xref: /openbmc/linux/drivers/thunderbolt/switch.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 
18 #include "tb.h"
19 
20 /* Switch NVM support */
21 
22 #define NVM_DEVID		0x05
23 #define NVM_VERSION		0x08
24 #define NVM_CSS			0x10
25 #define NVM_FLASH_SIZE		0x45
26 
27 #define NVM_MIN_SIZE		SZ_32K
28 #define NVM_MAX_SIZE		SZ_512K
29 
30 static DEFINE_IDA(nvm_ida);
31 
32 struct nvm_auth_status {
33 	struct list_head list;
34 	uuid_t uuid;
35 	u32 status;
36 };
37 
38 /*
39  * Hold NVM authentication failure status per switch This information
40  * needs to stay around even when the switch gets power cycled so we
41  * keep it separately.
42  */
43 static LIST_HEAD(nvm_auth_status_cache);
44 static DEFINE_MUTEX(nvm_auth_status_lock);
45 
46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
47 {
48 	struct nvm_auth_status *st;
49 
50 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
51 		if (uuid_equal(&st->uuid, sw->uuid))
52 			return st;
53 	}
54 
55 	return NULL;
56 }
57 
58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
59 {
60 	struct nvm_auth_status *st;
61 
62 	mutex_lock(&nvm_auth_status_lock);
63 	st = __nvm_get_auth_status(sw);
64 	mutex_unlock(&nvm_auth_status_lock);
65 
66 	*status = st ? st->status : 0;
67 }
68 
69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
70 {
71 	struct nvm_auth_status *st;
72 
73 	if (WARN_ON(!sw->uuid))
74 		return;
75 
76 	mutex_lock(&nvm_auth_status_lock);
77 	st = __nvm_get_auth_status(sw);
78 
79 	if (!st) {
80 		st = kzalloc(sizeof(*st), GFP_KERNEL);
81 		if (!st)
82 			goto unlock;
83 
84 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
85 		INIT_LIST_HEAD(&st->list);
86 		list_add_tail(&st->list, &nvm_auth_status_cache);
87 	}
88 
89 	st->status = status;
90 unlock:
91 	mutex_unlock(&nvm_auth_status_lock);
92 }
93 
94 static void nvm_clear_auth_status(const struct tb_switch *sw)
95 {
96 	struct nvm_auth_status *st;
97 
98 	mutex_lock(&nvm_auth_status_lock);
99 	st = __nvm_get_auth_status(sw);
100 	if (st) {
101 		list_del(&st->list);
102 		kfree(st);
103 	}
104 	mutex_unlock(&nvm_auth_status_lock);
105 }
106 
107 static int nvm_validate_and_write(struct tb_switch *sw)
108 {
109 	unsigned int image_size, hdr_size;
110 	const u8 *buf = sw->nvm->buf;
111 	u16 ds_size;
112 	int ret;
113 
114 	if (!buf)
115 		return -EINVAL;
116 
117 	image_size = sw->nvm->buf_data_size;
118 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
119 		return -EINVAL;
120 
121 	/*
122 	 * FARB pointer must point inside the image and must at least
123 	 * contain parts of the digital section we will be reading here.
124 	 */
125 	hdr_size = (*(u32 *)buf) & 0xffffff;
126 	if (hdr_size + NVM_DEVID + 2 >= image_size)
127 		return -EINVAL;
128 
129 	/* Digital section start should be aligned to 4k page */
130 	if (!IS_ALIGNED(hdr_size, SZ_4K))
131 		return -EINVAL;
132 
133 	/*
134 	 * Read digital section size and check that it also fits inside
135 	 * the image.
136 	 */
137 	ds_size = *(u16 *)(buf + hdr_size);
138 	if (ds_size >= image_size)
139 		return -EINVAL;
140 
141 	if (!sw->safe_mode) {
142 		u16 device_id;
143 
144 		/*
145 		 * Make sure the device ID in the image matches the one
146 		 * we read from the switch config space.
147 		 */
148 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
149 		if (device_id != sw->config.device_id)
150 			return -EINVAL;
151 
152 		if (sw->generation < 3) {
153 			/* Write CSS headers first */
154 			ret = dma_port_flash_write(sw->dma_port,
155 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
156 				DMA_PORT_CSS_MAX_SIZE);
157 			if (ret)
158 				return ret;
159 		}
160 
161 		/* Skip headers in the image */
162 		buf += hdr_size;
163 		image_size -= hdr_size;
164 	}
165 
166 	return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
167 }
168 
169 static int nvm_authenticate_host(struct tb_switch *sw)
170 {
171 	int ret = 0;
172 
173 	/*
174 	 * Root switch NVM upgrade requires that we disconnect the
175 	 * existing paths first (in case it is not in safe mode
176 	 * already).
177 	 */
178 	if (!sw->safe_mode) {
179 		u32 status;
180 
181 		ret = tb_domain_disconnect_all_paths(sw->tb);
182 		if (ret)
183 			return ret;
184 		/*
185 		 * The host controller goes away pretty soon after this if
186 		 * everything goes well so getting timeout is expected.
187 		 */
188 		ret = dma_port_flash_update_auth(sw->dma_port);
189 		if (!ret || ret == -ETIMEDOUT)
190 			return 0;
191 
192 		/*
193 		 * Any error from update auth operation requires power
194 		 * cycling of the host router.
195 		 */
196 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
197 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
198 			nvm_set_auth_status(sw, status);
199 	}
200 
201 	/*
202 	 * From safe mode we can get out by just power cycling the
203 	 * switch.
204 	 */
205 	dma_port_power_cycle(sw->dma_port);
206 	return ret;
207 }
208 
209 static int nvm_authenticate_device(struct tb_switch *sw)
210 {
211 	int ret, retries = 10;
212 
213 	ret = dma_port_flash_update_auth(sw->dma_port);
214 	switch (ret) {
215 	case 0:
216 	case -ETIMEDOUT:
217 	case -EACCES:
218 	case -EINVAL:
219 		/* Power cycle is required */
220 		break;
221 	default:
222 		return ret;
223 	}
224 
225 	/*
226 	 * Poll here for the authentication status. It takes some time
227 	 * for the device to respond (we get timeout for a while). Once
228 	 * we get response the device needs to be power cycled in order
229 	 * to the new NVM to be taken into use.
230 	 */
231 	do {
232 		u32 status;
233 
234 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
235 		if (ret < 0 && ret != -ETIMEDOUT)
236 			return ret;
237 		if (ret > 0) {
238 			if (status) {
239 				tb_sw_warn(sw, "failed to authenticate NVM\n");
240 				nvm_set_auth_status(sw, status);
241 			}
242 
243 			tb_sw_info(sw, "power cycling the switch now\n");
244 			dma_port_power_cycle(sw->dma_port);
245 			return 0;
246 		}
247 
248 		msleep(500);
249 	} while (--retries);
250 
251 	return -ETIMEDOUT;
252 }
253 
254 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
255 			      size_t bytes)
256 {
257 	struct tb_switch *sw = priv;
258 	int ret;
259 
260 	pm_runtime_get_sync(&sw->dev);
261 
262 	if (!mutex_trylock(&sw->tb->lock)) {
263 		ret = restart_syscall();
264 		goto out;
265 	}
266 
267 	ret = dma_port_flash_read(sw->dma_port, offset, val, bytes);
268 	mutex_unlock(&sw->tb->lock);
269 
270 out:
271 	pm_runtime_mark_last_busy(&sw->dev);
272 	pm_runtime_put_autosuspend(&sw->dev);
273 
274 	return ret;
275 }
276 
277 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
278 			       size_t bytes)
279 {
280 	struct tb_switch *sw = priv;
281 	int ret = 0;
282 
283 	if (!mutex_trylock(&sw->tb->lock))
284 		return restart_syscall();
285 
286 	/*
287 	 * Since writing the NVM image might require some special steps,
288 	 * for example when CSS headers are written, we cache the image
289 	 * locally here and handle the special cases when the user asks
290 	 * us to authenticate the image.
291 	 */
292 	if (!sw->nvm->buf) {
293 		sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
294 		if (!sw->nvm->buf) {
295 			ret = -ENOMEM;
296 			goto unlock;
297 		}
298 	}
299 
300 	sw->nvm->buf_data_size = offset + bytes;
301 	memcpy(sw->nvm->buf + offset, val, bytes);
302 
303 unlock:
304 	mutex_unlock(&sw->tb->lock);
305 
306 	return ret;
307 }
308 
309 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
310 					   size_t size, bool active)
311 {
312 	struct nvmem_config config;
313 
314 	memset(&config, 0, sizeof(config));
315 
316 	if (active) {
317 		config.name = "nvm_active";
318 		config.reg_read = tb_switch_nvm_read;
319 		config.read_only = true;
320 	} else {
321 		config.name = "nvm_non_active";
322 		config.reg_write = tb_switch_nvm_write;
323 		config.root_only = true;
324 	}
325 
326 	config.id = id;
327 	config.stride = 4;
328 	config.word_size = 4;
329 	config.size = size;
330 	config.dev = &sw->dev;
331 	config.owner = THIS_MODULE;
332 	config.priv = sw;
333 
334 	return nvmem_register(&config);
335 }
336 
337 static int tb_switch_nvm_add(struct tb_switch *sw)
338 {
339 	struct nvmem_device *nvm_dev;
340 	struct tb_switch_nvm *nvm;
341 	u32 val;
342 	int ret;
343 
344 	if (!sw->dma_port)
345 		return 0;
346 
347 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
348 	if (!nvm)
349 		return -ENOMEM;
350 
351 	nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
352 
353 	/*
354 	 * If the switch is in safe-mode the only accessible portion of
355 	 * the NVM is the non-active one where userspace is expected to
356 	 * write new functional NVM.
