xref: /openbmc/linux/drivers/thunderbolt/switch.c (revision 94ab3170)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/module.h>
12 #include <linux/nvmem-provider.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sizes.h>
16 #include <linux/slab.h>
17 #include <linux/string_helpers.h>
18 
19 #include "tb.h"
20 
21 /* Switch NVM support */
22 
23 struct nvm_auth_status {
24 	struct list_head list;
25 	uuid_t uuid;
26 	u32 status;
27 };
28 
29 /*
30  * Hold NVM authentication failure status per switch This information
31  * needs to stay around even when the switch gets power cycled so we
32  * keep it separately.
33  */
34 static LIST_HEAD(nvm_auth_status_cache);
35 static DEFINE_MUTEX(nvm_auth_status_lock);
36 
37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
38 {
39 	struct nvm_auth_status *st;
40 
41 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
42 		if (uuid_equal(&st->uuid, sw->uuid))
43 			return st;
44 	}
45 
46 	return NULL;
47 }
48 
49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
50 {
51 	struct nvm_auth_status *st;
52 
53 	mutex_lock(&nvm_auth_status_lock);
54 	st = __nvm_get_auth_status(sw);
55 	mutex_unlock(&nvm_auth_status_lock);
56 
57 	*status = st ? st->status : 0;
58 }
59 
60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
61 {
62 	struct nvm_auth_status *st;
63 
64 	if (WARN_ON(!sw->uuid))
65 		return;
66 
67 	mutex_lock(&nvm_auth_status_lock);
68 	st = __nvm_get_auth_status(sw);
69 
70 	if (!st) {
71 		st = kzalloc(sizeof(*st), GFP_KERNEL);
72 		if (!st)
73 			goto unlock;
74 
75 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76 		INIT_LIST_HEAD(&st->list);
77 		list_add_tail(&st->list, &nvm_auth_status_cache);
78 	}
79 
80 	st->status = status;
81 unlock:
82 	mutex_unlock(&nvm_auth_status_lock);
83 }
84 
85 static void nvm_clear_auth_status(const struct tb_switch *sw)
86 {
87 	struct nvm_auth_status *st;
88 
89 	mutex_lock(&nvm_auth_status_lock);
90 	st = __nvm_get_auth_status(sw);
91 	if (st) {
92 		list_del(&st->list);
93 		kfree(st);
94 	}
95 	mutex_unlock(&nvm_auth_status_lock);
96 }
97 
98 static int nvm_validate_and_write(struct tb_switch *sw)
99 {
100 	unsigned int image_size;
101 	const u8 *buf;
102 	int ret;
103 
104 	ret = tb_nvm_validate(sw->nvm);
105 	if (ret)
106 		return ret;
107 
108 	ret = tb_nvm_write_headers(sw->nvm);
109 	if (ret)
110 		return ret;
111 
112 	buf = sw->nvm->buf_data_start;
113 	image_size = sw->nvm->buf_data_size;
114 
115 	if (tb_switch_is_usb4(sw))
116 		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
117 	else
118 		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
119 	if (ret)
120 		return ret;
121 
122 	sw->nvm->flushed = true;
123 	return 0;
124 }
125 
126 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
127 {
128 	int ret = 0;
129 
130 	/*
131 	 * Root switch NVM upgrade requires that we disconnect the
132 	 * existing paths first (in case it is not in safe mode
133 	 * already).
134 	 */
135 	if (!sw->safe_mode) {
136 		u32 status;
137 
138 		ret = tb_domain_disconnect_all_paths(sw->tb);
139 		if (ret)
140 			return ret;
141 		/*
142 		 * The host controller goes away pretty soon after this if
143 		 * everything goes well so getting timeout is expected.
144 		 */
145 		ret = dma_port_flash_update_auth(sw->dma_port);
146 		if (!ret || ret == -ETIMEDOUT)
147 			return 0;
148 
149 		/*
150 		 * Any error from update auth operation requires power
151 		 * cycling of the host router.
152 		 */
153 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
154 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
155 			nvm_set_auth_status(sw, status);
156 	}
157 
158 	/*
159 	 * From safe mode we can get out by just power cycling the
160 	 * switch.
161 	 */
162 	dma_port_power_cycle(sw->dma_port);
163 	return ret;
164 }
165 
166 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
167 {
168 	int ret, retries = 10;
169 
170 	ret = dma_port_flash_update_auth(sw->dma_port);
171 	switch (ret) {
172 	case 0:
173 	case -ETIMEDOUT:
174 	case -EACCES:
175 	case -EINVAL:
176 		/* Power cycle is required */
177 		break;
178 	default:
179 		return ret;
180 	}
181 
182 	/*
183 	 * Poll here for the authentication status. It takes some time
184 	 * for the device to respond (we get timeout for a while). Once
185 	 * we get response the device needs to be power cycled in order
186 	 * to the new NVM to be taken into use.
187 	 */
188 	do {
189 		u32 status;
190 
191 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
192 		if (ret < 0 && ret != -ETIMEDOUT)
193 			return ret;
194 		if (ret > 0) {
195 			if (status) {
196 				tb_sw_warn(sw, "failed to authenticate NVM\n");
197 				nvm_set_auth_status(sw, status);
198 			}
199 
200 			tb_sw_info(sw, "power cycling the switch now\n");
201 			dma_port_power_cycle(sw->dma_port);
202 			return 0;
203 		}
204 
205 		msleep(500);
206 	} while (--retries);
207 
208 	return -ETIMEDOUT;
209 }
210 
211 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
212 {
213 	struct pci_dev *root_port;
214 
215 	/*
216 	 * During host router NVM upgrade we should not allow root port to
217 	 * go into D3cold because some root ports cannot trigger PME
218 	 * itself. To be on the safe side keep the root port in D0 during
219 	 * the whole upgrade process.
220 	 */
221 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
222 	if (root_port)
223 		pm_runtime_get_noresume(&root_port->dev);
224 }
225 
226 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
227 {
228 	struct pci_dev *root_port;
229 
230 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
231 	if (root_port)
232 		pm_runtime_put(&root_port->dev);
233 }
234 
235 static inline bool nvm_readable(struct tb_switch *sw)
236 {
237 	if (tb_switch_is_usb4(sw)) {
238 		/*
239 		 * USB4 devices must support NVM operations but it is
240 		 * optional for hosts. Therefore we query the NVM sector
241 		 * size here and if it is supported assume NVM
242 		 * operations are implemented.
243 		 */
244 		return usb4_switch_nvm_sector_size(sw) > 0;
245 	}
246 
247 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
248 	return !!sw->dma_port;
249 }
250 
251 static inline bool nvm_upgradeable(struct tb_switch *sw)
252 {
253 	if (sw->no_nvm_upgrade)
254 		return false;
255 	return nvm_readable(sw);
256 }
257 
258 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
259 {
260 	int ret;
261 
262 	if (tb_switch_is_usb4(sw)) {
263 		if (auth_only) {
264 			ret = usb4_switch_nvm_set_offset(sw, 0);
265 			if (ret)
266 				return ret;
267 		}
268 		sw->nvm->authenticating = true;
269 		return usb4_switch_nvm_authenticate(sw);
270 	}
271 	if (auth_only)
272 		return -EOPNOTSUPP;
273 
274 	sw->nvm->authenticating = true;
275 	if (!tb_route(sw)) {
276 		nvm_authenticate_start_dma_port(sw);
277 		ret = nvm_authenticate_host_dma_port(sw);
278 	} else {
279 		ret = nvm_authenticate_device_dma_port(sw);
280 	}
281 
282 	return ret;
283 }
284 
285 /**
286  * tb_switch_nvm_read() - Read router NVM
287  * @sw: Router whose NVM to read
288  * @address: Start address on the NVM
289  * @buf: Buffer where the read data is copied
290  * @size: Size of the buffer in bytes
291  *
292  * Reads from router NVM and returns the requested data in @buf. Locking
293  * is up to the caller. Returns %0 in success and negative errno in case
294  * of failure.
295  */
296 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
297 		       size_t size)
298 {
299 	if (tb_switch_is_usb4(sw))
300 		return usb4_switch_nvm_read(sw, address, buf, size);
301 	return dma_port_flash_read(sw->dma_port, address, buf, size);
302 }
303 
304 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
305 {
306 	struct tb_nvm *nvm = priv;
307 	struct tb_switch *sw = tb_to_switch(nvm->dev);
308 	int ret;
309 
310 	pm_runtime_get_sync(&sw->dev);
311 
312 	if (!mutex_trylock(&sw->tb->lock)) {
313 		ret = restart_syscall();
314 		goto out;
315 	}
316 
317 	ret = tb_switch_nvm_read(sw, offset, val, bytes);
318 	mutex_unlock(&sw->tb->lock);
319 
320 out:
321 	pm_runtime_mark_last_busy(&sw->dev);
322 	pm_runtime_put_autosuspend(&sw->dev);
323 
324 	return ret;
325 }
326 
327 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
328 {
329 	struct tb_nvm *nvm = priv;
330 	struct tb_switch *sw = tb_to_switch(nvm->dev);
331 	int ret;
332 
333 	if (!mutex_trylock(&sw->tb->lock))
334 		return restart_syscall();
335 
336 	/*
337 	 * Since writing the NVM image might require some special steps,
338 	 * for example when CSS headers are written, we cache the image
339 	 * locally here and handle the special cases when the user asks
340 	 * us to authenticate the image.
341 	 */
342 	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
343 	mutex_unlock(&sw->tb->lock);
344 
345 	return ret;
346 }
347 
348 static int tb_switch_nvm_add(struct tb_switch *sw)
349 {
350 	struct tb_nvm *nvm;
351 	int ret;
352 
353 	if (!nvm_readable(sw))
354 		return 0;
355 
356 	nvm = tb_nvm_alloc(&sw->dev);
357 	if (IS_ERR(nvm)) {
358 		ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
359 		goto err_nvm;
360 	}
361 
362 	ret = tb_nvm_read_version(nvm);
363 	if (ret)
364 		goto err_nvm;
365 
366 	/*
367 	 * If the switch is in safe-mode the only accessible portion of
368 	 * the NVM is the non-active one where userspace is expected to
369 	 * write new functional NVM.
370 	 */
371 	if (!sw->safe_mode) {
372 		ret = tb_nvm_add_active(nvm, nvm_read);
373 		if (ret)
374 			goto err_nvm;
375 	}
376 
377 	if (!sw->no_nvm_upgrade) {
378 		ret = tb_nvm_add_non_active(nvm, nvm_write);
379 		if (ret)
380 			goto err_nvm;
381 	}
382 
383 	sw->nvm = nvm;
384 	return 0;
385 
386 err_nvm:
387 	tb_sw_dbg(sw, "NVM upgrade disabled\n");
388 	sw->no_nvm_upgrade = true;
389 	if (!IS_ERR(nvm))
390 		tb_nvm_free(nvm);
391 
392 	return ret;
393 }
394 
395 static void tb_switch_nvm_remove(struct tb_switch *sw)
396 {
397 	struct tb_nvm *nvm;
398 
399 	nvm = sw->nvm;
400 	sw->nvm = NULL;
401 
402 	if (!nvm)
403 		return;
404 
405 	/* Remove authentication status in case the switch is unplugged */
406 	if (!nvm->authenticating)
407 		nvm_clear_auth_status(sw);
408 
409 	tb_nvm_free(nvm);
410 }
411 
412 /* port utility functions */
413 
414 static const char *tb_port_type(const struct tb_regs_port_header *port)
415 {
416 	switch (port->type >> 16) {
417 	case 0:
418 		switch ((u8) port->type) {
419 		case 0:
420 			return "Inactive";
421 		case 1:
422 			return "Port";
423 		case 2:
424 			return "NHI";
425 		default:
426 			return "unknown";
427 		}
428 	case 0x2:
429 		return "Ethernet";
430 	case 0x8:
431 		return "SATA";
432 	case 0xe:
433 		return "DP/HDMI";
434 	case 0x10:
435 		return "PCIe";
436 	case 0x20:
437 		return "USB";
438 	default:
439 		return "unknown";
440 	}
441 }
442 
443 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
444 {
445 	const struct tb_regs_port_header *regs = &port->config;
446 
447 	tb_dbg(tb,
448 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
449 	       regs->port_number, regs->vendor_id, regs->device_id,
450 	       regs->revision, regs->thunderbolt_version, tb_port_type(regs),
451 	       regs->type);
452 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
453 	       regs->max_in_hop_id, regs->max_out_hop_id);
454 	tb_dbg(tb, "  Max counters: %d\n", regs->max_counters);
455 	tb_dbg(tb, "  NFC Credits: %#x\n", regs->nfc_credits);
456 	tb_dbg(tb, "  Credits (total/control): %u/%u\n", port->total_credits,
457 	       port->ctl_credits);
458 }
459 
460 /**
461  * tb_port_state() - get connectedness state of a port
462  * @port: the port to check
463  *
464  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
465  *
466  * Return: Returns an enum tb_port_state on success or an error code on failure.
467  */
468 int tb_port_state(struct tb_port *port)
469 {
470 	struct tb_cap_phy phy;
471 	int res;
472 	if (port->cap_phy == 0) {
473 		tb_port_WARN(port, "does not have a PHY\n");
474 		return -EINVAL;
475 	}
476 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
477 	if (res)
478 		return res;
479 	return phy.state;
480 }
481 
482 /**
483  * tb_wait_for_port() - wait for a port to become ready
484  * @port: Port to wait
485  * @wait_if_unplugged: Wait also when port is unplugged
486  *
487  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
488  * wait_if_unplugged is set then we also wait if the port is in state
489  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
490  * switch resume). Otherwise we only wait if a device is registered but the link
491  * has not yet been established.
492  *
493  * Return: Returns an error code on failure. Returns 0 if the port is not
494  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
495  * if the port is connected and in state TB_PORT_UP.
