xref: /openbmc/linux/drivers/thunderbolt/switch.c (revision 996d5b4d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt Cactus Ridge driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/idr.h>
10 #include <linux/nvmem-provider.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/sizes.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 
16 #include "tb.h"
17 
18 /* Switch authorization from userspace is serialized by this lock */
19 static DEFINE_MUTEX(switch_lock);
20 
21 /* Switch NVM support */
22 
23 #define NVM_DEVID		0x05
24 #define NVM_VERSION		0x08
25 #define NVM_CSS			0x10
26 #define NVM_FLASH_SIZE		0x45
27 
28 #define NVM_MIN_SIZE		SZ_32K
29 #define NVM_MAX_SIZE		SZ_512K
30 
31 static DEFINE_IDA(nvm_ida);
32 
33 struct nvm_auth_status {
34 	struct list_head list;
35 	uuid_t uuid;
36 	u32 status;
37 };
38 
39 /*
40  * Hold NVM authentication failure status per switch This information
41  * needs to stay around even when the switch gets power cycled so we
42  * keep it separately.
43  */
44 static LIST_HEAD(nvm_auth_status_cache);
45 static DEFINE_MUTEX(nvm_auth_status_lock);
46 
47 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
48 {
49 	struct nvm_auth_status *st;
50 
51 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
52 		if (uuid_equal(&st->uuid, sw->uuid))
53 			return st;
54 	}
55 
56 	return NULL;
57 }
58 
59 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
60 {
61 	struct nvm_auth_status *st;
62 
63 	mutex_lock(&nvm_auth_status_lock);
64 	st = __nvm_get_auth_status(sw);
65 	mutex_unlock(&nvm_auth_status_lock);
66 
67 	*status = st ? st->status : 0;
68 }
69 
70 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
71 {
72 	struct nvm_auth_status *st;
73 
74 	if (WARN_ON(!sw->uuid))
75 		return;
76 
77 	mutex_lock(&nvm_auth_status_lock);
78 	st = __nvm_get_auth_status(sw);
79 
80 	if (!st) {
81 		st = kzalloc(sizeof(*st), GFP_KERNEL);
82 		if (!st)
83 			goto unlock;
84 
85 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
86 		INIT_LIST_HEAD(&st->list);
87 		list_add_tail(&st->list, &nvm_auth_status_cache);
88 	}
89 
90 	st->status = status;
91 unlock:
92 	mutex_unlock(&nvm_auth_status_lock);
93 }
94 
95 static void nvm_clear_auth_status(const struct tb_switch *sw)
96 {
97 	struct nvm_auth_status *st;
98 
99 	mutex_lock(&nvm_auth_status_lock);
100 	st = __nvm_get_auth_status(sw);
101 	if (st) {
102 		list_del(&st->list);
103 		kfree(st);
104 	}
105 	mutex_unlock(&nvm_auth_status_lock);
106 }
107 
108 static int nvm_validate_and_write(struct tb_switch *sw)
109 {
110 	unsigned int image_size, hdr_size;
111 	const u8 *buf = sw->nvm->buf;
112 	u16 ds_size;
113 	int ret;
114 
115 	if (!buf)
116 		return -EINVAL;
117 
118 	image_size = sw->nvm->buf_data_size;
119 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
120 		return -EINVAL;
121 
122 	/*
123 	 * FARB pointer must point inside the image and must at least
124 	 * contain parts of the digital section we will be reading here.
125 	 */
126 	hdr_size = (*(u32 *)buf) & 0xffffff;
127 	if (hdr_size + NVM_DEVID + 2 >= image_size)
128 		return -EINVAL;
129 
130 	/* Digital section start should be aligned to 4k page */
131 	if (!IS_ALIGNED(hdr_size, SZ_4K))
132 		return -EINVAL;
133 
134 	/*
135 	 * Read digital section size and check that it also fits inside
136 	 * the image.
137 	 */
138 	ds_size = *(u16 *)(buf + hdr_size);
139 	if (ds_size >= image_size)
140 		return -EINVAL;
141 
142 	if (!sw->safe_mode) {
143 		u16 device_id;
144 
145 		/*
146 		 * Make sure the device ID in the image matches the one
147 		 * we read from the switch config space.
148 		 */
149 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
150 		if (device_id != sw->config.device_id)
151 			return -EINVAL;
152 
153 		if (sw->generation < 3) {
154 			/* Write CSS headers first */
155 			ret = dma_port_flash_write(sw->dma_port,
156 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
157 				DMA_PORT_CSS_MAX_SIZE);
158 			if (ret)
159 				return ret;
160 		}
161 
162 		/* Skip headers in the image */
163 		buf += hdr_size;
164 		image_size -= hdr_size;
165 	}
166 
167 	return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
168 }
169 
170 static int nvm_authenticate_host(struct tb_switch *sw)
171 {
172 	int ret;
173 
174 	/*
175 	 * Root switch NVM upgrade requires that we disconnect the
176 	 * existing paths first (in case it is not in safe mode
177 	 * already).
178 	 */
179 	if (!sw->safe_mode) {
180 		ret = tb_domain_disconnect_all_paths(sw->tb);
181 		if (ret)
182 			return ret;
183 		/*
184 		 * The host controller goes away pretty soon after this if
185 		 * everything goes well so getting timeout is expected.
186 		 */
187 		ret = dma_port_flash_update_auth(sw->dma_port);
188 		return ret == -ETIMEDOUT ? 0 : ret;
189 	}
190 
191 	/*
192 	 * From safe mode we can get out by just power cycling the
193 	 * switch.
194 	 */
195 	dma_port_power_cycle(sw->dma_port);
196 	return 0;
197 }
198 
199 static int nvm_authenticate_device(struct tb_switch *sw)
200 {
201 	int ret, retries = 10;
202 
203 	ret = dma_port_flash_update_auth(sw->dma_port);
204 	if (ret && ret != -ETIMEDOUT)
205 		return ret;
206 
207 	/*
208 	 * Poll here for the authentication status. It takes some time
209 	 * for the device to respond (we get timeout for a while). Once
210 	 * we get response the device needs to be power cycled in order
211 	 * to the new NVM to be taken into use.
