xref: /openbmc/linux/drivers/thunderbolt/switch.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 
18 #include "tb.h"
19 
20 /* Switch NVM support */
21 
22 #define NVM_DEVID		0x05
23 #define NVM_VERSION		0x08
24 #define NVM_CSS			0x10
25 #define NVM_FLASH_SIZE		0x45
26 
27 #define NVM_MIN_SIZE		SZ_32K
28 #define NVM_MAX_SIZE		SZ_512K
29 
30 static DEFINE_IDA(nvm_ida);
31 
32 struct nvm_auth_status {
33 	struct list_head list;
34 	uuid_t uuid;
35 	u32 status;
36 };
37 
38 /*
39  * Hold NVM authentication failure status per switch This information
40  * needs to stay around even when the switch gets power cycled so we
41  * keep it separately.
42  */
43 static LIST_HEAD(nvm_auth_status_cache);
44 static DEFINE_MUTEX(nvm_auth_status_lock);
45 
46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
47 {
48 	struct nvm_auth_status *st;
49 
50 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
51 		if (uuid_equal(&st->uuid, sw->uuid))
52 			return st;
53 	}
54 
55 	return NULL;
56 }
57 
58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
59 {
60 	struct nvm_auth_status *st;
61 
62 	mutex_lock(&nvm_auth_status_lock);
63 	st = __nvm_get_auth_status(sw);
64 	mutex_unlock(&nvm_auth_status_lock);
65 
66 	*status = st ? st->status : 0;
67 }
68 
69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
70 {
71 	struct nvm_auth_status *st;
72 
73 	if (WARN_ON(!sw->uuid))
74 		return;
75 
76 	mutex_lock(&nvm_auth_status_lock);
77 	st = __nvm_get_auth_status(sw);
78 
79 	if (!st) {
80 		st = kzalloc(sizeof(*st), GFP_KERNEL);
81 		if (!st)
82 			goto unlock;
83 
84 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
85 		INIT_LIST_HEAD(&st->list);
86 		list_add_tail(&st->list, &nvm_auth_status_cache);
87 	}
88 
89 	st->status = status;
90 unlock:
91 	mutex_unlock(&nvm_auth_status_lock);
92 }
93 
94 static void nvm_clear_auth_status(const struct tb_switch *sw)
95 {
96 	struct nvm_auth_status *st;
97 
98 	mutex_lock(&nvm_auth_status_lock);
99 	st = __nvm_get_auth_status(sw);
100 	if (st) {
101 		list_del(&st->list);
102 		kfree(st);
103 	}
104 	mutex_unlock(&nvm_auth_status_lock);
105 }
106 
107 static int nvm_validate_and_write(struct tb_switch *sw)
108 {
109 	unsigned int image_size, hdr_size;
110 	const u8 *buf = sw->nvm->buf;
111 	u16 ds_size;
112 	int ret;
113 
114 	if (!buf)
115 		return -EINVAL;
116 
117 	image_size = sw->nvm->buf_data_size;
118 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
119 		return -EINVAL;
120 
121 	/*
122 	 * FARB pointer must point inside the image and must at least
123 	 * contain parts of the digital section we will be reading here.
124 	 */
125 	hdr_size = (*(u32 *)buf) & 0xffffff;
126 	if (hdr_size + NVM_DEVID + 2 >= image_size)
127 		return -EINVAL;
128 
129 	/* Digital section start should be aligned to 4k page */
130 	if (!IS_ALIGNED(hdr_size, SZ_4K))
131 		return -EINVAL;
132 
133 	/*
134 	 * Read digital section size and check that it also fits inside
135 	 * the image.
136 	 */
137 	ds_size = *(u16 *)(buf + hdr_size);
138 	if (ds_size >= image_size)
139 		return -EINVAL;
140 
141 	if (!sw->safe_mode) {
142 		u16 device_id;
143 
144 		/*
145 		 * Make sure the device ID in the image matches the one
146 		 * we read from the switch config space.
147 		 */
148 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
149 		if (device_id != sw->config.device_id)
150 			return -EINVAL;
151 
152 		if (sw->generation < 3) {
153 			/* Write CSS headers first */
154 			ret = dma_port_flash_write(sw->dma_port,
155 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
156 				DMA_PORT_CSS_MAX_SIZE);
157 			if (ret)
158 				return ret;
159 		}
160 
161 		/* Skip headers in the image */
162 		buf += hdr_size;
163 		image_size -= hdr_size;
164 	}
165 
166 	if (tb_switch_is_usb4(sw))
167 		return usb4_switch_nvm_write(sw, 0, buf, image_size);
168 	return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
169 }
170 
171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
172 {
173 	int ret = 0;
174 
175 	/*
176 	 * Root switch NVM upgrade requires that we disconnect the
177 	 * existing paths first (in case it is not in safe mode
178 	 * already).
179 	 */
180 	if (!sw->safe_mode) {
181 		u32 status;
182 
183 		ret = tb_domain_disconnect_all_paths(sw->tb);
184 		if (ret)
185 			return ret;
186 		/*
187 		 * The host controller goes away pretty soon after this if
188 		 * everything goes well so getting timeout is expected.
189 		 */
190 		ret = dma_port_flash_update_auth(sw->dma_port);
191 		if (!ret || ret == -ETIMEDOUT)
192 			return 0;
193 
194 		/*
195 		 * Any error from update auth operation requires power
196 		 * cycling of the host router.
197 		 */
198 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 			nvm_set_auth_status(sw, status);
201 	}
202 
203 	/*
204 	 * From safe mode we can get out by just power cycling the
205 	 * switch.
206 	 */
207 	dma_port_power_cycle(sw->dma_port);
208 	return ret;
209 }
210 
211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
212 {
213 	int ret, retries = 10;
214 
215 	ret = dma_port_flash_update_auth(sw->dma_port);
216 	switch (ret) {
217 	case 0:
218 	case -ETIMEDOUT:
219 	case -EACCES:
220 	case -EINVAL:
221 		/* Power cycle is required */
222 		break;
223 	default:
224 		return ret;
225 	}
226 
227 	/*
228 	 * Poll here for the authentication status. It takes some time
229 	 * for the device to respond (we get timeout for a while). Once
230 	 * we get response the device needs to be power cycled in order
231 	 * to the new NVM to be taken into use.
232 	 */
233 	do {
234 		u32 status;
235 
236 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 		if (ret < 0 && ret != -ETIMEDOUT)
238 			return ret;
239 		if (ret > 0) {
240 			if (status) {
241 				tb_sw_warn(sw, "failed to authenticate NVM\n");
242 				nvm_set_auth_status(sw, status);
243 			}
244 
245 			tb_sw_info(sw, "power cycling the switch now\n");
246 			dma_port_power_cycle(sw->dma_port);
247 			return 0;
248 		}
249 
250 		msleep(500);
251 	} while (--retries);
252 
253 	return -ETIMEDOUT;
254 }
255 
256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257 {
258 	struct pci_dev *root_port;
259 
260 	/*
261 	 * During host router NVM upgrade we should not allow root port to
262 	 * go into D3cold because some root ports cannot trigger PME
263 	 * itself. To be on the safe side keep the root port in D0 during
264 	 * the whole upgrade process.
265 	 */
266 	root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
267 	if (root_port)
268 		pm_runtime_get_noresume(&root_port->dev);
269 }
270 
271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272 {
273 	struct pci_dev *root_port;
274 
275 	root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
276 	if (root_port)
277 		pm_runtime_put(&root_port->dev);
278 }
279 
280 static inline bool nvm_readable(struct tb_switch *sw)
281 {
282 	if (tb_switch_is_usb4(sw)) {
283 		/*
284 		 * USB4 devices must support NVM operations but it is
285 		 * optional for hosts. Therefore we query the NVM sector
286 		 * size here and if it is supported assume NVM
287 		 * operations are implemented.
288 		 */
289 		return usb4_switch_nvm_sector_size(sw) > 0;
290 	}
291 
292 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 	return !!sw->dma_port;
294 }
295 
296 static inline bool nvm_upgradeable(struct tb_switch *sw)
297 {
298 	if (sw->no_nvm_upgrade)
299 		return false;
300 	return nvm_readable(sw);
301 }
302 
303 static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 			   void *buf, size_t size)
305 {
306 	if (tb_switch_is_usb4(sw))
307 		return usb4_switch_nvm_read(sw, address, buf, size);
308 	return dma_port_flash_read(sw->dma_port, address, buf, size);
309 }
310 
311 static int nvm_authenticate(struct tb_switch *sw)
312 {
313 	int ret;
314 
315 	if (tb_switch_is_usb4(sw))
316 		return usb4_switch_nvm_authenticate(sw);
317 
318 	if (!tb_route(sw)) {
319 		nvm_authenticate_start_dma_port(sw);
320 		ret = nvm_authenticate_host_dma_port(sw);
321 	} else {
322 		ret = nvm_authenticate_device_dma_port(sw);
323 	}
324 
325 	return ret;
326 }
327 
328 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
329 			      size_t bytes)
330 {
331 	struct tb_switch *sw = priv;
332 	int ret;
333 
334 	pm_runtime_get_sync(&sw->dev);
335 
336 	if (!mutex_trylock(&sw->tb->lock)) {
337 		ret = restart_syscall();
338 		goto out;
339 	}
340 
341 	ret = nvm_read(sw, offset, val, bytes);
342 	mutex_unlock(&sw->tb->lock);
343 
344 out:
345 	pm_runtime_mark_last_busy(&sw->dev);
346 	pm_runtime_put_autosuspend(&sw->dev);
347 
348 	return ret;
349 }
350 
351 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
352 			       size_t bytes)
353 {
354 	struct tb_switch *sw = priv;
355 	int ret = 0;
356 
357 	if (!mutex_trylock(&sw->tb->lock))
358 		return restart_syscall();
359 
360 	/*
361 	 * Since writing the NVM image might require some special steps,
362 	 * for example when CSS headers are written, we cache the image
363 	 * locally here and handle the special cases when the user asks
364 	 * us to authenticate the image.