357 	 */
358 	if (!sw->safe_mode) {
359 		u32 nvm_size, hdr_size;
360 
361 		ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
362 					  sizeof(val));
363 		if (ret)
364 			goto err_ida;
365 
366 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
367 		nvm_size = (SZ_1M << (val & 7)) / 8;
368 		nvm_size = (nvm_size - hdr_size) / 2;
369 
370 		ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
371 					  sizeof(val));
372 		if (ret)
373 			goto err_ida;
374 
375 		nvm->major = val >> 16;
376 		nvm->minor = val >> 8;
377 
378 		nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
379 		if (IS_ERR(nvm_dev)) {
380 			ret = PTR_ERR(nvm_dev);
381 			goto err_ida;
382 		}
383 		nvm->active = nvm_dev;
384 	}
385 
386 	if (!sw->no_nvm_upgrade) {
387 		nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
388 		if (IS_ERR(nvm_dev)) {
389 			ret = PTR_ERR(nvm_dev);
390 			goto err_nvm_active;
391 		}
392 		nvm->non_active = nvm_dev;
393 	}
394 
395 	sw->nvm = nvm;
396 	return 0;
397 
398 err_nvm_active:
399 	if (nvm->active)
400 		nvmem_unregister(nvm->active);
401 err_ida:
402 	ida_simple_remove(&nvm_ida, nvm->id);
403 	kfree(nvm);
404 
405 	return ret;
406 }
407 
408 static void tb_switch_nvm_remove(struct tb_switch *sw)
409 {
410 	struct tb_switch_nvm *nvm;
411 
412 	nvm = sw->nvm;
413 	sw->nvm = NULL;
414 
415 	if (!nvm)
416 		return;
417 
418 	/* Remove authentication status in case the switch is unplugged */
419 	if (!nvm->authenticating)
420 		nvm_clear_auth_status(sw);
421 
422 	if (nvm->non_active)
423 		nvmem_unregister(nvm->non_active);
424 	if (nvm->active)
425 		nvmem_unregister(nvm->active);
426 	ida_simple_remove(&nvm_ida, nvm->id);
427 	vfree(nvm->buf);
428 	kfree(nvm);
429 }
430 
431 /* port utility functions */
432 
433 static const char *tb_port_type(struct tb_regs_port_header *port)
434 {
435 	switch (port->type >> 16) {
436 	case 0:
437 		switch ((u8) port->type) {
438 		case 0:
439 			return "Inactive";
440 		case 1:
441 			return "Port";
442 		case 2:
443 			return "NHI";
444 		default:
445 			return "unknown";
446 		}
447 	case 0x2:
448 		return "Ethernet";
449 	case 0x8:
450 		return "SATA";
451 	case 0xe:
452 		return "DP/HDMI";
453 	case 0x10:
454 		return "PCIe";
455 	case 0x20:
456 		return "USB";
457 	default:
458 		return "unknown";
459 	}
460 }
461 
462 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
463 {
464 	tb_dbg(tb,
465 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
466 	       port->port_number, port->vendor_id, port->device_id,
467 	       port->revision, port->thunderbolt_version, tb_port_type(port),
468 	       port->type);
469 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
470 	       port->max_in_hop_id, port->max_out_hop_id);
471 	tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
472 	tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
473 }
474 
475 /**
476  * tb_port_state() - get connectedness state of a port
477  *
478  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
479  *
480  * Return: Returns an enum tb_port_state on success or an error code on failure.
481  */
482 static int tb_port_state(struct tb_port *port)
483 {
484 	struct tb_cap_phy phy;
485 	int res;
486 	if (port->cap_phy == 0) {
487 		tb_port_WARN(port, "does not have a PHY\n");
488 		return -EINVAL;
489 	}
490 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
491 	if (res)
492 		return res;
493 	return phy.state;
494 }
495 
496 /**
497  * tb_wait_for_port() - wait for a port to become ready
498  *
499  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
500  * wait_if_unplugged is set then we also wait if the port is in state
501  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
502  * switch resume). Otherwise we only wait if a device is registered but the link
503  * has not yet been established.
504  *
505  * Return: Returns an error code on failure. Returns 0 if the port is not
506  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
507  * if the port is connected and in state TB_PORT_UP.
508  */
509 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
510 {
511 	int retries = 10;
512 	int state;
513 	if (!port->cap_phy) {
514 		tb_port_WARN(port, "does not have PHY\n");
515 		return -EINVAL;
516 	}
517 	if (tb_is_upstream_port(port)) {
518 		tb_port_WARN(port, "is the upstream port\n");
519 		return -EINVAL;
520 	}
521 
522 	while (retries--) {
523 		state = tb_port_state(port);
524 		if (state < 0)
525 			return state;
526 		if (state == TB_PORT_DISABLED) {
527 			tb_port_dbg(port, "is disabled (state: 0)\n");
528 			return 0;
529 		}
530 		if (state == TB_PORT_UNPLUGGED) {
531 			if (wait_if_unplugged) {
532 				/* used during resume */
533 				tb_port_dbg(port,
534 					    "is unplugged (state: 7), retrying...\n");
535 				msleep(100);
536 				continue;
537 			}
538 			tb_port_dbg(port, "is unplugged (state: 7)\n");
539 			return 0;
540 		}
541 		if (state == TB_PORT_UP) {
542 			tb_port_dbg(port, "is connected, link is up (state: 2)\n");
543 			return 1;
544 		}
545 
546 		/*
547 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
548 		 * time.
549 		 */
550 		tb_port_dbg(port,
551 			    "is connected, link is not up (state: %d), retrying...\n",
552 			    state);
553 		msleep(100);
554 	}
555 	tb_port_warn(port,
556 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
557 	return 0;
558 }
559 
560 /**
561  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
562  *
563  * Change the number of NFC credits allocated to @port by @credits. To remove
564  * NFC credits pass a negative amount of credits.
565  *
566  * Return: Returns 0 on success or an error code on failure.
567  */
568 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
569 {
570 	u32 nfc_credits;
571 
572 	if (credits == 0 || port->sw->is_unplugged)
573 		return 0;
574 
575 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
576 	nfc_credits += credits;
577 
578 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
579 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
580 
581 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
582 	port->config.nfc_credits |= nfc_credits;
583 
584 	return tb_port_write(port, &port->config.nfc_credits,
585 			     TB_CFG_PORT, ADP_CS_4, 1);
586 }
587 
588 /**
589  * tb_port_set_initial_credits() - Set initial port link credits allocated
590  * @port: Port to set the initial credits
591  * @credits: Number of credits to to allocate
592  *
593  * Set initial credits value to be used for ingress shared buffering.
594  */
595 int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
596 {
597 	u32 data;
598 	int ret;
599 
600 	ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
601 	if (ret)
602 		return ret;
603 
604 	data &= ~ADP_CS_5_LCA_MASK;
605 	data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
606 
607 	return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
608 }
609 
610 /**
611  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
612  *
613  * Return: Returns 0 on success or an error code on failure.
614  */
615 int tb_port_clear_counter(struct tb_port *port, int counter)
616 {
617 	u32 zero[3] = { 0, 0, 0 };
618 	tb_port_dbg(port, "clearing counter %d\n", counter);
619 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
620 }
621 
622 /**
623  * tb_init_port() - initialize a port
624  *
625  * This is a helper method for tb_switch_alloc. Does not check or initialize
626  * any downstream switches.
627  *
628  * Return: Returns 0 on success or an error code on failure.
629  */
630 static int tb_init_port(struct tb_port *port)
631 {
632 	int res;
633 	int cap;
634 
635 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
636 	if (res) {
637 		if (res == -ENODEV) {
638 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
639 			       port->port);
640 			return 0;
641 		}
642 		return res;
643 	}
644 
645 	/* Port 0 is the switch itself and has no PHY. */
646 	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
647 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
648 
649 		if (cap > 0)
650 			port->cap_phy = cap;
651 		else
652 			tb_port_WARN(port, "non switch port without a PHY\n");
653 	} else if (port->port != 0) {
654 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
655 		if (cap > 0)
656 			port->cap_adap = cap;
657 	}
658 
659 	tb_dump_port(port->sw->tb, &port->config);
660 
661 	/* Control port does not need HopID allocation */
662 	if (port->port) {
663 		ida_init(&port->in_hopids);
664 		ida_init(&port->out_hopids);
665 	}
666 
667 	INIT_LIST_HEAD(&port->list);
668 	return 0;
669 
670 }
671 
672 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
673 			       int max_hopid)
674 {
675 	int port_max_hopid;
676 	struct ida *ida;
677 
678 	if (in) {
679 		port_max_hopid = port->config.max_in_hop_id;
680 		ida = &port->in_hopids;
681 	} else {
682 		port_max_hopid = port->config.max_out_hop_id;
683 		ida = &port->out_hopids;
684 	}
685 
686 	/* HopIDs 0-7 are reserved */
687 	if (min_hopid < TB_PATH_MIN_HOPID)
688 		min_hopid = TB_PATH_MIN_HOPID;
689 
690 	if (max_hopid < 0 || max_hopid > port_max_hopid)
691 		max_hopid = port_max_hopid;
692 
693 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
694 }
695 
696 /**
697  * tb_port_alloc_in_hopid() - Allocate input HopID from port
698  * @port: Port to allocate HopID for
699  * @min_hopid: Minimum acceptable input HopID
700  * @max_hopid: Maximum acceptable input HopID
701  *
702  * Return: HopID between @min_hopid and @max_hopid or negative errno in
703  * case of error.