212 	 */
213 	do {
214 		u32 status;
215 
216 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
217 		if (ret < 0 && ret != -ETIMEDOUT)
218 			return ret;
219 		if (ret > 0) {
220 			if (status) {
221 				tb_sw_warn(sw, "failed to authenticate NVM\n");
222 				nvm_set_auth_status(sw, status);
223 			}
224 
225 			tb_sw_info(sw, "power cycling the switch now\n");
226 			dma_port_power_cycle(sw->dma_port);
227 			return 0;
228 		}
229 
230 		msleep(500);
231 	} while (--retries);
232 
233 	return -ETIMEDOUT;
234 }
235 
236 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
237 			      size_t bytes)
238 {
239 	struct tb_switch *sw = priv;
240 	int ret;
241 
242 	pm_runtime_get_sync(&sw->dev);
243 	ret = dma_port_flash_read(sw->dma_port, offset, val, bytes);
244 	pm_runtime_mark_last_busy(&sw->dev);
245 	pm_runtime_put_autosuspend(&sw->dev);
246 
247 	return ret;
248 }
249 
250 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
251 			       size_t bytes)
252 {
253 	struct tb_switch *sw = priv;
254 	int ret = 0;
255 
256 	if (mutex_lock_interruptible(&switch_lock))
257 		return -ERESTARTSYS;
258 
259 	/*
260 	 * Since writing the NVM image might require some special steps,
261 	 * for example when CSS headers are written, we cache the image
262 	 * locally here and handle the special cases when the user asks
263 	 * us to authenticate the image.
264 	 */
265 	if (!sw->nvm->buf) {
266 		sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
267 		if (!sw->nvm->buf) {
268 			ret = -ENOMEM;
269 			goto unlock;
270 		}
271 	}
272 
273 	sw->nvm->buf_data_size = offset + bytes;
274 	memcpy(sw->nvm->buf + offset, val, bytes);
275 
276 unlock:
277 	mutex_unlock(&switch_lock);
278 
279 	return ret;
280 }
281 
282 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
283 					   size_t size, bool active)
284 {
285 	struct nvmem_config config;
286 
287 	memset(&config, 0, sizeof(config));
288 
289 	if (active) {
290 		config.name = "nvm_active";
291 		config.reg_read = tb_switch_nvm_read;
292 		config.read_only = true;
293 	} else {
294 		config.name = "nvm_non_active";
295 		config.reg_write = tb_switch_nvm_write;
296 		config.root_only = true;
297 	}
298 
299 	config.id = id;
300 	config.stride = 4;
301 	config.word_size = 4;
302 	config.size = size;
303 	config.dev = &sw->dev;
304 	config.owner = THIS_MODULE;
305 	config.priv = sw;
306 
307 	return nvmem_register(&config);
308 }
309 
310 static int tb_switch_nvm_add(struct tb_switch *sw)
311 {
312 	struct nvmem_device *nvm_dev;
313 	struct tb_switch_nvm *nvm;
314 	u32 val;
315 	int ret;
316 
317 	if (!sw->dma_port)
318 		return 0;
319 
320 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
321 	if (!nvm)
322 		return -ENOMEM;
323 
324 	nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
325 
326 	/*
327 	 * If the switch is in safe-mode the only accessible portion of
328 	 * the NVM is the non-active one where userspace is expected to
329 	 * write new functional NVM.
330 	 */
331 	if (!sw->safe_mode) {
332 		u32 nvm_size, hdr_size;
333 
334 		ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
335 					  sizeof(val));
336 		if (ret)
337 			goto err_ida;
338 
339 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
340 		nvm_size = (SZ_1M << (val & 7)) / 8;
341 		nvm_size = (nvm_size - hdr_size) / 2;
342 
343 		ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
344 					  sizeof(val));
345 		if (ret)
346 			goto err_ida;
347 
348 		nvm->major = val >> 16;
349 		nvm->minor = val >> 8;
350 
351 		nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
352 		if (IS_ERR(nvm_dev)) {
353 			ret = PTR_ERR(nvm_dev);
354 			goto err_ida;
355 		}
356 		nvm->active = nvm_dev;
357 	}
358 
359 	nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
360 	if (IS_ERR(nvm_dev)) {
361 		ret = PTR_ERR(nvm_dev);
362 		goto err_nvm_active;
363 	}
364 	nvm->non_active = nvm_dev;
365 
366 	mutex_lock(&switch_lock);
367 	sw->nvm = nvm;
368 	mutex_unlock(&switch_lock);
369 
370 	return 0;
371 
372 err_nvm_active:
373 	if (nvm->active)
374 		nvmem_unregister(nvm->active);
375 err_ida:
376 	ida_simple_remove(&nvm_ida, nvm->id);
377 	kfree(nvm);
378 
379 	return ret;
380 }
381 
382 static void tb_switch_nvm_remove(struct tb_switch *sw)
383 {
384 	struct tb_switch_nvm *nvm;
385 
386 	mutex_lock(&switch_lock);
387 	nvm = sw->nvm;
388 	sw->nvm = NULL;
389 	mutex_unlock(&switch_lock);
390 
391 	if (!nvm)
392 		return;
393 
394 	/* Remove authentication status in case the switch is unplugged */
395 	if (!nvm->authenticating)
396 		nvm_clear_auth_status(sw);
397 
398 	nvmem_unregister(nvm->non_active);
399 	if (nvm->active)
400 		nvmem_unregister(nvm->active);
401 	ida_simple_remove(&nvm_ida, nvm->id);
402 	vfree(nvm->buf);
403 	kfree(nvm);
404 }
405 
406 /* port utility functions */
407 
408 static const char *tb_port_type(struct tb_regs_port_header *port)
409 {
410 	switch (port->type >> 16) {
411 	case 0:
412 		switch ((u8) port->type) {
413 		case 0:
414 			return "Inactive";
415 		case 1:
416 			return "Port";
417 		case 2:
418 			return "NHI";
419 		default:
420 			return "unknown";
421 		}
422 	case 0x2:
423 		return "Ethernet";
424 	case 0x8:
425 		return "SATA";
426 	case 0xe:
427 		return "DP/HDMI";
428 	case 0x10:
429 		return "PCIe";
430 	case 0x20:
431 		return "USB";
432 	default:
433 		return "unknown";
434 	}
435 }
436 
437 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
438 {
439 	tb_info(tb,
440 		" Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
441 		port->port_number, port->vendor_id, port->device_id,
442 		port->revision, port->thunderbolt_version, tb_port_type(port),
443 		port->type);
444 	tb_info(tb, "  Max hop id (in/out): %d/%d\n",
445 		port->max_in_hop_id, port->max_out_hop_id);
446 	tb_info(tb, "  Max counters: %d\n", port->max_counters);
447 	tb_info(tb, "  NFC Credits: %#x\n", port->nfc_credits);
448 }
449 
450 /**
451  * tb_port_state() - get connectedness state of a port
452  *
453  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
454  *
455  * Return: Returns an enum tb_port_state on success or an error code on failure.