496  */
497 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
498 {
499 	int retries = 10;
500 	int state;
501 	if (!port->cap_phy) {
502 		tb_port_WARN(port, "does not have PHY\n");
503 		return -EINVAL;
504 	}
505 	if (tb_is_upstream_port(port)) {
506 		tb_port_WARN(port, "is the upstream port\n");
507 		return -EINVAL;
508 	}
509 
510 	while (retries--) {
511 		state = tb_port_state(port);
512 		switch (state) {
513 		case TB_PORT_DISABLED:
514 			tb_port_dbg(port, "is disabled (state: 0)\n");
515 			return 0;
516 
517 		case TB_PORT_UNPLUGGED:
518 			if (wait_if_unplugged) {
519 				/* used during resume */
520 				tb_port_dbg(port,
521 					    "is unplugged (state: 7), retrying...\n");
522 				msleep(100);
523 				break;
524 			}
525 			tb_port_dbg(port, "is unplugged (state: 7)\n");
526 			return 0;
527 
528 		case TB_PORT_UP:
529 		case TB_PORT_TX_CL0S:
530 		case TB_PORT_RX_CL0S:
531 		case TB_PORT_CL1:
532 		case TB_PORT_CL2:
533 			tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
534 			return 1;
535 
536 		default:
537 			if (state < 0)
538 				return state;
539 
540 			/*
541 			 * After plug-in the state is TB_PORT_CONNECTING. Give it some
542 			 * time.
543 			 */
544 			tb_port_dbg(port,
545 				    "is connected, link is not up (state: %d), retrying...\n",
546 				    state);
547 			msleep(100);
548 		}
549 
550 	}
551 	tb_port_warn(port,
552 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
553 	return 0;
554 }
555 
556 /**
557  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
558  * @port: Port to add/remove NFC credits
559  * @credits: Credits to add/remove
560  *
561  * Change the number of NFC credits allocated to @port by @credits. To remove
562  * NFC credits pass a negative amount of credits.
563  *
564  * Return: Returns 0 on success or an error code on failure.
565  */
566 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
567 {
568 	u32 nfc_credits;
569 
570 	if (credits == 0 || port->sw->is_unplugged)
571 		return 0;
572 
573 	/*
574 	 * USB4 restricts programming NFC buffers to lane adapters only
575 	 * so skip other ports.
576 	 */
577 	if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
578 		return 0;
579 
580 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
581 	if (credits < 0)
582 		credits = max_t(int, -nfc_credits, credits);
583 
584 	nfc_credits += credits;
585 
586 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
587 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
588 
589 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
590 	port->config.nfc_credits |= nfc_credits;
591 
592 	return tb_port_write(port, &port->config.nfc_credits,
593 			     TB_CFG_PORT, ADP_CS_4, 1);
594 }
595 
596 /**
597  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
598  * @port: Port whose counters to clear
599  * @counter: Counter index to clear
600  *
601  * Return: Returns 0 on success or an error code on failure.
602  */
603 int tb_port_clear_counter(struct tb_port *port, int counter)
604 {
605 	u32 zero[3] = { 0, 0, 0 };
606 	tb_port_dbg(port, "clearing counter %d\n", counter);
607 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
608 }
609 
610 /**
611  * tb_port_unlock() - Unlock downstream port
612  * @port: Port to unlock
613  *
614  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
615  * downstream router accessible for CM.
616  */
617 int tb_port_unlock(struct tb_port *port)
618 {
619 	if (tb_switch_is_icm(port->sw))
620 		return 0;
621 	if (!tb_port_is_null(port))
622 		return -EINVAL;
623 	if (tb_switch_is_usb4(port->sw))
624 		return usb4_port_unlock(port);
625 	return 0;
626 }
627 
628 static int __tb_port_enable(struct tb_port *port, bool enable)
629 {
630 	int ret;
631 	u32 phy;
632 
633 	if (!tb_port_is_null(port))
634 		return -EINVAL;
635 
636 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
637 			   port->cap_phy + LANE_ADP_CS_1, 1);
638 	if (ret)
639 		return ret;
640 
641 	if (enable)
642 		phy &= ~LANE_ADP_CS_1_LD;
643 	else
644 		phy |= LANE_ADP_CS_1_LD;
645 
646 
647 	ret = tb_port_write(port, &phy, TB_CFG_PORT,
648 			    port->cap_phy + LANE_ADP_CS_1, 1);
649 	if (ret)
650 		return ret;
651 
652 	tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
653 	return 0;
654 }
655 
656 /**
657  * tb_port_enable() - Enable lane adapter
658  * @port: Port to enable (can be %NULL)
659  *
660  * This is used for lane 0 and 1 adapters to enable it.
661  */
662 int tb_port_enable(struct tb_port *port)
663 {
664 	return __tb_port_enable(port, true);
665 }
666 
667 /**
668  * tb_port_disable() - Disable lane adapter
669  * @port: Port to disable (can be %NULL)
670  *
671  * This is used for lane 0 and 1 adapters to disable it.
672  */
673 int tb_port_disable(struct tb_port *port)
674 {
675 	return __tb_port_enable(port, false);
676 }
677 
678 static int tb_port_reset(struct tb_port *port)
679 {
680 	if (tb_switch_is_usb4(port->sw))
681 		return port->cap_usb4 ? usb4_port_reset(port) : 0;
682 	return tb_lc_reset_port(port);
683 }
684 
685 /*
686  * tb_init_port() - initialize a port
687  *
688  * This is a helper method for tb_switch_alloc. Does not check or initialize
689  * any downstream switches.
690  *
691  * Return: Returns 0 on success or an error code on failure.
692  */
693 static int tb_init_port(struct tb_port *port)
694 {
695 	int res;
696 	int cap;
697 
698 	INIT_LIST_HEAD(&port->list);
699 
700 	/* Control adapter does not have configuration space */
701 	if (!port->port)
702 		return 0;
703 
704 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
705 	if (res) {
706 		if (res == -ENODEV) {
707 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
708 			       port->port);
709 			port->disabled = true;
710 			return 0;
711 		}
712 		return res;
713 	}
714 
715 	/* Port 0 is the switch itself and has no PHY. */
716 	if (port->config.type == TB_TYPE_PORT) {
717 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
718 
719 		if (cap > 0)
720 			port->cap_phy = cap;
721 		else
722 			tb_port_WARN(port, "non switch port without a PHY\n");
723 
724 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
725 		if (cap > 0)
726 			port->cap_usb4 = cap;
727 
728 		/*
729 		 * USB4 ports the buffers allocated for the control path
730 		 * can be read from the path config space. Legacy
731 		 * devices we use hard-coded value.
732 		 */
733 		if (port->cap_usb4) {
734 			struct tb_regs_hop hop;
735 
736 			if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
737 				port->ctl_credits = hop.initial_credits;
738 		}
739 		if (!port->ctl_credits)
740 			port->ctl_credits = 2;
741 
742 	} else {
743 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
744 		if (cap > 0)
745 			port->cap_adap = cap;
746 	}
747 
748 	port->total_credits =
749 		(port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
750 		ADP_CS_4_TOTAL_BUFFERS_SHIFT;
751 
752 	tb_dump_port(port->sw->tb, port);
753 	return 0;
754 }
755 
756 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
757 			       int max_hopid)
758 {
759 	int port_max_hopid;
760 	struct ida *ida;
761 
762 	if (in) {
763 		port_max_hopid = port->config.max_in_hop_id;
764 		ida = &port->in_hopids;
765 	} else {
766 		port_max_hopid = port->config.max_out_hop_id;
767 		ida = &port->out_hopids;
768 	}
769 
770 	/*
771 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
772 	 * reserved.
773 	 */
774 	if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
775 		min_hopid = TB_PATH_MIN_HOPID;
776 
777 	if (max_hopid < 0 || max_hopid > port_max_hopid)
778 		max_hopid = port_max_hopid;
779 
780 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
781 }
782 
783 /**
784  * tb_port_alloc_in_hopid() - Allocate input HopID from port
785  * @port: Port to allocate HopID for
786  * @min_hopid: Minimum acceptable input HopID
787  * @max_hopid: Maximum acceptable input HopID
788  *
789  * Return: HopID between @min_hopid and @max_hopid or negative errno in
790  * case of error.
791  */
792 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
793 {
794 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
795 }
796 
797 /**
798  * tb_port_alloc_out_hopid() - Allocate output HopID from port
799  * @port: Port to allocate HopID for
800  * @min_hopid: Minimum acceptable output HopID
801  * @max_hopid: Maximum acceptable output HopID
802  *
803  * Return: HopID between @min_hopid and @max_hopid or negative errno in
804  * case of error.
805  */
806 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
807 {
808 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
809 }
810 
811 /**
812  * tb_port_release_in_hopid() - Release allocated input HopID from port
813  * @port: Port whose HopID to release
814  * @hopid: HopID to release
815  */
816 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
817 {
818 	ida_simple_remove(&port->in_hopids, hopid);
819 }
820 
821 /**
822  * tb_port_release_out_hopid() - Release allocated output HopID from port
823  * @port: Port whose HopID to release
824  * @hopid: HopID to release
825  */
826 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
827 {
828 	ida_simple_remove(&port->out_hopids, hopid);
829 }
830 
831 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
832 					  const struct tb_switch *sw)
833 {
834 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
835 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
836 }
837 
838 /**
839  * tb_next_port_on_path() - Return next port for given port on a path
840  * @start: Start port of the walk
841  * @end: End port of the walk
842  * @prev: Previous port (%NULL if this is the first)
843  *
844  * This function can be used to walk from one port to another if they
845  * are connected through zero or more switches. If the @prev is dual
846  * link port, the function follows that link and returns another end on
847  * that same link.
848  *
849  * If the @end port has been reached, return %NULL.
850  *
851  * Domain tb->lock must be held when this function is called.
852  */
853 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
854 				     struct tb_port *prev)
855 {
856 	struct tb_port *next;
857 
858 	if (!prev)
859 		return start;
860 
861 	if (prev->sw == end->sw) {
862 		if (prev == end)
863 			return NULL;
864 		return end;
865 	}
866 
867 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
868 		next = tb_port_at(tb_route(end->sw), prev->sw);
869 		/* Walk down the topology if next == prev */
870 		if (prev->remote &&
871 		    (next == prev || next->dual_link_port == prev))
872 			next = prev->remote;
873 	} else {
874 		if (tb_is_upstream_port(prev)) {
875 			next = prev->remote;
876 		} else {
877 			next = tb_upstream_port(prev->sw);
878 			/*
879 			 * Keep the same link if prev and next are both
880 			 * dual link ports.
881 			 */
882 			if (next->dual_link_port &&
883 			    next->link_nr != prev->link_nr) {
884 				next = next->dual_link_port;
885 			}
886 		}
887 	}
888 
889 	return next != prev ? next : NULL;
890 }
891 
892 /**
893  * tb_port_get_link_speed() - Get current link speed
894  * @port: Port to check (USB4 or CIO)
895  *
896  * Returns link speed in Gb/s or negative errno in case of failure.
897  */
898 int tb_port_get_link_speed(struct tb_port *port)
899 {
900 	u32 val, speed;
901 	int ret;
902 
903 	if (!port->cap_phy)
904 		return -EINVAL;
905 
906 	ret = tb_port_read(port, &val, TB_CFG_PORT,
907 			   port->cap_phy + LANE_ADP_CS_1, 1);
908 	if (ret)
909 		return ret;
910 
911 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
912 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
913 
914 	switch (speed) {
915 	case LANE_ADP_CS_1_CURRENT_SPEED_GEN4:
916 		return 40;
917 	case LANE_ADP_CS_1_CURRENT_SPEED_GEN3:
918 		return 20;
919 	default:
920 		return 10;
921 	}
922 }
923 
924 /**
925  * tb_port_get_link_width() - Get current link width
926  * @port: Port to check (USB4 or CIO)
927  *
928  * Returns link width. Return the link width as encoded in &enum
929  * tb_link_width or negative errno in case of failure.
930  */
931 int tb_port_get_link_width(struct tb_port *port)
932 {
933 	u32 val;
934 	int ret;
935 
936 	if (!port->cap_phy)
937 		return -EINVAL;
938 
939 	ret = tb_port_read(port, &val, TB_CFG_PORT,
940 			   port->cap_phy + LANE_ADP_CS_1, 1);
941 	if (ret)
942 		return ret;
943 
944 	/* Matches the values in enum tb_link_width */
945 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
946 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
947 }
948 
949 static bool tb_port_is_width_supported(struct tb_port *port,
950 				       unsigned int width_mask)
951 {
952 	u32 phy, widths;
953 	int ret;
954 
955 	if (!port->cap_phy)
956 		return false;
957 
958 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
959 			   port->cap_phy + LANE_ADP_CS_0, 1);
960 	if (ret)
961 		return false;
962 
963 	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
964 		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
965 
966 	return widths & width_mask;
967 }
968 
969 static bool is_gen4_link(struct tb_port *port)
970 {
971 	return tb_port_get_link_speed(port) > 20;
972 }
973 
974 /**
975  * tb_port_set_link_width() - Set target link width of the lane adapter
976  * @port: Lane adapter
977  * @width: Target link width
978  *
979  * Sets the target link width of the lane adapter to @width. Does not
980  * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
981  *
982  * Return: %0 in case of success and negative errno in case of error
983  */
984 int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width)
985 {
986 	u32 val;
987 	int ret;
988 
989 	if (!port->cap_phy)
990 		return -EINVAL;
991 
992 	ret = tb_port_read(port, &val, TB_CFG_PORT,
993 			   port->cap_phy + LANE_ADP_CS_1, 1);
994 	if (ret)
995 		return ret;
996 
997 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
998 	switch (width) {
999 	case TB_LINK_WIDTH_SINGLE:
1000 		/* Gen 4 link cannot be single */
1001 		if (is_gen4_link(port))
1002 			return -EOPNOTSUPP;
1003 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1004 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1005 		break;
1006 	case TB_LINK_WIDTH_DUAL:
1007 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1008 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1009 		break;
1010 	default:
1011 		return -EINVAL;
1012 	}
1013 
1014 	return tb_port_write(port, &val, TB_CFG_PORT,
1015 			     port->cap_phy + LANE_ADP_CS_1, 1);
1016 }
1017 
1018 /**
1019  * tb_port_set_lane_bonding() - Enable/disable lane bonding
1020  * @port: Lane adapter
1021  * @bonding: enable/disable bonding
1022  *
1023  * Enables or disables lane bonding. This should be called after target
1024  * link width has been set (tb_port_set_link_width()). Note in most
1025  * cases one should use tb_port_lane_bonding_enable() instead to enable
1026  * lane bonding.
