb_port_is_width_supported(down, 2)) 2264 return 0; 2265 2266 ret = tb_port_lane_bonding_enable(up); 2267 if (ret) { 2268 tb_port_warn(up, "failed to enable lane bonding\n"); 2269 return ret; 2270 } 2271 2272 ret = tb_port_lane_bonding_enable(down); 2273 if (ret) { 2274 tb_port_warn(down, "failed to enable lane bonding\n"); 2275 tb_port_lane_bonding_disable(up); 2276 return ret; 2277 } 2278 2279 tb_switch_update_link_attributes(sw); 2280 2281 tb_sw_dbg(sw, "lane bonding enabled\n"); 2282 return ret; 2283 } 2284 2285 /** 2286 * tb_switch_lane_bonding_disable() - Disable lane bonding 2287 * @sw: Switch whose lane bonding to disable 2288 * 2289 * Disables lane bonding between @sw and parent. This can be called even 2290 * if lanes were not bonded originally. 2291 */ 2292 void tb_switch_lane_bonding_disable(struct tb_switch *sw) 2293 { 2294 struct tb_switch *parent = tb_to_switch(sw->dev.parent); 2295 struct tb_port *up, *down; 2296 2297 if (!tb_route(sw)) 2298 return; 2299 2300 up = tb_upstream_port(sw); 2301 if (!up->bonded) 2302 return; 2303 2304 down = tb_port_at(tb_route(sw), parent); 2305 2306 tb_port_lane_bonding_disable(up); 2307 tb_port_lane_bonding_disable(down); 2308 2309 tb_switch_update_link_attributes(sw); 2310 tb_sw_dbg(sw, "lane bonding disabled\n"); 2311 } 2312 2313 /** 2314 * tb_switch_add() - Add a switch to the domain 2315 * @sw: Switch to add 2316 * 2317 * This is the last step in adding switch to the domain. It will read 2318 * identification information from DROM and initializes ports so that 2319 * they can be used to connect other switches. The switch will be 2320 * exposed to the userspace when this function successfully returns. To 2321 * remove and release the switch, call tb_switch_remove(). 2322 * 2323 * Return: %0 in case of success and negative errno in case of failure 2324 */ 2325 int tb_switch_add(struct tb_switch *sw) 2326 { 2327 int i, ret; 2328 2329 /* 2330 * Initialize DMA control port now before we read DROM. Recent 2331 * host controllers have more complete DROM on NVM that includes 2332 * vendor and model identification strings which we then expose 2333 * to the userspace. NVM can be accessed through DMA 2334 * configuration based mailbox. 2335 */ 2336 ret = tb_switch_add_dma_port(sw); 2337 if (ret) { 2338 dev_err(&sw->dev, "failed to add DMA port\n"); 2339 return ret; 2340 } 2341 2342 if (!sw->safe_mode) { 2343 /* read drom */ 2344 ret = tb_drom_read(sw); 2345 if (ret) { 2346 dev_err(&sw->dev, "reading DROM failed\n"); 2347 return ret; 2348 } 2349 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid); 2350 2351 ret = tb_switch_set_uuid(sw); 2352 if (ret) { 2353 dev_err(&sw->dev, "failed to set UUID\n"); 2354 return ret; 2355 } 2356 2357 for (i = 0; i <= sw->config.max_port_number; i++) { 2358 if (sw->ports[i].disabled) { 2359 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n"); 2360 continue; 2361 } 2362 ret = tb_init_port(&sw->ports[i]); 2363 if (ret) { 2364 dev_err(&sw->dev, "failed to initialize port %d\n", i); 2365 return ret; 2366 } 2367 } 2368 2369 tb_switch_default_link_ports(sw); 2370 2371 ret = tb_switch_update_link_attributes(sw); 2372 if (ret) 2373 return ret; 2374 2375 ret = tb_switch_tmu_init(sw); 2376 if (ret) 2377 return ret; 2378 } 2379 2380 ret = device_add(&sw->dev); 2381 if (ret) { 2382 dev_err(&sw->dev, "failed to add device: %d\n", ret); 2383 return ret; 2384 } 2385 2386 if (tb_route(sw)) { 2387 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n", 2388 sw->vendor, sw->device); 2389 if (sw->vendor_name && sw->device_name) 2390 dev_info(&sw->dev, "%s %s\n", sw->vendor_name, 2391 sw->device_name); 2392 } 2393 2394 ret = tb_switch_nvm_add(sw); 2395 if (ret) { 2396 dev_err(&sw->dev, "failed to add NVM devices\n"); 2397 device_del(&sw->dev); 2398 return ret; 2399 } 2400 2401 pm_runtime_set_active(&sw->dev); 2402 if (sw->rpm) { 2403 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY); 2404 pm_runtime_use_autosuspend(&sw->dev); 2405 pm_runtime_mark_last_busy(&sw->dev); 2406 pm_runtime_enable(&sw->dev); 2407 pm_request_autosuspend(&sw->dev); 2408 } 2409 2410 return 0; 2411 } 2412 2413 /** 2414 * tb_switch_remove() - Remove and release a switch 2415 * @sw: Switch to remove 2416 * 2417 * This will remove the switch from the domain and release it after last 2418 * reference count drops to zero. If there are switches connected below 2419 * this switch, they will be removed as well. 2420 */ 2421 void tb_switch_remove(struct tb_switch *sw) 2422 { 2423 struct tb_port *port; 2424 2425 if (sw->rpm) { 2426 pm_runtime_get_sync(&sw->dev); 2427 pm_runtime_disable(&sw->dev); 2428 } 2429 2430 /* port 0 is the switch itself and never has a remote */ 2431 tb_switch_for_each_port(sw, port) { 2432 if (tb_port_has_remote(port)) { 2433 tb_switch_remove(port->remote->sw); 2434 port->remote = NULL; 2435 } else if (port->xdomain) { 2436 tb_xdomain_remove(port->xdomain); 2437 port->xdomain = NULL; 2438 } 2439 2440 /* Remove any downstream retimers */ 2441 tb_retimer_remove_all(port); 2442 } 2443 2444 if (!sw->is_unplugged) 2445 tb_plug_events_active(sw, false); 2446 2447 if (tb_switch_is_usb4(sw)) 2448 usb4_switch_unconfigure_link(sw); 2449 else 2450 tb_lc_unconfigure_link(sw); 2451 2452 tb_switch_nvm_remove(sw); 2453 2454 if (tb_route(sw)) 2455 dev_info(&sw->dev, "device disconnected\n"); 2456 device_unregister(&sw->dev); 2457 } 2458 2459 /** 2460 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 2461 */ 2462 void tb_sw_set_unplugged(struct tb_switch *sw) 2463 { 2464 struct tb_port *port; 2465 2466 if (sw == sw->tb->root_switch) { 2467 tb_sw_WARN(sw, "cannot unplug root switch\n"); 2468 return; 2469 } 2470 if (sw->is_unplugged) { 2471 tb_sw_WARN(sw, "is_unplugged already set\n"); 2472 return; 2473 } 2474 sw->is_unplugged = true; 2475 tb_switch_for_each_port(sw, port) { 2476 if (tb_port_has_remote(port)) 2477 tb_sw_set_unplugged(port->remote->sw); 2478 else if (port->xdomain) 2479 port->xdomain->is_unplugged = true; 2480 } 2481 } 2482 2483 int tb_switch_resume(struct tb_switch *sw) 2484 { 2485 struct tb_port *port; 2486 int err; 2487 2488 tb_sw_dbg(sw, "resuming switch\n"); 2489 2490 /* 2491 * Check for UID of the connected switches except for root 2492 * switch which we assume cannot be removed. 2493 */ 2494 if (tb_route(sw)) { 2495 u64 uid; 2496 2497 /* 2498 * Check first that we can still read the switch config 2499 * space. It may be that there is now another domain 2500 * connected. 