456  */
457 static int tb_port_state(struct tb_port *port)
458 {
459 	struct tb_cap_phy phy;
460 	int res;
461 	if (port->cap_phy == 0) {
462 		tb_port_WARN(port, "does not have a PHY\n");
463 		return -EINVAL;
464 	}
465 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
466 	if (res)
467 		return res;
468 	return phy.state;
469 }
470 
471 /**
472  * tb_wait_for_port() - wait for a port to become ready
473  *
474  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
475  * wait_if_unplugged is set then we also wait if the port is in state
476  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
477  * switch resume). Otherwise we only wait if a device is registered but the link
478  * has not yet been established.
479  *
480  * Return: Returns an error code on failure. Returns 0 if the port is not
481  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
482  * if the port is connected and in state TB_PORT_UP.
483  */
484 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
485 {
486 	int retries = 10;
487 	int state;
488 	if (!port->cap_phy) {
489 		tb_port_WARN(port, "does not have PHY\n");
490 		return -EINVAL;
491 	}
492 	if (tb_is_upstream_port(port)) {
493 		tb_port_WARN(port, "is the upstream port\n");
494 		return -EINVAL;
495 	}
496 
497 	while (retries--) {
498 		state = tb_port_state(port);
499 		if (state < 0)
500 			return state;
501 		if (state == TB_PORT_DISABLED) {
502 			tb_port_info(port, "is disabled (state: 0)\n");
503 			return 0;
504 		}
505 		if (state == TB_PORT_UNPLUGGED) {
506 			if (wait_if_unplugged) {
507 				/* used during resume */
508 				tb_port_info(port,
509 					     "is unplugged (state: 7), retrying...\n");
510 				msleep(100);
511 				continue;
512 			}
513 			tb_port_info(port, "is unplugged (state: 7)\n");
514 			return 0;
515 		}
516 		if (state == TB_PORT_UP) {
517 			tb_port_info(port,
518 				     "is connected, link is up (state: 2)\n");
519 			return 1;
520 		}
521 
522 		/*
523 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
524 		 * time.
525 		 */
526 		tb_port_info(port,
527 			     "is connected, link is not up (state: %d), retrying...\n",
528 			     state);
529 		msleep(100);
530 	}
531 	tb_port_warn(port,
532 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
533 	return 0;
534 }
535 
536 /**
537  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
538  *
539  * Change the number of NFC credits allocated to @port by @credits. To remove
540  * NFC credits pass a negative amount of credits.
541  *
542  * Return: Returns 0 on success or an error code on failure.
543  */
544 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
545 {
546 	if (credits == 0)
547 		return 0;
548 	tb_port_info(port,
549 		     "adding %#x NFC credits (%#x -> %#x)",
550 		     credits,
551 		     port->config.nfc_credits,
552 		     port->config.nfc_credits + credits);
553 	port->config.nfc_credits += credits;
554 	return tb_port_write(port, &port->config.nfc_credits,
555 			     TB_CFG_PORT, 4, 1);
556 }
557 
558 /**
559  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
560  *
561  * Return: Returns 0 on success or an error code on failure.
562  */
563 int tb_port_clear_counter(struct tb_port *port, int counter)
564 {
565 	u32 zero[3] = { 0, 0, 0 };
566 	tb_port_info(port, "clearing counter %d\n", counter);
567 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
568 }
569 
570 /**
571  * tb_init_port() - initialize a port
572  *
573  * This is a helper method for tb_switch_alloc. Does not check or initialize
574  * any downstream switches.
575  *
576  * Return: Returns 0 on success or an error code on failure.
577  */
578 static int tb_init_port(struct tb_port *port)
579 {
580 	int res;
581 	int cap;
582 
583 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
584 	if (res)
585 		return res;
586 
587 	/* Port 0 is the switch itself and has no PHY. */
588 	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
589 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
590 
591 		if (cap > 0)
592 			port->cap_phy = cap;
593 		else
594 			tb_port_WARN(port, "non switch port without a PHY\n");
595 	}
596 
597 	tb_dump_port(port->sw->tb, &port->config);
598 
599 	/* TODO: Read dual link port, DP port and more from EEPROM. */
600 	return 0;
601 
602 }
603 
604 /* switch utility functions */
605 
606 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
607 {
608 	tb_info(tb,
609 		" Switch: %x:%x (Revision: %d, TB Version: %d)\n",
610 		sw->vendor_id, sw->device_id, sw->revision,
611 		sw->thunderbolt_version);
612 	tb_info(tb, "  Max Port Number: %d\n", sw->max_port_number);
613 	tb_info(tb, "  Config:\n");
614 	tb_info(tb,
615 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
616 		sw->upstream_port_number, sw->depth,
617 		(((u64) sw->route_hi) << 32) | sw->route_lo,
618 		sw->enabled, sw->plug_events_delay);
619 	tb_info(tb,
620 		"   unknown1: %#x unknown4: %#x\n",
621 		sw->__unknown1, sw->__unknown4);
622 }
623 
624 /**
625  * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
626  *
627  * Return: Returns 0 on success or an error code on failure.
628  */
629 int tb_switch_reset(struct tb *tb, u64 route)
630 {
631 	struct tb_cfg_result res;
632 	struct tb_regs_switch_header header = {
633 		header.route_hi = route >> 32,
634 		header.route_lo = route,
635 		header.enabled = true,
636 	};
637 	tb_info(tb, "resetting switch at %llx\n", route);
638 	res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
639 			0, 2, 2, 2);
640 	if (res.err)
641 		return res.err;
642 	res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
643 	if (res.err > 0)
644 		return -EIO;
645 	return res.err;
646 }
647 
648 struct tb_switch *get_switch_at_route(struct tb_switch *sw, u64 route)
649 {
650 	u8 next_port = route; /*
651 			       * Routes use a stride of 8 bits,
652 			       * eventhough a port index has 6 bits at most.