1027  *
1028  * Return: %0 in case of success and negative errno in case of error
1029  */
1030 static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1031 {
1032 	u32 val;
1033 	int ret;
1034 
1035 	if (!port->cap_phy)
1036 		return -EINVAL;
1037 
1038 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1039 			   port->cap_phy + LANE_ADP_CS_1, 1);
1040 	if (ret)
1041 		return ret;
1042 
1043 	if (bonding)
1044 		val |= LANE_ADP_CS_1_LB;
1045 	else
1046 		val &= ~LANE_ADP_CS_1_LB;
1047 
1048 	return tb_port_write(port, &val, TB_CFG_PORT,
1049 			     port->cap_phy + LANE_ADP_CS_1, 1);
1050 }
1051 
1052 /**
1053  * tb_port_lane_bonding_enable() - Enable bonding on port
1054  * @port: port to enable
1055  *
1056  * Enable bonding by setting the link width of the port and the other
1057  * port in case of dual link port. Does not wait for the link to
1058  * actually reach the bonded state so caller needs to call
1059  * tb_port_wait_for_link_width() before enabling any paths through the
1060  * link to make sure the link is in expected state.
1061  *
1062  * Return: %0 in case of success and negative errno in case of error
1063  */
1064 int tb_port_lane_bonding_enable(struct tb_port *port)
1065 {
1066 	enum tb_link_width width;
1067 	int ret;
1068 
1069 	/*
1070 	 * Enable lane bonding for both links if not already enabled by
1071 	 * for example the boot firmware.
1072 	 */
1073 	width = tb_port_get_link_width(port);
1074 	if (width == TB_LINK_WIDTH_SINGLE) {
1075 		ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL);
1076 		if (ret)
1077 			goto err_lane0;
1078 	}
1079 
1080 	width = tb_port_get_link_width(port->dual_link_port);
1081 	if (width == TB_LINK_WIDTH_SINGLE) {
1082 		ret = tb_port_set_link_width(port->dual_link_port,
1083 					     TB_LINK_WIDTH_DUAL);
1084 		if (ret)
1085 			goto err_lane0;
1086 	}
1087 
1088 	/*
1089 	 * Only set bonding if the link was not already bonded. This
1090 	 * avoids the lane adapter to re-enter bonding state.
1091 	 */
1092 	if (width == TB_LINK_WIDTH_SINGLE && !tb_is_upstream_port(port)) {
1093 		ret = tb_port_set_lane_bonding(port, true);
1094 		if (ret)
1095 			goto err_lane1;
1096 	}
1097 
1098 	/*
1099 	 * When lane 0 bonding is set it will affect lane 1 too so
1100 	 * update both.
1101 	 */
1102 	port->bonded = true;
1103 	port->dual_link_port->bonded = true;
1104 
1105 	return 0;
1106 
1107 err_lane1:
1108 	tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1109 err_lane0:
1110 	tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1111 
1112 	return ret;
1113 }
1114 
1115 /**
1116  * tb_port_lane_bonding_disable() - Disable bonding on port
1117  * @port: port to disable
1118  *
1119  * Disable bonding by setting the link width of the port and the
1120  * other port in case of dual link port.
1121  */
1122 void tb_port_lane_bonding_disable(struct tb_port *port)
1123 {
1124 	tb_port_set_lane_bonding(port, false);
1125 	tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1126 	tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1127 	port->dual_link_port->bonded = false;
1128 	port->bonded = false;
1129 }
1130 
1131 /**
1132  * tb_port_wait_for_link_width() - Wait until link reaches specific width
1133  * @port: Port to wait for
1134  * @width_mask: Expected link width mask
1135  * @timeout_msec: Timeout in ms how long to wait
1136  *
1137  * Should be used after both ends of the link have been bonded (or
1138  * bonding has been disabled) to wait until the link actually reaches
1139  * the expected state. Returns %-ETIMEDOUT if the width was not reached
1140  * within the given timeout, %0 if it did. Can be passed a mask of
1141  * expected widths and succeeds if any of the widths is reached.
1142  */
1143 int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width_mask,
1144 				int timeout_msec)
1145 {
1146 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1147 	int ret;
1148 
1149 	/* Gen 4 link does not support single lane */
1150 	if ((width_mask & TB_LINK_WIDTH_SINGLE) && is_gen4_link(port))
1151 		return -EOPNOTSUPP;
1152 
1153 	do {
1154 		ret = tb_port_get_link_width(port);
1155 		if (ret < 0) {
1156 			/*
1157 			 * Sometimes we get port locked error when
1158 			 * polling the lanes so we can ignore it and
1159 			 * retry.
1160 			 */
1161 			if (ret != -EACCES)
1162 				return ret;
1163 		} else if (ret & width_mask) {
1164 			return 0;
1165 		}
1166 
1167 		usleep_range(1000, 2000);
1168 	} while (ktime_before(ktime_get(), timeout));
1169 
1170 	return -ETIMEDOUT;
1171 }
1172 
1173 static int tb_port_do_update_credits(struct tb_port *port)
1174 {
1175 	u32 nfc_credits;
1176 	int ret;
1177 
1178 	ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1179 	if (ret)
1180 		return ret;
1181 
1182 	if (nfc_credits != port->config.nfc_credits) {
1183 		u32 total;
1184 
1185 		total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1186 			ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1187 
1188 		tb_port_dbg(port, "total credits changed %u -> %u\n",
1189 			    port->total_credits, total);
1190 
1191 		port->config.nfc_credits = nfc_credits;
1192 		port->total_credits = total;
1193 	}
1194 
1195 	return 0;
1196 }
1197 
1198 /**
1199  * tb_port_update_credits() - Re-read port total credits
1200  * @port: Port to update
1201  *
1202  * After the link is bonded (or bonding was disabled) the port total
1203  * credits may change, so this function needs to be called to re-read
1204  * the credits. Updates also the second lane adapter.
1205  */
1206 int tb_port_update_credits(struct tb_port *port)
1207 {
1208 	int ret;
1209 
1210 	ret = tb_port_do_update_credits(port);
1211 	if (ret)
1212 		return ret;
1213 	return tb_port_do_update_credits(port->dual_link_port);
1214 }
1215 
1216 static int tb_port_start_lane_initialization(struct tb_port *port)
1217 {
1218 	int ret;
1219 
1220 	if (tb_switch_is_usb4(port->sw))
1221 		return 0;
1222 
1223 	ret = tb_lc_start_lane_initialization(port);
1224 	return ret == -EINVAL ? 0 : ret;
1225 }
1226 
1227 /*
1228  * Returns true if the port had something (router, XDomain) connected
1229  * before suspend.
1230  */
1231 static bool tb_port_resume(struct tb_port *port)
1232 {
1233 	bool has_remote = tb_port_has_remote(port);
1234 
1235 	if (port->usb4) {
1236 		usb4_port_device_resume(port->usb4);
1237 	} else if (!has_remote) {
1238 		/*
1239 		 * For disconnected downstream lane adapters start lane
1240 		 * initialization now so we detect future connects.
1241 		 *
1242 		 * For XDomain start the lane initialzation now so the
1243 		 * link gets re-established.
1244 		 *
1245 		 * This is only needed for non-USB4 ports.
1246 		 */
1247 		if (!tb_is_upstream_port(port) || port->xdomain)
1248 			tb_port_start_lane_initialization(port);
1249 	}
1250 
1251 	return has_remote || port->xdomain;
1252 }
1253 
1254 /**
1255  * tb_port_is_enabled() - Is the adapter port enabled
1256  * @port: Port to check
1257  */
1258 bool tb_port_is_enabled(struct tb_port *port)
1259 {
1260 	switch (port->config.type) {
1261 	case TB_TYPE_PCIE_UP:
1262 	case TB_TYPE_PCIE_DOWN:
1263 		return tb_pci_port_is_enabled(port);
1264 
1265 	case TB_TYPE_DP_HDMI_IN:
1266 	case TB_TYPE_DP_HDMI_OUT:
1267 		return tb_dp_port_is_enabled(port);
1268 
1269 	case TB_TYPE_USB3_UP:
1270 	case TB_TYPE_USB3_DOWN:
1271 		return tb_usb3_port_is_enabled(port);
1272 
1273 	default:
1274 		return false;
1275 	}
1276 }
1277 
1278 /**
1279  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1280  * @port: USB3 adapter port to check
1281  */
1282 bool tb_usb3_port_is_enabled(struct tb_port *port)
1283 {
1284 	u32 data;
1285 
1286 	if (tb_port_read(port, &data, TB_CFG_PORT,
1287 			 port->cap_adap + ADP_USB3_CS_0, 1))
1288 		return false;
1289 
1290 	return !!(data & ADP_USB3_CS_0_PE);
1291 }
1292 
1293 /**
1294  * tb_usb3_port_enable() - Enable USB3 adapter port
1295  * @port: USB3 adapter port to enable
1296  * @enable: Enable/disable the USB3 adapter
1297  */
1298 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1299 {
1300 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1301 			  : ADP_USB3_CS_0_V;
1302 
1303 	if (!port->cap_adap)
1304 		return -ENXIO;
1305 	return tb_port_write(port, &word, TB_CFG_PORT,
1306 			     port->cap_adap + ADP_USB3_CS_0, 1);
1307 }
1308 
1309 /**
1310  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1311  * @port: PCIe port to check
1312  */
1313 bool tb_pci_port_is_enabled(struct tb_port *port)
1314 {
1315 	u32 data;
1316 
1317 	if (tb_port_read(port, &data, TB_CFG_PORT,
1318 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1319 		return false;
1320 
1321 	return !!(data & ADP_PCIE_CS_0_PE);
1322 }
1323 
1324 /**
1325  * tb_pci_port_enable() - Enable PCIe adapter port
1326  * @port: PCIe port to enable
1327  * @enable: Enable/disable the PCIe adapter
1328  */
1329 int tb_pci_port_enable(struct tb_port *port, bool enable)
1330 {
1331 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1332 	if (!port->cap_adap)
1333 		return -ENXIO;
1334 	return tb_port_write(port, &word, TB_CFG_PORT,
1335 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1336 }
1337 
1338 /**
1339  * tb_dp_port_hpd_is_active() - Is HPD already active
1340  * @port: DP out port to check
1341  *
1342  * Checks if the DP OUT adapter port has HDP bit already set.
1343  */
1344 int tb_dp_port_hpd_is_active(struct tb_port *port)
1345 {
1346 	u32 data;
1347 	int ret;
1348 
1349 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1350 			   port->cap_adap + ADP_DP_CS_2, 1);
1351 	if (ret)
1352 		return ret;
1353 
1354 	return !!(data & ADP_DP_CS_2_HDP);
1355 }
1356 
1357 /**
1358  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1359  * @port: Port to clear HPD
1360  *
1361  * If the DP IN port has HDP set, this function can be used to clear it.
1362  */
1363 int tb_dp_port_hpd_clear(struct tb_port *port)
1364 {
1365 	u32 data;
1366 	int ret;
1367 
1368 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1369 			   port->cap_adap + ADP_DP_CS_3, 1);
1370 	if (ret)
1371 		return ret;
1372 
1373 	data |= ADP_DP_CS_3_HDPC;
1374 	return tb_port_write(port, &data, TB_CFG_PORT,
1375 			     port->cap_adap + ADP_DP_CS_3, 1);
1376 }
1377 
1378 /**
1379  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1380  * @port: DP IN/OUT port to set hops
1381  * @video: Video Hop ID
1382  * @aux_tx: AUX TX Hop ID
1383  * @aux_rx: AUX RX Hop ID
1384  *
1385  * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1386  * router DP adapters too but does not program the values as the fields
1387  * are read-only.
1388  */
1389 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1390 			unsigned int aux_tx, unsigned int aux_rx)
1391 {
1392 	u32 data[2];
1393 	int ret;
1394 
1395 	if (tb_switch_is_usb4(port->sw))
1396 		return 0;
1397 
1398 	ret = tb_port_read(port, data, TB_CFG_PORT,
1399 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1400 	if (ret)
1401 		return ret;
1402 
1403 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1404 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1405 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1406 
1407 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1408 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1409 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1410 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1411 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1412 
1413 	return tb_port_write(port, data, TB_CFG_PORT,
1414 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1415 }
1416 
1417 /**
1418  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1419  * @port: DP adapter port to check
1420  */
1421 bool tb_dp_port_is_enabled(struct tb_port *port)
1422 {
1423 	u32 data[2];
1424 
1425 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1426 			 ARRAY_SIZE(data)))
1427 		return false;
1428 
1429 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1430 }
1431 
1432 /**
1433  * tb_dp_port_enable() - Enables/disables DP paths of a port
1434  * @port: DP IN/OUT port
1435  * @enable: Enable/disable DP path
1436  *
1437  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1438  * calling this function.