704  */
705 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
706 {
707 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
708 }
709 
710 /**
711  * tb_port_alloc_out_hopid() - Allocate output HopID from port
712  * @port: Port to allocate HopID for
713  * @min_hopid: Minimum acceptable output HopID
714  * @max_hopid: Maximum acceptable output HopID
715  *
716  * Return: HopID between @min_hopid and @max_hopid or negative errno in
717  * case of error.
718  */
719 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
720 {
721 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
722 }
723 
724 /**
725  * tb_port_release_in_hopid() - Release allocated input HopID from port
726  * @port: Port whose HopID to release
727  * @hopid: HopID to release
728  */
729 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
730 {
731 	ida_simple_remove(&port->in_hopids, hopid);
732 }
733 
734 /**
735  * tb_port_release_out_hopid() - Release allocated output HopID from port
736  * @port: Port whose HopID to release
737  * @hopid: HopID to release
738  */
739 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
740 {
741 	ida_simple_remove(&port->out_hopids, hopid);
742 }
743 
744 /**
745  * tb_next_port_on_path() - Return next port for given port on a path
746  * @start: Start port of the walk
747  * @end: End port of the walk
748  * @prev: Previous port (%NULL if this is the first)
749  *
750  * This function can be used to walk from one port to another if they
751  * are connected through zero or more switches. If the @prev is dual
752  * link port, the function follows that link and returns another end on
753  * that same link.
754  *
755  * If the @end port has been reached, return %NULL.
756  *
757  * Domain tb->lock must be held when this function is called.
758  */
759 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
760 				     struct tb_port *prev)
761 {
762 	struct tb_port *next;
763 
764 	if (!prev)
765 		return start;
766 
767 	if (prev->sw == end->sw) {
768 		if (prev == end)
769 			return NULL;
770 		return end;
771 	}
772 
773 	if (start->sw->config.depth < end->sw->config.depth) {
774 		if (prev->remote &&
775 		    prev->remote->sw->config.depth > prev->sw->config.depth)
776 			next = prev->remote;
777 		else
778 			next = tb_port_at(tb_route(end->sw), prev->sw);
779 	} else {
780 		if (tb_is_upstream_port(prev)) {
781 			next = prev->remote;
782 		} else {
783 			next = tb_upstream_port(prev->sw);
784 			/*
785 			 * Keep the same link if prev and next are both
786 			 * dual link ports.
787 			 */
788 			if (next->dual_link_port &&
789 			    next->link_nr != prev->link_nr) {
790 				next = next->dual_link_port;
791 			}
792 		}
793 	}
794 
795 	return next;
796 }
797 
798 static int tb_port_get_link_speed(struct tb_port *port)
799 {
800 	u32 val, speed;
801 	int ret;
802 
803 	if (!port->cap_phy)
804 		return -EINVAL;
805 
806 	ret = tb_port_read(port, &val, TB_CFG_PORT,
807 			   port->cap_phy + LANE_ADP_CS_1, 1);
808 	if (ret)
809 		return ret;
810 
811 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
812 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
813 	return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
814 }
815 
816 static int tb_port_get_link_width(struct tb_port *port)
817 {
818 	u32 val;
819 	int ret;
820 
821 	if (!port->cap_phy)
822 		return -EINVAL;
823 
824 	ret = tb_port_read(port, &val, TB_CFG_PORT,
825 			   port->cap_phy + LANE_ADP_CS_1, 1);
826 	if (ret)
827 		return ret;
828 
829 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
830 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
831 }
832 
833 static bool tb_port_is_width_supported(struct tb_port *port, int width)
834 {
835 	u32 phy, widths;
836 	int ret;
837 
838 	if (!port->cap_phy)
839 		return false;
840 
841 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
842 			   port->cap_phy + LANE_ADP_CS_0, 1);
843 	if (ret)
844 		return ret;
845 
846 	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
847 		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
848 
849 	return !!(widths & width);
850 }
851 
852 static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
853 {
854 	u32 val;
855 	int ret;
856 
857 	if (!port->cap_phy)
858 		return -EINVAL;
859 
860 	ret = tb_port_read(port, &val, TB_CFG_PORT,
861 			   port->cap_phy + LANE_ADP_CS_1, 1);
862 	if (ret)
863 		return ret;
864 
865 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
866 	switch (width) {
867 	case 1:
868 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
869 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
870 		break;
871 	case 2:
872 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
873 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
874 		break;
875 	default:
876 		return -EINVAL;
877 	}
878 
879 	val |= LANE_ADP_CS_1_LB;
880 
881 	return tb_port_write(port, &val, TB_CFG_PORT,
882 			     port->cap_phy + LANE_ADP_CS_1, 1);
883 }
884 
885 static int tb_port_lane_bonding_enable(struct tb_port *port)
886 {
887 	int ret;
888 
889 	/*
890 	 * Enable lane bonding for both links if not already enabled by
891 	 * for example the boot firmware.
892 	 */
893 	ret = tb_port_get_link_width(port);
894 	if (ret == 1) {
895 		ret = tb_port_set_link_width(port, 2);
896 		if (ret)
897 			return ret;
898 	}
899 
900 	ret = tb_port_get_link_width(port->dual_link_port);
901 	if (ret == 1) {
902 		ret = tb_port_set_link_width(port->dual_link_port, 2);
903 		if (ret) {
904 			tb_port_set_link_width(port, 1);
905 			return ret;
906 		}
907 	}
908 
909 	port->bonded = true;
910 	port->dual_link_port->bonded = true;
911 
912 	return 0;
913 }
914 
915 static void tb_port_lane_bonding_disable(struct tb_port *port)
916 {
917 	port->dual_link_port->bonded = false;
918 	port->bonded = false;
919 
920 	tb_port_set_link_width(port->dual_link_port, 1);
921 	tb_port_set_link_width(port, 1);
922 }
923 
924 /**
925  * tb_port_is_enabled() - Is the adapter port enabled
926  * @port: Port to check
927  */
928 bool tb_port_is_enabled(struct tb_port *port)
929 {
930 	switch (port->config.type) {
931 	case TB_TYPE_PCIE_UP:
932 	case TB_TYPE_PCIE_DOWN:
933 		return tb_pci_port_is_enabled(port);
934 
935 	case TB_TYPE_DP_HDMI_IN:
936 	case TB_TYPE_DP_HDMI_OUT:
937 		return tb_dp_port_is_enabled(port);
938 
939 	default:
940 		return false;
941 	}
942 }
943 
944 /**
945  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
946  * @port: PCIe port to check
947  */
948 bool tb_pci_port_is_enabled(struct tb_port *port)
949 {
950 	u32 data;
951 
952 	if (tb_port_read(port, &data, TB_CFG_PORT,
953 			 port->cap_adap + ADP_PCIE_CS_0, 1))
954 		return false;
955 
956 	return !!(data & ADP_PCIE_CS_0_PE);
957 }
958 
959 /**
960  * tb_pci_port_enable() - Enable PCIe adapter port
961  * @port: PCIe port to enable
962  * @enable: Enable/disable the PCIe adapter
963  */
964 int tb_pci_port_enable(struct tb_port *port, bool enable)
965 {
966 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
967 	if (!port->cap_adap)
968 		return -ENXIO;
969 	return tb_port_write(port, &word, TB_CFG_PORT,
970 			     port->cap_adap + ADP_PCIE_CS_0, 1);
971 }
972 
973 /**
974  * tb_dp_port_hpd_is_active() - Is HPD already active
975  * @port: DP out port to check
976  *
977  * Checks if the DP OUT adapter port has HDP bit already set.
978  */
979 int tb_dp_port_hpd_is_active(struct tb_port *port)
980 {
981 	u32 data;
982 	int ret;
983 
984 	ret = tb_port_read(port, &data, TB_CFG_PORT,
985 			   port->cap_adap + ADP_DP_CS_2, 1);
986 	if (ret)
987 		return ret;
988 
989 	return !!(data & ADP_DP_CS_2_HDP);
990 }
991 
992 /**
993  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
994  * @port: Port to clear HPD
995  *
996  * If the DP IN port has HDP set, this function can be used to clear it.
997  */
998 int tb_dp_port_hpd_clear(struct tb_port *port)
999 {
1000 	u32 data;
1001 	int ret;
1002 
1003 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1004 			   port->cap_adap + ADP_DP_CS_3, 1);
1005 	if (ret)
1006 		return ret;
1007 
1008 	data |= ADP_DP_CS_3_HDPC;
1009 	return tb_port_write(port, &data, TB_CFG_PORT,
1010 			     port->cap_adap + ADP_DP_CS_3, 1);
1011 }
1012 
1013 /**
1014  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1015  * @port: DP IN/OUT port to set hops
1016  * @video: Video Hop ID
1017  * @aux_tx: AUX TX Hop ID
1018  * @aux_rx: AUX RX Hop ID
1019  *
1020  * Programs specified Hop IDs for DP IN/OUT port.