653 			       * */
654 	if (route == 0)
655 		return sw;
656 	if (next_port > sw->config.max_port_number)
657 		return NULL;
658 	if (tb_is_upstream_port(&sw->ports[next_port]))
659 		return NULL;
660 	if (!sw->ports[next_port].remote)
661 		return NULL;
662 	return get_switch_at_route(sw->ports[next_port].remote->sw,
663 				   route >> TB_ROUTE_SHIFT);
664 }
665 
666 /**
667  * tb_plug_events_active() - enable/disable plug events on a switch
668  *
669  * Also configures a sane plug_events_delay of 255ms.
670  *
671  * Return: Returns 0 on success or an error code on failure.
672  */
673 static int tb_plug_events_active(struct tb_switch *sw, bool active)
674 {
675 	u32 data;
676 	int res;
677 
678 	if (!sw->config.enabled)
679 		return 0;
680 
681 	sw->config.plug_events_delay = 0xff;
682 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
683 	if (res)
684 		return res;
685 
686 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
687 	if (res)
688 		return res;
689 
690 	if (active) {
691 		data = data & 0xFFFFFF83;
692 		switch (sw->config.device_id) {
693 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
694 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
695 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
696 			break;
697 		default:
698 			data |= 4;
699 		}
700 	} else {
701 		data = data | 0x7c;
702 	}
703 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
704 			   sw->cap_plug_events + 1, 1);
705 }
706 
707 static ssize_t authorized_show(struct device *dev,
708 			       struct device_attribute *attr,
709 			       char *buf)
710 {
711 	struct tb_switch *sw = tb_to_switch(dev);
712 
713 	return sprintf(buf, "%u\n", sw->authorized);
714 }
715 
716 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
717 {
718 	int ret = -EINVAL;
719 
720 	if (mutex_lock_interruptible(&switch_lock))
721 		return -ERESTARTSYS;
722 
723 	if (sw->authorized)
724 		goto unlock;
725 
726 	/*
727 	 * Make sure there is no PCIe rescan ongoing when a new PCIe
728 	 * tunnel is created. Otherwise the PCIe rescan code might find
729 	 * the new tunnel too early.
730 	 */
731 	pci_lock_rescan_remove();
732 	pm_runtime_get_sync(&sw->dev);
733 
734 	switch (val) {
735 	/* Approve switch */
736 	case 1:
737 		if (sw->key)
738 			ret = tb_domain_approve_switch_key(sw->tb, sw);
739 		else
740 			ret = tb_domain_approve_switch(sw->tb, sw);
741 		break;
742 
743 	/* Challenge switch */
744 	case 2:
745 		if (sw->key)
746 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
747 		break;
748 
749 	default:
750 		break;
751 	}
752 
753 	pm_runtime_mark_last_busy(&sw->dev);
754 	pm_runtime_put_autosuspend(&sw->dev);
755 	pci_unlock_rescan_remove();
756 
757 	if (!ret) {
758 		sw->authorized = val;
759 		/* Notify status change to the userspace */
760 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
761 	}
762 
763 unlock:
764 	mutex_unlock(&switch_lock);
765 	return ret;
766 }
767 
768 static ssize_t authorized_store(struct device *dev,
769 				struct device_attribute *attr,
770 				const char *buf, size_t count)
771 {
772 	struct tb_switch *sw = tb_to_switch(dev);
773 	unsigned int val;
774 	ssize_t ret;
775 
776 	ret = kstrtouint(buf, 0, &val);
777 	if (ret)
778 		return ret;
779 	if (val > 2)
780 		return -EINVAL;
781 
782 	ret = tb_switch_set_authorized(sw, val);
783 
784 	return ret ? ret : count;
785 }
786 static DEVICE_ATTR_RW(authorized);
787 
788 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
789 			 char *buf)
790 {
791 	struct tb_switch *sw = tb_to_switch(dev);
792 
793 	return sprintf(buf, "%u\n", sw->boot);
794 }
795 static DEVICE_ATTR_RO(boot);
796 
797 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
798 			   char *buf)
799 {
800 	struct tb_switch *sw = tb_to_switch(dev);
801 
802 	return sprintf(buf, "%#x\n", sw->device);
803 }
804 static DEVICE_ATTR_RO(device);
805 
806 static ssize_t
807 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
808 {
809 	struct tb_switch *sw = tb_to_switch(dev);
810 
811 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
812 }
813 static DEVICE_ATTR_RO(device_name);
814 
815 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
816 			char *buf)
817 {
818 	struct tb_switch *sw = tb_to_switch(dev);
819 	ssize_t ret;
820 
821 	if (mutex_lock_interruptible(&switch_lock))
822 		return -ERESTARTSYS;
823 
824 	if (sw->key)
825 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
826 	else
827 		ret = sprintf(buf, "\n");
828 
829 	mutex_unlock(&switch_lock);
830 	return ret;
831 }
832 
833 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
834 			 const char *buf, size_t count)
835 {
836 	struct tb_switch *sw = tb_to_switch(dev);
837 	u8 key[TB_SWITCH_KEY_SIZE];
838 	ssize_t ret = count;
839 	bool clear = false;
840 
841 	if (!strcmp(buf, "\n"))
842 		clear = true;
843 	else if (hex2bin(key, buf, sizeof(key)))
844 		return -EINVAL;
845 
846 	if (mutex_lock_interruptible(&switch_lock))
847 		return -ERESTARTSYS;
848 
849 	if (sw->authorized) {
850 		ret = -EBUSY;
851 	} else {
852 		kfree(sw->key);