365 	 */
366 	if (!sw->nvm->buf) {
367 		sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
368 		if (!sw->nvm->buf) {
369 			ret = -ENOMEM;
370 			goto unlock;
371 		}
372 	}
373 
374 	sw->nvm->buf_data_size = offset + bytes;
375 	memcpy(sw->nvm->buf + offset, val, bytes);
376 
377 unlock:
378 	mutex_unlock(&sw->tb->lock);
379 
380 	return ret;
381 }
382 
383 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
384 					   size_t size, bool active)
385 {
386 	struct nvmem_config config;
387 
388 	memset(&config, 0, sizeof(config));
389 
390 	if (active) {
391 		config.name = "nvm_active";
392 		config.reg_read = tb_switch_nvm_read;
393 		config.read_only = true;
394 	} else {
395 		config.name = "nvm_non_active";
396 		config.reg_write = tb_switch_nvm_write;
397 		config.root_only = true;
398 	}
399 
400 	config.id = id;
401 	config.stride = 4;
402 	config.word_size = 4;
403 	config.size = size;
404 	config.dev = &sw->dev;
405 	config.owner = THIS_MODULE;
406 	config.priv = sw;
407 
408 	return nvmem_register(&config);
409 }
410 
411 static int tb_switch_nvm_add(struct tb_switch *sw)
412 {
413 	struct nvmem_device *nvm_dev;
414 	struct tb_switch_nvm *nvm;
415 	u32 val;
416 	int ret;
417 
418 	if (!nvm_readable(sw))
419 		return 0;
420 
421 	/*
422 	 * The NVM format of non-Intel hardware is not known so
423 	 * currently restrict NVM upgrade for Intel hardware. We may
424 	 * relax this in the future when we learn other NVM formats.
425 	 */
426 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) {
427 		dev_info(&sw->dev,
428 			 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
429 			 sw->config.vendor_id);
430 		return 0;
431 	}
432 
433 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
434 	if (!nvm)
435 		return -ENOMEM;
436 
437 	nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
438 
439 	/*
440 	 * If the switch is in safe-mode the only accessible portion of
441 	 * the NVM is the non-active one where userspace is expected to
442 	 * write new functional NVM.
443 	 */
444 	if (!sw->safe_mode) {
445 		u32 nvm_size, hdr_size;
446 
447 		ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
448 		if (ret)
449 			goto err_ida;
450 
451 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
452 		nvm_size = (SZ_1M << (val & 7)) / 8;
453 		nvm_size = (nvm_size - hdr_size) / 2;
454 
455 		ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
456 		if (ret)
457 			goto err_ida;
458 
459 		nvm->major = val >> 16;
460 		nvm->minor = val >> 8;
461 
462 		nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
463 		if (IS_ERR(nvm_dev)) {
464 			ret = PTR_ERR(nvm_dev);
465 			goto err_ida;
466 		}
467 		nvm->active = nvm_dev;
468 	}
469 
470 	if (!sw->no_nvm_upgrade) {
471 		nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
472 		if (IS_ERR(nvm_dev)) {
473 			ret = PTR_ERR(nvm_dev);
474 			goto err_nvm_active;
475 		}
476 		nvm->non_active = nvm_dev;
477 	}
478 
479 	sw->nvm = nvm;
480 	return 0;
481 
482 err_nvm_active:
483 	if (nvm->active)
484 		nvmem_unregister(nvm->active);
485 err_ida:
486 	ida_simple_remove(&nvm_ida, nvm->id);
487 	kfree(nvm);
488 
489 	return ret;
490 }
491 
492 static void tb_switch_nvm_remove(struct tb_switch *sw)
493 {
494 	struct tb_switch_nvm *nvm;
495 
496 	nvm = sw->nvm;
497 	sw->nvm = NULL;
498 
499 	if (!nvm)
500 		return;
501 
502 	/* Remove authentication status in case the switch is unplugged */
503 	if (!nvm->authenticating)
504 		nvm_clear_auth_status(sw);
505 
506 	if (nvm->non_active)
507 		nvmem_unregister(nvm->non_active);
508 	if (nvm->active)
509 		nvmem_unregister(nvm->active);
510 	ida_simple_remove(&nvm_ida, nvm->id);
511 	vfree(nvm->buf);
512 	kfree(nvm);
513 }
514 
515 /* port utility functions */
516 
517 static const char *tb_port_type(struct tb_regs_port_header *port)
518 {
519 	switch (port->type >> 16) {
520 	case 0:
521 		switch ((u8) port->type) {
522 		case 0:
523 			return "Inactive";
524 		case 1:
525 			return "Port";
526 		case 2:
527 			return "NHI";
528 		default:
529 			return "unknown";
530 		}
531 	case 0x2:
532 		return "Ethernet";
533 	case 0x8:
534 		return "SATA";
535 	case 0xe:
536 		return "DP/HDMI";
537 	case 0x10:
538 		return "PCIe";
539 	case 0x20:
540 		return "USB";
541 	default:
542 		return "unknown";
543 	}
544 }
545 
546 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
547 {
548 	tb_dbg(tb,
549 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
550 	       port->port_number, port->vendor_id, port->device_id,
551 	       port->revision, port->thunderbolt_version, tb_port_type(port),
552 	       port->type);
553 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
554 	       port->max_in_hop_id, port->max_out_hop_id);
555 	tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
556 	tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
557 }
558 
559 /**
560  * tb_port_state() - get connectedness state of a port
561  *
562  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
563  *
564  * Return: Returns an enum tb_port_state on success or an error code on failure.
565  */
566 static int tb_port_state(struct tb_port *port)
567 {
568 	struct tb_cap_phy phy;
569 	int res;
570 	if (port->cap_phy == 0) {
571 		tb_port_WARN(port, "does not have a PHY\n");
572 		return -EINVAL;
573 	}
574 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
575 	if (res)
576 		return res;
577 	return phy.state;
578 }
579 
580 /**
581  * tb_wait_for_port() - wait for a port to become ready
582  *
583  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
584  * wait_if_unplugged is set then we also wait if the port is in state
585  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
586  * switch resume). Otherwise we only wait if a device is registered but the link
587  * has not yet been established.
588  *
589  * Return: Returns an error code on failure. Returns 0 if the port is not
590  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
591  * if the port is connected and in state TB_PORT_UP.
592  */
593 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
594 {
595 	int retries = 10;
596 	int state;
597 	if (!port->cap_phy) {
598 		tb_port_WARN(port, "does not have PHY\n");
599 		return -EINVAL;
600 	}
601 	if (tb_is_upstream_port(port)) {
602 		tb_port_WARN(port, "is the upstream port\n");
603 		return -EINVAL;
604 	}
605 
606 	while (retries--) {
607 		state = tb_port_state(port);
608 		if (state < 0)
609 			return state;
610 		if (state == TB_PORT_DISABLED) {
611 			tb_port_dbg(port, "is disabled (state: 0)\n");
612 			return 0;
613 		}
614 		if (state == TB_PORT_UNPLUGGED) {
615 			if (wait_if_unplugged) {
616 				/* used during resume */
617 				tb_port_dbg(port,
618 					    "is unplugged (state: 7), retrying...\n");
619 				msleep(100);
620 				continue;
621 			}
622 			tb_port_dbg(port, "is unplugged (state: 7)\n");
623 			return 0;
624 		}
625 		if (state == TB_PORT_UP) {
626 			tb_port_dbg(port, "is connected, link is up (state: 2)\n");
627 			return 1;
628 		}
629 
630 		/*
631 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
632 		 * time.
633 		 */
634 		tb_port_dbg(port,
635 			    "is connected, link is not up (state: %d), retrying...\n",
636 			    state);
637 		msleep(100);
638 	}
639 	tb_port_warn(port,
640 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
641 	return 0;
642 }
643 
644 /**
645  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
646  *
647  * Change the number of NFC credits allocated to @port by @credits. To remove
648  * NFC credits pass a negative amount of credits.
649  *
650  * Return: Returns 0 on success or an error code on failure.
651  */
652 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
653 {
654 	u32 nfc_credits;
655 
656 	if (credits == 0 || port->sw->is_unplugged)
657 		return 0;
658 
659 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
660 	nfc_credits += credits;
661 
662 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
663 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
664 
665 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
666 	port->config.nfc_credits |= nfc_credits;
667 
668 	return tb_port_write(port, &port->config.nfc_credits,
669 			     TB_CFG_PORT, ADP_CS_4, 1);
670 }
671 
672 /**
673  * tb_port_set_initial_credits() - Set initial port link credits allocated
674  * @port: Port to set the initial credits
675  * @credits: Number of credits to to allocate
676  *
677  * Set initial credits value to be used for ingress shared buffering.
678  */
679 int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
680 {
681 	u32 data;
682 	int ret;
683 
684 	ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
685 	if (ret)
686 		return ret;
687 
688 	data &= ~ADP_CS_5_LCA_MASK;
689 	data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
690 
691 	return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
692 }
693 
694 /**
695  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
696  *
697  * Return: Returns 0 on success or an error code on failure.
698  */
699 int tb_port_clear_counter(struct tb_port *port, int counter)
700 {
701 	u32 zero[3] = { 0, 0, 0 };
702 	tb_port_dbg(port, "clearing counter %d\n", counter);
703 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
704 }
705 
706 /**
707  * tb_port_unlock() - Unlock downstream port
708  * @port: Port to unlock
709  *
710  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
711  * downstream router accessible for CM.
712  */
713 int tb_port_unlock(struct tb_port *port)
714 {
715 	if (tb_switch_is_icm(port->sw))
716 		return 0;
717 	if (!tb_port_is_null(port))
718 		return -EINVAL;
719 	if (tb_switch_is_usb4(port->sw))
720 		return usb4_port_unlock(port);
721 	return 0;
722 }
723 
724 /**
725  * tb_init_port() - initialize a port
726  *
727  * This is a helper method for tb_switch_alloc. Does not check or initialize
728  * any downstream switches.
729  *
730  * Return: Returns 0 on success or an error code on failure.