1021  */
1022 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1023 			unsigned int aux_tx, unsigned int aux_rx)
1024 {
1025 	u32 data[2];
1026 	int ret;
1027 
1028 	ret = tb_port_read(port, data, TB_CFG_PORT,
1029 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1030 	if (ret)
1031 		return ret;
1032 
1033 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1034 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1035 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1036 
1037 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1038 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1039 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1040 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1041 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1042 
1043 	return tb_port_write(port, data, TB_CFG_PORT,
1044 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1045 }
1046 
1047 /**
1048  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1049  * @port: DP adapter port to check
1050  */
1051 bool tb_dp_port_is_enabled(struct tb_port *port)
1052 {
1053 	u32 data[2];
1054 
1055 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1056 			 ARRAY_SIZE(data)))
1057 		return false;
1058 
1059 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1060 }
1061 
1062 /**
1063  * tb_dp_port_enable() - Enables/disables DP paths of a port
1064  * @port: DP IN/OUT port
1065  * @enable: Enable/disable DP path
1066  *
1067  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1068  * calling this function.
1069  */
1070 int tb_dp_port_enable(struct tb_port *port, bool enable)
1071 {
1072 	u32 data[2];
1073 	int ret;
1074 
1075 	ret = tb_port_read(port, data, TB_CFG_PORT,
1076 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1077 	if (ret)
1078 		return ret;
1079 
1080 	if (enable)
1081 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1082 	else
1083 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1084 
1085 	return tb_port_write(port, data, TB_CFG_PORT,
1086 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1087 }
1088 
1089 /* switch utility functions */
1090 
1091 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
1092 {
1093 	tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1094 	       sw->vendor_id, sw->device_id, sw->revision,
1095 	       sw->thunderbolt_version);
1096 	tb_dbg(tb, "  Max Port Number: %d\n", sw->max_port_number);
1097 	tb_dbg(tb, "  Config:\n");
1098 	tb_dbg(tb,
1099 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1100 	       sw->upstream_port_number, sw->depth,
1101 	       (((u64) sw->route_hi) << 32) | sw->route_lo,
1102 	       sw->enabled, sw->plug_events_delay);
1103 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1104 	       sw->__unknown1, sw->__unknown4);
1105 }
1106 
1107 /**
1108  * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1109  *
1110  * Return: Returns 0 on success or an error code on failure.
1111  */
1112 int tb_switch_reset(struct tb *tb, u64 route)
1113 {
1114 	struct tb_cfg_result res;
1115 	struct tb_regs_switch_header header = {
1116 		header.route_hi = route >> 32,
1117 		header.route_lo = route,
1118 		header.enabled = true,
1119 	};
1120 	tb_dbg(tb, "resetting switch at %llx\n", route);
1121 	res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
1122 			0, 2, 2, 2);
1123 	if (res.err)
1124 		return res.err;
1125 	res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
1126 	if (res.err > 0)
1127 		return -EIO;
1128 	return res.err;
1129 }
1130 
1131 /**
1132  * tb_plug_events_active() - enable/disable plug events on a switch
1133  *
1134  * Also configures a sane plug_events_delay of 255ms.
1135  *
1136  * Return: Returns 0 on success or an error code on failure.
1137  */
1138 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1139 {
1140 	u32 data;
1141 	int res;
1142 
1143 	if (tb_switch_is_icm(sw))
1144 		return 0;
1145 
1146 	sw->config.plug_events_delay = 0xff;
1147 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1148 	if (res)
1149 		return res;
1150 
1151 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1152 	if (res)
1153 		return res;
1154 
1155 	if (active) {
1156 		data = data & 0xFFFFFF83;
1157 		switch (sw->config.device_id) {
1158 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1159 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1160 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1161 			break;
1162 		default:
1163 			data |= 4;
1164 		}
1165 	} else {
1166 		data = data | 0x7c;
1167 	}
1168 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1169 			   sw->cap_plug_events + 1, 1);
1170 }
1171 
1172 static ssize_t authorized_show(struct device *dev,
1173 			       struct device_attribute *attr,
1174 			       char *buf)
1175 {
1176 	struct tb_switch *sw = tb_to_switch(dev);
1177 
1178 	return sprintf(buf, "%u\n", sw->authorized);
1179 }
1180 
1181 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1182 {
1183 	int ret = -EINVAL;
1184 
1185 	if (!mutex_trylock(&sw->tb->lock))
1186 		return restart_syscall();
1187 
1188 	if (sw->authorized)
1189 		goto unlock;
1190 
1191 	switch (val) {
1192 	/* Approve switch */
1193 	case 1:
1194 		if (sw->key)
1195 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1196 		else
1197 			ret = tb_domain_approve_switch(sw->tb, sw);
1198 		break;
1199 
1200 	/* Challenge switch */
1201 	case 2:
1202 		if (sw->key)
1203 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1204 		break;
1205 
1206 	default:
1207 		break;
1208 	}
1209 
1210 	if (!ret) {
1211 		sw->authorized = val;
1212 		/* Notify status change to the userspace */
1213 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1214 	}
1215 
1216 unlock:
1217 	mutex_unlock(&sw->tb->lock);
1218 	return ret;
1219 }
1220 
1221 static ssize_t authorized_store(struct device *dev,
1222 				struct device_attribute *attr,
1223 				const char *buf, size_t count)
1224 {
1225 	struct tb_switch *sw = tb_to_switch(dev);
1226 	unsigned int val;
1227 	ssize_t ret;
1228 
1229 	ret = kstrtouint(buf, 0, &val);
1230 	if (ret)
1231 		return ret;
1232 	if (val > 2)
1233 		return -EINVAL;
1234 
1235 	pm_runtime_get_sync(&sw->dev);
1236 	ret = tb_switch_set_authorized(sw, val);
1237 	pm_runtime_mark_last_busy(&sw->dev);
1238 	pm_runtime_put_autosuspend(&sw->dev);
1239 
1240 	return ret ? ret : count;
1241 }
1242 static DEVICE_ATTR_RW(authorized);
1243 
1244 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1245 			 char *buf)
1246 {
1247 	struct tb_switch *sw = tb_to_switch(dev);
1248 
1249 	return sprintf(buf, "%u\n", sw->boot);
1250 }
1251 static DEVICE_ATTR_RO(boot);
1252 
1253 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1254 			   char *buf)
1255 {
1256 	struct tb_switch *sw = tb_to_switch(dev);
1257 
1258 	return sprintf(buf, "%#x\n", sw->device);
1259 }
1260 static DEVICE_ATTR_RO(device);
1261 
1262 static ssize_t
1263 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1264 {
1265 	struct tb_switch *sw = tb_to_switch(dev);
1266 
1267 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1268 }
1269 static DEVICE_ATTR_RO(device_name);
1270 
1271 static ssize_t
1272 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1273 {
1274 	struct tb_switch *sw = tb_to_switch(dev);
1275 
1276 	return sprintf(buf, "%u\n", sw->generation);
1277 }
1278 static DEVICE_ATTR_RO(generation);
1279 
1280 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1281 			char *buf)
1282 {
1283 	struct tb_switch *sw = tb_to_switch(dev);
1284 	ssize_t ret;
1285 
1286 	if (!mutex_trylock(&sw->tb->lock))
1287 		return restart_syscall();
1288 
1289 	if (sw->key)
1290 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1291 	else
1292 		ret = sprintf(buf, "\n");
1293 
1294 	mutex_unlock(&sw->tb->lock);
1295 	return ret;
1296 }
1297 
1298 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1299 			 const char *buf, size_t count)
1300 {
1301 	struct tb_switch *sw = tb_to_switch(dev);
1302 	u8 key[TB_SWITCH_KEY_SIZE];
1303 	ssize_t ret = count;
1304 	bool clear = false;
1305 
1306 	if (!strcmp(buf, "\n"))
1307 		clear = true;
1308 	else if (hex2bin(key, buf, sizeof(key)))
1309 		return -EINVAL;
1310 
1311 	if (!mutex_trylock(&sw->tb->lock))
1312 		return restart_syscall();
1313 
1314 	if (sw->authorized) {
1315 		ret = -EBUSY;
1316 	} else {
1317 		kfree(sw->key);
1318 		if (clear) {
1319 			sw->key = NULL;
1320 		} else {
1321 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1322 			if (!sw->key)
1323 				ret = -ENOMEM;
1324 		}
1325 	}
1326 
1327 	mutex_unlock(&sw->tb->lock);
1328 	return ret;
1329 }
1330 static DEVICE_ATTR(key, 0600, key_show, key_store);
1331 
1332 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1333 			  char *buf)
1334 {
1335 	struct tb_switch *sw = tb_to_switch(dev);
1336 
1337 	return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1338 }
1339 
1340 /*
1341  * Currently all lanes must run at the same speed but we expose here
1342  * both directions to allow possible asymmetric links in the future.