1439  */
1440 int tb_dp_port_enable(struct tb_port *port, bool enable)
1441 {
1442 	u32 data[2];
1443 	int ret;
1444 
1445 	ret = tb_port_read(port, data, TB_CFG_PORT,
1446 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1447 	if (ret)
1448 		return ret;
1449 
1450 	if (enable)
1451 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1452 	else
1453 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1454 
1455 	return tb_port_write(port, data, TB_CFG_PORT,
1456 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1457 }
1458 
1459 /* switch utility functions */
1460 
1461 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1462 {
1463 	switch (sw->generation) {
1464 	case 1:
1465 		return "Thunderbolt 1";
1466 	case 2:
1467 		return "Thunderbolt 2";
1468 	case 3:
1469 		return "Thunderbolt 3";
1470 	case 4:
1471 		return "USB4";
1472 	default:
1473 		return "Unknown";
1474 	}
1475 }
1476 
1477 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1478 {
1479 	const struct tb_regs_switch_header *regs = &sw->config;
1480 
1481 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1482 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1483 	       regs->revision, regs->thunderbolt_version);
1484 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1485 	tb_dbg(tb, "  Config:\n");
1486 	tb_dbg(tb,
1487 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1488 	       regs->upstream_port_number, regs->depth,
1489 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1490 	       regs->enabled, regs->plug_events_delay);
1491 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1492 	       regs->__unknown1, regs->__unknown4);
1493 }
1494 
1495 static int tb_switch_reset_host(struct tb_switch *sw)
1496 {
1497 	if (sw->generation > 1) {
1498 		struct tb_port *port;
1499 
1500 		tb_switch_for_each_port(sw, port) {
1501 			int i, ret;
1502 
1503 			/*
1504 			 * For lane adapters we issue downstream port
1505 			 * reset and clear up path config spaces.
1506 			 *
1507 			 * For protocol adapters we disable the path and
1508 			 * clear path config space one by one (from 8 to
1509 			 * Max Input HopID of the adapter).
1510 			 */
1511 			if (tb_port_is_null(port) && !tb_is_upstream_port(port)) {
1512 				ret = tb_port_reset(port);
1513 				if (ret)
1514 					return ret;
1515 			} else if (tb_port_is_usb3_down(port) ||
1516 				   tb_port_is_usb3_up(port)) {
1517 				tb_usb3_port_enable(port, false);
1518 			} else if (tb_port_is_dpin(port) ||
1519 				   tb_port_is_dpout(port)) {
1520 				tb_dp_port_enable(port, false);
1521 			} else if (tb_port_is_pcie_down(port) ||
1522 				   tb_port_is_pcie_up(port)) {
1523 				tb_pci_port_enable(port, false);
1524 			} else {
1525 				continue;
1526 			}
1527 
1528 			/* Cleanup path config space of protocol adapter */
1529 			for (i = TB_PATH_MIN_HOPID;
1530 			     i <= port->config.max_in_hop_id; i++) {
1531 				ret = tb_path_deactivate_hop(port, i);
1532 				if (ret)
1533 					return ret;
1534 			}
1535 		}
1536 	} else {
1537 		struct tb_cfg_result res;
1538 
1539 		/* Thunderbolt 1 uses the "reset" config space packet */
1540 		res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1541 				      TB_CFG_SWITCH, 2, 2);
1542 		if (res.err)
1543 			return res.err;
1544 		res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1545 		if (res.err > 0)
1546 			return -EIO;
1547 		else if (res.err < 0)
1548 			return res.err;
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 static int tb_switch_reset_device(struct tb_switch *sw)
1555 {
1556 	return tb_port_reset(tb_switch_downstream_port(sw));
1557 }
1558 
1559 static bool tb_switch_enumerated(struct tb_switch *sw)
1560 {
1561 	u32 val;
1562 	int ret;
1563 
1564 	/*
1565 	 * Read directly from the hardware because we use this also
1566 	 * during system sleep where sw->config.enabled is already set
1567 	 * by us.
1568 	 */
1569 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_3, 1);
1570 	if (ret)
1571 		return false;
1572 
1573 	return !!(val & ROUTER_CS_3_V);
1574 }
1575 
1576 /**
1577  * tb_switch_reset() - Perform reset to the router
1578  * @sw: Router to reset
1579  *
1580  * Issues reset to the router @sw. Can be used for any router. For host
1581  * routers, resets all the downstream ports and cleans up path config
1582  * spaces accordingly. For device routers issues downstream port reset
1583  * through the parent router, so as side effect there will be unplug
1584  * soon after this is finished.
1585  *
1586  * If the router is not enumerated does nothing.
1587  *
1588  * Returns %0 on success or negative errno in case of failure.
1589  */
1590 int tb_switch_reset(struct tb_switch *sw)
1591 {
1592 	int ret;
1593 
1594 	/*
1595 	 * We cannot access the port config spaces unless the router is
1596 	 * already enumerated. If the router is not enumerated it is
1597 	 * equal to being reset so we can skip that here.
1598 	 */
1599 	if (!tb_switch_enumerated(sw))
1600 		return 0;
1601 
1602 	tb_sw_dbg(sw, "resetting\n");
1603 
1604 	if (tb_route(sw))
1605 		ret = tb_switch_reset_device(sw);
1606 	else
1607 		ret = tb_switch_reset_host(sw);
1608 
1609 	if (ret)
1610 		tb_sw_warn(sw, "failed to reset\n");
1611 
1612 	return ret;
1613 }
1614 
1615 /**
1616  * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1617  * @sw: Router to read the offset value from
1618  * @offset: Offset in the router config space to read from
1619  * @bit: Bit mask in the offset to wait for
1620  * @value: Value of the bits to wait for
1621  * @timeout_msec: Timeout in ms how long to wait
1622  *
1623  * Wait till the specified bits in specified offset reach specified value.
1624  * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1625  * within the given timeout or a negative errno in case of failure.
1626  */
1627 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1628 			   u32 value, int timeout_msec)
1629 {
1630 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1631 
1632 	do {
1633 		u32 val;
1634 		int ret;
1635 
1636 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1637 		if (ret)
1638 			return ret;
1639 
1640 		if ((val & bit) == value)
1641 			return 0;
1642 
1643 		usleep_range(50, 100);
1644 	} while (ktime_before(ktime_get(), timeout));
1645 
1646 	return -ETIMEDOUT;
1647 }
1648 
1649 /*
1650  * tb_plug_events_active() - enable/disable plug events on a switch
1651  *
1652  * Also configures a sane plug_events_delay of 255ms.
1653  *
1654  * Return: Returns 0 on success or an error code on failure.
1655  */
1656 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1657 {
1658 	u32 data;
1659 	int res;
1660 
1661 	if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1662 		return 0;
1663 
1664 	sw->config.plug_events_delay = 0xff;
1665 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1666 	if (res)
1667 		return res;
1668 
1669 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1670 	if (res)
1671 		return res;
1672 
1673 	if (active) {
1674 		data = data & 0xFFFFFF83;
1675 		switch (sw->config.device_id) {
1676 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1677 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1678 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1679 			break;
1680 		default:
1681 			/*
1682 			 * Skip Alpine Ridge, it needs to have vendor
1683 			 * specific USB hotplug event enabled for the
1684 			 * internal xHCI to work.
1685 			 */
1686 			if (!tb_switch_is_alpine_ridge(sw))
1687 				data |= TB_PLUG_EVENTS_USB_DISABLE;
1688 		}
1689 	} else {
1690 		data = data | 0x7c;
1691 	}
1692 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1693 			   sw->cap_plug_events + 1, 1);
1694 }
1695 
1696 static ssize_t authorized_show(struct device *dev,
1697 			       struct device_attribute *attr,
1698 			       char *buf)
1699 {
1700 	struct tb_switch *sw = tb_to_switch(dev);
1701 
1702 	return sysfs_emit(buf, "%u\n", sw->authorized);
1703 }
1704 
1705 static int disapprove_switch(struct device *dev, void *not_used)
1706 {
1707 	char *envp[] = { "AUTHORIZED=0", NULL };
1708 	struct tb_switch *sw;
1709 
1710 	sw = tb_to_switch(dev);
1711 	if (sw && sw->authorized) {
1712 		int ret;
1713 
1714 		/* First children */
1715 		ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1716 		if (ret)
1717 			return ret;
1718 
1719 		ret = tb_domain_disapprove_switch(sw->tb, sw);
1720 		if (ret)
1721 			return ret;
1722 
1723 		sw->authorized = 0;
1724 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1725 	}
1726 
1727 	return 0;
1728 }
1729 
1730 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1731 {
1732 	char envp_string[13];
1733 	int ret = -EINVAL;
1734 	char *envp[] = { envp_string, NULL };
1735 
1736 	if (!mutex_trylock(&sw->tb->lock))
1737 		return restart_syscall();
1738 
1739 	if (!!sw->authorized == !!val)
1740 		goto unlock;
1741 
1742 	switch (val) {
1743 	/* Disapprove switch */
1744 	case 0:
1745 		if (tb_route(sw)) {
1746 			ret = disapprove_switch(&sw->dev, NULL);
1747 			goto unlock;
1748 		}
1749 		break;
1750 
1751 	/* Approve switch */
1752 	case 1:
1753 		if (sw->key)
1754 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1755 		else
1756 			ret = tb_domain_approve_switch(sw->tb, sw);
1757 		break;
1758 
1759 	/* Challenge switch */
1760 	case 2:
1761 		if (sw->key)
1762 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1763 		break;
1764 
1765 	default:
1766 		break;
1767 	}
1768 
1769 	if (!ret) {
1770 		sw->authorized = val;
1771 		/*
1772 		 * Notify status change to the userspace, informing the new
1773 		 * value of /sys/bus/thunderbolt/devices/.../authorized.
1774 		 */
1775 		sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1776 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1777 	}
1778 
1779 unlock:
1780 	mutex_unlock(&sw->tb->lock);
1781 	return ret;
1782 }
1783 
1784 static ssize_t authorized_store(struct device *dev,
1785 				struct device_attribute *attr,
1786 				const char *buf, size_t count)
1787 {
1788 	struct tb_switch *sw = tb_to_switch(dev);
1789 	unsigned int val;
1790 	ssize_t ret;
1791 
1792 	ret = kstrtouint(buf, 0, &val);
1793 	if (ret)
1794 		return ret;
1795 	if (val > 2)
1796 		return -EINVAL;
1797 
1798 	pm_runtime_get_sync(&sw->dev);
1799 	ret = tb_switch_set_authorized(sw, val);
1800 	pm_runtime_mark_last_busy(&sw->dev);
1801 	pm_runtime_put_autosuspend(&sw->dev);
1802 
1803 	return ret ? ret : count;
1804 }
1805 static DEVICE_ATTR_RW(authorized);
1806 
1807 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1808 			 char *buf)
1809 {
1810 	struct tb_switch *sw = tb_to_switch(dev);
1811 
1812 	return sysfs_emit(buf, "%u\n", sw->boot);
1813 }
1814 static DEVICE_ATTR_RO(boot);
1815 
1816 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1817 			   char *buf)
1818 {
1819 	struct tb_switch *sw = tb_to_switch(dev);
1820 
1821 	return sysfs_emit(buf, "%#x\n", sw->device);
1822 }
1823 static DEVICE_ATTR_RO(device);
1824 
1825 static ssize_t
1826 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1827 {
1828 	struct tb_switch *sw = tb_to_switch(dev);
1829 
1830 	return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1831 }
1832 static DEVICE_ATTR_RO(device_name);
1833 
1834 static ssize_t
1835 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1836 {
1837 	struct tb_switch *sw = tb_to_switch(dev);
1838 
1839 	return sysfs_emit(buf, "%u\n", sw->generation);
1840 }
1841 static DEVICE_ATTR_RO(generation);
1842 
1843 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1844 			char *buf)
1845 {
1846 	struct tb_switch *sw = tb_to_switch(dev);
1847 	ssize_t ret;
1848 
1849 	if (!mutex_trylock(&sw->tb->lock))
1850 		return restart_syscall();
1851 
1852 	if (sw->key)
1853 		ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1854 	else
1855 		ret = sysfs_emit(buf, "\n");
1856 
1857 	mutex_unlock(&sw->tb->lock);
1858 	return ret;
1859 }
1860 
1861 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1862 			 const char *buf, size_t count)
1863 {
1864 	struct tb_switch *sw = tb_to_switch(dev);
1865 	u8 key[TB_SWITCH_KEY_SIZE];
1866 	ssize_t ret = count;
1867 	bool clear = false;
1868 
1869 	if (!strcmp(buf, "\n"))
1870 		clear = true;
1871 	else if (hex2bin(key, buf, sizeof(key)))
1872 		return -EINVAL;
1873 
1874 	if (!mutex_trylock(&sw->tb->lock))
1875 		return restart_syscall();
1876 
1877 	if (sw->authorized) {
1878 		ret = -EBUSY;
1879 	} else {
1880 		kfree(sw->key);
1881 		if (clear) {
1882 			sw->key = NULL;
1883 		} else {
1884 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1885 			if (!sw->key)
1886 				ret = -ENOMEM;
1887 		}
1888 	}
1889 
1890 	mutex_unlock(&sw->tb->lock);
1891 	return ret;
1892 }
1893 static DEVICE_ATTR(key, 0600, key_show, key_store);
1894 
1895 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1896 			  char *buf)
1897 {
1898 	struct tb_switch *sw = tb_to_switch(dev);
1899 
1900 	return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1901 }
1902 
1903 /*
1904  * Currently all lanes must run at the same speed but we expose here
1905  * both directions to allow possible asymmetric links in the future.