2501 */ 2502 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw)); 2503 if (err < 0) { 2504 tb_sw_info(sw, "switch not present anymore\n"); 2505 return err; 2506 } 2507 2508 if (tb_switch_is_usb4(sw)) 2509 err = usb4_switch_read_uid(sw, &uid); 2510 else 2511 err = tb_drom_read_uid_only(sw, &uid); 2512 if (err) { 2513 tb_sw_warn(sw, "uid read failed\n"); 2514 return err; 2515 } 2516 if (sw->uid != uid) { 2517 tb_sw_info(sw, 2518 "changed while suspended (uid %#llx -> %#llx)\n", 2519 sw->uid, uid); 2520 return -ENODEV; 2521 } 2522 } 2523 2524 err = tb_switch_configure(sw); 2525 if (err) 2526 return err; 2527 2528 /* check for surviving downstream switches */ 2529 tb_switch_for_each_port(sw, port) { 2530 if (!tb_port_has_remote(port) && !port->xdomain) 2531 continue; 2532 2533 if (tb_wait_for_port(port, true) <= 0) { 2534 tb_port_warn(port, 2535 "lost during suspend, disconnecting\n"); 2536 if (tb_port_has_remote(port)) 2537 tb_sw_set_unplugged(port->remote->sw); 2538 else if (port->xdomain) 2539 port->xdomain->is_unplugged = true; 2540 } else if (tb_port_has_remote(port) || port->xdomain) { 2541 /* 2542 * Always unlock the port so the downstream 2543 * switch/domain is accessible. 2544 */ 2545 if (tb_port_unlock(port)) 2546 tb_port_warn(port, "failed to unlock port\n"); 2547 if (port->remote && tb_switch_resume(port->remote->sw)) { 2548 tb_port_warn(port, 2549 "lost during suspend, disconnecting\n"); 2550 tb_sw_set_unplugged(port->remote->sw); 2551 } 2552 } 2553 } 2554 return 0; 2555 } 2556 2557 void tb_switch_suspend(struct tb_switch *sw) 2558 { 2559 struct tb_port *port; 2560 int err; 2561 2562 err = tb_plug_events_active(sw, false); 2563 if (err) 2564 return; 2565 2566 tb_switch_for_each_port(sw, port) { 2567 if (tb_port_has_remote(port)) 2568 tb_switch_suspend(port->remote->sw); 2569 } 2570 2571 if (tb_switch_is_usb4(sw)) 2572 usb4_switch_set_sleep(sw); 2573 else 2574 tb_lc_set_sleep(sw); 2575 } 2576 2577 /** 2578 * tb_switch_query_dp_resource() - Query availability of DP resource 2579 * @sw: Switch whose DP resource is queried 2580 * @in: DP IN port 2581 * 2582 * Queries availability of DP resource for DP tunneling using switch 2583 * specific means. Returns %true if resource is available. 2584 */ 2585 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) 2586 { 2587 if (tb_switch_is_usb4(sw)) 2588 return usb4_switch_query_dp_resource(sw, in); 2589 return tb_lc_dp_sink_query(sw, in); 2590 } 2591 2592 /** 2593 * tb_switch_alloc_dp_resource() - Allocate available DP resource 2594 * @sw: Switch whose DP resource is allocated 2595 * @in: DP IN port 2596 * 2597 * Allocates DP resource for DP tunneling. The resource must be 2598 * available for this to succeed (see tb_switch_query_dp_resource()). 2599 * Returns %0 in success and negative errno otherwise. 2600 */ 2601 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 2602 { 2603 if (tb_switch_is_usb4(sw)) 2604 return usb4_switch_alloc_dp_resource(sw, in); 2605 return tb_lc_dp_sink_alloc(sw, in); 2606 } 2607 2608 /** 2609 * tb_switch_dealloc_dp_resource() - De-allocate DP resource 2610 * @sw: Switch whose DP resource is de-allocated 2611 * @in: DP IN port 2612 * 2613 * De-allocates DP resource that was previously allocated for DP 2614 * tunneling. 