1343  */
1344 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1345 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1346 
1347 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1348 			  char *buf)
1349 {
1350 	struct tb_switch *sw = tb_to_switch(dev);
1351 
1352 	return sprintf(buf, "%u\n", sw->link_width);
1353 }
1354 
1355 /*
1356  * Currently link has same amount of lanes both directions (1 or 2) but
1357  * expose them separately to allow possible asymmetric links in the future.
1358  */
1359 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1360 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1361 
1362 static void nvm_authenticate_start(struct tb_switch *sw)
1363 {
1364 	struct pci_dev *root_port;
1365 
1366 	/*
1367 	 * During host router NVM upgrade we should not allow root port to
1368 	 * go into D3cold because some root ports cannot trigger PME
1369 	 * itself. To be on the safe side keep the root port in D0 during
1370 	 * the whole upgrade process.
1371 	 */
1372 	root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
1373 	if (root_port)
1374 		pm_runtime_get_noresume(&root_port->dev);
1375 }
1376 
1377 static void nvm_authenticate_complete(struct tb_switch *sw)
1378 {
1379 	struct pci_dev *root_port;
1380 
1381 	root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
1382 	if (root_port)
1383 		pm_runtime_put(&root_port->dev);
1384 }
1385 
1386 static ssize_t nvm_authenticate_show(struct device *dev,
1387 	struct device_attribute *attr, char *buf)
1388 {
1389 	struct tb_switch *sw = tb_to_switch(dev);
1390 	u32 status;
1391 
1392 	nvm_get_auth_status(sw, &status);
1393 	return sprintf(buf, "%#x\n", status);
1394 }
1395 
1396 static ssize_t nvm_authenticate_store(struct device *dev,
1397 	struct device_attribute *attr, const char *buf, size_t count)
1398 {
1399 	struct tb_switch *sw = tb_to_switch(dev);
1400 	bool val;
1401 	int ret;
1402 
1403 	pm_runtime_get_sync(&sw->dev);
1404 
1405 	if (!mutex_trylock(&sw->tb->lock)) {
1406 		ret = restart_syscall();
1407 		goto exit_rpm;
1408 	}
1409 
1410 	/* If NVMem devices are not yet added */
1411 	if (!sw->nvm) {
1412 		ret = -EAGAIN;
1413 		goto exit_unlock;
1414 	}
1415 
1416 	ret = kstrtobool(buf, &val);
1417 	if (ret)
1418 		goto exit_unlock;
1419 
1420 	/* Always clear the authentication status */
1421 	nvm_clear_auth_status(sw);
1422 
1423 	if (val) {
1424 		if (!sw->nvm->buf) {
1425 			ret = -EINVAL;
1426 			goto exit_unlock;
1427 		}
1428 
1429 		ret = nvm_validate_and_write(sw);
1430 		if (ret)
1431 			goto exit_unlock;
1432 
1433 		sw->nvm->authenticating = true;
1434 
1435 		if (!tb_route(sw)) {
1436 			/*
1437 			 * Keep root port from suspending as long as the
1438 			 * NVM upgrade process is running.
1439 			 */
1440 			nvm_authenticate_start(sw);
1441 			ret = nvm_authenticate_host(sw);
1442 		} else {
1443 			ret = nvm_authenticate_device(sw);
1444 		}
1445 	}
1446 
1447 exit_unlock:
1448 	mutex_unlock(&sw->tb->lock);
1449 exit_rpm:
1450 	pm_runtime_mark_last_busy(&sw->dev);
1451 	pm_runtime_put_autosuspend(&sw->dev);
1452 
1453 	if (ret)
1454 		return ret;
1455 	return count;
1456 }
1457 static DEVICE_ATTR_RW(nvm_authenticate);
1458 
1459 static ssize_t nvm_version_show(struct device *dev,
1460 				struct device_attribute *attr, char *buf)
1461 {
1462 	struct tb_switch *sw = tb_to_switch(dev);
1463 	int ret;
1464 
1465 	if (!mutex_trylock(&sw->tb->lock))
1466 		return restart_syscall();
1467 
1468 	if (sw->safe_mode)
1469 		ret = -ENODATA;
1470 	else if (!sw->nvm)
1471 		ret = -EAGAIN;
1472 	else
1473 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1474 
1475 	mutex_unlock(&sw->tb->lock);
1476 
1477 	return ret;
1478 }
1479 static DEVICE_ATTR_RO(nvm_version);
1480 
1481 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1482 			   char *buf)
1483 {
1484 	struct tb_switch *sw = tb_to_switch(dev);
1485 
1486 	return sprintf(buf, "%#x\n", sw->vendor);
1487 }
1488 static DEVICE_ATTR_RO(vendor);
1489 
1490 static ssize_t
1491 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1492 {
1493 	struct tb_switch *sw = tb_to_switch(dev);
1494 
1495 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1496 }
1497 static DEVICE_ATTR_RO(vendor_name);
1498 
1499 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1500 			      char *buf)
1501 {
1502 	struct tb_switch *sw = tb_to_switch(dev);
1503 
1504 	return sprintf(buf, "%pUb\n", sw->uuid);
1505 }
1506 static DEVICE_ATTR_RO(unique_id);
1507 
1508 static struct attribute *switch_attrs[] = {
1509 	&dev_attr_authorized.attr,
1510 	&dev_attr_boot.attr,
1511 	&dev_attr_device.attr,
1512 	&dev_attr_device_name.attr,
1513 	&dev_attr_generation.attr,
1514 	&dev_attr_key.attr,
1515 	&dev_attr_nvm_authenticate.attr,
1516 	&dev_attr_nvm_version.attr,
1517 	&dev_attr_rx_speed.attr,
1518 	&dev_attr_rx_lanes.attr,
1519 	&dev_attr_tx_speed.attr,
1520 	&dev_attr_tx_lanes.attr,
1521 	&dev_attr_vendor.attr,
1522 	&dev_attr_vendor_name.attr,
1523 	&dev_attr_unique_id.attr,
1524 	NULL,
1525 };
1526 
1527 static umode_t switch_attr_is_visible(struct kobject *kobj,
1528 				      struct attribute *attr, int n)
1529 {
1530 	struct device *dev = container_of(kobj, struct device, kobj);
1531 	struct tb_switch *sw = tb_to_switch(dev);
1532 
1533 	if (attr == &dev_attr_device.attr) {
1534 		if (!sw->device)
1535 			return 0;
1536 	} else if (attr == &dev_attr_device_name.attr) {
1537 		if (!sw->device_name)
1538 			return 0;
1539 	} else if (attr == &dev_attr_vendor.attr)  {
1540 		if (!sw->vendor)
1541 			return 0;
1542 	} else if (attr == &dev_attr_vendor_name.attr)  {
1543 		if (!sw->vendor_name)
1544 			return 0;
1545 	} else if (attr == &dev_attr_key.attr) {
1546 		if (tb_route(sw) &&
1547 		    sw->tb->security_level == TB_SECURITY_SECURE &&
1548 		    sw->security_level == TB_SECURITY_SECURE)
1549 			return attr->mode;
1550 		return 0;
1551 	} else if (attr == &dev_attr_rx_speed.attr ||
1552 		   attr == &dev_attr_rx_lanes.attr ||
1553 		   attr == &dev_attr_tx_speed.attr ||
1554 		   attr == &dev_attr_tx_lanes.attr) {
1555 		if (tb_route(sw))
1556 			return attr->mode;
1557 		return 0;
1558 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
1559 		if (sw->dma_port && !sw->no_nvm_upgrade)
1560 			return attr->mode;
1561 		return 0;
1562 	} else if (attr == &dev_attr_nvm_version.attr) {
1563 		if (sw->dma_port)
1564 			return attr->mode;
1565 		return 0;
1566 	} else if (attr == &dev_attr_boot.attr) {
1567 		if (tb_route(sw))
1568 			return attr->mode;
1569 		return 0;
1570 	}
1571 
1572 	return sw->safe_mode ? 0 : attr->mode;
1573 }
1574 
1575 static struct attribute_group switch_group = {
1576 	.is_visible = switch_attr_is_visible,
1577 	.attrs = switch_attrs,
1578 };
1579 
1580 static const struct attribute_group *switch_groups[] = {
1581 	&switch_group,
1582 	NULL,
1583 };
1584 
1585 static void tb_switch_release(struct device *dev)
1586 {
1587 	struct tb_switch *sw = tb_to_switch(dev);
1588 	struct tb_port *port;
1589 
1590 	dma_port_free(sw->dma_port);
1591 
1592 	tb_switch_for_each_port(sw, port) {
1593 		if (!port->disabled) {
1594 			ida_destroy(&port->in_hopids);
1595 			ida_destroy(&port->out_hopids);
1596 		}
1597 	}
1598 
1599 	kfree(sw->uuid);
1600 	kfree(sw->device_name);
1601 	kfree(sw->vendor_name);
1602 	kfree(sw->ports);
1603 	kfree(sw->drom);
1604 	kfree(sw->key);
1605 	kfree(sw);
1606 }
1607 
1608 /*
1609  * Currently only need to provide the callbacks. Everything else is handled
1610  * in the connection manager.