731  */
732 static int tb_init_port(struct tb_port *port)
733 {
734 	int res;
735 	int cap;
736 
737 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
738 	if (res) {
739 		if (res == -ENODEV) {
740 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
741 			       port->port);
742 			return 0;
743 		}
744 		return res;
745 	}
746 
747 	/* Port 0 is the switch itself and has no PHY. */
748 	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
749 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
750 
751 		if (cap > 0)
752 			port->cap_phy = cap;
753 		else
754 			tb_port_WARN(port, "non switch port without a PHY\n");
755 
756 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
757 		if (cap > 0)
758 			port->cap_usb4 = cap;
759 	} else if (port->port != 0) {
760 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
761 		if (cap > 0)
762 			port->cap_adap = cap;
763 	}
764 
765 	tb_dump_port(port->sw->tb, &port->config);
766 
767 	/* Control port does not need HopID allocation */
768 	if (port->port) {
769 		ida_init(&port->in_hopids);
770 		ida_init(&port->out_hopids);
771 	}
772 
773 	INIT_LIST_HEAD(&port->list);
774 	return 0;
775 
776 }
777 
778 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
779 			       int max_hopid)
780 {
781 	int port_max_hopid;
782 	struct ida *ida;
783 
784 	if (in) {
785 		port_max_hopid = port->config.max_in_hop_id;
786 		ida = &port->in_hopids;
787 	} else {
788 		port_max_hopid = port->config.max_out_hop_id;
789 		ida = &port->out_hopids;
790 	}
791 
792 	/* HopIDs 0-7 are reserved */
793 	if (min_hopid < TB_PATH_MIN_HOPID)
794 		min_hopid = TB_PATH_MIN_HOPID;
795 
796 	if (max_hopid < 0 || max_hopid > port_max_hopid)
797 		max_hopid = port_max_hopid;
798 
799 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
800 }
801 
802 /**
803  * tb_port_alloc_in_hopid() - Allocate input HopID from port
804  * @port: Port to allocate HopID for
805  * @min_hopid: Minimum acceptable input HopID
806  * @max_hopid: Maximum acceptable input HopID
807  *
808  * Return: HopID between @min_hopid and @max_hopid or negative errno in
809  * case of error.
810  */
811 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
812 {
813 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
814 }
815 
816 /**
817  * tb_port_alloc_out_hopid() - Allocate output HopID from port
818  * @port: Port to allocate HopID for
819  * @min_hopid: Minimum acceptable output HopID
820  * @max_hopid: Maximum acceptable output HopID
821  *
822  * Return: HopID between @min_hopid and @max_hopid or negative errno in
823  * case of error.
824  */
825 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
826 {
827 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
828 }
829 
830 /**
831  * tb_port_release_in_hopid() - Release allocated input HopID from port
832  * @port: Port whose HopID to release
833  * @hopid: HopID to release
834  */
835 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
836 {
837 	ida_simple_remove(&port->in_hopids, hopid);
838 }
839 
840 /**
841  * tb_port_release_out_hopid() - Release allocated output HopID from port
842  * @port: Port whose HopID to release
843  * @hopid: HopID to release
844  */
845 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
846 {
847 	ida_simple_remove(&port->out_hopids, hopid);
848 }
849 
850 /**
851  * tb_next_port_on_path() - Return next port for given port on a path
852  * @start: Start port of the walk
853  * @end: End port of the walk
854  * @prev: Previous port (%NULL if this is the first)
855  *
856  * This function can be used to walk from one port to another if they
857  * are connected through zero or more switches. If the @prev is dual
858  * link port, the function follows that link and returns another end on
859  * that same link.
860  *
861  * If the @end port has been reached, return %NULL.
862  *
863  * Domain tb->lock must be held when this function is called.
864  */
865 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
866 				     struct tb_port *prev)
867 {
868 	struct tb_port *next;
869 
870 	if (!prev)
871 		return start;
872 
873 	if (prev->sw == end->sw) {
874 		if (prev == end)
875 			return NULL;
876 		return end;
877 	}
878 
879 	if (start->sw->config.depth < end->sw->config.depth) {
880 		if (prev->remote &&
881 		    prev->remote->sw->config.depth > prev->sw->config.depth)
882 			next = prev->remote;
883 		else
884 			next = tb_port_at(tb_route(end->sw), prev->sw);
885 	} else {
886 		if (tb_is_upstream_port(prev)) {
887 			next = prev->remote;
888 		} else {
889 			next = tb_upstream_port(prev->sw);
890 			/*
891 			 * Keep the same link if prev and next are both
892 			 * dual link ports.
893 			 */
894 			if (next->dual_link_port &&
895 			    next->link_nr != prev->link_nr) {
896 				next = next->dual_link_port;
897 			}
898 		}
899 	}
900 
901 	return next;
902 }
903 
904 static int tb_port_get_link_speed(struct tb_port *port)
905 {
906 	u32 val, speed;
907 	int ret;
908 
909 	if (!port->cap_phy)
910 		return -EINVAL;
911 
912 	ret = tb_port_read(port, &val, TB_CFG_PORT,
913 			   port->cap_phy + LANE_ADP_CS_1, 1);
914 	if (ret)
915 		return ret;
916 
917 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
918 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
919 	return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
920 }
921 
922 static int tb_port_get_link_width(struct tb_port *port)
923 {
924 	u32 val;
925 	int ret;
926 
927 	if (!port->cap_phy)
928 		return -EINVAL;
929 
930 	ret = tb_port_read(port, &val, TB_CFG_PORT,
931 			   port->cap_phy + LANE_ADP_CS_1, 1);
932 	if (ret)
933 		return ret;
934 
935 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
936 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
937 }
938 
939 static bool tb_port_is_width_supported(struct tb_port *port, int width)
940 {
941 	u32 phy, widths;
942 	int ret;
943 
944 	if (!port->cap_phy)
945 		return false;
946 
947 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
948 			   port->cap_phy + LANE_ADP_CS_0, 1);
949 	if (ret)
950 		return ret;
951 
952 	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
953 		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
954 
955 	return !!(widths & width);
956 }
957 
958 static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
959 {
960 	u32 val;
961 	int ret;
962 
963 	if (!port->cap_phy)
964 		return -EINVAL;
965 
966 	ret = tb_port_read(port, &val, TB_CFG_PORT,
967 			   port->cap_phy + LANE_ADP_CS_1, 1);
968 	if (ret)
969 		return ret;
970 
971 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
972 	switch (width) {
973 	case 1:
974 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
975 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
976 		break;
977 	case 2:
978 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
979 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
980 		break;
981 	default:
982 		return -EINVAL;
983 	}
984 
985 	val |= LANE_ADP_CS_1_LB;
986 
987 	return tb_port_write(port, &val, TB_CFG_PORT,
988 			     port->cap_phy + LANE_ADP_CS_1, 1);
989 }
990 
991 static int tb_port_lane_bonding_enable(struct tb_port *port)
992 {
993 	int ret;
994 
995 	/*
996 	 * Enable lane bonding for both links if not already enabled by
997 	 * for example the boot firmware.
998 	 */
999 	ret = tb_port_get_link_width(port);
1000 	if (ret == 1) {
1001 		ret = tb_port_set_link_width(port, 2);
1002 		if (ret)
1003 			return ret;
1004 	}
1005 
1006 	ret = tb_port_get_link_width(port->dual_link_port);
1007 	if (ret == 1) {
1008 		ret = tb_port_set_link_width(port->dual_link_port, 2);
1009 		if (ret) {
1010 			tb_port_set_link_width(port, 1);
1011 			return ret;
1012 		}
1013 	}
1014 
1015 	port->bonded = true;
1016 	port->dual_link_port->bonded = true;
1017 
1018 	return 0;
1019 }
1020 
1021 static void tb_port_lane_bonding_disable(struct tb_port *port)
1022 {
1023 	port->dual_link_port->bonded = false;
1024 	port->bonded = false;
1025 
1026 	tb_port_set_link_width(port->dual_link_port, 1);
1027 	tb_port_set_link_width(port, 1);
1028 }
1029 
1030 /**
1031  * tb_port_is_enabled() - Is the adapter port enabled
1032  * @port: Port to check
1033  */
1034 bool tb_port_is_enabled(struct tb_port *port)
1035 {
1036 	switch (port->config.type) {
1037 	case TB_TYPE_PCIE_UP:
1038 	case TB_TYPE_PCIE_DOWN:
1039 		return tb_pci_port_is_enabled(port);
1040 
1041 	case TB_TYPE_DP_HDMI_IN:
1042 	case TB_TYPE_DP_HDMI_OUT:
1043 		return tb_dp_port_is_enabled(port);
1044 
1045 	case TB_TYPE_USB3_UP:
1046 	case TB_TYPE_USB3_DOWN:
1047 		return tb_usb3_port_is_enabled(port);
1048 
1049 	default:
1050 		return false;
1051 	}
1052 }
1053 
1054 /**
1055  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1056  * @port: USB3 adapter port to check
1057  */
1058 bool tb_usb3_port_is_enabled(struct tb_port *port)
1059 {
1060 	u32 data;
1061 
1062 	if (tb_port_read(port, &data, TB_CFG_PORT,
1063 			 port->cap_adap + ADP_USB3_CS_0, 1))
1064 		return false;
1065 
1066 	return !!(data & ADP_USB3_CS_0_PE);
1067 }
1068 
1069 /**
1070  * tb_usb3_port_enable() - Enable USB3 adapter port
1071  * @port: USB3 adapter port to enable
1072  * @enable: Enable/disable the USB3 adapter
1073  */
1074 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1075 {
1076 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1077 			  : ADP_USB3_CS_0_V;
1078 
1079 	if (!port->cap_adap)
1080 		return -ENXIO;
1081 	return tb_port_write(port, &word, TB_CFG_PORT,
1082 			     port->cap_adap + ADP_USB3_CS_0, 1);
1083 }
1084 
1085 /**
1086  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1087  * @port: PCIe port to check
1088  */
1089 bool tb_pci_port_is_enabled(struct tb_port *port)
1090 {
1091 	u32 data;
1092 
1093 	if (tb_port_read(port, &data, TB_CFG_PORT,
1094 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1095 		return false;
1096 
1097 	return !!(data & ADP_PCIE_CS_0_PE);
1098 }
1099 
1100 /**
1101  * tb_pci_port_enable() - Enable PCIe adapter port
1102  * @port: PCIe port to enable
1103  * @enable: Enable/disable the PCIe adapter
1104  */
1105 int tb_pci_port_enable(struct tb_port *port, bool enable)
1106 {
1107 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1108 	if (!port->cap_adap)
1109 		return -ENXIO;
1110 	return tb_port_write(port, &word, TB_CFG_PORT,
1111 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1112 }
1113 
1114 /**
1115  * tb_dp_port_hpd_is_active() - Is HPD already active
1116  * @port: DP out port to check
1117  *
1118  * Checks if the DP OUT adapter port has HDP bit already set.