1906  */
1907 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1908 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1909 
1910 static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr,
1911 			     char *buf)
1912 {
1913 	struct tb_switch *sw = tb_to_switch(dev);
1914 	unsigned int width;
1915 
1916 	switch (sw->link_width) {
1917 	case TB_LINK_WIDTH_SINGLE:
1918 	case TB_LINK_WIDTH_ASYM_TX:
1919 		width = 1;
1920 		break;
1921 	case TB_LINK_WIDTH_DUAL:
1922 		width = 2;
1923 		break;
1924 	case TB_LINK_WIDTH_ASYM_RX:
1925 		width = 3;
1926 		break;
1927 	default:
1928 		WARN_ON_ONCE(1);
1929 		return -EINVAL;
1930 	}
1931 
1932 	return sysfs_emit(buf, "%u\n", width);
1933 }
1934 static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL);
1935 
1936 static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr,
1937 			     char *buf)
1938 {
1939 	struct tb_switch *sw = tb_to_switch(dev);
1940 	unsigned int width;
1941 
1942 	switch (sw->link_width) {
1943 	case TB_LINK_WIDTH_SINGLE:
1944 	case TB_LINK_WIDTH_ASYM_RX:
1945 		width = 1;
1946 		break;
1947 	case TB_LINK_WIDTH_DUAL:
1948 		width = 2;
1949 		break;
1950 	case TB_LINK_WIDTH_ASYM_TX:
1951 		width = 3;
1952 		break;
1953 	default:
1954 		WARN_ON_ONCE(1);
1955 		return -EINVAL;
1956 	}
1957 
1958 	return sysfs_emit(buf, "%u\n", width);
1959 }
1960 static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL);
1961 
1962 static ssize_t nvm_authenticate_show(struct device *dev,
1963 	struct device_attribute *attr, char *buf)
1964 {
1965 	struct tb_switch *sw = tb_to_switch(dev);
1966 	u32 status;
1967 
1968 	nvm_get_auth_status(sw, &status);
1969 	return sysfs_emit(buf, "%#x\n", status);
1970 }
1971 
1972 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1973 				      bool disconnect)
1974 {
1975 	struct tb_switch *sw = tb_to_switch(dev);
1976 	int val, ret;
1977 
1978 	pm_runtime_get_sync(&sw->dev);
1979 
1980 	if (!mutex_trylock(&sw->tb->lock)) {
1981 		ret = restart_syscall();
1982 		goto exit_rpm;
1983 	}
1984 
1985 	if (sw->no_nvm_upgrade) {
1986 		ret = -EOPNOTSUPP;
1987 		goto exit_unlock;
1988 	}
1989 
1990 	/* If NVMem devices are not yet added */
1991 	if (!sw->nvm) {
1992 		ret = -EAGAIN;
1993 		goto exit_unlock;
1994 	}
1995 
1996 	ret = kstrtoint(buf, 10, &val);
1997 	if (ret)
1998 		goto exit_unlock;
1999 
2000 	/* Always clear the authentication status */
2001 	nvm_clear_auth_status(sw);
2002 
2003 	if (val > 0) {
2004 		if (val == AUTHENTICATE_ONLY) {
2005 			if (disconnect)
2006 				ret = -EINVAL;
2007 			else
2008 				ret = nvm_authenticate(sw, true);
2009 		} else {
2010 			if (!sw->nvm->flushed) {
2011 				if (!sw->nvm->buf) {
2012 					ret = -EINVAL;
2013 					goto exit_unlock;
2014 				}
2015 
2016 				ret = nvm_validate_and_write(sw);
2017 				if (ret || val == WRITE_ONLY)
2018 					goto exit_unlock;
2019 			}
2020 			if (val == WRITE_AND_AUTHENTICATE) {
2021 				if (disconnect)
2022 					ret = tb_lc_force_power(sw);
2023 				else
2024 					ret = nvm_authenticate(sw, false);
2025 			}
2026 		}
2027 	}
2028 
2029 exit_unlock:
2030 	mutex_unlock(&sw->tb->lock);
2031 exit_rpm:
2032 	pm_runtime_mark_last_busy(&sw->dev);
2033 	pm_runtime_put_autosuspend(&sw->dev);
2034 
2035 	return ret;
2036 }
2037 
2038 static ssize_t nvm_authenticate_store(struct device *dev,
2039 	struct device_attribute *attr, const char *buf, size_t count)
2040 {
2041 	int ret = nvm_authenticate_sysfs(dev, buf, false);
2042 	if (ret)
2043 		return ret;
2044 	return count;
2045 }
2046 static DEVICE_ATTR_RW(nvm_authenticate);
2047 
2048 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
2049 	struct device_attribute *attr, char *buf)
2050 {
2051 	return nvm_authenticate_show(dev, attr, buf);
2052 }
2053 
2054 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
2055 	struct device_attribute *attr, const char *buf, size_t count)
2056 {
2057 	int ret;
2058 
2059 	ret = nvm_authenticate_sysfs(dev, buf, true);
2060 	return ret ? ret : count;
2061 }
2062 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
2063 
2064 static ssize_t nvm_version_show(struct device *dev,
2065 				struct device_attribute *attr, char *buf)
2066 {
2067 	struct tb_switch *sw = tb_to_switch(dev);
2068 	int ret;
2069 
2070 	if (!mutex_trylock(&sw->tb->lock))
2071 		return restart_syscall();
2072 
2073 	if (sw->safe_mode)
2074 		ret = -ENODATA;
2075 	else if (!sw->nvm)
2076 		ret = -EAGAIN;
2077 	else
2078 		ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
2079 
2080 	mutex_unlock(&sw->tb->lock);
2081 
2082 	return ret;
2083 }
2084 static DEVICE_ATTR_RO(nvm_version);
2085 
2086 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
2087 			   char *buf)
2088 {
2089 	struct tb_switch *sw = tb_to_switch(dev);
2090 
2091 	return sysfs_emit(buf, "%#x\n", sw->vendor);
2092 }
2093 static DEVICE_ATTR_RO(vendor);
2094 
2095 static ssize_t
2096 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
2097 {
2098 	struct tb_switch *sw = tb_to_switch(dev);
2099 
2100 	return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
2101 }
2102 static DEVICE_ATTR_RO(vendor_name);
2103 
2104 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2105 			      char *buf)
2106 {
2107 	struct tb_switch *sw = tb_to_switch(dev);
2108 
2109 	return sysfs_emit(buf, "%pUb\n", sw->uuid);
2110 }
2111 static DEVICE_ATTR_RO(unique_id);
2112 
2113 static struct attribute *switch_attrs[] = {
2114 	&dev_attr_authorized.attr,
2115 	&dev_attr_boot.attr,
2116 	&dev_attr_device.attr,
2117 	&dev_attr_device_name.attr,
2118 	&dev_attr_generation.attr,
2119 	&dev_attr_key.attr,
2120 	&dev_attr_nvm_authenticate.attr,
2121 	&dev_attr_nvm_authenticate_on_disconnect.attr,
2122 	&dev_attr_nvm_version.attr,
2123 	&dev_attr_rx_speed.attr,
2124 	&dev_attr_rx_lanes.attr,
2125 	&dev_attr_tx_speed.attr,
2126 	&dev_attr_tx_lanes.attr,
2127 	&dev_attr_vendor.attr,
2128 	&dev_attr_vendor_name.attr,
2129 	&dev_attr_unique_id.attr,
2130 	NULL,
2131 };
2132 
2133 static umode_t switch_attr_is_visible(struct kobject *kobj,
2134 				      struct attribute *attr, int n)
2135 {
2136 	struct device *dev = kobj_to_dev(kobj);
2137 	struct tb_switch *sw = tb_to_switch(dev);
2138 
2139 	if (attr == &dev_attr_authorized.attr) {
2140 		if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2141 		    sw->tb->security_level == TB_SECURITY_DPONLY)
2142 			return 0;
2143 	} else if (attr == &dev_attr_device.attr) {
2144 		if (!sw->device)
2145 			return 0;
2146 	} else if (attr == &dev_attr_device_name.attr) {
2147 		if (!sw->device_name)
2148 			return 0;
2149 	} else if (attr == &dev_attr_vendor.attr)  {
2150 		if (!sw->vendor)
2151 			return 0;
2152 	} else if (attr == &dev_attr_vendor_name.attr)  {
2153 		if (!sw->vendor_name)
2154 			return 0;
2155 	} else if (attr == &dev_attr_key.attr) {
2156 		if (tb_route(sw) &&
2157 		    sw->tb->security_level == TB_SECURITY_SECURE &&
2158 		    sw->security_level == TB_SECURITY_SECURE)
2159 			return attr->mode;
2160 		return 0;
2161 	} else if (attr == &dev_attr_rx_speed.attr ||
2162 		   attr == &dev_attr_rx_lanes.attr ||
2163 		   attr == &dev_attr_tx_speed.attr ||
2164 		   attr == &dev_attr_tx_lanes.attr) {
2165 		if (tb_route(sw))
2166 			return attr->mode;
2167 		return 0;
2168 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
2169 		if (nvm_upgradeable(sw))
2170 			return attr->mode;
2171 		return 0;
2172 	} else if (attr == &dev_attr_nvm_version.attr) {
2173 		if (nvm_readable(sw))
2174 			return attr->mode;
2175 		return 0;
2176 	} else if (attr == &dev_attr_boot.attr) {
2177 		if (tb_route(sw))
2178 			return attr->mode;
2179 		return 0;
2180 	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2181 		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2182 			return attr->mode;
2183 		return 0;
2184 	}
2185 
2186 	return sw->safe_mode ? 0 : attr->mode;
2187 }
2188 
2189 static const struct attribute_group switch_group = {
2190 	.is_visible = switch_attr_is_visible,
2191 	.attrs = switch_attrs,
2192 };
2193 
2194 static const struct attribute_group *switch_groups[] = {
2195 	&switch_group,
2196 	NULL,
2197 };
2198 
2199 static void tb_switch_release(struct device *dev)
2200 {
2201 	struct tb_switch *sw = tb_to_switch(dev);
2202 	struct tb_port *port;
2203 
2204 	dma_port_free(sw->dma_port);
2205 
2206 	tb_switch_for_each_port(sw, port) {
2207 		ida_destroy(&port->in_hopids);
2208 		ida_destroy(&port->out_hopids);
2209 	}
2210 
2211 	kfree(sw->uuid);
2212 	kfree(sw->device_name);
2213 	kfree(sw->vendor_name);
2214 	kfree(sw->ports);
2215 	kfree(sw->drom);
2216 	kfree(sw->key);
2217 	kfree(sw);
2218 }
2219 
2220 static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2221 {
2222 	const struct tb_switch *sw = tb_to_switch(dev);
2223 	const char *type;
2224 
2225 	if (tb_switch_is_usb4(sw)) {
2226 		if (add_uevent_var(env, "USB4_VERSION=%u.0",
2227 				   usb4_switch_version(sw)))
2228 			return -ENOMEM;
2229 	}
2230 
2231 	if (!tb_route(sw)) {
2232 		type = "host";
2233 	} else {
2234 		const struct tb_port *port;
2235 		bool hub = false;
2236 
2237 		/* Device is hub if it has any downstream ports */
2238 		tb_switch_for_each_port(sw, port) {
2239 			if (!port->disabled && !tb_is_upstream_port(port) &&
2240 			     tb_port_is_null(port)) {
2241 				hub = true;
2242 				break;
2243 			}
2244 		}
2245 
2246 		type = hub ? "hub" : "device";
2247 	}
2248 
2249 	if (add_uevent_var(env, "USB4_TYPE=%s", type))
2250 		return -ENOMEM;
2251 	return 0;
2252 }
2253 
2254 /*
2255  * Currently only need to provide the callbacks. Everything else is handled
2256  * in the connection manager.
2257  */
2258 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2259 {
2260 	struct tb_switch *sw = tb_to_switch(dev);
2261 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2262 
2263 	if (cm_ops->runtime_suspend_switch)
2264 		return cm_ops->runtime_suspend_switch(sw);
2265 
2266 	return 0;
2267 }
2268 
2269 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2270 {
2271 	struct tb_switch *sw = tb_to_switch(dev);
2272 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2273 
2274 	if (cm_ops->runtime_resume_switch)
2275 		return cm_ops->runtime_resume_switch(sw);
2276 	return 0;
2277 }
2278 
2279 static const struct dev_pm_ops tb_switch_pm_ops = {
2280 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2281 			   NULL)
2282 };
2283 
2284 struct device_type tb_switch_type = {
2285 	.name = "thunderbolt_device",
2286 	.release = tb_switch_release,
2287 	.uevent = tb_switch_uevent,
2288 	.pm = &tb_switch_pm_ops,
2289 };
2290 
2291 static int tb_switch_get_generation(struct tb_switch *sw)
2292 {
2293 	if (tb_switch_is_usb4(sw))
2294 		return 4;
2295 
2296 	if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
2297 		switch (sw->config.device_id) {
2298 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2299 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2300 		case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2301 		case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2302 		case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2303 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2304 		case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2305 		case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2306 			return 1;
2307 
2308 		case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2309 		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2310 		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2311 			return 2;
2312 
2313 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2314 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2315 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2316 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2317 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2318 		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2319 		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2320 		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2321 		case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2322 		case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2323 			return 3;
2324 		}
2325 	}
2326 
2327 	/*
2328 	 * For unknown switches assume generation to be 1 to be on the
2329 	 * safe side.
2330 	 */
2331 	tb_sw_warn(sw, "unsupported switch device id %#x\n",
2332 		   sw->config.device_id);
2333 	return 1;
2334 }
2335 
2336 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2337 {
2338 	int max_depth;
2339 
2340 	if (tb_switch_is_usb4(sw) ||
2341 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2342 		max_depth = USB4_SWITCH_MAX_DEPTH;
2343 	else
2344 		max_depth = TB_SWITCH_MAX_DEPTH;
2345 
2346 	return depth > max_depth;
2347 }
2348 
2349 /**
2350  * tb_switch_alloc() - allocate a switch
2351  * @tb: Pointer to the owning domain
2352  * @parent: Parent device for this switch
2353  * @route: Route string for this switch
2354  *
2355  * Allocates and initializes a switch. Will not upload configuration to
2356  * the switch. For that you need to call tb_switch_configure()
2357  * separately. The returned switch should be released by calling
2358  * tb_switch_put().
2359  *
2360  * Return: Pointer to the allocated switch or ERR_PTR() in case of
2361  * failure.