1611  */
1612 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1613 {
1614 	struct tb_switch *sw = tb_to_switch(dev);
1615 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1616 
1617 	if (cm_ops->runtime_suspend_switch)
1618 		return cm_ops->runtime_suspend_switch(sw);
1619 
1620 	return 0;
1621 }
1622 
1623 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1624 {
1625 	struct tb_switch *sw = tb_to_switch(dev);
1626 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1627 
1628 	if (cm_ops->runtime_resume_switch)
1629 		return cm_ops->runtime_resume_switch(sw);
1630 	return 0;
1631 }
1632 
1633 static const struct dev_pm_ops tb_switch_pm_ops = {
1634 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1635 			   NULL)
1636 };
1637 
1638 struct device_type tb_switch_type = {
1639 	.name = "thunderbolt_device",
1640 	.release = tb_switch_release,
1641 	.pm = &tb_switch_pm_ops,
1642 };
1643 
1644 static int tb_switch_get_generation(struct tb_switch *sw)
1645 {
1646 	switch (sw->config.device_id) {
1647 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1648 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1649 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1650 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1651 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1652 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1653 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1654 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1655 		return 1;
1656 
1657 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1658 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1659 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1660 		return 2;
1661 
1662 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1663 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1664 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1665 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1666 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1667 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1668 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1669 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1670 	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1671 	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1672 		return 3;
1673 
1674 	default:
1675 		/*
1676 		 * For unknown switches assume generation to be 1 to be
1677 		 * on the safe side.
1678 		 */
1679 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
1680 			   sw->config.device_id);
1681 		return 1;
1682 	}
1683 }
1684 
1685 /**
1686  * tb_switch_alloc() - allocate a switch
1687  * @tb: Pointer to the owning domain
1688  * @parent: Parent device for this switch
1689  * @route: Route string for this switch
1690  *
1691  * Allocates and initializes a switch. Will not upload configuration to
1692  * the switch. For that you need to call tb_switch_configure()
1693  * separately. The returned switch should be released by calling
1694  * tb_switch_put().
1695  *
1696  * Return: Pointer to the allocated switch or ERR_PTR() in case of
1697  * failure.
1698  */
1699 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1700 				  u64 route)
1701 {
1702 	struct tb_switch *sw;
1703 	int upstream_port;
1704 	int i, ret, depth;
1705 
1706 	/* Make sure we do not exceed maximum topology limit */
1707 	depth = tb_route_length(route);
1708 	if (depth > TB_SWITCH_MAX_DEPTH)
1709 		return ERR_PTR(-EADDRNOTAVAIL);
1710 
1711 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1712 	if (upstream_port < 0)
1713 		return ERR_PTR(upstream_port);
1714 
1715 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1716 	if (!sw)
1717 		return ERR_PTR(-ENOMEM);
1718 
1719 	sw->tb = tb;
1720 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1721 	if (ret)
1722 		goto err_free_sw_ports;
1723 
1724 	tb_dbg(tb, "current switch config:\n");
1725 	tb_dump_switch(tb, &sw->config);
1726 
1727 	/* configure switch */
1728 	sw->config.upstream_port_number = upstream_port;
1729 	sw->config.depth = depth;
1730 	sw->config.route_hi = upper_32_bits(route);
1731 	sw->config.route_lo = lower_32_bits(route);
1732 	sw->config.enabled = 0;
1733 
1734 	/* initialize ports */
1735 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1736 				GFP_KERNEL);
1737 	if (!sw->ports) {
1738 		ret = -ENOMEM;
1739 		goto err_free_sw_ports;
1740 	}
1741 
1742 	for (i = 0; i <= sw->config.max_port_number; i++) {
1743 		/* minimum setup for tb_find_cap and tb_drom_read to work */
1744 		sw->ports[i].sw = sw;
1745 		sw->ports[i].port = i;
1746 	}
1747 
1748 	sw->generation = tb_switch_get_generation(sw);
1749 
1750 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1751 	if (ret < 0) {
1752 		tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1753 		goto err_free_sw_ports;
1754 	}
1755 	sw->cap_plug_events = ret;
1756 
1757 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1758 	if (ret > 0)
1759 		sw->cap_lc = ret;
1760 
1761 	/* Root switch is always authorized */
1762 	if (!route)
1763 		sw->authorized = true;
1764 
1765 	device_initialize(&sw->dev);
1766 	sw->dev.parent = parent;
1767 	sw->dev.bus = &tb_bus_type;
1768 	sw->dev.type = &tb_switch_type;
1769 	sw->dev.groups = switch_groups;
1770 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1771 
1772 	return sw;
1773 
1774 err_free_sw_ports:
1775 	kfree(sw->ports);
1776 	kfree(sw);
1777 
1778 	return ERR_PTR(ret);
1779 }
1780 
1781 /**
1782  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1783  * @tb: Pointer to the owning domain
1784  * @parent: Parent device for this switch
1785  * @route: Route string for this switch
1786  *
1787  * This creates a switch in safe mode. This means the switch pretty much
1788  * lacks all capabilities except DMA configuration port before it is
1789  * flashed with a valid NVM firmware.
1790  *
1791  * The returned switch must be released by calling tb_switch_put().
1792  *
1793  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1794  */
1795 struct tb_switch *
1796 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1797 {
1798 	struct tb_switch *sw;
1799 
1800 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1801 	if (!sw)
1802 		return ERR_PTR(-ENOMEM);
1803 
1804 	sw->tb = tb;
1805 	sw->config.depth = tb_route_length(route);
1806 	sw->config.route_hi = upper_32_bits(route);
1807 	sw->config.route_lo = lower_32_bits(route);
1808 	sw->safe_mode = true;
1809 
1810 	device_initialize(&sw->dev);
1811 	sw->dev.parent = parent;
1812 	sw->dev.bus = &tb_bus_type;
1813 	sw->dev.type = &tb_switch_type;
1814 	sw->dev.groups = switch_groups;
1815 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1816 
1817 	return sw;
1818 }
1819 
1820 /**
1821  * tb_switch_configure() - Uploads configuration to the switch
1822  * @sw: Switch to configure
1823  *
1824  * Call this function before the switch is added to the system. It will
1825  * upload configuration to the switch and makes it available for the
1826  * connection manager to use.
1827  *
1828  * Return: %0 in case of success and negative errno in case of failure
1829  */
1830 int tb_switch_configure(struct tb_switch *sw)
1831 {
1832 	struct tb *tb = sw->tb;
1833 	u64 route;
1834 	int ret;
1835 
1836 	route = tb_route(sw);
1837 	tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n",
1838 	       route, tb_route_length(route), sw->config.upstream_port_number);
1839 
1840 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
1841 		tb_sw_warn(sw, "unknown switch vendor id %#x\n",
1842 			   sw->config.vendor_id);
1843 
1844 	sw->config.enabled = 1;
1845 
1846 	/* upload configuration */
1847 	ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
1848 	if (ret)
1849 		return ret;
1850 
1851 	ret = tb_lc_configure_link(sw);
1852 	if (ret)
1853 		return ret;
1854 
1855 	return tb_plug_events_active(sw, true);
1856 }
1857 
1858 static int tb_switch_set_uuid(struct tb_switch *sw)
1859 {
1860 	u32 uuid[4];
1861 	int ret;
1862 
1863 	if (sw->uuid)
1864 		return 0;
1865 
1866 	/*
1867 	 * The newer controllers include fused UUID as part of link
1868 	 * controller specific registers
1869 	 */
1870 	ret = tb_lc_read_uuid(sw, uuid);
1871 	if (ret) {
1872 		/*
1873 		 * ICM generates UUID based on UID and fills the upper
1874 		 * two words with ones. This is not strictly following
1875 		 * UUID format but we want to be compatible with it so
1876 		 * we do the same here.
1877 		 */
1878 		uuid[0] = sw->uid & 0xffffffff;
1879 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
1880 		uuid[2] = 0xffffffff;
1881 		uuid[3] = 0xffffffff;
1882 	}
1883 
1884 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1885 	if (!sw->uuid)
1886 		return -ENOMEM;
1887 	return 0;
1888 }
1889 
1890 static int tb_switch_add_dma_port(struct tb_switch *sw)
1891 {
1892 	u32 status;
1893 	int ret;
1894 
1895 	switch (sw->generation) {
1896 	case 2:
1897 		/* Only root switch can be upgraded */
1898 		if (tb_route(sw))
1899 			return 0;
1900 
1901 		/* fallthrough */
1902 	case 3:
1903 		ret = tb_switch_set_uuid(sw);
1904 		if (ret)
1905 			return ret;
1906 		break;
1907 
1908 	default:
1909 		/*
1910 		 * DMA port is the only thing available when the switch
1911 		 * is in safe mode.
1912 		 */
1913 		if (!sw->safe_mode)
1914 			return 0;
1915 		break;
1916 	}
1917 
1918 	/* Root switch DMA port requires running firmware */
1919 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
1920 		return 0;
1921 
1922 	sw->dma_port = dma_port_alloc(sw);
1923 	if (!sw->dma_port)
1924 		return 0;
1925 
1926 	if (sw->no_nvm_upgrade)
1927 		return 0;
1928 
1929 	/*
1930 	 * If there is status already set then authentication failed
1931 	 * when the dma_port_flash_update_auth() returned. Power cycling
1932 	 * is not needed (it was done already) so only thing we do here
1933 	 * is to unblock runtime PM of the root port.