1119  */
1120 int tb_dp_port_hpd_is_active(struct tb_port *port)
1121 {
1122 	u32 data;
1123 	int ret;
1124 
1125 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1126 			   port->cap_adap + ADP_DP_CS_2, 1);
1127 	if (ret)
1128 		return ret;
1129 
1130 	return !!(data & ADP_DP_CS_2_HDP);
1131 }
1132 
1133 /**
1134  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1135  * @port: Port to clear HPD
1136  *
1137  * If the DP IN port has HDP set, this function can be used to clear it.
1138  */
1139 int tb_dp_port_hpd_clear(struct tb_port *port)
1140 {
1141 	u32 data;
1142 	int ret;
1143 
1144 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1145 			   port->cap_adap + ADP_DP_CS_3, 1);
1146 	if (ret)
1147 		return ret;
1148 
1149 	data |= ADP_DP_CS_3_HDPC;
1150 	return tb_port_write(port, &data, TB_CFG_PORT,
1151 			     port->cap_adap + ADP_DP_CS_3, 1);
1152 }
1153 
1154 /**
1155  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1156  * @port: DP IN/OUT port to set hops
1157  * @video: Video Hop ID
1158  * @aux_tx: AUX TX Hop ID
1159  * @aux_rx: AUX RX Hop ID
1160  *
1161  * Programs specified Hop IDs for DP IN/OUT port.
1162  */
1163 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1164 			unsigned int aux_tx, unsigned int aux_rx)
1165 {
1166 	u32 data[2];
1167 	int ret;
1168 
1169 	ret = tb_port_read(port, data, TB_CFG_PORT,
1170 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1171 	if (ret)
1172 		return ret;
1173 
1174 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1175 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1176 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1177 
1178 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1179 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1180 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1181 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1182 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1183 
1184 	return tb_port_write(port, data, TB_CFG_PORT,
1185 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1186 }
1187 
1188 /**
1189  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1190  * @port: DP adapter port to check
1191  */
1192 bool tb_dp_port_is_enabled(struct tb_port *port)
1193 {
1194 	u32 data[2];
1195 
1196 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1197 			 ARRAY_SIZE(data)))
1198 		return false;
1199 
1200 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1201 }
1202 
1203 /**
1204  * tb_dp_port_enable() - Enables/disables DP paths of a port
1205  * @port: DP IN/OUT port
1206  * @enable: Enable/disable DP path
1207  *
1208  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1209  * calling this function.
1210  */
1211 int tb_dp_port_enable(struct tb_port *port, bool enable)
1212 {
1213 	u32 data[2];
1214 	int ret;
1215 
1216 	ret = tb_port_read(port, data, TB_CFG_PORT,
1217 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1218 	if (ret)
1219 		return ret;
1220 
1221 	if (enable)
1222 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1223 	else
1224 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1225 
1226 	return tb_port_write(port, data, TB_CFG_PORT,
1227 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1228 }
1229 
1230 /* switch utility functions */
1231 
1232 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1233 {
1234 	switch (sw->generation) {
1235 	case 1:
1236 		return "Thunderbolt 1";
1237 	case 2:
1238 		return "Thunderbolt 2";
1239 	case 3:
1240 		return "Thunderbolt 3";
1241 	case 4:
1242 		return "USB4";
1243 	default:
1244 		return "Unknown";
1245 	}
1246 }
1247 
1248 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1249 {
1250 	const struct tb_regs_switch_header *regs = &sw->config;
1251 
1252 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1253 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1254 	       regs->revision, regs->thunderbolt_version);
1255 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1256 	tb_dbg(tb, "  Config:\n");
1257 	tb_dbg(tb,
1258 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1259 	       regs->upstream_port_number, regs->depth,
1260 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1261 	       regs->enabled, regs->plug_events_delay);
1262 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1263 	       regs->__unknown1, regs->__unknown4);
1264 }
1265 
1266 /**
1267  * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1268  *
1269  * Return: Returns 0 on success or an error code on failure.
1270  */
1271 int tb_switch_reset(struct tb *tb, u64 route)
1272 {
1273 	struct tb_cfg_result res;
1274 	struct tb_regs_switch_header header = {
1275 		header.route_hi = route >> 32,
1276 		header.route_lo = route,
1277 		header.enabled = true,
1278 	};
1279 	tb_dbg(tb, "resetting switch at %llx\n", route);
1280 	res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
1281 			0, 2, 2, 2);
1282 	if (res.err)
1283 		return res.err;
1284 	res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
1285 	if (res.err > 0)
1286 		return -EIO;
1287 	return res.err;
1288 }
1289 
1290 /**
1291  * tb_plug_events_active() - enable/disable plug events on a switch
1292  *
1293  * Also configures a sane plug_events_delay of 255ms.
1294  *
1295  * Return: Returns 0 on success or an error code on failure.
1296  */
1297 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1298 {
1299 	u32 data;
1300 	int res;
1301 
1302 	if (tb_switch_is_icm(sw))
1303 		return 0;
1304 
1305 	sw->config.plug_events_delay = 0xff;
1306 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1307 	if (res)
1308 		return res;
1309 
1310 	/* Plug events are always enabled in USB4 */
1311 	if (tb_switch_is_usb4(sw))
1312 		return 0;
1313 
1314 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1315 	if (res)
1316 		return res;
1317 
1318 	if (active) {
1319 		data = data & 0xFFFFFF83;
1320 		switch (sw->config.device_id) {
1321 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1322 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1323 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1324 			break;
1325 		default:
1326 			data |= 4;
1327 		}
1328 	} else {
1329 		data = data | 0x7c;
1330 	}
1331 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1332 			   sw->cap_plug_events + 1, 1);
1333 }
1334 
1335 static ssize_t authorized_show(struct device *dev,
1336 			       struct device_attribute *attr,
1337 			       char *buf)
1338 {
1339 	struct tb_switch *sw = tb_to_switch(dev);
1340 
1341 	return sprintf(buf, "%u\n", sw->authorized);
1342 }
1343 
1344 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1345 {
1346 	int ret = -EINVAL;
1347 
1348 	if (!mutex_trylock(&sw->tb->lock))
1349 		return restart_syscall();
1350 
1351 	if (sw->authorized)
1352 		goto unlock;
1353 
1354 	switch (val) {
1355 	/* Approve switch */
1356 	case 1:
1357 		if (sw->key)
1358 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1359 		else
1360 			ret = tb_domain_approve_switch(sw->tb, sw);
1361 		break;
1362 
1363 	/* Challenge switch */
1364 	case 2:
1365 		if (sw->key)
1366 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1367 		break;
1368 
1369 	default:
1370 		break;
1371 	}
1372 
1373 	if (!ret) {
1374 		sw->authorized = val;
1375 		/* Notify status change to the userspace */
1376 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1377 	}
1378 
1379 unlock:
1380 	mutex_unlock(&sw->tb->lock);
1381 	return ret;
1382 }
1383 
1384 static ssize_t authorized_store(struct device *dev,
1385 				struct device_attribute *attr,
1386 				const char *buf, size_t count)
1387 {
1388 	struct tb_switch *sw = tb_to_switch(dev);
1389 	unsigned int val;
1390 	ssize_t ret;
1391 
1392 	ret = kstrtouint(buf, 0, &val);
1393 	if (ret)
1394 		return ret;
1395 	if (val > 2)
1396 		return -EINVAL;
1397 
1398 	pm_runtime_get_sync(&sw->dev);
1399 	ret = tb_switch_set_authorized(sw, val);
1400 	pm_runtime_mark_last_busy(&sw->dev);
1401 	pm_runtime_put_autosuspend(&sw->dev);
1402 
1403 	return ret ? ret : count;
1404 }
1405 static DEVICE_ATTR_RW(authorized);
1406 
1407 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1408 			 char *buf)
1409 {
1410 	struct tb_switch *sw = tb_to_switch(dev);
1411 
1412 	return sprintf(buf, "%u\n", sw->boot);
1413 }
1414 static DEVICE_ATTR_RO(boot);
1415 
1416 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1417 			   char *buf)
1418 {
1419 	struct tb_switch *sw = tb_to_switch(dev);
1420 
1421 	return sprintf(buf, "%#x\n", sw->device);
1422 }
1423 static DEVICE_ATTR_RO(device);
1424 
1425 static ssize_t
1426 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1427 {
1428 	struct tb_switch *sw = tb_to_switch(dev);
1429 
1430 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1431 }
1432 static DEVICE_ATTR_RO(device_name);
1433 
1434 static ssize_t
1435 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1436 {
1437 	struct tb_switch *sw = tb_to_switch(dev);
1438 
1439 	return sprintf(buf, "%u\n", sw->generation);
1440 }
1441 static DEVICE_ATTR_RO(generation);
1442 
1443 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1444 			char *buf)
1445 {
1446 	struct tb_switch *sw = tb_to_switch(dev);
1447 	ssize_t ret;
1448 
1449 	if (!mutex_trylock(&sw->tb->lock))
1450 		return restart_syscall();
1451 
1452 	if (sw->key)
1453 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1454 	else
1455 		ret = sprintf(buf, "\n");
1456 
1457 	mutex_unlock(&sw->tb->lock);
1458 	return ret;
1459 }
1460 
1461 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1462 			 const char *buf, size_t count)
1463 {
1464 	struct tb_switch *sw = tb_to_switch(dev);
1465 	u8 key[TB_SWITCH_KEY_SIZE];
1466 	ssize_t ret = count;
1467 	bool clear = false;
1468 
1469 	if (!strcmp(buf, "\n"))
1470 		clear = true;
1471 	else if (hex2bin(key, buf, sizeof(key)))
1472 		return -EINVAL;
1473 
1474 	if (!mutex_trylock(&sw->tb->lock))
1475 		return restart_syscall();
1476 
1477 	if (sw->authorized) {
1478 		ret = -EBUSY;
1479 	} else {
1480 		kfree(sw->key);
1481 		if (clear) {
1482 			sw->key = NULL;
1483 		} else {
1484 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1485 			if (!sw->key)
1486 				ret = -ENOMEM;
1487 		}
1488 	}
1489 
1490 	mutex_unlock(&sw->tb->lock);
1491 	return ret;
1492 }
1493 static DEVICE_ATTR(key, 0600, key_show, key_store);
1494 
1495 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1496 			  char *buf)
1497 {
1498 	struct tb_switch *sw = tb_to_switch(dev);
1499 
1500 	return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1501 }
1502 
1503 /*
1504  * Currently all lanes must run at the same speed but we expose here
1505  * both directions to allow possible asymmetric links in the future.