2362  */
2363 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2364 				  u64 route)
2365 {
2366 	struct tb_switch *sw;
2367 	int upstream_port;
2368 	int i, ret, depth;
2369 
2370 	/* Unlock the downstream port so we can access the switch below */
2371 	if (route) {
2372 		struct tb_switch *parent_sw = tb_to_switch(parent);
2373 		struct tb_port *down;
2374 
2375 		down = tb_port_at(route, parent_sw);
2376 		tb_port_unlock(down);
2377 	}
2378 
2379 	depth = tb_route_length(route);
2380 
2381 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2382 	if (upstream_port < 0)
2383 		return ERR_PTR(upstream_port);
2384 
2385 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2386 	if (!sw)
2387 		return ERR_PTR(-ENOMEM);
2388 
2389 	sw->tb = tb;
2390 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2391 	if (ret)
2392 		goto err_free_sw_ports;
2393 
2394 	sw->generation = tb_switch_get_generation(sw);
2395 
2396 	tb_dbg(tb, "current switch config:\n");
2397 	tb_dump_switch(tb, sw);
2398 
2399 	/* configure switch */
2400 	sw->config.upstream_port_number = upstream_port;
2401 	sw->config.depth = depth;
2402 	sw->config.route_hi = upper_32_bits(route);
2403 	sw->config.route_lo = lower_32_bits(route);
2404 	sw->config.enabled = 0;
2405 
2406 	/* Make sure we do not exceed maximum topology limit */
2407 	if (tb_switch_exceeds_max_depth(sw, depth)) {
2408 		ret = -EADDRNOTAVAIL;
2409 		goto err_free_sw_ports;
2410 	}
2411 
2412 	/* initialize ports */
2413 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2414 				GFP_KERNEL);
2415 	if (!sw->ports) {
2416 		ret = -ENOMEM;
2417 		goto err_free_sw_ports;
2418 	}
2419 
2420 	for (i = 0; i <= sw->config.max_port_number; i++) {
2421 		/* minimum setup for tb_find_cap and tb_drom_read to work */
2422 		sw->ports[i].sw = sw;
2423 		sw->ports[i].port = i;
2424 
2425 		/* Control port does not need HopID allocation */
2426 		if (i) {
2427 			ida_init(&sw->ports[i].in_hopids);
2428 			ida_init(&sw->ports[i].out_hopids);
2429 		}
2430 	}
2431 
2432 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2433 	if (ret > 0)
2434 		sw->cap_plug_events = ret;
2435 
2436 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2437 	if (ret > 0)
2438 		sw->cap_vsec_tmu = ret;
2439 
2440 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2441 	if (ret > 0)
2442 		sw->cap_lc = ret;
2443 
2444 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2445 	if (ret > 0)
2446 		sw->cap_lp = ret;
2447 
2448 	/* Root switch is always authorized */
2449 	if (!route)
2450 		sw->authorized = true;
2451 
2452 	device_initialize(&sw->dev);
2453 	sw->dev.parent = parent;
2454 	sw->dev.bus = &tb_bus_type;
2455 	sw->dev.type = &tb_switch_type;
2456 	sw->dev.groups = switch_groups;
2457 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2458 
2459 	return sw;
2460 
2461 err_free_sw_ports:
2462 	kfree(sw->ports);
2463 	kfree(sw);
2464 
2465 	return ERR_PTR(ret);
2466 }
2467 
2468 /**
2469  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2470  * @tb: Pointer to the owning domain
2471  * @parent: Parent device for this switch
2472  * @route: Route string for this switch
2473  *
2474  * This creates a switch in safe mode. This means the switch pretty much
2475  * lacks all capabilities except DMA configuration port before it is
2476  * flashed with a valid NVM firmware.
2477  *
2478  * The returned switch must be released by calling tb_switch_put().
2479  *
2480  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2481  */
2482 struct tb_switch *
2483 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2484 {
2485 	struct tb_switch *sw;
2486 
2487 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2488 	if (!sw)
2489 		return ERR_PTR(-ENOMEM);
2490 
2491 	sw->tb = tb;
2492 	sw->config.depth = tb_route_length(route);
2493 	sw->config.route_hi = upper_32_bits(route);
2494 	sw->config.route_lo = lower_32_bits(route);
2495 	sw->safe_mode = true;
2496 
2497 	device_initialize(&sw->dev);
2498 	sw->dev.parent = parent;
2499 	sw->dev.bus = &tb_bus_type;
2500 	sw->dev.type = &tb_switch_type;
2501 	sw->dev.groups = switch_groups;
2502 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2503 
2504 	return sw;
2505 }
2506 
2507 /**
2508  * tb_switch_configure() - Uploads configuration to the switch
2509  * @sw: Switch to configure
2510  *
2511  * Call this function before the switch is added to the system. It will
2512  * upload configuration to the switch and makes it available for the
2513  * connection manager to use. Can be called to the switch again after
2514  * resume from low power states to re-initialize it.
2515  *
2516  * Return: %0 in case of success and negative errno in case of failure
2517  */
2518 int tb_switch_configure(struct tb_switch *sw)
2519 {
2520 	struct tb *tb = sw->tb;
2521 	u64 route;
2522 	int ret;
2523 
2524 	route = tb_route(sw);
2525 
2526 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2527 	       sw->config.enabled ? "restoring" : "initializing", route,
2528 	       tb_route_length(route), sw->config.upstream_port_number);
2529 
2530 	sw->config.enabled = 1;
2531 
2532 	if (tb_switch_is_usb4(sw)) {
2533 		/*
2534 		 * For USB4 devices, we need to program the CM version
2535 		 * accordingly so that it knows to expose all the
2536 		 * additional capabilities. Program it according to USB4
2537 		 * version to avoid changing existing (v1) routers behaviour.
2538 		 */
2539 		if (usb4_switch_version(sw) < 2)
2540 			sw->config.cmuv = ROUTER_CS_4_CMUV_V1;
2541 		else
2542 			sw->config.cmuv = ROUTER_CS_4_CMUV_V2;
2543 		sw->config.plug_events_delay = 0xa;
2544 
2545 		/* Enumerate the switch */
2546 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2547 				  ROUTER_CS_1, 4);
2548 		if (ret)
2549 			return ret;
2550 
2551 		ret = usb4_switch_setup(sw);
2552 	} else {
2553 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2554 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2555 				   sw->config.vendor_id);
2556 
2557 		if (!sw->cap_plug_events) {
2558 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2559 			return -ENODEV;
2560 		}
2561 
2562 		/* Enumerate the switch */
2563 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2564 				  ROUTER_CS_1, 3);
2565 	}
2566 	if (ret)
2567 		return ret;
2568 
2569 	return tb_plug_events_active(sw, true);
2570 }
2571 
2572 /**
2573  * tb_switch_configuration_valid() - Set the tunneling configuration to be valid
2574  * @sw: Router to configure
2575  *
2576  * Needs to be called before any tunnels can be setup through the
2577  * router. Can be called to any router.
2578  *
2579  * Returns %0 in success and negative errno otherwise.
2580  */
2581 int tb_switch_configuration_valid(struct tb_switch *sw)
2582 {
2583 	if (tb_switch_is_usb4(sw))
2584 		return usb4_switch_configuration_valid(sw);
2585 	return 0;
2586 }
2587 
2588 static int tb_switch_set_uuid(struct tb_switch *sw)
2589 {
2590 	bool uid = false;
2591 	u32 uuid[4];
2592 	int ret;
2593 
2594 	if (sw->uuid)
2595 		return 0;
2596 
2597 	if (tb_switch_is_usb4(sw)) {
2598 		ret = usb4_switch_read_uid(sw, &sw->uid);
2599 		if (ret)
2600 			return ret;
2601 		uid = true;
2602 	} else {
2603 		/*
2604 		 * The newer controllers include fused UUID as part of
2605 		 * link controller specific registers
2606 		 */
2607 		ret = tb_lc_read_uuid(sw, uuid);
2608 		if (ret) {
2609 			if (ret != -EINVAL)
2610 				return ret;
2611 			uid = true;
2612 		}
2613 	}
2614 
2615 	if (uid) {
2616 		/*
2617 		 * ICM generates UUID based on UID and fills the upper
2618 		 * two words with ones. This is not strictly following
2619 		 * UUID format but we want to be compatible with it so
2620 		 * we do the same here.
2621 		 */
2622 		uuid[0] = sw->uid & 0xffffffff;
2623 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2624 		uuid[2] = 0xffffffff;
2625 		uuid[3] = 0xffffffff;
2626 	}
2627 
2628 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2629 	if (!sw->uuid)
2630 		return -ENOMEM;
2631 	return 0;
2632 }
2633 
2634 static int tb_switch_add_dma_port(struct tb_switch *sw)
2635 {
2636 	u32 status;
2637 	int ret;
2638 
2639 	switch (sw->generation) {
2640 	case 2:
2641 		/* Only root switch can be upgraded */
2642 		if (tb_route(sw))
2643 			return 0;
2644 
2645 		fallthrough;
2646 	case 3:
2647 	case 4:
2648 		ret = tb_switch_set_uuid(sw);
2649 		if (ret)
2650 			return ret;
2651 		break;
2652 
2653 	default:
2654 		/*
2655 		 * DMA port is the only thing available when the switch
2656 		 * is in safe mode.
2657 		 */
2658 		if (!sw->safe_mode)
2659 			return 0;
2660 		break;
2661 	}
2662 
2663 	if (sw->no_nvm_upgrade)
2664 		return 0;
2665 
2666 	if (tb_switch_is_usb4(sw)) {
2667 		ret = usb4_switch_nvm_authenticate_status(sw, &status);
2668 		if (ret)
2669 			return ret;
2670 
2671 		if (status) {
2672 			tb_sw_info(sw, "switch flash authentication failed\n");
2673 			nvm_set_auth_status(sw, status);
2674 		}
2675 
2676 		return 0;
2677 	}
2678 
2679 	/* Root switch DMA port requires running firmware */
2680 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2681 		return 0;
2682 
2683 	sw->dma_port = dma_port_alloc(sw);
2684 	if (!sw->dma_port)
2685 		return 0;
2686 
2687 	/*
2688 	 * If there is status already set then authentication failed
2689 	 * when the dma_port_flash_update_auth() returned. Power cycling
2690 	 * is not needed (it was done already) so only thing we do here
2691 	 * is to unblock runtime PM of the root port.
2692 	 */
2693 	nvm_get_auth_status(sw, &status);
2694 	if (status) {
2695 		if (!tb_route(sw))
2696 			nvm_authenticate_complete_dma_port(sw);
2697 		return 0;
2698 	}
2699 
2700 	/*
2701 	 * Check status of the previous flash authentication. If there
2702 	 * is one we need to power cycle the switch in any case to make
2703 	 * it functional again.
2704 	 */
2705 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2706 	if (ret <= 0)
2707 		return ret;
2708 
2709 	/* Now we can allow root port to suspend again */
2710 	if (!tb_route(sw))
2711 		nvm_authenticate_complete_dma_port(sw);
2712 
2713 	if (status) {
2714 		tb_sw_info(sw, "switch flash authentication failed\n");
2715 		nvm_set_auth_status(sw, status);
2716 	}
2717 
2718 	tb_sw_info(sw, "power cycling the switch now\n");
2719 	dma_port_power_cycle(sw->dma_port);
2720 
2721 	/*
2722 	 * We return error here which causes the switch adding failure.
2723 	 * It should appear back after power cycle is complete.
2724 	 */
2725 	return -ESHUTDOWN;
2726 }
2727 
2728 static void tb_switch_default_link_ports(struct tb_switch *sw)
2729 {
2730 	int i;
2731 
2732 	for (i = 1; i <= sw->config.max_port_number; i++) {
2733 		struct tb_port *port = &sw->ports[i];
2734 		struct tb_port *subordinate;
2735 
2736 		if (!tb_port_is_null(port))
2737 			continue;
2738 
2739 		/* Check for the subordinate port */
2740 		if (i == sw->config.max_port_number ||
2741 		    !tb_port_is_null(&sw->ports[i + 1]))
2742 			continue;
2743 
2744 		/* Link them if not already done so (by DROM) */
2745 		subordinate = &sw->ports[i + 1];
2746 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2747 			port->link_nr = 0;
2748 			port->dual_link_port = subordinate;
2749 			subordinate->link_nr = 1;
2750 			subordinate->dual_link_port = port;
2751 
2752 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2753 				  port->port, subordinate->port);
2754 		}
2755 	}
2756 }
2757 
2758 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2759 {
2760 	const struct tb_port *up = tb_upstream_port(sw);
2761 
2762 	if (!up->dual_link_port || !up->dual_link_port->remote)
2763 		return false;
2764 
2765 	if (tb_switch_is_usb4(sw))
2766 		return usb4_switch_lane_bonding_possible(sw);
2767 	return tb_lc_lane_bonding_possible(sw);
2768 }
2769 
2770 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2771 {
2772 	struct tb_port *up;
2773 	bool change = false;
2774 	int ret;
2775 
2776 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2777 		return 0;
2778 
2779 	up = tb_upstream_port(sw);
2780 
2781 	ret = tb_port_get_link_speed(up);
2782 	if (ret < 0)
2783 		return ret;
2784 	if (sw->link_speed != ret)
2785 		change = true;
2786 	sw->link_speed = ret;
2787 
2788 	ret = tb_port_get_link_width(up);
2789 	if (ret < 0)
2790 		return ret;
2791 	if (sw->link_width != ret)
2792 		change = true;
2793 	sw->link_width = ret;
2794 
2795 	/* Notify userspace that there is possible link attribute change */
2796 	if (device_is_registered(&sw->dev) && change)
2797 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2798 
2799 	return 0;
2800 }
2801 
2802 /**
2803  * tb_switch_lane_bonding_enable() - Enable lane bonding
2804  * @sw: Switch to enable lane bonding
2805  *
2806  * Connection manager can call this function to enable lane bonding of a
2807  * switch. If conditions are correct and both switches support the feature,
2808  * lanes are bonded. It is safe to call this to any switch.
2809  */
2810 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2811 {
2812 	struct tb_port *up, *down;
2813 	u64 route = tb_route(sw);
2814 	unsigned int width_mask;
2815 	int ret;
2816 
2817 	if (!route)
2818 		return 0;
2819 
2820 	if (!tb_switch_lane_bonding_possible(sw))
2821 		return 0;
2822 
2823 	up = tb_upstream_port(sw);
2824 	down = tb_switch_downstream_port(sw);
2825 
2826 	if (!tb_port_is_width_supported(up, TB_LINK_WIDTH_DUAL) ||
2827 	    !tb_port_is_width_supported(down, TB_LINK_WIDTH_DUAL))
2828 		return 0;
2829 
2830 	/*
2831 	 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2832 	 * CL0 and check just for lane 1.
