1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - switch/port utility functions 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2018, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/idr.h> 11 #include <linux/nvmem-provider.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/sizes.h> 14 #include <linux/slab.h> 15 #include <linux/vmalloc.h> 16 17 #include "tb.h" 18 19 /* Switch authorization from userspace is serialized by this lock */ 20 static DEFINE_MUTEX(switch_lock); 21 22 /* Switch NVM support */ 23 24 #define NVM_DEVID 0x05 25 #define NVM_VERSION 0x08 26 #define NVM_CSS 0x10 27 #define NVM_FLASH_SIZE 0x45 28 29 #define NVM_MIN_SIZE SZ_32K 30 #define NVM_MAX_SIZE SZ_512K 31 32 static DEFINE_IDA(nvm_ida); 33 34 struct nvm_auth_status { 35 struct list_head list; 36 uuid_t uuid; 37 u32 status; 38 }; 39 40 /* 41 * Hold NVM authentication failure status per switch This information 42 * needs to stay around even when the switch gets power cycled so we 43 * keep it separately. 44 */ 45 static LIST_HEAD(nvm_auth_status_cache); 46 static DEFINE_MUTEX(nvm_auth_status_lock); 47 48 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 49 { 50 struct nvm_auth_status *st; 51 52 list_for_each_entry(st, &nvm_auth_status_cache, list) { 53 if (uuid_equal(&st->uuid, sw->uuid)) 54 return st; 55 } 56 57 return NULL; 58 } 59 60 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 61 { 62 struct nvm_auth_status *st; 63 64 mutex_lock(&nvm_auth_status_lock); 65 st = __nvm_get_auth_status(sw); 66 mutex_unlock(&nvm_auth_status_lock); 67 68 *status = st ? st->status : 0; 69 } 70 71 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 72 { 73 struct nvm_auth_status *st; 74 75 if (WARN_ON(!sw->uuid)) 76 return; 77 78 mutex_lock(&nvm_auth_status_lock); 79 st = __nvm_get_auth_status(sw); 80 81 if (!st) { 82 st = kzalloc(sizeof(*st), GFP_KERNEL); 83 if (!st) 84 goto unlock; 85 86 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 87 INIT_LIST_HEAD(&st->list); 88 list_add_tail(&st->list, &nvm_auth_status_cache); 89 } 90 91 st->status = status; 92 unlock: 93 mutex_unlock(&nvm_auth_status_lock); 94 } 95 96 static void nvm_clear_auth_status(const struct tb_switch *sw) 97 { 98 struct nvm_auth_status *st; 99 100 mutex_lock(&nvm_auth_status_lock); 101 st = __nvm_get_auth_status(sw); 102 if (st) { 103 list_del(&st->list); 104 kfree(st); 105 } 106 mutex_unlock(&nvm_auth_status_lock); 107 } 108 109 static int nvm_validate_and_write(struct tb_switch *sw) 110 { 111 unsigned int image_size, hdr_size; 112 const u8 *buf = sw->nvm->buf; 113 u16 ds_size; 114 int ret; 115 116 if (!buf) 117 return -EINVAL; 118 119 image_size = sw->nvm->buf_data_size; 120 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) 121 return -EINVAL; 122 123 /* 124 * FARB pointer must point inside the image and must at least 125 * contain parts of the digital section we will be reading here. 126 */ 127 hdr_size = (*(u32 *)buf) & 0xffffff; 128 if (hdr_size + NVM_DEVID + 2 >= image_size) 129 return -EINVAL; 130 131 /* Digital section start should be aligned to 4k page */ 132 if (!IS_ALIGNED(hdr_size, SZ_4K)) 133 return -EINVAL; 134 135 /* 136 * Read digital section size and check that it also fits inside 137 * the image. 138 */ 139 ds_size = *(u16 *)(buf + hdr_size); 140 if (ds_size >= image_size) 141 return -EINVAL; 142 143 if (!sw->safe_mode) { 144 u16 device_id; 145 146 /* 147 * Make sure the device ID in the image matches the one 148 * we read from the switch config space. 149 */ 150 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID); 151 if (device_id != sw->config.device_id) 152 return -EINVAL; 153 154 if (sw->generation < 3) { 155 /* Write CSS headers first */ 156 ret = dma_port_flash_write(sw->dma_port, 157 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS, 158 DMA_PORT_CSS_MAX_SIZE); 159 if (ret) 160 return ret; 161 } 162 163 /* Skip headers in the image */ 164 buf += hdr_size; 165 image_size -= hdr_size; 166 } 167 168 return dma_port_flash_write(sw->dma_port, 0, buf, image_size); 169 } 170 171 static int nvm_authenticate_host(struct tb_switch *sw) 172 { 173 int ret; 174 175 /* 176 * Root switch NVM upgrade requires that we disconnect the 177 * existing paths first (in case it is not in safe mode 178 * already). 179 */ 180 if (!sw->safe_mode) { 181 ret = tb_domain_disconnect_all_paths(sw->tb); 182 if (ret) 183 return ret; 184 /* 185 * The host controller goes away pretty soon after this if 186 * everything goes well so getting timeout is expected. 187 */ 188 ret = dma_port_flash_update_auth(sw->dma_port); 189 return ret == -ETIMEDOUT ? 0 : ret; 190 } 191 192 /* 193 * From safe mode we can get out by just power cycling the 194 * switch. 