853 		if (clear) {
854 			sw->key = NULL;
855 		} else {
856 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
857 			if (!sw->key)
858 				ret = -ENOMEM;
859 		}
860 	}
861 
862 	mutex_unlock(&switch_lock);
863 	return ret;
864 }
865 static DEVICE_ATTR(key, 0600, key_show, key_store);
866 
867 static ssize_t nvm_authenticate_show(struct device *dev,
868 	struct device_attribute *attr, char *buf)
869 {
870 	struct tb_switch *sw = tb_to_switch(dev);
871 	u32 status;
872 
873 	nvm_get_auth_status(sw, &status);
874 	return sprintf(buf, "%#x\n", status);
875 }
876 
877 static ssize_t nvm_authenticate_store(struct device *dev,
878 	struct device_attribute *attr, const char *buf, size_t count)
879 {
880 	struct tb_switch *sw = tb_to_switch(dev);
881 	bool val;
882 	int ret;
883 
884 	if (mutex_lock_interruptible(&switch_lock))
885 		return -ERESTARTSYS;
886 
887 	/* If NVMem devices are not yet added */
888 	if (!sw->nvm) {
889 		ret = -EAGAIN;
890 		goto exit_unlock;
891 	}
892 
893 	ret = kstrtobool(buf, &val);
894 	if (ret)
895 		goto exit_unlock;
896 
897 	/* Always clear the authentication status */
898 	nvm_clear_auth_status(sw);
899 
900 	if (val) {
901 		if (!sw->nvm->buf) {
902 			ret = -EINVAL;
903 			goto exit_unlock;
904 		}
905 
906 		pm_runtime_get_sync(&sw->dev);
907 		ret = nvm_validate_and_write(sw);
908 		if (ret) {
909 			pm_runtime_mark_last_busy(&sw->dev);
910 			pm_runtime_put_autosuspend(&sw->dev);
911 			goto exit_unlock;
912 		}
913 
914 		sw->nvm->authenticating = true;
915 
916 		if (!tb_route(sw))
917 			ret = nvm_authenticate_host(sw);
918 		else
919 			ret = nvm_authenticate_device(sw);
920 		pm_runtime_mark_last_busy(&sw->dev);
921 		pm_runtime_put_autosuspend(&sw->dev);
922 	}
923 
924 exit_unlock:
925 	mutex_unlock(&switch_lock);
926 
927 	if (ret)
928 		return ret;
929 	return count;
930 }
931 static DEVICE_ATTR_RW(nvm_authenticate);
932 
933 static ssize_t nvm_version_show(struct device *dev,
934 				struct device_attribute *attr, char *buf)
935 {
936 	struct tb_switch *sw = tb_to_switch(dev);
937 	int ret;
938 
939 	if (mutex_lock_interruptible(&switch_lock))
940 		return -ERESTARTSYS;
941 
942 	if (sw->safe_mode)
943 		ret = -ENODATA;
944 	else if (!sw->nvm)
945 		ret = -EAGAIN;
946 	else
947 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
948 
949 	mutex_unlock(&switch_lock);
950 
951 	return ret;
952 }
953 static DEVICE_ATTR_RO(nvm_version);
954 
955 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
956 			   char *buf)
957 {
958 	struct tb_switch *sw = tb_to_switch(dev);
959 
960 	return sprintf(buf, "%#x\n", sw->vendor);
961 }
962 static DEVICE_ATTR_RO(vendor);
963 
964 static ssize_t
965 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
966 {
967 	struct tb_switch *sw = tb_to_switch(dev);
968 
969 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
970 }
971 static DEVICE_ATTR_RO(vendor_name);
972 
973 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
974 			      char *buf)
975 {
976 	struct tb_switch *sw = tb_to_switch(dev);
977 
978 	return sprintf(buf, "%pUb\n", sw->uuid);
979 }
980 static DEVICE_ATTR_RO(unique_id);
981 
982 static struct attribute *switch_attrs[] = {
983 	&dev_attr_authorized.attr,
984 	&dev_attr_boot.attr,
985 	&dev_attr_device.attr,
986 	&dev_attr_device_name.attr,
987 	&dev_attr_key.attr,
988 	&dev_attr_nvm_authenticate.attr,
989 	&dev_attr_nvm_version.attr,
990 	&dev_attr_vendor.attr,
991 	&dev_attr_vendor_name.attr,
992 	&dev_attr_unique_id.attr,
993 	NULL,
994 };
995 
996 static umode_t switch_attr_is_visible(struct kobject *kobj,
997 				      struct attribute *attr, int n)
998 {
999 	struct device *dev = container_of(kobj, struct device, kobj);
1000 	struct tb_switch *sw = tb_to_switch(dev);
1001 
1002 	if (attr == &dev_attr_key.attr) {
1003 		if (tb_route(sw) &&
1004 		    sw->tb->security_level == TB_SECURITY_SECURE &&
1005 		    sw->security_level == TB_SECURITY_SECURE)
1006 			return attr->mode;
1007 		return 0;
1008 	} else if (attr == &dev_attr_nvm_authenticate.attr ||
1009 		   attr == &dev_attr_nvm_version.attr) {
1010 		if (sw->dma_port)
1011 			return attr->mode;
1012 		return 0;
1013 	} else if (attr == &dev_attr_boot.attr) {
1014 		if (tb_route(sw))
1015 			return attr->mode;
1016 		return 0;
1017 	}
1018 
1019 	return sw->safe_mode ? 0 : attr->mode;
1020 }
1021 
1022 static struct attribute_group switch_group = {
1023 	.is_visible = switch_attr_is_visible,
1024 	.attrs = switch_attrs,
1025 };
1026 
1027 static const struct attribute_group *switch_groups[] = {
1028 	&switch_group,
1029 	NULL,
1030 };
1031 
1032 static void tb_switch_release(struct device *dev)
1033 {
1034 	struct tb_switch *sw = tb_to_switch(dev);
1035 
1036 	dma_port_free(sw->dma_port);
1037 
1038 	kfree(sw->uuid);
1039 	kfree(sw->device_name);
1040 	kfree(sw->vendor_name);
1041 	kfree(sw->ports);
1042 	kfree(sw->drom);
1043 	kfree(sw->key);
1044 	kfree(sw);
1045 }
1046 
1047 /*
1048  * Currently only need to provide the callbacks. Everything else is handled
1049  * in the connection manager.