2833 	 */
2834 	if (tb_wait_for_port(down->dual_link_port, false) <= 0)
2835 		return -ENOTCONN;
2836 
2837 	ret = tb_port_lane_bonding_enable(up);
2838 	if (ret) {
2839 		tb_port_warn(up, "failed to enable lane bonding\n");
2840 		return ret;
2841 	}
2842 
2843 	ret = tb_port_lane_bonding_enable(down);
2844 	if (ret) {
2845 		tb_port_warn(down, "failed to enable lane bonding\n");
2846 		tb_port_lane_bonding_disable(up);
2847 		return ret;
2848 	}
2849 
2850 	/* Any of the widths are all bonded */
2851 	width_mask = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX |
2852 		     TB_LINK_WIDTH_ASYM_RX;
2853 
2854 	ret = tb_port_wait_for_link_width(down, width_mask, 100);
2855 	if (ret) {
2856 		tb_port_warn(down, "timeout enabling lane bonding\n");
2857 		return ret;
2858 	}
2859 
2860 	tb_port_update_credits(down);
2861 	tb_port_update_credits(up);
2862 	tb_switch_update_link_attributes(sw);
2863 
2864 	tb_sw_dbg(sw, "lane bonding enabled\n");
2865 	return ret;
2866 }
2867 
2868 /**
2869  * tb_switch_lane_bonding_disable() - Disable lane bonding
2870  * @sw: Switch whose lane bonding to disable
2871  *
2872  * Disables lane bonding between @sw and parent. This can be called even
2873  * if lanes were not bonded originally.
2874  */
2875 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2876 {
2877 	struct tb_port *up, *down;
2878 	int ret;
2879 
2880 	if (!tb_route(sw))
2881 		return;
2882 
2883 	up = tb_upstream_port(sw);
2884 	if (!up->bonded)
2885 		return;
2886 
2887 	down = tb_switch_downstream_port(sw);
2888 
2889 	tb_port_lane_bonding_disable(up);
2890 	tb_port_lane_bonding_disable(down);
2891 
2892 	/*
2893 	 * It is fine if we get other errors as the router might have
2894 	 * been unplugged.
2895 	 */
2896 	ret = tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100);
2897 	if (ret == -ETIMEDOUT)
2898 		tb_sw_warn(sw, "timeout disabling lane bonding\n");
2899 
2900 	tb_port_update_credits(down);
2901 	tb_port_update_credits(up);
2902 	tb_switch_update_link_attributes(sw);
2903 
2904 	tb_sw_dbg(sw, "lane bonding disabled\n");
2905 }
2906 
2907 /**
2908  * tb_switch_configure_link() - Set link configured
2909  * @sw: Switch whose link is configured
2910  *
2911  * Sets the link upstream from @sw configured (from both ends) so that
2912  * it will not be disconnected when the domain exits sleep. Can be
2913  * called for any switch.
2914  *
2915  * It is recommended that this is called after lane bonding is enabled.
2916  *
2917  * Returns %0 on success and negative errno in case of error.
2918  */
2919 int tb_switch_configure_link(struct tb_switch *sw)
2920 {
2921 	struct tb_port *up, *down;
2922 	int ret;
2923 
2924 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2925 		return 0;
2926 
2927 	up = tb_upstream_port(sw);
2928 	if (tb_switch_is_usb4(up->sw))
2929 		ret = usb4_port_configure(up);
2930 	else
2931 		ret = tb_lc_configure_port(up);
2932 	if (ret)
2933 		return ret;
2934 
2935 	down = up->remote;
2936 	if (tb_switch_is_usb4(down->sw))
2937 		return usb4_port_configure(down);
2938 	return tb_lc_configure_port(down);
2939 }
2940 
2941 /**
2942  * tb_switch_unconfigure_link() - Unconfigure link
2943  * @sw: Switch whose link is unconfigured
2944  *
2945  * Sets the link unconfigured so the @sw will be disconnected if the
2946  * domain exists sleep.
2947  */
2948 void tb_switch_unconfigure_link(struct tb_switch *sw)
2949 {
2950 	struct tb_port *up, *down;
2951 
2952 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2953 		return;
2954 
2955 	/*
2956 	 * Unconfigure downstream port so that wake-on-connect can be
2957 	 * configured after router unplug. No need to unconfigure upstream port
2958 	 * since its router is unplugged.
2959 	 */
2960 	up = tb_upstream_port(sw);
2961 	down = up->remote;
2962 	if (tb_switch_is_usb4(down->sw))
2963 		usb4_port_unconfigure(down);
2964 	else
2965 		tb_lc_unconfigure_port(down);
2966 
2967 	if (sw->is_unplugged)
2968 		return;
2969 
2970 	up = tb_upstream_port(sw);
2971 	if (tb_switch_is_usb4(up->sw))
2972 		usb4_port_unconfigure(up);
2973 	else
2974 		tb_lc_unconfigure_port(up);
2975 }
2976 
2977 static void tb_switch_credits_init(struct tb_switch *sw)
2978 {
2979 	if (tb_switch_is_icm(sw))
2980 		return;
2981 	if (!tb_switch_is_usb4(sw))
2982 		return;
2983 	if (usb4_switch_credits_init(sw))
2984 		tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
2985 }
2986 
2987 static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
2988 {
2989 	struct tb_port *port;
2990 
2991 	if (tb_switch_is_icm(sw))
2992 		return 0;
2993 
2994 	tb_switch_for_each_port(sw, port) {
2995 		int res;
2996 
2997 		if (!port->cap_usb4)
2998 			continue;
2999 
3000 		res = usb4_port_hotplug_enable(port);
3001 		if (res)
3002 			return res;
3003 	}
3004 	return 0;
3005 }
3006 
3007 /**
3008  * tb_switch_add() - Add a switch to the domain
3009  * @sw: Switch to add
3010  *
3011  * This is the last step in adding switch to the domain. It will read
3012  * identification information from DROM and initializes ports so that
3013  * they can be used to connect other switches. The switch will be
3014  * exposed to the userspace when this function successfully returns. To
3015  * remove and release the switch, call tb_switch_remove().
3016  *
3017  * Return: %0 in case of success and negative errno in case of failure
3018  */
3019 int tb_switch_add(struct tb_switch *sw)
3020 {
3021 	int i, ret;
3022 
3023 	/*
3024 	 * Initialize DMA control port now before we read DROM. Recent
3025 	 * host controllers have more complete DROM on NVM that includes
3026 	 * vendor and model identification strings which we then expose
3027 	 * to the userspace. NVM can be accessed through DMA
3028 	 * configuration based mailbox.
3029 	 */
3030 	ret = tb_switch_add_dma_port(sw);
3031 	if (ret) {
3032 		dev_err(&sw->dev, "failed to add DMA port\n");
3033 		return ret;
3034 	}
3035 
3036 	if (!sw->safe_mode) {
3037 		tb_switch_credits_init(sw);
3038 
3039 		/* read drom */
3040 		ret = tb_drom_read(sw);
3041 		if (ret)
3042 			dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
3043 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
3044 
3045 		ret = tb_switch_set_uuid(sw);
3046 		if (ret) {
3047 			dev_err(&sw->dev, "failed to set UUID\n");
3048 			return ret;
3049 		}
3050 
3051 		for (i = 0; i <= sw->config.max_port_number; i++) {
3052 			if (sw->ports[i].disabled) {
3053 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
3054 				continue;
3055 			}
3056 			ret = tb_init_port(&sw->ports[i]);
3057 			if (ret) {
3058 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
3059 				return ret;
3060 			}
3061 		}
3062 
3063 		tb_check_quirks(sw);
3064 
3065 		tb_switch_default_link_ports(sw);
3066 
3067 		ret = tb_switch_update_link_attributes(sw);
3068 		if (ret)
3069 			return ret;
3070 
3071 		ret = tb_switch_clx_init(sw);
3072 		if (ret)
3073 			return ret;
3074 
3075 		ret = tb_switch_tmu_init(sw);
3076 		if (ret)
3077 			return ret;
3078 	}
3079 
3080 	ret = tb_switch_port_hotplug_enable(sw);
3081 	if (ret)
3082 		return ret;
3083 
3084 	ret = device_add(&sw->dev);
3085 	if (ret) {
3086 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
3087 		return ret;
3088 	}
3089 
3090 	if (tb_route(sw)) {
3091 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
3092 			 sw->vendor, sw->device);
3093 		if (sw->vendor_name && sw->device_name)
3094 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
3095 				 sw->device_name);
3096 	}
3097 
3098 	ret = usb4_switch_add_ports(sw);
3099 	if (ret) {
3100 		dev_err(&sw->dev, "failed to add USB4 ports\n");
3101 		goto err_del;
3102 	}
3103 
3104 	ret = tb_switch_nvm_add(sw);
3105 	if (ret) {
3106 		dev_err(&sw->dev, "failed to add NVM devices\n");
3107 		goto err_ports;
3108 	}
3109 
3110 	/*
3111 	 * Thunderbolt routers do not generate wakeups themselves but
3112 	 * they forward wakeups from tunneled protocols, so enable it
3113 	 * here.
3114 	 */
3115 	device_init_wakeup(&sw->dev, true);
3116 
3117 	pm_runtime_set_active(&sw->dev);
3118 	if (sw->rpm) {
3119 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3120 		pm_runtime_use_autosuspend(&sw->dev);
3121 		pm_runtime_mark_last_busy(&sw->dev);
3122 		pm_runtime_enable(&sw->dev);
3123 		pm_request_autosuspend(&sw->dev);
3124 	}
3125 
3126 	tb_switch_debugfs_init(sw);
3127 	return 0;
3128 
3129 err_ports:
3130 	usb4_switch_remove_ports(sw);
3131 err_del:
3132 	device_del(&sw->dev);
3133 
3134 	return ret;
3135 }
3136 
3137 /**
3138  * tb_switch_remove() - Remove and release a switch
3139  * @sw: Switch to remove
3140  *
3141  * This will remove the switch from the domain and release it after last
3142  * reference count drops to zero. If there are switches connected below
3143  * this switch, they will be removed as well.
3144  */
3145 void tb_switch_remove(struct tb_switch *sw)
3146 {
3147 	struct tb_port *port;
3148 
3149 	tb_switch_debugfs_remove(sw);
3150 
3151 	if (sw->rpm) {
3152 		pm_runtime_get_sync(&sw->dev);
3153 		pm_runtime_disable(&sw->dev);
3154 	}
3155 
3156 	/* port 0 is the switch itself and never has a remote */
3157 	tb_switch_for_each_port(sw, port) {
3158 		if (tb_port_has_remote(port)) {
3159 			tb_switch_remove(port->remote->sw);
3160 			port->remote = NULL;
3161 		} else if (port->xdomain) {
3162 			port->xdomain->is_unplugged = true;
3163 			tb_xdomain_remove(port->xdomain);
3164 			port->xdomain = NULL;
3165 		}
3166 
3167 		/* Remove any downstream retimers */
3168 		tb_retimer_remove_all(port);
3169 	}
3170 
3171 	if (!sw->is_unplugged)
3172 		tb_plug_events_active(sw, false);
3173 
3174 	tb_switch_nvm_remove(sw);
3175 	usb4_switch_remove_ports(sw);
3176 
3177 	if (tb_route(sw))
3178 		dev_info(&sw->dev, "device disconnected\n");
3179 	device_unregister(&sw->dev);
3180 }
3181 
3182 /**
3183  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3184  * @sw: Router to mark unplugged
3185  */
3186 void tb_sw_set_unplugged(struct tb_switch *sw)
3187 {
3188 	struct tb_port *port;
3189 
3190 	if (sw == sw->tb->root_switch) {
3191 		tb_sw_WARN(sw, "cannot unplug root switch\n");
3192 		return;
3193 	}
3194 	if (sw->is_unplugged) {
3195 		tb_sw_WARN(sw, "is_unplugged already set\n");
3196 		return;
3197 	}
3198 	sw->is_unplugged = true;
3199 	tb_switch_for_each_port(sw, port) {
3200 		if (tb_port_has_remote(port))
3201 			tb_sw_set_unplugged(port->remote->sw);
3202 		else if (port->xdomain)
3203 			port->xdomain->is_unplugged = true;
3204 	}
3205 }
3206 
3207 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3208 {
3209 	if (flags)
3210 		tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3211 	else
3212 		tb_sw_dbg(sw, "disabling wakeup\n");
3213 
3214 	if (tb_switch_is_usb4(sw))
3215 		return usb4_switch_set_wake(sw, flags);
3216 	return tb_lc_set_wake(sw, flags);
3217 }
3218 
3219 static void tb_switch_check_wakes(struct tb_switch *sw)
3220 {
3221 	if (device_may_wakeup(&sw->dev)) {
3222 		if (tb_switch_is_usb4(sw))
3223 			usb4_switch_check_wakes(sw);
3224 	}
3225 }
3226 
3227 /**
3228  * tb_switch_resume() - Resume a switch after sleep
3229  * @sw: Switch to resume
3230  * @runtime: Is this resume from runtime suspend or system sleep
3231  *
3232  * Resumes and re-enumerates router (and all its children), if still plugged
3233  * after suspend. Don't enumerate device router whose UID was changed during
3234  * suspend. If this is resume from system sleep, notifies PM core about the
3235  * wakes occurred during suspend. Disables all wakes, except USB4 wake of
3236  * upstream port for USB4 routers that shall be always enabled.
3237  */
3238 int tb_switch_resume(struct tb_switch *sw, bool runtime)
3239 {
3240 	struct tb_port *port;
3241 	int err;
3242 
3243 	tb_sw_dbg(sw, "resuming switch\n");
3244 
3245 	/*
3246 	 * Check for UID of the connected switches except for root
3247 	 * switch which we assume cannot be removed.
3248 	 */
3249 	if (tb_route(sw)) {
3250 		u64 uid;
3251 
3252 		/*
3253 		 * Check first that we can still read the switch config
3254 		 * space. It may be that there is now another domain
3255 		 * connected.