2615 */ 2616 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 2617 { 2618 int ret; 2619 2620 if (tb_switch_is_usb4(sw)) 2621 ret = usb4_switch_dealloc_dp_resource(sw, in); 2622 else 2623 ret = tb_lc_dp_sink_dealloc(sw, in); 2624 2625 if (ret) 2626 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n", 2627 in->port); 2628 } 2629 2630 struct tb_sw_lookup { 2631 struct tb *tb; 2632 u8 link; 2633 u8 depth; 2634 const uuid_t *uuid; 2635 u64 route; 2636 }; 2637 2638 static int tb_switch_match(struct device *dev, const void *data) 2639 { 2640 struct tb_switch *sw = tb_to_switch(dev); 2641 const struct tb_sw_lookup *lookup = data; 2642 2643 if (!sw) 2644 return 0; 2645 if (sw->tb != lookup->tb) 2646 return 0; 2647 2648 if (lookup->uuid) 2649 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 2650 2651 if (lookup->route) { 2652 return sw->config.route_lo == lower_32_bits(lookup->route) && 2653 sw->config.route_hi == upper_32_bits(lookup->route); 2654 } 2655 2656 /* Root switch is matched only by depth */ 2657 if (!lookup->depth) 2658 return !sw->depth; 2659 2660 return sw->link == lookup->link && sw->depth == lookup->depth; 2661 } 2662 2663 /** 2664 * tb_switch_find_by_link_depth() - Find switch by link and depth 2665 * @tb: Domain the switch belongs 2666 * @link: Link number the switch is connected 2667 * @depth: Depth of the switch in link 2668 * 2669 * Returned switch has reference count increased so the caller needs to 2670 * call tb_switch_put() when done with the switch. 2671 */ 2672 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 2673 { 2674 struct tb_sw_lookup lookup; 2675 struct device *dev; 2676 2677 memset(&lookup, 0, sizeof(lookup)); 2678 lookup.tb = tb; 2679 lookup.link = link; 2680 lookup.depth = depth; 2681 2682 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2683 if (dev) 2684 return tb_to_switch(dev); 2685 2686 return NULL; 2687 } 2688 2689 /** 2690 * tb_switch_find_by_uuid() - Find switch by UUID 2691 * @tb: Domain the switch belongs 2692 * @uuid: UUID to look for 2693 * 2694 * Returned switch has reference count increased so the caller needs to 2695 * call tb_switch_put() when done with the switch. 2696 */ 2697 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) 2698 { 2699 struct tb_sw_lookup lookup; 2700 struct device *dev; 2701 2702 memset(&lookup, 0, sizeof(lookup)); 2703 lookup.tb = tb; 2704 lookup.uuid = uuid; 2705 2706 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2707 if (dev) 2708 return tb_to_switch(dev); 2709 2710 return NULL; 2711 } 2712 2713 /** 2714 * tb_switch_find_by_route() - Find switch by route string 2715 * @tb: Domain the switch belongs 2716 * @route: Route string to look for 2717 * 2718 * Returned switch has reference count increased so the caller needs to 2719 * call tb_switch_put() when done with the switch. 2720 */ 2721 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route) 2722 { 2723 struct tb_sw_lookup lookup; 2724 struct device *dev; 2725 2726 if (!route) 2727 return tb_switch_get(tb->root_switch); 2728 2729 memset(&lookup, 0, sizeof(lookup)); 2730 lookup.tb = tb; 2731 lookup.route = route; 2732 2733 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2734 if (dev) 2735 return tb_to_switch(dev); 2736 2737 return NULL; 2738 } 2739 2740 /** 2741 * tb_switch_find_port() - return the first port of @type on @sw or NULL 2742 * @sw: Switch to find the port from 2743 * @type: Port type to look for 2744 */ 2745 struct tb_port *tb_switch_find_port(struct tb_switch *sw, 2746 enum tb_port_type type) 2747 { 2748 struct tb_port *port; 2749 2750 tb_switch_for_each_port(sw, port) { 2751 if (port->config.type == type) 2752 return port; 2753 } 2754 2755 return NULL; 2756 } 2757