1506  */
1507 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1508 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1509 
1510 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1511 			  char *buf)
1512 {
1513 	struct tb_switch *sw = tb_to_switch(dev);
1514 
1515 	return sprintf(buf, "%u\n", sw->link_width);
1516 }
1517 
1518 /*
1519  * Currently link has same amount of lanes both directions (1 or 2) but
1520  * expose them separately to allow possible asymmetric links in the future.
1521  */
1522 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1523 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1524 
1525 static ssize_t nvm_authenticate_show(struct device *dev,
1526 	struct device_attribute *attr, char *buf)
1527 {
1528 	struct tb_switch *sw = tb_to_switch(dev);
1529 	u32 status;
1530 
1531 	nvm_get_auth_status(sw, &status);
1532 	return sprintf(buf, "%#x\n", status);
1533 }
1534 
1535 static ssize_t nvm_authenticate_store(struct device *dev,
1536 	struct device_attribute *attr, const char *buf, size_t count)
1537 {
1538 	struct tb_switch *sw = tb_to_switch(dev);
1539 	bool val;
1540 	int ret;
1541 
1542 	pm_runtime_get_sync(&sw->dev);
1543 
1544 	if (!mutex_trylock(&sw->tb->lock)) {
1545 		ret = restart_syscall();
1546 		goto exit_rpm;
1547 	}
1548 
1549 	/* If NVMem devices are not yet added */
1550 	if (!sw->nvm) {
1551 		ret = -EAGAIN;
1552 		goto exit_unlock;
1553 	}
1554 
1555 	ret = kstrtobool(buf, &val);
1556 	if (ret)
1557 		goto exit_unlock;
1558 
1559 	/* Always clear the authentication status */
1560 	nvm_clear_auth_status(sw);
1561 
1562 	if (val) {
1563 		if (!sw->nvm->buf) {
1564 			ret = -EINVAL;
1565 			goto exit_unlock;
1566 		}
1567 
1568 		ret = nvm_validate_and_write(sw);
1569 		if (ret)
1570 			goto exit_unlock;
1571 
1572 		sw->nvm->authenticating = true;
1573 		ret = nvm_authenticate(sw);
1574 	}
1575 
1576 exit_unlock:
1577 	mutex_unlock(&sw->tb->lock);
1578 exit_rpm:
1579 	pm_runtime_mark_last_busy(&sw->dev);
1580 	pm_runtime_put_autosuspend(&sw->dev);
1581 
1582 	if (ret)
1583 		return ret;
1584 	return count;
1585 }
1586 static DEVICE_ATTR_RW(nvm_authenticate);
1587 
1588 static ssize_t nvm_version_show(struct device *dev,
1589 				struct device_attribute *attr, char *buf)
1590 {
1591 	struct tb_switch *sw = tb_to_switch(dev);
1592 	int ret;
1593 
1594 	if (!mutex_trylock(&sw->tb->lock))
1595 		return restart_syscall();
1596 
1597 	if (sw->safe_mode)
1598 		ret = -ENODATA;
1599 	else if (!sw->nvm)
1600 		ret = -EAGAIN;
1601 	else
1602 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1603 
1604 	mutex_unlock(&sw->tb->lock);
1605 
1606 	return ret;
1607 }
1608 static DEVICE_ATTR_RO(nvm_version);
1609 
1610 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1611 			   char *buf)
1612 {
1613 	struct tb_switch *sw = tb_to_switch(dev);
1614 
1615 	return sprintf(buf, "%#x\n", sw->vendor);
1616 }
1617 static DEVICE_ATTR_RO(vendor);
1618 
1619 static ssize_t
1620 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1621 {
1622 	struct tb_switch *sw = tb_to_switch(dev);
1623 
1624 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1625 }
1626 static DEVICE_ATTR_RO(vendor_name);
1627 
1628 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1629 			      char *buf)
1630 {
1631 	struct tb_switch *sw = tb_to_switch(dev);
1632 
1633 	return sprintf(buf, "%pUb\n", sw->uuid);
1634 }
1635 static DEVICE_ATTR_RO(unique_id);
1636 
1637 static struct attribute *switch_attrs[] = {
1638 	&dev_attr_authorized.attr,
1639 	&dev_attr_boot.attr,
1640 	&dev_attr_device.attr,
1641 	&dev_attr_device_name.attr,
1642 	&dev_attr_generation.attr,
1643 	&dev_attr_key.attr,
1644 	&dev_attr_nvm_authenticate.attr,
1645 	&dev_attr_nvm_version.attr,
1646 	&dev_attr_rx_speed.attr,
1647 	&dev_attr_rx_lanes.attr,
1648 	&dev_attr_tx_speed.attr,
1649 	&dev_attr_tx_lanes.attr,
1650 	&dev_attr_vendor.attr,
1651 	&dev_attr_vendor_name.attr,
1652 	&dev_attr_unique_id.attr,
1653 	NULL,
1654 };
1655 
1656 static umode_t switch_attr_is_visible(struct kobject *kobj,
1657 				      struct attribute *attr, int n)
1658 {
1659 	struct device *dev = container_of(kobj, struct device, kobj);
1660 	struct tb_switch *sw = tb_to_switch(dev);
1661 
1662 	if (attr == &dev_attr_device.attr) {
1663 		if (!sw->device)
1664 			return 0;
1665 	} else if (attr == &dev_attr_device_name.attr) {
1666 		if (!sw->device_name)
1667 			return 0;
1668 	} else if (attr == &dev_attr_vendor.attr)  {
1669 		if (!sw->vendor)
1670 			return 0;
1671 	} else if (attr == &dev_attr_vendor_name.attr)  {
1672 		if (!sw->vendor_name)
1673 			return 0;
1674 	} else if (attr == &dev_attr_key.attr) {
1675 		if (tb_route(sw) &&
1676 		    sw->tb->security_level == TB_SECURITY_SECURE &&
1677 		    sw->security_level == TB_SECURITY_SECURE)
1678 			return attr->mode;
1679 		return 0;
1680 	} else if (attr == &dev_attr_rx_speed.attr ||
1681 		   attr == &dev_attr_rx_lanes.attr ||
1682 		   attr == &dev_attr_tx_speed.attr ||
1683 		   attr == &dev_attr_tx_lanes.attr) {
1684 		if (tb_route(sw))
1685 			return attr->mode;
1686 		return 0;
1687 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
1688 		if (nvm_upgradeable(sw))
1689 			return attr->mode;
1690 		return 0;
1691 	} else if (attr == &dev_attr_nvm_version.attr) {
1692 		if (nvm_readable(sw))
1693 			return attr->mode;
1694 		return 0;
1695 	} else if (attr == &dev_attr_boot.attr) {
1696 		if (tb_route(sw))
1697 			return attr->mode;
1698 		return 0;
1699 	}
1700 
1701 	return sw->safe_mode ? 0 : attr->mode;
1702 }
1703 
1704 static struct attribute_group switch_group = {
1705 	.is_visible = switch_attr_is_visible,
1706 	.attrs = switch_attrs,
1707 };
1708 
1709 static const struct attribute_group *switch_groups[] = {
1710 	&switch_group,
1711 	NULL,
1712 };
1713 
1714 static void tb_switch_release(struct device *dev)
1715 {
1716 	struct tb_switch *sw = tb_to_switch(dev);
1717 	struct tb_port *port;
1718 
1719 	dma_port_free(sw->dma_port);
1720 
1721 	tb_switch_for_each_port(sw, port) {
1722 		if (!port->disabled) {
1723 			ida_destroy(&port->in_hopids);
1724 			ida_destroy(&port->out_hopids);
1725 		}
1726 	}
1727 
1728 	kfree(sw->uuid);
1729 	kfree(sw->device_name);
1730 	kfree(sw->vendor_name);
1731 	kfree(sw->ports);
1732 	kfree(sw->drom);
1733 	kfree(sw->key);
1734 	kfree(sw);
1735 }
1736 
1737 /*
1738  * Currently only need to provide the callbacks. Everything else is handled
1739  * in the connection manager.
1740  */
1741 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1742 {
1743 	struct tb_switch *sw = tb_to_switch(dev);
1744 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1745 
1746 	if (cm_ops->runtime_suspend_switch)
1747 		return cm_ops->runtime_suspend_switch(sw);
1748 
1749 	return 0;
1750 }
1751 
1752 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1753 {
1754 	struct tb_switch *sw = tb_to_switch(dev);
1755 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1756 
1757 	if (cm_ops->runtime_resume_switch)
1758 		return cm_ops->runtime_resume_switch(sw);
1759 	return 0;
1760 }
1761 
1762 static const struct dev_pm_ops tb_switch_pm_ops = {
1763 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1764 			   NULL)
1765 };
1766 
1767 struct device_type tb_switch_type = {
1768 	.name = "thunderbolt_device",
1769 	.release = tb_switch_release,
1770 	.pm = &tb_switch_pm_ops,
1771 };
1772 
1773 static int tb_switch_get_generation(struct tb_switch *sw)
1774 {
1775 	switch (sw->config.device_id) {
1776 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1777 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1778 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1779 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1780 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1781 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1782 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1783 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1784 		return 1;
1785 
1786 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1787 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1788 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1789 		return 2;
1790 
1791 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1792 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1793 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1794 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1795 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1796 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1797 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1798 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1799 	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1800 	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1801 		return 3;
1802 
1803 	default:
1804 		if (tb_switch_is_usb4(sw))
1805 			return 4;
1806 
1807 		/*
1808 		 * For unknown switches assume generation to be 1 to be
1809 		 * on the safe side.