1050  */
1051 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1052 {
1053 	return 0;
1054 }
1055 
1056 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1057 {
1058 	return 0;
1059 }
1060 
1061 static const struct dev_pm_ops tb_switch_pm_ops = {
1062 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1063 			   NULL)
1064 };
1065 
1066 struct device_type tb_switch_type = {
1067 	.name = "thunderbolt_device",
1068 	.release = tb_switch_release,
1069 	.pm = &tb_switch_pm_ops,
1070 };
1071 
1072 static int tb_switch_get_generation(struct tb_switch *sw)
1073 {
1074 	switch (sw->config.device_id) {
1075 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1076 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1077 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1078 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1079 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1080 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1081 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1082 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1083 		return 1;
1084 
1085 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1086 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1087 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1088 		return 2;
1089 
1090 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1091 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1092 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1093 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1094 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1095 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1096 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1097 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1098 		return 3;
1099 
1100 	default:
1101 		/*
1102 		 * For unknown switches assume generation to be 1 to be
1103 		 * on the safe side.
1104 		 */
1105 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
1106 			   sw->config.device_id);
1107 		return 1;
1108 	}
1109 }
1110 
1111 /**
1112  * tb_switch_alloc() - allocate a switch
1113  * @tb: Pointer to the owning domain
1114  * @parent: Parent device for this switch
1115  * @route: Route string for this switch
1116  *
1117  * Allocates and initializes a switch. Will not upload configuration to
1118  * the switch. For that you need to call tb_switch_configure()
1119  * separately. The returned switch should be released by calling
1120  * tb_switch_put().
1121  *
1122  * Return: Pointer to the allocated switch or %NULL in case of failure
1123  */
1124 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1125 				  u64 route)
1126 {
1127 	int i;
1128 	int cap;
1129 	struct tb_switch *sw;
1130 	int upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1131 	if (upstream_port < 0)
1132 		return NULL;
1133 
1134 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1135 	if (!sw)
1136 		return NULL;
1137 
1138 	sw->tb = tb;
1139 	if (tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5))
1140 		goto err_free_sw_ports;
1141 
1142 	tb_info(tb, "current switch config:\n");
1143 	tb_dump_switch(tb, &sw->config);
1144 
1145 	/* configure switch */
1146 	sw->config.upstream_port_number = upstream_port;
1147 	sw->config.depth = tb_route_length(route);
1148 	sw->config.route_lo = route;
1149 	sw->config.route_hi = route >> 32;
1150 	sw->config.enabled = 0;
1151 
1152 	/* initialize ports */
1153 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1154 				GFP_KERNEL);
1155 	if (!sw->ports)
1156 		goto err_free_sw_ports;
1157 
1158 	for (i = 0; i <= sw->config.max_port_number; i++) {
1159 		/* minimum setup for tb_find_cap and tb_drom_read to work */
1160 		sw->ports[i].sw = sw;
1161 		sw->ports[i].port = i;
1162 	}
1163 
1164 	sw->generation = tb_switch_get_generation(sw);
1165 
1166 	cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1167 	if (cap < 0) {
1168 		tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1169 		goto err_free_sw_ports;
1170 	}
1171 	sw->cap_plug_events = cap;
1172 
1173 	/* Root switch is always authorized */
1174 	if (!route)
1175 		sw->authorized = true;
1176 
1177 	device_initialize(&sw->dev);
1178 	sw->dev.parent = parent;
1179 	sw->dev.bus = &tb_bus_type;
1180 	sw->dev.type = &tb_switch_type;
1181 	sw->dev.groups = switch_groups;
1182 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1183 
1184 	return sw;
1185 
1186 err_free_sw_ports:
1187 	kfree(sw->ports);
1188 	kfree(sw);
1189 
1190 	return NULL;
1191 }
1192 
1193 /**
1194  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1195  * @tb: Pointer to the owning domain
1196  * @parent: Parent device for this switch
1197  * @route: Route string for this switch
1198  *
1199  * This creates a switch in safe mode. This means the switch pretty much
1200  * lacks all capabilities except DMA configuration port before it is
1201  * flashed with a valid NVM firmware.
1202  *
1203  * The returned switch must be released by calling tb_switch_put().
1204  *
1205  * Return: Pointer to the allocated switch or %NULL in case of failure
1206  */
1207 struct tb_switch *
1208 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1209 {
1210 	struct tb_switch *sw;
1211 
1212 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1213 	if (!sw)
1214 		return NULL;
1215 
1216 	sw->tb = tb;
1217 	sw->config.depth = tb_route_length(route);
1218 	sw->config.route_hi = upper_32_bits(route);
1219 	sw->config.route_lo = lower_32_bits(route);
1220 	sw->safe_mode = true;
1221 
1222 	device_initialize(&sw->dev);
1223 	sw->dev.parent = parent;
1224 	sw->dev.bus = &tb_bus_type;
1225 	sw->dev.type = &tb_switch_type;
1226 	sw->dev.groups = switch_groups;
1227 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1228 
1229 	return sw;
1230 }
1231 
1232 /**
1233  * tb_switch_configure() - Uploads configuration to the switch
1234  * @sw: Switch to configure
1235  *
1236  * Call this function before the switch is added to the system. It will
1237  * upload configuration to the switch and makes it available for the
1238  * connection manager to use.
1239  *
1240  * Return: %0 in case of success and negative errno in case of failure
1241  */
1242 int tb_switch_configure(struct tb_switch *sw)
1243 {
1244 	struct tb *tb = sw->tb;
1245 	u64 route;
1246 	int ret;
1247 
1248 	route = tb_route(sw);
1249 	tb_info(tb,
1250 		"initializing Switch at %#llx (depth: %d, up port: %d)\n",
1251 		route, tb_route_length(route), sw->config.upstream_port_number);
1252 
1253 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
1254 		tb_sw_warn(sw, "unknown switch vendor id %#x\n",
1255 			   sw->config.vendor_id);
1256 
1257 	sw->config.enabled = 1;
1258 
1259 	/* upload configuration */
1260 	ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
1261 	if (ret)
1262 		return ret;
1263 
1264 	return tb_plug_events_active(sw, true);
1265 }
1266 
1267 static void tb_switch_set_uuid(struct tb_switch *sw)
1268 {
1269 	u32 uuid[4];
1270 	int cap;
1271 
1272 	if (sw->uuid)
1273 		return;
1274 
1275 	/*
1276 	 * The newer controllers include fused UUID as part of link
1277 	 * controller specific registers
1278 	 */
1279 	cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1280 	if (cap > 0) {
1281 		tb_sw_read(sw, uuid, TB_CFG_SWITCH, cap + 3, 4);
1282 	} else {
1283 		/*
1284 		 * ICM generates UUID based on UID and fills the upper
1285 		 * two words with ones. This is not strictly following
1286 		 * UUID format but we want to be compatible with it so
1287 		 * we do the same here.