1934 	 */
1935 	nvm_get_auth_status(sw, &status);
1936 	if (status) {
1937 		if (!tb_route(sw))
1938 			nvm_authenticate_complete(sw);
1939 		return 0;
1940 	}
1941 
1942 	/*
1943 	 * Check status of the previous flash authentication. If there
1944 	 * is one we need to power cycle the switch in any case to make
1945 	 * it functional again.
1946 	 */
1947 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
1948 	if (ret <= 0)
1949 		return ret;
1950 
1951 	/* Now we can allow root port to suspend again */
1952 	if (!tb_route(sw))
1953 		nvm_authenticate_complete(sw);
1954 
1955 	if (status) {
1956 		tb_sw_info(sw, "switch flash authentication failed\n");
1957 		nvm_set_auth_status(sw, status);
1958 	}
1959 
1960 	tb_sw_info(sw, "power cycling the switch now\n");
1961 	dma_port_power_cycle(sw->dma_port);
1962 
1963 	/*
1964 	 * We return error here which causes the switch adding failure.
1965 	 * It should appear back after power cycle is complete.
1966 	 */
1967 	return -ESHUTDOWN;
1968 }
1969 
1970 static void tb_switch_default_link_ports(struct tb_switch *sw)
1971 {
1972 	int i;
1973 
1974 	for (i = 1; i <= sw->config.max_port_number; i += 2) {
1975 		struct tb_port *port = &sw->ports[i];
1976 		struct tb_port *subordinate;
1977 
1978 		if (!tb_port_is_null(port))
1979 			continue;
1980 
1981 		/* Check for the subordinate port */
1982 		if (i == sw->config.max_port_number ||
1983 		    !tb_port_is_null(&sw->ports[i + 1]))
1984 			continue;
1985 
1986 		/* Link them if not already done so (by DROM) */
1987 		subordinate = &sw->ports[i + 1];
1988 		if (!port->dual_link_port && !subordinate->dual_link_port) {
1989 			port->link_nr = 0;
1990 			port->dual_link_port = subordinate;
1991 			subordinate->link_nr = 1;
1992 			subordinate->dual_link_port = port;
1993 
1994 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
1995 				  port->port, subordinate->port);
1996 		}
1997 	}
1998 }
1999 
2000 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2001 {
2002 	const struct tb_port *up = tb_upstream_port(sw);
2003 
2004 	if (!up->dual_link_port || !up->dual_link_port->remote)
2005 		return false;
2006 
2007 	return tb_lc_lane_bonding_possible(sw);
2008 }
2009 
2010 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2011 {
2012 	struct tb_port *up;
2013 	bool change = false;
2014 	int ret;
2015 
2016 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2017 		return 0;
2018 
2019 	up = tb_upstream_port(sw);
2020 
2021 	ret = tb_port_get_link_speed(up);
2022 	if (ret < 0)
2023 		return ret;
2024 	if (sw->link_speed != ret)
2025 		change = true;
2026 	sw->link_speed = ret;
2027 
2028 	ret = tb_port_get_link_width(up);
2029 	if (ret < 0)
2030 		return ret;
2031 	if (sw->link_width != ret)
2032 		change = true;
2033 	sw->link_width = ret;
2034 
2035 	/* Notify userspace that there is possible link attribute change */
2036 	if (device_is_registered(&sw->dev) && change)
2037 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2038 
2039 	return 0;
2040 }
2041 
2042 /**
2043  * tb_switch_lane_bonding_enable() - Enable lane bonding
2044  * @sw: Switch to enable lane bonding
2045  *
2046  * Connection manager can call this function to enable lane bonding of a
2047  * switch. If conditions are correct and both switches support the feature,
2048  * lanes are bonded. It is safe to call this to any switch.
2049  */
2050 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2051 {
2052 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2053 	struct tb_port *up, *down;
2054 	u64 route = tb_route(sw);
2055 	int ret;
2056 
2057 	if (!route)
2058 		return 0;
2059 
2060 	if (!tb_switch_lane_bonding_possible(sw))
2061 		return 0;
2062 
2063 	up = tb_upstream_port(sw);
2064 	down = tb_port_at(route, parent);
2065 
2066 	if (!tb_port_is_width_supported(up, 2) ||
2067 	    !tb_port_is_width_supported(down, 2))
2068 		return 0;
2069 
2070 	ret = tb_port_lane_bonding_enable(up);
2071 	if (ret) {
2072 		tb_port_warn(up, "failed to enable lane bonding\n");
2073 		return ret;
2074 	}
2075 
2076 	ret = tb_port_lane_bonding_enable(down);
2077 	if (ret) {
2078 		tb_port_warn(down, "failed to enable lane bonding\n");
2079 		tb_port_lane_bonding_disable(up);
2080 		return ret;
2081 	}
2082 
2083 	tb_switch_update_link_attributes(sw);
2084 
2085 	tb_sw_dbg(sw, "lane bonding enabled\n");
2086 	return ret;
2087 }
2088 
2089 /**
2090  * tb_switch_lane_bonding_disable() - Disable lane bonding
2091  * @sw: Switch whose lane bonding to disable
2092  *
2093  * Disables lane bonding between @sw and parent. This can be called even
2094  * if lanes were not bonded originally.
2095  */
2096 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2097 {
2098 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2099 	struct tb_port *up, *down;
2100 
2101 	if (!tb_route(sw))
2102 		return;
2103 
2104 	up = tb_upstream_port(sw);
2105 	if (!up->bonded)
2106 		return;
2107 
2108 	down = tb_port_at(tb_route(sw), parent);
2109 
2110 	tb_port_lane_bonding_disable(up);
2111 	tb_port_lane_bonding_disable(down);
2112 
2113 	tb_switch_update_link_attributes(sw);
2114 	tb_sw_dbg(sw, "lane bonding disabled\n");
2115 }
2116 
2117 /**
2118  * tb_switch_add() - Add a switch to the domain
2119  * @sw: Switch to add
2120  *
2121  * This is the last step in adding switch to the domain. It will read
2122  * identification information from DROM and initializes ports so that
2123  * they can be used to connect other switches. The switch will be
2124  * exposed to the userspace when this function successfully returns. To
2125  * remove and release the switch, call tb_switch_remove().
2126  *
2127  * Return: %0 in case of success and negative errno in case of failure
2128  */
2129 int tb_switch_add(struct tb_switch *sw)
2130 {
2131 	int i, ret;
2132 
2133 	/*
2134 	 * Initialize DMA control port now before we read DROM. Recent
2135 	 * host controllers have more complete DROM on NVM that includes
2136 	 * vendor and model identification strings which we then expose
2137 	 * to the userspace. NVM can be accessed through DMA
2138 	 * configuration based mailbox.
2139 	 */
2140 	ret = tb_switch_add_dma_port(sw);
2141 	if (ret) {
2142 		dev_err(&sw->dev, "failed to add DMA port\n");
2143 		return ret;
2144 	}
2145 
2146 	if (!sw->safe_mode) {
2147 		/* read drom */
2148 		ret = tb_drom_read(sw);
2149 		if (ret) {
2150 			dev_err(&sw->dev, "reading DROM failed\n");
2151 			return ret;
2152 		}
2153 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2154 
2155 		ret = tb_switch_set_uuid(sw);
2156 		if (ret) {
2157 			dev_err(&sw->dev, "failed to set UUID\n");
2158 			return ret;
2159 		}
2160 
2161 		for (i = 0; i <= sw->config.max_port_number; i++) {
2162 			if (sw->ports[i].disabled) {
2163 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2164 				continue;
2165 			}
2166 			ret = tb_init_port(&sw->ports[i]);
2167 			if (ret) {
2168 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
2169 				return ret;
2170 			}
2171 		}
2172 
2173 		tb_switch_default_link_ports(sw);
2174 
2175 		ret = tb_switch_update_link_attributes(sw);
2176 		if (ret)
2177 			return ret;
2178 	}
2179 
2180 	ret = device_add(&sw->dev);
2181 	if (ret) {
2182 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
2183 		return ret;
2184 	}
2185 
2186 	if (tb_route(sw)) {
2187 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2188 			 sw->vendor, sw->device);
2189 		if (sw->vendor_name && sw->device_name)
2190 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2191 				 sw->device_name);
2192 	}
2193 
2194 	ret = tb_switch_nvm_add(sw);
2195 	if (ret) {
2196 		dev_err(&sw->dev, "failed to add NVM devices\n");
2197 		device_del(&sw->dev);
2198 		return ret;
2199 	}
2200 
2201 	pm_runtime_set_active(&sw->dev);
2202 	if (sw->rpm) {
2203 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2204 		pm_runtime_use_autosuspend(&sw->dev);
2205 		pm_runtime_mark_last_busy(&sw->dev);
2206 		pm_runtime_enable(&sw->dev);
2207 		pm_request_autosuspend(&sw->dev);
2208 	}
2209 
2210 	return 0;
2211 }
2212 
2213 /**
2214  * tb_switch_remove() - Remove and release a switch
2215  * @sw: Switch to remove
2216  *
2217  * This will remove the switch from the domain and release it after last
2218  * reference count drops to zero. If there are switches connected below
2219  * this switch, they will be removed as well.