1810 		 */
1811 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
1812 			   sw->config.device_id);
1813 		return 1;
1814 	}
1815 }
1816 
1817 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1818 {
1819 	int max_depth;
1820 
1821 	if (tb_switch_is_usb4(sw) ||
1822 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1823 		max_depth = USB4_SWITCH_MAX_DEPTH;
1824 	else
1825 		max_depth = TB_SWITCH_MAX_DEPTH;
1826 
1827 	return depth > max_depth;
1828 }
1829 
1830 /**
1831  * tb_switch_alloc() - allocate a switch
1832  * @tb: Pointer to the owning domain
1833  * @parent: Parent device for this switch
1834  * @route: Route string for this switch
1835  *
1836  * Allocates and initializes a switch. Will not upload configuration to
1837  * the switch. For that you need to call tb_switch_configure()
1838  * separately. The returned switch should be released by calling
1839  * tb_switch_put().
1840  *
1841  * Return: Pointer to the allocated switch or ERR_PTR() in case of
1842  * failure.
1843  */
1844 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1845 				  u64 route)
1846 {
1847 	struct tb_switch *sw;
1848 	int upstream_port;
1849 	int i, ret, depth;
1850 
1851 	/* Unlock the downstream port so we can access the switch below */
1852 	if (route) {
1853 		struct tb_switch *parent_sw = tb_to_switch(parent);
1854 		struct tb_port *down;
1855 
1856 		down = tb_port_at(route, parent_sw);
1857 		tb_port_unlock(down);
1858 	}
1859 
1860 	depth = tb_route_length(route);
1861 
1862 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1863 	if (upstream_port < 0)
1864 		return ERR_PTR(upstream_port);
1865 
1866 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1867 	if (!sw)
1868 		return ERR_PTR(-ENOMEM);
1869 
1870 	sw->tb = tb;
1871 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1872 	if (ret)
1873 		goto err_free_sw_ports;
1874 
1875 	sw->generation = tb_switch_get_generation(sw);
1876 
1877 	tb_dbg(tb, "current switch config:\n");
1878 	tb_dump_switch(tb, sw);
1879 
1880 	/* configure switch */
1881 	sw->config.upstream_port_number = upstream_port;
1882 	sw->config.depth = depth;
1883 	sw->config.route_hi = upper_32_bits(route);
1884 	sw->config.route_lo = lower_32_bits(route);
1885 	sw->config.enabled = 0;
1886 
1887 	/* Make sure we do not exceed maximum topology limit */
1888 	if (tb_switch_exceeds_max_depth(sw, depth)) {
1889 		ret = -EADDRNOTAVAIL;
1890 		goto err_free_sw_ports;
1891 	}
1892 
1893 	/* initialize ports */
1894 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1895 				GFP_KERNEL);
1896 	if (!sw->ports) {
1897 		ret = -ENOMEM;
1898 		goto err_free_sw_ports;
1899 	}
1900 
1901 	for (i = 0; i <= sw->config.max_port_number; i++) {
1902 		/* minimum setup for tb_find_cap and tb_drom_read to work */
1903 		sw->ports[i].sw = sw;
1904 		sw->ports[i].port = i;
1905 	}
1906 
1907 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1908 	if (ret > 0)
1909 		sw->cap_plug_events = ret;
1910 
1911 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1912 	if (ret > 0)
1913 		sw->cap_lc = ret;
1914 
1915 	/* Root switch is always authorized */
1916 	if (!route)
1917 		sw->authorized = true;
1918 
1919 	device_initialize(&sw->dev);
1920 	sw->dev.parent = parent;
1921 	sw->dev.bus = &tb_bus_type;
1922 	sw->dev.type = &tb_switch_type;
1923 	sw->dev.groups = switch_groups;
1924 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1925 
1926 	return sw;
1927 
1928 err_free_sw_ports:
1929 	kfree(sw->ports);
1930 	kfree(sw);
1931 
1932 	return ERR_PTR(ret);
1933 }
1934 
1935 /**
1936  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1937  * @tb: Pointer to the owning domain
1938  * @parent: Parent device for this switch
1939  * @route: Route string for this switch
1940  *
1941  * This creates a switch in safe mode. This means the switch pretty much
1942  * lacks all capabilities except DMA configuration port before it is
1943  * flashed with a valid NVM firmware.
1944  *
1945  * The returned switch must be released by calling tb_switch_put().
1946  *
1947  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1948  */
1949 struct tb_switch *
1950 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1951 {
1952 	struct tb_switch *sw;
1953 
1954 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1955 	if (!sw)
1956 		return ERR_PTR(-ENOMEM);
1957 
1958 	sw->tb = tb;
1959 	sw->config.depth = tb_route_length(route);
1960 	sw->config.route_hi = upper_32_bits(route);
1961 	sw->config.route_lo = lower_32_bits(route);
1962 	sw->safe_mode = true;
1963 
1964 	device_initialize(&sw->dev);
1965 	sw->dev.parent = parent;
1966 	sw->dev.bus = &tb_bus_type;
1967 	sw->dev.type = &tb_switch_type;
1968 	sw->dev.groups = switch_groups;
1969 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1970 
1971 	return sw;
1972 }
1973 
1974 /**
1975  * tb_switch_configure() - Uploads configuration to the switch
1976  * @sw: Switch to configure
1977  *
1978  * Call this function before the switch is added to the system. It will
1979  * upload configuration to the switch and makes it available for the
1980  * connection manager to use. Can be called to the switch again after
1981  * resume from low power states to re-initialize it.
1982  *
1983  * Return: %0 in case of success and negative errno in case of failure
1984  */
1985 int tb_switch_configure(struct tb_switch *sw)
1986 {
1987 	struct tb *tb = sw->tb;
1988 	u64 route;
1989 	int ret;
1990 
1991 	route = tb_route(sw);
1992 
1993 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
1994 	       sw->config.enabled ? "restoring " : "initializing", route,
1995 	       tb_route_length(route), sw->config.upstream_port_number);
1996 
1997 	sw->config.enabled = 1;
1998 
1999 	if (tb_switch_is_usb4(sw)) {
2000 		/*
2001 		 * For USB4 devices, we need to program the CM version
2002 		 * accordingly so that it knows to expose all the
2003 		 * additional capabilities.
2004 		 */
2005 		sw->config.cmuv = USB4_VERSION_1_0;
2006 
2007 		/* Enumerate the switch */
2008 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2009 				  ROUTER_CS_1, 4);
2010 		if (ret)
2011 			return ret;
2012 
2013 		ret = usb4_switch_setup(sw);
2014 		if (ret)
2015 			return ret;
2016 
2017 		ret = usb4_switch_configure_link(sw);
2018 	} else {
2019 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2020 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2021 				   sw->config.vendor_id);
2022 
2023 		if (!sw->cap_plug_events) {
2024 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2025 			return -ENODEV;
2026 		}
2027 
2028 		/* Enumerate the switch */
2029 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2030 				  ROUTER_CS_1, 3);
2031 		if (ret)
2032 			return ret;
2033 
2034 		ret = tb_lc_configure_link(sw);
2035 	}
2036 	if (ret)
2037 		return ret;
2038 
2039 	return tb_plug_events_active(sw, true);
2040 }
2041 
2042 static int tb_switch_set_uuid(struct tb_switch *sw)
2043 {
2044 	bool uid = false;
2045 	u32 uuid[4];
2046 	int ret;
2047 
2048 	if (sw->uuid)
2049 		return 0;
2050 
2051 	if (tb_switch_is_usb4(sw)) {
2052 		ret = usb4_switch_read_uid(sw, &sw->uid);
2053 		if (ret)
2054 			return ret;
2055 		uid = true;
2056 	} else {
2057 		/*
2058 		 * The newer controllers include fused UUID as part of
2059 		 * link controller specific registers
2060 		 */
2061 		ret = tb_lc_read_uuid(sw, uuid);
2062 		if (ret) {
2063 			if (ret != -EINVAL)
2064 				return ret;
2065 			uid = true;
2066 		}
2067 	}
2068 
2069 	if (uid) {
2070 		/*
2071 		 * ICM generates UUID based on UID and fills the upper
2072 		 * two words with ones. This is not strictly following
2073 		 * UUID format but we want to be compatible with it so
2074 		 * we do the same here.
2075 		 */
2076 		uuid[0] = sw->uid & 0xffffffff;
2077 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2078 		uuid[2] = 0xffffffff;
2079 		uuid[3] = 0xffffffff;
2080 	}
2081 
2082 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2083 	if (!sw->uuid)
2084 		return -ENOMEM;
2085 	return 0;
2086 }
2087 
2088 static int tb_switch_add_dma_port(struct tb_switch *sw)
2089 {
2090 	u32 status;
2091 	int ret;
2092 
2093 	switch (sw->generation) {
2094 	case 2:
2095 		/* Only root switch can be upgraded */
2096 		if (tb_route(sw))
2097 			return 0;
2098 
2099 		/* fallthrough */
2100 	case 3:
2101 		ret = tb_switch_set_uuid(sw);
2102 		if (ret)
2103 			return ret;
2104 		break;
2105 
2106 	default:
2107 		/*
2108 		 * DMA port is the only thing available when the switch
2109 		 * is in safe mode.
2110 		 */
2111 		if (!sw->safe_mode)
2112 			return 0;
2113 		break;
2114 	}
2115 
2116 	/* Root switch DMA port requires running firmware */
2117 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2118 		return 0;
2119 
2120 	sw->dma_port = dma_port_alloc(sw);
2121 	if (!sw->dma_port)
2122 		return 0;
2123 
2124 	if (sw->no_nvm_upgrade)
2125 		return 0;
2126 
2127 	/*
2128 	 * If there is status already set then authentication failed
2129 	 * when the dma_port_flash_update_auth() returned. Power cycling
2130 	 * is not needed (it was done already) so only thing we do here
2131 	 * is to unblock runtime PM of the root port.