1288 		 */
1289 		uuid[0] = sw->uid & 0xffffffff;
1290 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
1291 		uuid[2] = 0xffffffff;
1292 		uuid[3] = 0xffffffff;
1293 	}
1294 
1295 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1296 }
1297 
1298 static int tb_switch_add_dma_port(struct tb_switch *sw)
1299 {
1300 	u32 status;
1301 	int ret;
1302 
1303 	switch (sw->generation) {
1304 	case 3:
1305 		break;
1306 
1307 	case 2:
1308 		/* Only root switch can be upgraded */
1309 		if (tb_route(sw))
1310 			return 0;
1311 		break;
1312 
1313 	default:
1314 		/*
1315 		 * DMA port is the only thing available when the switch
1316 		 * is in safe mode.
1317 		 */
1318 		if (!sw->safe_mode)
1319 			return 0;
1320 		break;
1321 	}
1322 
1323 	if (sw->no_nvm_upgrade)
1324 		return 0;
1325 
1326 	sw->dma_port = dma_port_alloc(sw);
1327 	if (!sw->dma_port)
1328 		return 0;
1329 
1330 	/*
1331 	 * Check status of the previous flash authentication. If there
1332 	 * is one we need to power cycle the switch in any case to make
1333 	 * it functional again.
1334 	 */
1335 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
1336 	if (ret <= 0)
1337 		return ret;
1338 
1339 	if (status) {
1340 		tb_sw_info(sw, "switch flash authentication failed\n");
1341 		tb_switch_set_uuid(sw);
1342 		nvm_set_auth_status(sw, status);
1343 	}
1344 
1345 	tb_sw_info(sw, "power cycling the switch now\n");
1346 	dma_port_power_cycle(sw->dma_port);
1347 
1348 	/*
1349 	 * We return error here which causes the switch adding failure.
1350 	 * It should appear back after power cycle is complete.
1351 	 */
1352 	return -ESHUTDOWN;
1353 }
1354 
1355 /**
1356  * tb_switch_add() - Add a switch to the domain
1357  * @sw: Switch to add
1358  *
1359  * This is the last step in adding switch to the domain. It will read
1360  * identification information from DROM and initializes ports so that
1361  * they can be used to connect other switches. The switch will be
1362  * exposed to the userspace when this function successfully returns. To
1363  * remove and release the switch, call tb_switch_remove().
1364  *
1365  * Return: %0 in case of success and negative errno in case of failure
1366  */
1367 int tb_switch_add(struct tb_switch *sw)
1368 {
1369 	int i, ret;
1370 
1371 	/*
1372 	 * Initialize DMA control port now before we read DROM. Recent
1373 	 * host controllers have more complete DROM on NVM that includes
1374 	 * vendor and model identification strings which we then expose
1375 	 * to the userspace. NVM can be accessed through DMA
1376 	 * configuration based mailbox.
1377 	 */
1378 	ret = tb_switch_add_dma_port(sw);
1379 	if (ret)
1380 		return ret;
1381 
1382 	if (!sw->safe_mode) {
1383 		/* read drom */
1384 		ret = tb_drom_read(sw);
1385 		if (ret) {
1386 			tb_sw_warn(sw, "tb_eeprom_read_rom failed\n");
1387 			return ret;
1388 		}
1389 		tb_sw_info(sw, "uid: %#llx\n", sw->uid);
1390 
1391 		tb_switch_set_uuid(sw);
1392 
1393 		for (i = 0; i <= sw->config.max_port_number; i++) {
1394 			if (sw->ports[i].disabled) {
1395 				tb_port_info(&sw->ports[i], "disabled by eeprom\n");
1396 				continue;
1397 			}
1398 			ret = tb_init_port(&sw->ports[i]);
1399 			if (ret)
1400 				return ret;
1401 		}
1402 	}
1403 
1404 	ret = device_add(&sw->dev);
1405 	if (ret)
1406 		return ret;
1407 
1408 	ret = tb_switch_nvm_add(sw);
1409 	if (ret) {
1410 		device_del(&sw->dev);
1411 		return ret;
1412 	}
1413 
1414 	pm_runtime_set_active(&sw->dev);
1415 	if (sw->rpm) {
1416 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
1417 		pm_runtime_use_autosuspend(&sw->dev);
1418 		pm_runtime_mark_last_busy(&sw->dev);
1419 		pm_runtime_enable(&sw->dev);
1420 		pm_request_autosuspend(&sw->dev);
1421 	}
1422 
1423 	return 0;
1424 }
1425 
1426 /**
1427  * tb_switch_remove() - Remove and release a switch
1428  * @sw: Switch to remove
1429  *
1430  * This will remove the switch from the domain and release it after last
1431  * reference count drops to zero. If there are switches connected below
1432  * this switch, they will be removed as well.
1433  */
1434 void tb_switch_remove(struct tb_switch *sw)
1435 {
1436 	int i;
1437 
1438 	if (sw->rpm) {
1439 		pm_runtime_get_sync(&sw->dev);
1440 		pm_runtime_disable(&sw->dev);
1441 	}
1442 
1443 	/* port 0 is the switch itself and never has a remote */
1444 	for (i = 1; i <= sw->config.max_port_number; i++) {
1445 		if (tb_is_upstream_port(&sw->ports[i]))
1446 			continue;
1447 		if (sw->ports[i].remote)
1448 			tb_switch_remove(sw->ports[i].remote->sw);
1449 		sw->ports[i].remote = NULL;
1450 		if (sw->ports[i].xdomain)
1451 			tb_xdomain_remove(sw->ports[i].xdomain);
1452 		sw->ports[i].xdomain = NULL;
1453 	}
1454 
1455 	if (!sw->is_unplugged)
1456 		tb_plug_events_active(sw, false);
1457 
1458 	tb_switch_nvm_remove(sw);
1459 	device_unregister(&sw->dev);
1460 }
1461 
1462 /**
1463  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
1464  */
1465 void tb_sw_set_unplugged(struct tb_switch *sw)
1466 {
1467 	int i;
1468 	if (sw == sw->tb->root_switch) {
1469 		tb_sw_WARN(sw, "cannot unplug root switch\n");
1470 		return;
1471 	}
1472 	if (sw->is_unplugged) {
1473 		tb_sw_WARN(sw, "is_unplugged already set\n");
1474 		return;
1475 	}
1476 	sw->is_unplugged = true;
1477 	for (i = 0; i <= sw->config.max_port_number; i++) {
1478 		if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote)
1479 			tb_sw_set_unplugged(sw->ports[i].remote->sw);
1480 	}
1481 }
1482 
1483 int tb_switch_resume(struct tb_switch *sw)
1484 {
1485 	int i, err;
1486 	tb_sw_info(sw, "resuming switch\n");
1487 
1488 	/*
1489 	 * Check for UID of the connected switches except for root
1490 	 * switch which we assume cannot be removed.