2220  */
2221 void tb_switch_remove(struct tb_switch *sw)
2222 {
2223 	struct tb_port *port;
2224 
2225 	if (sw->rpm) {
2226 		pm_runtime_get_sync(&sw->dev);
2227 		pm_runtime_disable(&sw->dev);
2228 	}
2229 
2230 	/* port 0 is the switch itself and never has a remote */
2231 	tb_switch_for_each_port(sw, port) {
2232 		if (tb_port_has_remote(port)) {
2233 			tb_switch_remove(port->remote->sw);
2234 			port->remote = NULL;
2235 		} else if (port->xdomain) {
2236 			tb_xdomain_remove(port->xdomain);
2237 			port->xdomain = NULL;
2238 		}
2239 	}
2240 
2241 	if (!sw->is_unplugged)
2242 		tb_plug_events_active(sw, false);
2243 	tb_lc_unconfigure_link(sw);
2244 
2245 	tb_switch_nvm_remove(sw);
2246 
2247 	if (tb_route(sw))
2248 		dev_info(&sw->dev, "device disconnected\n");
2249 	device_unregister(&sw->dev);
2250 }
2251 
2252 /**
2253  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2254  */
2255 void tb_sw_set_unplugged(struct tb_switch *sw)
2256 {
2257 	struct tb_port *port;
2258 
2259 	if (sw == sw->tb->root_switch) {
2260 		tb_sw_WARN(sw, "cannot unplug root switch\n");
2261 		return;
2262 	}
2263 	if (sw->is_unplugged) {
2264 		tb_sw_WARN(sw, "is_unplugged already set\n");
2265 		return;
2266 	}
2267 	sw->is_unplugged = true;
2268 	tb_switch_for_each_port(sw, port) {
2269 		if (tb_port_has_remote(port))
2270 			tb_sw_set_unplugged(port->remote->sw);
2271 		else if (port->xdomain)
2272 			port->xdomain->is_unplugged = true;
2273 	}
2274 }
2275 
2276 int tb_switch_resume(struct tb_switch *sw)
2277 {
2278 	struct tb_port *port;
2279 	int err;
2280 
2281 	tb_sw_dbg(sw, "resuming switch\n");
2282 
2283 	/*
2284 	 * Check for UID of the connected switches except for root
2285 	 * switch which we assume cannot be removed.
2286 	 */
2287 	if (tb_route(sw)) {
2288 		u64 uid;
2289 
2290 		/*
2291 		 * Check first that we can still read the switch config
2292 		 * space. It may be that there is now another domain
2293 		 * connected.
2294 		 */
2295 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2296 		if (err < 0) {
2297 			tb_sw_info(sw, "switch not present anymore\n");
2298 			return err;
2299 		}
2300 
2301 		err = tb_drom_read_uid_only(sw, &uid);
2302 		if (err) {
2303 			tb_sw_warn(sw, "uid read failed\n");
2304 			return err;
2305 		}
2306 		if (sw->uid != uid) {
2307 			tb_sw_info(sw,
2308 				"changed while suspended (uid %#llx -> %#llx)\n",
2309 				sw->uid, uid);
2310 			return -ENODEV;
2311 		}
2312 	}
2313 
2314 	/* upload configuration */
2315 	err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
2316 	if (err)
2317 		return err;
2318 
2319 	err = tb_lc_configure_link(sw);
2320 	if (err)
2321 		return err;
2322 
2323 	err = tb_plug_events_active(sw, true);
2324 	if (err)
2325 		return err;
2326 
2327 	/* check for surviving downstream switches */
2328 	tb_switch_for_each_port(sw, port) {
2329 		if (!tb_port_has_remote(port) && !port->xdomain)
2330 			continue;
2331 
2332 		if (tb_wait_for_port(port, true) <= 0) {
2333 			tb_port_warn(port,
2334 				     "lost during suspend, disconnecting\n");
2335 			if (tb_port_has_remote(port))
2336 				tb_sw_set_unplugged(port->remote->sw);
2337 			else if (port->xdomain)
2338 				port->xdomain->is_unplugged = true;
2339 		} else if (tb_port_has_remote(port)) {
2340 			if (tb_switch_resume(port->remote->sw)) {
2341 				tb_port_warn(port,
2342 					     "lost during suspend, disconnecting\n");
2343 				tb_sw_set_unplugged(port->remote->sw);
2344 			}
2345 		}
2346 	}
2347 	return 0;
2348 }
2349 
2350 void tb_switch_suspend(struct tb_switch *sw)
2351 {
2352 	struct tb_port *port;
2353 	int err;
2354 
2355 	err = tb_plug_events_active(sw, false);
2356 	if (err)
2357 		return;
2358 
2359 	tb_switch_for_each_port(sw, port) {
2360 		if (tb_port_has_remote(port))
2361 			tb_switch_suspend(port->remote->sw);
2362 	}
2363 
2364 	tb_lc_set_sleep(sw);
2365 }
2366 
2367 /**
2368  * tb_switch_query_dp_resource() - Query availability of DP resource
2369  * @sw: Switch whose DP resource is queried
2370  * @in: DP IN port
2371  *
2372  * Queries availability of DP resource for DP tunneling using switch
2373  * specific means. Returns %true if resource is available.
2374  */
2375 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2376 {
2377 	return tb_lc_dp_sink_query(sw, in);
2378 }
2379 
2380 /**
2381  * tb_switch_alloc_dp_resource() - Allocate available DP resource
2382  * @sw: Switch whose DP resource is allocated
2383  * @in: DP IN port
2384  *
2385  * Allocates DP resource for DP tunneling. The resource must be
2386  * available for this to succeed (see tb_switch_query_dp_resource()).
2387  * Returns %0 in success and negative errno otherwise.
2388  */
2389 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2390 {
2391 	return tb_lc_dp_sink_alloc(sw, in);
2392 }
2393 
2394 /**
2395  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2396  * @sw: Switch whose DP resource is de-allocated
2397  * @in: DP IN port
2398  *
2399  * De-allocates DP resource that was previously allocated for DP
2400  * tunneling.
2401  */
2402 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2403 {
2404 	if (tb_lc_dp_sink_dealloc(sw, in)) {
2405 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2406 			   in->port);
2407 	}
2408 }
2409 
2410 struct tb_sw_lookup {
2411 	struct tb *tb;
2412 	u8 link;
2413 	u8 depth;
2414 	const uuid_t *uuid;
2415 	u64 route;
2416 };
2417 
2418 static int tb_switch_match(struct device *dev, const void *data)
2419 {
2420 	struct tb_switch *sw = tb_to_switch(dev);
2421 	const struct tb_sw_lookup *lookup = data;
2422 
2423 	if (!sw)
2424 		return 0;
2425 	if (sw->tb != lookup->tb)
2426 		return 0;
2427 
2428 	if (lookup->uuid)
2429 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2430 
2431 	if (lookup->route) {
2432 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
2433 		       sw->config.route_hi == upper_32_bits(lookup->route);
2434 	}
2435 
2436 	/* Root switch is matched only by depth */
2437 	if (!lookup->depth)
2438 		return !sw->depth;
2439 
2440 	return sw->link == lookup->link && sw->depth == lookup->depth;
2441 }
2442 
2443 /**
2444  * tb_switch_find_by_link_depth() - Find switch by link and depth
2445  * @tb: Domain the switch belongs
2446  * @link: Link number the switch is connected
2447  * @depth: Depth of the switch in link
2448  *
2449  * Returned switch has reference count increased so the caller needs to
2450  * call tb_switch_put() when done with the switch.
2451  */
2452 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2453 {
2454 	struct tb_sw_lookup lookup;
2455 	struct device *dev;
2456 
2457 	memset(&lookup, 0, sizeof(lookup));
2458 	lookup.tb = tb;
2459 	lookup.link = link;
2460 	lookup.depth = depth;
2461 
2462 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2463 	if (dev)
2464 		return tb_to_switch(dev);
2465 
2466 	return NULL;
2467 }
2468 
2469 /**
2470  * tb_switch_find_by_uuid() - Find switch by UUID
2471  * @tb: Domain the switch belongs
2472  * @uuid: UUID to look for
2473  *
2474  * Returned switch has reference count increased so the caller needs to
2475  * call tb_switch_put() when done with the switch.
2476  */
2477 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2478 {
2479 	struct tb_sw_lookup lookup;
2480 	struct device *dev;
2481 
2482 	memset(&lookup, 0, sizeof(lookup));
2483 	lookup.tb = tb;
2484 	lookup.uuid = uuid;
2485 
2486 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2487 	if (dev)
2488 		return tb_to_switch(dev);
2489 
2490 	return NULL;
2491 }
2492 
2493 /**
2494  * tb_switch_find_by_route() - Find switch by route string
2495  * @tb: Domain the switch belongs
2496  * @route: Route string to look for
2497  *
2498  * Returned switch has reference count increased so the caller needs to
2499  * call tb_switch_put() when done with the switch.
2500  */
2501 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2502 {
2503 	struct tb_sw_lookup lookup;
2504 	struct device *dev;
2505 
2506 	if (!route)
2507 		return tb_switch_get(tb->root_switch);
2508 
2509 	memset(&lookup, 0, sizeof(lookup));
2510 	lookup.tb = tb;
2511 	lookup.route = route;
2512 
2513 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2514 	if (dev)
2515 		return tb_to_switch(dev);
2516 
2517 	return NULL;
2518 }
2519 
2520 void tb_switch_exit(void)
2521 {
2522 	ida_destroy(&nvm_ida);
2523 }
2524