2132 	 */
2133 	nvm_get_auth_status(sw, &status);
2134 	if (status) {
2135 		if (!tb_route(sw))
2136 			nvm_authenticate_complete_dma_port(sw);
2137 		return 0;
2138 	}
2139 
2140 	/*
2141 	 * Check status of the previous flash authentication. If there
2142 	 * is one we need to power cycle the switch in any case to make
2143 	 * it functional again.
2144 	 */
2145 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2146 	if (ret <= 0)
2147 		return ret;
2148 
2149 	/* Now we can allow root port to suspend again */
2150 	if (!tb_route(sw))
2151 		nvm_authenticate_complete_dma_port(sw);
2152 
2153 	if (status) {
2154 		tb_sw_info(sw, "switch flash authentication failed\n");
2155 		nvm_set_auth_status(sw, status);
2156 	}
2157 
2158 	tb_sw_info(sw, "power cycling the switch now\n");
2159 	dma_port_power_cycle(sw->dma_port);
2160 
2161 	/*
2162 	 * We return error here which causes the switch adding failure.
2163 	 * It should appear back after power cycle is complete.
2164 	 */
2165 	return -ESHUTDOWN;
2166 }
2167 
2168 static void tb_switch_default_link_ports(struct tb_switch *sw)
2169 {
2170 	int i;
2171 
2172 	for (i = 1; i <= sw->config.max_port_number; i += 2) {
2173 		struct tb_port *port = &sw->ports[i];
2174 		struct tb_port *subordinate;
2175 
2176 		if (!tb_port_is_null(port))
2177 			continue;
2178 
2179 		/* Check for the subordinate port */
2180 		if (i == sw->config.max_port_number ||
2181 		    !tb_port_is_null(&sw->ports[i + 1]))
2182 			continue;
2183 
2184 		/* Link them if not already done so (by DROM) */
2185 		subordinate = &sw->ports[i + 1];
2186 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2187 			port->link_nr = 0;
2188 			port->dual_link_port = subordinate;
2189 			subordinate->link_nr = 1;
2190 			subordinate->dual_link_port = port;
2191 
2192 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2193 				  port->port, subordinate->port);
2194 		}
2195 	}
2196 }
2197 
2198 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2199 {
2200 	const struct tb_port *up = tb_upstream_port(sw);
2201 
2202 	if (!up->dual_link_port || !up->dual_link_port->remote)
2203 		return false;
2204 
2205 	if (tb_switch_is_usb4(sw))
2206 		return usb4_switch_lane_bonding_possible(sw);
2207 	return tb_lc_lane_bonding_possible(sw);
2208 }
2209 
2210 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2211 {
2212 	struct tb_port *up;
2213 	bool change = false;
2214 	int ret;
2215 
2216 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2217 		return 0;
2218 
2219 	up = tb_upstream_port(sw);
2220 
2221 	ret = tb_port_get_link_speed(up);
2222 	if (ret < 0)
2223 		return ret;
2224 	if (sw->link_speed != ret)
2225 		change = true;
2226 	sw->link_speed = ret;
2227 
2228 	ret = tb_port_get_link_width(up);
2229 	if (ret < 0)
2230 		return ret;
2231 	if (sw->link_width != ret)
2232 		change = true;
2233 	sw->link_width = ret;
2234 
2235 	/* Notify userspace that there is possible link attribute change */
2236 	if (device_is_registered(&sw->dev) && change)
2237 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2238 
2239 	return 0;
2240 }
2241 
2242 /**
2243  * tb_switch_lane_bonding_enable() - Enable lane bonding
2244  * @sw: Switch to enable lane bonding
2245  *
2246  * Connection manager can call this function to enable lane bonding of a
2247  * switch. If conditions are correct and both switches support the feature,
2248  * lanes are bonded. It is safe to call this to any switch.
2249  */
2250 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2251 {
2252 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2253 	struct tb_port *up, *down;
2254 	u64 route = tb_route(sw);
2255 	int ret;
2256 
2257 	if (!route)
2258 		return 0;
2259 
2260 	if (!tb_switch_lane_bonding_possible(sw))
2261 		return 0;
2262 
2263 	up = tb_upstream_port(sw);
2264 	down = tb_port_at(route, parent);
2265 
2266 	if (!tb_port_is_width_supported(up, 2) ||
2267 	    !tb_port_is_width_supported(down, 2))
2268 		return 0;
2269 
2270 	ret = tb_port_lane_bonding_enable(up);
2271 	if (ret) {
2272 		tb_port_warn(up, "failed to enable lane bonding\n");
2273 		return ret;
2274 	}
2275 
2276 	ret = tb_port_lane_bonding_enable(down);
2277 	if (ret) {
2278 		tb_port_warn(down, "failed to enable lane bonding\n");
2279 		tb_port_lane_bonding_disable(up);
2280 		return ret;
2281 	}
2282 
2283 	tb_switch_update_link_attributes(sw);
2284 
2285 	tb_sw_dbg(sw, "lane bonding enabled\n");
2286 	return ret;
2287 }
2288 
2289 /**
2290  * tb_switch_lane_bonding_disable() - Disable lane bonding
2291  * @sw: Switch whose lane bonding to disable
2292  *
2293  * Disables lane bonding between @sw and parent. This can be called even
2294  * if lanes were not bonded originally.
2295  */
2296 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2297 {
2298 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2299 	struct tb_port *up, *down;
2300 
2301 	if (!tb_route(sw))
2302 		return;
2303 
2304 	up = tb_upstream_port(sw);
2305 	if (!up->bonded)
2306 		return;
2307 
2308 	down = tb_port_at(tb_route(sw), parent);
2309 
2310 	tb_port_lane_bonding_disable(up);
2311 	tb_port_lane_bonding_disable(down);
2312 
2313 	tb_switch_update_link_attributes(sw);
2314 	tb_sw_dbg(sw, "lane bonding disabled\n");
2315 }
2316 
2317 /**
2318  * tb_switch_add() - Add a switch to the domain
2319  * @sw: Switch to add
2320  *
2321  * This is the last step in adding switch to the domain. It will read
2322  * identification information from DROM and initializes ports so that
2323  * they can be used to connect other switches. The switch will be
2324  * exposed to the userspace when this function successfully returns. To
2325  * remove and release the switch, call tb_switch_remove().
2326  *
2327  * Return: %0 in case of success and negative errno in case of failure
2328  */
2329 int tb_switch_add(struct tb_switch *sw)
2330 {
2331 	int i, ret;
2332 
2333 	/*
2334 	 * Initialize DMA control port now before we read DROM. Recent
2335 	 * host controllers have more complete DROM on NVM that includes
2336 	 * vendor and model identification strings which we then expose
2337 	 * to the userspace. NVM can be accessed through DMA
2338 	 * configuration based mailbox.
2339 	 */
2340 	ret = tb_switch_add_dma_port(sw);
2341 	if (ret) {
2342 		dev_err(&sw->dev, "failed to add DMA port\n");
2343 		return ret;
2344 	}
2345 
2346 	if (!sw->safe_mode) {
2347 		/* read drom */
2348 		ret = tb_drom_read(sw);
2349 		if (ret) {
2350 			dev_err(&sw->dev, "reading DROM failed\n");
2351 			return ret;
2352 		}
2353 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2354 
2355 		ret = tb_switch_set_uuid(sw);
2356 		if (ret) {
2357 			dev_err(&sw->dev, "failed to set UUID\n");
2358 			return ret;
2359 		}
2360 
2361 		for (i = 0; i <= sw->config.max_port_number; i++) {
2362 			if (sw->ports[i].disabled) {
2363 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2364 				continue;
2365 			}
2366 			ret = tb_init_port(&sw->ports[i]);
2367 			if (ret) {
2368 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
2369 				return ret;
2370 			}
2371 		}
2372 
2373 		tb_switch_default_link_ports(sw);
2374 
2375 		ret = tb_switch_update_link_attributes(sw);
2376 		if (ret)
2377 			return ret;
2378 
2379 		ret = tb_switch_tmu_init(sw);
2380 		if (ret)
2381 			return ret;
2382 	}
2383 
2384 	ret = device_add(&sw->dev);
2385 	if (ret) {
2386 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
2387 		return ret;
2388 	}
2389 
2390 	if (tb_route(sw)) {
2391 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2392 			 sw->vendor, sw->device);
2393 		if (sw->vendor_name && sw->device_name)
2394 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2395 				 sw->device_name);
2396 	}
2397 
2398 	ret = tb_switch_nvm_add(sw);
2399 	if (ret) {
2400 		dev_err(&sw->dev, "failed to add NVM devices\n");
2401 		device_del(&sw->dev);
2402 		return ret;
2403 	}
2404 
2405 	pm_runtime_set_active(&sw->dev);
2406 	if (sw->rpm) {
2407 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2408 		pm_runtime_use_autosuspend(&sw->dev);
2409 		pm_runtime_mark_last_busy(&sw->dev);
2410 		pm_runtime_enable(&sw->dev);
2411 		pm_request_autosuspend(&sw->dev);
2412 	}
2413 
2414 	return 0;
2415 }
2416 
2417 /**
2418  * tb_switch_remove() - Remove and release a switch
2419  * @sw: Switch to remove
2420  *
2421  * This will remove the switch from the domain and release it after last
2422  * reference count drops to zero. If there are switches connected below
2423  * this switch, they will be removed as well.