3256 		 */
3257 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3258 		if (err < 0) {
3259 			tb_sw_info(sw, "switch not present anymore\n");
3260 			return err;
3261 		}
3262 
3263 		/* We don't have any way to confirm this was the same device */
3264 		if (!sw->uid)
3265 			return -ENODEV;
3266 
3267 		if (tb_switch_is_usb4(sw))
3268 			err = usb4_switch_read_uid(sw, &uid);
3269 		else
3270 			err = tb_drom_read_uid_only(sw, &uid);
3271 		if (err) {
3272 			tb_sw_warn(sw, "uid read failed\n");
3273 			return err;
3274 		}
3275 		if (sw->uid != uid) {
3276 			tb_sw_info(sw,
3277 				"changed while suspended (uid %#llx -> %#llx)\n",
3278 				sw->uid, uid);
3279 			return -ENODEV;
3280 		}
3281 	}
3282 
3283 	err = tb_switch_configure(sw);
3284 	if (err)
3285 		return err;
3286 
3287 	if (!runtime)
3288 		tb_switch_check_wakes(sw);
3289 
3290 	/* Disable wakes */
3291 	tb_switch_set_wake(sw, 0);
3292 
3293 	err = tb_switch_tmu_init(sw);
3294 	if (err)
3295 		return err;
3296 
3297 	/* check for surviving downstream switches */
3298 	tb_switch_for_each_port(sw, port) {
3299 		if (!tb_port_is_null(port))
3300 			continue;
3301 
3302 		if (!tb_port_resume(port))
3303 			continue;
3304 
3305 		if (tb_wait_for_port(port, true) <= 0) {
3306 			tb_port_warn(port,
3307 				     "lost during suspend, disconnecting\n");
3308 			if (tb_port_has_remote(port))
3309 				tb_sw_set_unplugged(port->remote->sw);
3310 			else if (port->xdomain)
3311 				port->xdomain->is_unplugged = true;
3312 		} else {
3313 			/*
3314 			 * Always unlock the port so the downstream
3315 			 * switch/domain is accessible.
3316 			 */
3317 			if (tb_port_unlock(port))
3318 				tb_port_warn(port, "failed to unlock port\n");
3319 			if (port->remote &&
3320 			    tb_switch_resume(port->remote->sw, runtime)) {
3321 				tb_port_warn(port,
3322 					     "lost during suspend, disconnecting\n");
3323 				tb_sw_set_unplugged(port->remote->sw);
3324 			}
3325 		}
3326 	}
3327 	return 0;
3328 }
3329 
3330 /**
3331  * tb_switch_suspend() - Put a switch to sleep
3332  * @sw: Switch to suspend
3333  * @runtime: Is this runtime suspend or system sleep
3334  *
3335  * Suspends router and all its children. Enables wakes according to
3336  * value of @runtime and then sets sleep bit for the router. If @sw is
3337  * host router the domain is ready to go to sleep once this function
3338  * returns.
3339  */
3340 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3341 {
3342 	unsigned int flags = 0;
3343 	struct tb_port *port;
3344 	int err;
3345 
3346 	tb_sw_dbg(sw, "suspending switch\n");
3347 
3348 	/*
3349 	 * Actually only needed for Titan Ridge but for simplicity can be
3350 	 * done for USB4 device too as CLx is re-enabled at resume.
3351 	 */
3352 	tb_switch_clx_disable(sw);
3353 
3354 	err = tb_plug_events_active(sw, false);
3355 	if (err)
3356 		return;
3357 
3358 	tb_switch_for_each_port(sw, port) {
3359 		if (tb_port_has_remote(port))
3360 			tb_switch_suspend(port->remote->sw, runtime);
3361 	}
3362 
3363 	if (runtime) {
3364 		/* Trigger wake when something is plugged in/out */
3365 		flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3366 		flags |= TB_WAKE_ON_USB4;
3367 		flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3368 	} else if (device_may_wakeup(&sw->dev)) {
3369 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3370 	}
3371 
3372 	tb_switch_set_wake(sw, flags);
3373 
3374 	if (tb_switch_is_usb4(sw))
3375 		usb4_switch_set_sleep(sw);
3376 	else
3377 		tb_lc_set_sleep(sw);
3378 }
3379 
3380 /**
3381  * tb_switch_query_dp_resource() - Query availability of DP resource
3382  * @sw: Switch whose DP resource is queried
3383  * @in: DP IN port
3384  *
3385  * Queries availability of DP resource for DP tunneling using switch
3386  * specific means. Returns %true if resource is available.
3387  */
3388 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3389 {
3390 	if (tb_switch_is_usb4(sw))
3391 		return usb4_switch_query_dp_resource(sw, in);
3392 	return tb_lc_dp_sink_query(sw, in);
3393 }
3394 
3395 /**
3396  * tb_switch_alloc_dp_resource() - Allocate available DP resource
3397  * @sw: Switch whose DP resource is allocated
3398  * @in: DP IN port
3399  *
3400  * Allocates DP resource for DP tunneling. The resource must be
3401  * available for this to succeed (see tb_switch_query_dp_resource()).
3402  * Returns %0 in success and negative errno otherwise.
3403  */
3404 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3405 {
3406 	int ret;
3407 
3408 	if (tb_switch_is_usb4(sw))
3409 		ret = usb4_switch_alloc_dp_resource(sw, in);
3410 	else
3411 		ret = tb_lc_dp_sink_alloc(sw, in);
3412 
3413 	if (ret)
3414 		tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3415 			   in->port);
3416 	else
3417 		tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3418 
3419 	return ret;
3420 }
3421 
3422 /**
3423  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3424  * @sw: Switch whose DP resource is de-allocated
3425  * @in: DP IN port
3426  *
3427  * De-allocates DP resource that was previously allocated for DP
3428  * tunneling.
3429  */
3430 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3431 {
3432 	int ret;
3433 
3434 	if (tb_switch_is_usb4(sw))
3435 		ret = usb4_switch_dealloc_dp_resource(sw, in);
3436 	else
3437 		ret = tb_lc_dp_sink_dealloc(sw, in);
3438 
3439 	if (ret)
3440 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3441 			   in->port);
3442 	else
3443 		tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3444 }
3445 
3446 struct tb_sw_lookup {
3447 	struct tb *tb;
3448 	u8 link;
3449 	u8 depth;
3450 	const uuid_t *uuid;
3451 	u64 route;
3452 };
3453 
3454 static int tb_switch_match(struct device *dev, const void *data)
3455 {
3456 	struct tb_switch *sw = tb_to_switch(dev);
3457 	const struct tb_sw_lookup *lookup = data;
3458 
3459 	if (!sw)
3460 		return 0;
3461 	if (sw->tb != lookup->tb)
3462 		return 0;
3463 
3464 	if (lookup->uuid)
3465 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3466 
3467 	if (lookup->route) {
3468 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
3469 		       sw->config.route_hi == upper_32_bits(lookup->route);
3470 	}
3471 
3472 	/* Root switch is matched only by depth */
3473 	if (!lookup->depth)
3474 		return !sw->depth;
3475 
3476 	return sw->link == lookup->link && sw->depth == lookup->depth;
3477 }
3478 
3479 /**
3480  * tb_switch_find_by_link_depth() - Find switch by link and depth
3481  * @tb: Domain the switch belongs
3482  * @link: Link number the switch is connected
3483  * @depth: Depth of the switch in link
3484  *
3485  * Returned switch has reference count increased so the caller needs to
3486  * call tb_switch_put() when done with the switch.
3487  */
3488 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3489 {
3490 	struct tb_sw_lookup lookup;
3491 	struct device *dev;
3492 
3493 	memset(&lookup, 0, sizeof(lookup));
3494 	lookup.tb = tb;
3495 	lookup.link = link;
3496 	lookup.depth = depth;
3497 
3498 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3499 	if (dev)
3500 		return tb_to_switch(dev);
3501 
3502 	return NULL;
3503 }
3504 
3505 /**
3506  * tb_switch_find_by_uuid() - Find switch by UUID
3507  * @tb: Domain the switch belongs
3508  * @uuid: UUID to look for
3509  *
3510  * Returned switch has reference count increased so the caller needs to
3511  * call tb_switch_put() when done with the switch.
3512  */
3513 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3514 {
3515 	struct tb_sw_lookup lookup;
3516 	struct device *dev;
3517 
3518 	memset(&lookup, 0, sizeof(lookup));
3519 	lookup.tb = tb;
3520 	lookup.uuid = uuid;
3521 
3522 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3523 	if (dev)
3524 		return tb_to_switch(dev);
3525 
3526 	return NULL;
3527 }
3528 
3529 /**
3530  * tb_switch_find_by_route() - Find switch by route string
3531  * @tb: Domain the switch belongs
3532  * @route: Route string to look for
3533  *
3534  * Returned switch has reference count increased so the caller needs to
3535  * call tb_switch_put() when done with the switch.
3536  */
3537 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3538 {
3539 	struct tb_sw_lookup lookup;
3540 	struct device *dev;
3541 
3542 	if (!route)
3543 		return tb_switch_get(tb->root_switch);
3544 
3545 	memset(&lookup, 0, sizeof(lookup));
3546 	lookup.tb = tb;
3547 	lookup.route = route;
3548 
3549 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3550 	if (dev)
3551 		return tb_to_switch(dev);
3552 
3553 	return NULL;
3554 }
3555 
3556 /**
3557  * tb_switch_find_port() - return the first port of @type on @sw or NULL
3558  * @sw: Switch to find the port from
3559  * @type: Port type to look for
3560  */
3561 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3562 				    enum tb_port_type type)
3563 {
3564 	struct tb_port *port;
3565 
3566 	tb_switch_for_each_port(sw, port) {
3567 		if (port->config.type == type)
3568 			return port;
3569 	}
3570 
3571 	return NULL;
3572 }
3573 
3574 /*
3575  * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3576  * device. For now used only for Titan Ridge.
3577  */
3578 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3579 				       unsigned int pcie_offset, u32 value)
3580 {
3581 	u32 offset, command, val;
3582 	int ret;
3583 
3584 	if (sw->generation != 3)
3585 		return -EOPNOTSUPP;
3586 
3587 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3588 	ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3589 	if (ret)
3590 		return ret;
3591 
3592 	command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3593 	command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3594 	command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3595 	command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3596 			<< TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3597 	command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3598 
3599 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3600 
3601 	ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3602 	if (ret)
3603 		return ret;
3604 
3605 	ret = tb_switch_wait_for_bit(sw, offset,
3606 				     TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3607 	if (ret)
3608 		return ret;
3609 
3610 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3611 	if (ret)
3612 		return ret;
3613 
3614 	if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3615 		return -ETIMEDOUT;
3616 
3617 	return 0;
3618 }
3619 
3620 /**
3621  * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3622  * @sw: Router to enable PCIe L1
3623  *
3624  * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3625  * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3626  * was configured. Due to Intel platforms limitation, shall be called only
3627  * for first hop switch.
3628  */
3629 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3630 {
3631 	struct tb_switch *parent = tb_switch_parent(sw);
3632 	int ret;
3633 
3634 	if (!tb_route(sw))
3635 		return 0;
3636 
3637 	if (!tb_switch_is_titan_ridge(sw))
3638 		return 0;
3639 
3640 	/* Enable PCIe L1 enable only for first hop router (depth = 1) */
3641 	if (tb_route(parent))
3642 		return 0;
3643 
3644 	/* Write to downstream PCIe bridge #5 aka Dn4 */
3645 	ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3646 	if (ret)
3647 		return ret;
3648 
3649 	/* Write to Upstream PCIe bridge #0 aka Up0 */
3650 	return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3651 }
3652 
3653 /**
3654  * tb_switch_xhci_connect() - Connect internal xHCI
3655  * @sw: Router whose xHCI to connect
3656  *
3657  * Can be called to any router. For Alpine Ridge and Titan Ridge
3658  * performs special flows that bring the xHCI functional for any device
3659  * connected to the type-C port. Call only after PCIe tunnel has been
3660  * established. The function only does the connect if not done already
3661  * so can be called several times for the same router.
3662  */
3663 int tb_switch_xhci_connect(struct tb_switch *sw)
3664 {
3665 	struct tb_port *port1, *port3;
3666 	int ret;
3667 
3668 	if (sw->generation != 3)
3669 		return 0;
3670 
3671 	port1 = &sw->ports[1];
3672 	port3 = &sw->ports[3];
3673 
3674 	if (tb_switch_is_alpine_ridge(sw)) {
3675 		bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3676 
3677 		usb_port1 = tb_lc_is_usb_plugged(port1);
3678 		usb_port3 = tb_lc_is_usb_plugged(port3);
3679 		xhci_port1 = tb_lc_is_xhci_connected(port1);
3680 		xhci_port3 = tb_lc_is_xhci_connected(port3);
3681 
3682 		/* Figure out correct USB port to connect */
3683 		if (usb_port1 && !xhci_port1) {
3684 			ret = tb_lc_xhci_connect(port1);
3685 			if (ret)
3686 				return ret;
3687 		}
3688 		if (usb_port3 && !xhci_port3)
3689 			return tb_lc_xhci_connect(port3);
3690 	} else if (tb_switch_is_titan_ridge(sw)) {
3691 		ret = tb_lc_xhci_connect(port1);
3692 		if (ret)
3693 			return ret;
3694 		return tb_lc_xhci_connect(port3);
3695 	}
3696 
3697 	return 0;
3698 }
3699 
3700 /**
3701  * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3702  * @sw: Router whose xHCI to disconnect
3703  *
3704  * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3705  * ports.
3706  */
3707 void tb_switch_xhci_disconnect(struct tb_switch *sw)
3708 {
3709 	if (sw->generation == 3) {
3710 		struct tb_port *port1 = &sw->ports[1];
3711 		struct tb_port *port3 = &sw->ports[3];
3712 
3713 		tb_lc_xhci_disconnect(port1);
3714 		tb_port_dbg(port1, "disconnected xHCI\n");
3715 		tb_lc_xhci_disconnect(port3);
3716 		tb_port_dbg(port3, "disconnected xHCI\n");
3717 	}
3718 }
3719