1491 	 */
1492 	if (tb_route(sw)) {
1493 		u64 uid;
1494 
1495 		err = tb_drom_read_uid_only(sw, &uid);
1496 		if (err) {
1497 			tb_sw_warn(sw, "uid read failed\n");
1498 			return err;
1499 		}
1500 		if (sw->uid != uid) {
1501 			tb_sw_info(sw,
1502 				"changed while suspended (uid %#llx -> %#llx)\n",
1503 				sw->uid, uid);
1504 			return -ENODEV;
1505 		}
1506 	}
1507 
1508 	/* upload configuration */
1509 	err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
1510 	if (err)
1511 		return err;
1512 
1513 	err = tb_plug_events_active(sw, true);
1514 	if (err)
1515 		return err;
1516 
1517 	/* check for surviving downstream switches */
1518 	for (i = 1; i <= sw->config.max_port_number; i++) {
1519 		struct tb_port *port = &sw->ports[i];
1520 		if (tb_is_upstream_port(port))
1521 			continue;
1522 		if (!port->remote)
1523 			continue;
1524 		if (tb_wait_for_port(port, true) <= 0
1525 			|| tb_switch_resume(port->remote->sw)) {
1526 			tb_port_warn(port,
1527 				     "lost during suspend, disconnecting\n");
1528 			tb_sw_set_unplugged(port->remote->sw);
1529 		}
1530 	}
1531 	return 0;
1532 }
1533 
1534 void tb_switch_suspend(struct tb_switch *sw)
1535 {
1536 	int i, err;
1537 	err = tb_plug_events_active(sw, false);
1538 	if (err)
1539 		return;
1540 
1541 	for (i = 1; i <= sw->config.max_port_number; i++) {
1542 		if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote)
1543 			tb_switch_suspend(sw->ports[i].remote->sw);
1544 	}
1545 	/*
1546 	 * TODO: invoke tb_cfg_prepare_to_sleep here? does not seem to have any
1547 	 * effect?
1548 	 */
1549 }
1550 
1551 struct tb_sw_lookup {
1552 	struct tb *tb;
1553 	u8 link;
1554 	u8 depth;
1555 	const uuid_t *uuid;
1556 	u64 route;
1557 };
1558 
1559 static int tb_switch_match(struct device *dev, void *data)
1560 {
1561 	struct tb_switch *sw = tb_to_switch(dev);
1562 	struct tb_sw_lookup *lookup = data;
1563 
1564 	if (!sw)
1565 		return 0;
1566 	if (sw->tb != lookup->tb)
1567 		return 0;
1568 
1569 	if (lookup->uuid)
1570 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
1571 
1572 	if (lookup->route) {
1573 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
1574 		       sw->config.route_hi == upper_32_bits(lookup->route);
1575 	}
1576 
1577 	/* Root switch is matched only by depth */
1578 	if (!lookup->depth)
1579 		return !sw->depth;
1580 
1581 	return sw->link == lookup->link && sw->depth == lookup->depth;
1582 }
1583 
1584 /**
1585  * tb_switch_find_by_link_depth() - Find switch by link and depth
1586  * @tb: Domain the switch belongs
1587  * @link: Link number the switch is connected
1588  * @depth: Depth of the switch in link
1589  *
1590  * Returned switch has reference count increased so the caller needs to
1591  * call tb_switch_put() when done with the switch.
1592  */
1593 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
1594 {
1595 	struct tb_sw_lookup lookup;
1596 	struct device *dev;
1597 
1598 	memset(&lookup, 0, sizeof(lookup));
1599 	lookup.tb = tb;
1600 	lookup.link = link;
1601 	lookup.depth = depth;
1602 
1603 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1604 	if (dev)
1605 		return tb_to_switch(dev);
1606 
1607 	return NULL;
1608 }
1609 
1610 /**
1611  * tb_switch_find_by_uuid() - Find switch by UUID
1612  * @tb: Domain the switch belongs
1613  * @uuid: UUID to look for
1614  *
1615  * Returned switch has reference count increased so the caller needs to
1616  * call tb_switch_put() when done with the switch.
1617  */
1618 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
1619 {
1620 	struct tb_sw_lookup lookup;
1621 	struct device *dev;
1622 
1623 	memset(&lookup, 0, sizeof(lookup));
1624 	lookup.tb = tb;
1625 	lookup.uuid = uuid;
1626 
1627 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1628 	if (dev)
1629 		return tb_to_switch(dev);
1630 
1631 	return NULL;
1632 }
1633 
1634 /**
1635  * tb_switch_find_by_route() - Find switch by route string
1636  * @tb: Domain the switch belongs
1637  * @route: Route string to look for
1638  *
1639  * Returned switch has reference count increased so the caller needs to
1640  * call tb_switch_put() when done with the switch.
1641  */
1642 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
1643 {
1644 	struct tb_sw_lookup lookup;
1645 	struct device *dev;
1646 
1647 	if (!route)
1648 		return tb_switch_get(tb->root_switch);
1649 
1650 	memset(&lookup, 0, sizeof(lookup));
1651 	lookup.tb = tb;
1652 	lookup.route = route;
1653 
1654 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1655 	if (dev)
1656 		return tb_to_switch(dev);
1657 
1658 	return NULL;
1659 }
1660 
1661 void tb_switch_exit(void)
1662 {
1663 	ida_destroy(&nvm_ida);
1664 }
1665