2424  */
2425 void tb_switch_remove(struct tb_switch *sw)
2426 {
2427 	struct tb_port *port;
2428 
2429 	if (sw->rpm) {
2430 		pm_runtime_get_sync(&sw->dev);
2431 		pm_runtime_disable(&sw->dev);
2432 	}
2433 
2434 	/* port 0 is the switch itself and never has a remote */
2435 	tb_switch_for_each_port(sw, port) {
2436 		if (tb_port_has_remote(port)) {
2437 			tb_switch_remove(port->remote->sw);
2438 			port->remote = NULL;
2439 		} else if (port->xdomain) {
2440 			tb_xdomain_remove(port->xdomain);
2441 			port->xdomain = NULL;
2442 		}
2443 	}
2444 
2445 	if (!sw->is_unplugged)
2446 		tb_plug_events_active(sw, false);
2447 
2448 	if (tb_switch_is_usb4(sw))
2449 		usb4_switch_unconfigure_link(sw);
2450 	else
2451 		tb_lc_unconfigure_link(sw);
2452 
2453 	tb_switch_nvm_remove(sw);
2454 
2455 	if (tb_route(sw))
2456 		dev_info(&sw->dev, "device disconnected\n");
2457 	device_unregister(&sw->dev);
2458 }
2459 
2460 /**
2461  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2462  */
2463 void tb_sw_set_unplugged(struct tb_switch *sw)
2464 {
2465 	struct tb_port *port;
2466 
2467 	if (sw == sw->tb->root_switch) {
2468 		tb_sw_WARN(sw, "cannot unplug root switch\n");
2469 		return;
2470 	}
2471 	if (sw->is_unplugged) {
2472 		tb_sw_WARN(sw, "is_unplugged already set\n");
2473 		return;
2474 	}
2475 	sw->is_unplugged = true;
2476 	tb_switch_for_each_port(sw, port) {
2477 		if (tb_port_has_remote(port))
2478 			tb_sw_set_unplugged(port->remote->sw);
2479 		else if (port->xdomain)
2480 			port->xdomain->is_unplugged = true;
2481 	}
2482 }
2483 
2484 int tb_switch_resume(struct tb_switch *sw)
2485 {
2486 	struct tb_port *port;
2487 	int err;
2488 
2489 	tb_sw_dbg(sw, "resuming switch\n");
2490 
2491 	/*
2492 	 * Check for UID of the connected switches except for root
2493 	 * switch which we assume cannot be removed.
2494 	 */
2495 	if (tb_route(sw)) {
2496 		u64 uid;
2497 
2498 		/*
2499 		 * Check first that we can still read the switch config
2500 		 * space. It may be that there is now another domain
2501 		 * connected.
2502 		 */
2503 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2504 		if (err < 0) {
2505 			tb_sw_info(sw, "switch not present anymore\n");
2506 			return err;
2507 		}
2508 
2509 		if (tb_switch_is_usb4(sw))
2510 			err = usb4_switch_read_uid(sw, &uid);
2511 		else
2512 			err = tb_drom_read_uid_only(sw, &uid);
2513 		if (err) {
2514 			tb_sw_warn(sw, "uid read failed\n");
2515 			return err;
2516 		}
2517 		if (sw->uid != uid) {
2518 			tb_sw_info(sw,
2519 				"changed while suspended (uid %#llx -> %#llx)\n",
2520 				sw->uid, uid);
2521 			return -ENODEV;
2522 		}
2523 	}
2524 
2525 	err = tb_switch_configure(sw);
2526 	if (err)
2527 		return err;
2528 
2529 	/* check for surviving downstream switches */
2530 	tb_switch_for_each_port(sw, port) {
2531 		if (!tb_port_has_remote(port) && !port->xdomain)
2532 			continue;
2533 
2534 		if (tb_wait_for_port(port, true) <= 0) {
2535 			tb_port_warn(port,
2536 				     "lost during suspend, disconnecting\n");
2537 			if (tb_port_has_remote(port))
2538 				tb_sw_set_unplugged(port->remote->sw);
2539 			else if (port->xdomain)
2540 				port->xdomain->is_unplugged = true;
2541 		} else if (tb_port_has_remote(port) || port->xdomain) {
2542 			/*
2543 			 * Always unlock the port so the downstream
2544 			 * switch/domain is accessible.
2545 			 */
2546 			if (tb_port_unlock(port))
2547 				tb_port_warn(port, "failed to unlock port\n");
2548 			if (port->remote && tb_switch_resume(port->remote->sw)) {
2549 				tb_port_warn(port,
2550 					     "lost during suspend, disconnecting\n");
2551 				tb_sw_set_unplugged(port->remote->sw);
2552 			}
2553 		}
2554 	}
2555 	return 0;
2556 }
2557 
2558 void tb_switch_suspend(struct tb_switch *sw)
2559 {
2560 	struct tb_port *port;
2561 	int err;
2562 
2563 	err = tb_plug_events_active(sw, false);
2564 	if (err)
2565 		return;
2566 
2567 	tb_switch_for_each_port(sw, port) {
2568 		if (tb_port_has_remote(port))
2569 			tb_switch_suspend(port->remote->sw);
2570 	}
2571 
2572 	if (tb_switch_is_usb4(sw))
2573 		usb4_switch_set_sleep(sw);
2574 	else
2575 		tb_lc_set_sleep(sw);
2576 }
2577 
2578 /**
2579  * tb_switch_query_dp_resource() - Query availability of DP resource
2580  * @sw: Switch whose DP resource is queried
2581  * @in: DP IN port
2582  *
2583  * Queries availability of DP resource for DP tunneling using switch
2584  * specific means. Returns %true if resource is available.
2585  */
2586 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2587 {
2588 	if (tb_switch_is_usb4(sw))
2589 		return usb4_switch_query_dp_resource(sw, in);
2590 	return tb_lc_dp_sink_query(sw, in);
2591 }
2592 
2593 /**
2594  * tb_switch_alloc_dp_resource() - Allocate available DP resource
2595  * @sw: Switch whose DP resource is allocated
2596  * @in: DP IN port
2597  *
2598  * Allocates DP resource for DP tunneling. The resource must be
2599  * available for this to succeed (see tb_switch_query_dp_resource()).
2600  * Returns %0 in success and negative errno otherwise.
2601  */
2602 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2603 {
2604 	if (tb_switch_is_usb4(sw))
2605 		return usb4_switch_alloc_dp_resource(sw, in);
2606 	return tb_lc_dp_sink_alloc(sw, in);
2607 }
2608 
2609 /**
2610  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2611  * @sw: Switch whose DP resource is de-allocated
2612  * @in: DP IN port
2613  *
2614  * De-allocates DP resource that was previously allocated for DP
2615  * tunneling.
2616  */
2617 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2618 {
2619 	int ret;
2620 
2621 	if (tb_switch_is_usb4(sw))
2622 		ret = usb4_switch_dealloc_dp_resource(sw, in);
2623 	else
2624 		ret = tb_lc_dp_sink_dealloc(sw, in);
2625 
2626 	if (ret)
2627 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2628 			   in->port);
2629 }
2630 
2631 struct tb_sw_lookup {
2632 	struct tb *tb;
2633 	u8 link;
2634 	u8 depth;
2635 	const uuid_t *uuid;
2636 	u64 route;
2637 };
2638 
2639 static int tb_switch_match(struct device *dev, const void *data)
2640 {
2641 	struct tb_switch *sw = tb_to_switch(dev);
2642 	const struct tb_sw_lookup *lookup = data;
2643 
2644 	if (!sw)
2645 		return 0;
2646 	if (sw->tb != lookup->tb)
2647 		return 0;
2648 
2649 	if (lookup->uuid)
2650 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2651 
2652 	if (lookup->route) {
2653 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
2654 		       sw->config.route_hi == upper_32_bits(lookup->route);
2655 	}
2656 
2657 	/* Root switch is matched only by depth */
2658 	if (!lookup->depth)
2659 		return !sw->depth;
2660 
2661 	return sw->link == lookup->link && sw->depth == lookup->depth;
2662 }
2663 
2664 /**
2665  * tb_switch_find_by_link_depth() - Find switch by link and depth
2666  * @tb: Domain the switch belongs
2667  * @link: Link number the switch is connected
2668  * @depth: Depth of the switch in link
2669  *
2670  * Returned switch has reference count increased so the caller needs to
2671  * call tb_switch_put() when done with the switch.
2672  */
2673 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2674 {
2675 	struct tb_sw_lookup lookup;
2676 	struct device *dev;
2677 
2678 	memset(&lookup, 0, sizeof(lookup));
2679 	lookup.tb = tb;
2680 	lookup.link = link;
2681 	lookup.depth = depth;
2682 
2683 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2684 	if (dev)
2685 		return tb_to_switch(dev);
2686 
2687 	return NULL;
2688 }
2689 
2690 /**
2691  * tb_switch_find_by_uuid() - Find switch by UUID
2692  * @tb: Domain the switch belongs
2693  * @uuid: UUID to look for
2694  *
2695  * Returned switch has reference count increased so the caller needs to
2696  * call tb_switch_put() when done with the switch.
2697  */
2698 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2699 {
2700 	struct tb_sw_lookup lookup;
2701 	struct device *dev;
2702 
2703 	memset(&lookup, 0, sizeof(lookup));
2704 	lookup.tb = tb;
2705 	lookup.uuid = uuid;
2706 
2707 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2708 	if (dev)
2709 		return tb_to_switch(dev);
2710 
2711 	return NULL;
2712 }
2713 
2714 /**
2715  * tb_switch_find_by_route() - Find switch by route string
2716  * @tb: Domain the switch belongs
2717  * @route: Route string to look for
2718  *
2719  * Returned switch has reference count increased so the caller needs to
2720  * call tb_switch_put() when done with the switch.
2721  */
2722 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2723 {
2724 	struct tb_sw_lookup lookup;
2725 	struct device *dev;
2726 
2727 	if (!route)
2728 		return tb_switch_get(tb->root_switch);
2729 
2730 	memset(&lookup, 0, sizeof(lookup));
2731 	lookup.tb = tb;
2732 	lookup.route = route;
2733 
2734 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2735 	if (dev)
2736 		return tb_to_switch(dev);
2737 
2738 	return NULL;
2739 }
2740 
2741 /**
2742  * tb_switch_find_port() - return the first port of @type on @sw or NULL
2743  * @sw: Switch to find the port from
2744  * @type: Port type to look for
2745  */
2746 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2747 				    enum tb_port_type type)
2748 {
2749 	struct tb_port *port;
2750 
2751 	tb_switch_for_each_port(sw, port) {
2752 		if (port->config.type == type)
2753 			return port;
2754 	}
2755 
2756 	return NULL;
2757 }
2758 
2759 void tb_switch_exit(void)
2760 {
2761 	ida_destroy(&nvm_ida);
2762 }
2763