195 */ 196 dma_port_power_cycle(sw->dma_port); 197 return 0; 198 } 199 200 static int nvm_authenticate_device(struct tb_switch *sw) 201 { 202 int ret, retries = 10; 203 204 ret = dma_port_flash_update_auth(sw->dma_port); 205 if (ret && ret != -ETIMEDOUT) 206 return ret; 207 208 /* 209 * Poll here for the authentication status. It takes some time 210 * for the device to respond (we get timeout for a while). Once 211 * we get response the device needs to be power cycled in order 212 * to the new NVM to be taken into use. 213 */ 214 do { 215 u32 status; 216 217 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 218 if (ret < 0 && ret != -ETIMEDOUT) 219 return ret; 220 if (ret > 0) { 221 if (status) { 222 tb_sw_warn(sw, "failed to authenticate NVM\n"); 223 nvm_set_auth_status(sw, status); 224 } 225 226 tb_sw_info(sw, "power cycling the switch now\n"); 227 dma_port_power_cycle(sw->dma_port); 228 return 0; 229 } 230 231 msleep(500); 232 } while (--retries); 233 234 return -ETIMEDOUT; 235 } 236 237 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val, 238 size_t bytes) 239 { 240 struct tb_switch *sw = priv; 241 int ret; 242 243 pm_runtime_get_sync(&sw->dev); 244 ret = dma_port_flash_read(sw->dma_port, offset, val, bytes); 245 pm_runtime_mark_last_busy(&sw->dev); 246 pm_runtime_put_autosuspend(&sw->dev); 247 248 return ret; 249 } 250 251 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val, 252 size_t bytes) 253 { 254 struct tb_switch *sw = priv; 255 int ret = 0; 256 257 if (mutex_lock_interruptible(&switch_lock)) 258 return -ERESTARTSYS; 259 260 /* 261 * Since writing the NVM image might require some special steps, 262 * for example when CSS headers are written, we cache the image 263 * locally here and handle the special cases when the user asks 264 * us to authenticate the image. 265 */ 266 if (!sw->nvm->buf) { 267 sw->nvm->buf = vmalloc(NVM_MAX_SIZE); 268 if (!sw->nvm->buf) { 269 ret = -ENOMEM; 270 goto unlock; 271 } 272 } 273 274 sw->nvm->buf_data_size = offset + bytes; 275 memcpy(sw->nvm->buf + offset, val, bytes); 276 277 unlock: 278 mutex_unlock(&switch_lock); 279 280 return ret; 281 } 282 283 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id, 284 size_t size, bool active) 285 { 286 struct nvmem_config config; 287 288 memset(&config, 0, sizeof(config)); 289 290 if (active) { 291 config.name = "nvm_active"; 292 config.reg_read = tb_switch_nvm_read; 293 config.read_only = true; 294 } else { 295 config.name = "nvm_non_active"; 296 config.reg_write = tb_switch_nvm_write; 297 config.root_only = true; 298 } 299 300 config.id = id; 301 config.stride = 4; 302 config.word_size = 4; 303 config.size = size; 304 config.dev = &sw->dev; 305 config.owner = THIS_MODULE; 306 config.priv = sw; 307 308 return nvmem_register(&config); 309 } 310 311 static int tb_switch_nvm_add(struct tb_switch *sw) 312 { 313 struct nvmem_device *nvm_dev; 314 struct tb_switch_nvm *nvm; 315 u32 val; 316 int ret; 317 318 if (!sw->dma_port) 319 return 0; 320 321 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 322 if (!nvm) 323 return -ENOMEM; 324 325 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL); 326 327 /* 328 * If the switch is in safe-mode the only accessible portion of 329 * the NVM is the non-active one where userspace is expected to 330 * write new functional NVM. 331 */ 332 if (!sw->safe_mode) { 333 u32 nvm_size, hdr_size; 334 335 ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val, 336 sizeof(val)); 337 if (ret) 338 goto err_ida; 339 340 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; 341 nvm_size = (SZ_1M << (val & 7)) / 8; 342 nvm_size = (nvm_size - hdr_size) / 2; 343 344 ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val, 345 sizeof(val)); 346 if (ret) 347 goto err_ida; 348 349 nvm->major = val >> 16; 350 nvm->minor = val >> 8; 351 352 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true); 353 if (IS_ERR(nvm_dev)) { 354 ret = PTR_ERR(nvm_dev); 355 goto err_ida; 356 } 357 nvm->active = nvm_dev; 358 } 359 360 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false); 361 if (IS_ERR(nvm_dev)) { 362 ret = PTR_ERR(nvm_dev); 363 goto err_nvm_active; 364 } 365 nvm->non_active = nvm_dev; 366 367 mutex_lock(&switch_lock); 368 sw->nvm = nvm; 369 mutex_unlock(&switch_lock); 370 371 return 0; 372 373 err_nvm_active: 374 if (nvm->active) 375 nvmem_unregister(nvm->active); 376 err_ida: 377 ida_simple_remove(&nvm_ida, nvm->id); 378 kfree(nvm); 379 380 return ret; 381 } 382 383 static void tb_switch_nvm_remove(struct tb_switch *sw) 384 { 385 struct tb_switch_nvm *nvm; 386 387 mutex_lock(&switch_lock); 388 nvm = sw->nvm; 389 sw->nvm = NULL; 390 mutex_unlock(&switch_lock); 391 392 if (!nvm) 393 return; 394 395 /* Remove authentication status in case the switch is unplugged */ 396 if (!nvm->authenticating) 397 nvm_clear_auth_status(sw); 398 399 nvmem_unregister(nvm->non_active); 400 if (nvm->active) 401 nvmem_unregister(nvm->active); 402 ida_simple_remove(&nvm_ida, nvm->id); 403 vfree(nvm->buf); 404 kfree(nvm); 405 } 406 407 /* port utility functions */ 408 409 static const char *tb_port_type(struct tb_regs_port_header *port) 410 { 411 switch (port->type >> 16) { 412 case 0: 413 switch ((u8) port->type) { 414 case 0: 415 return "Inactive"; 416 case 1: 417 return "Port"; 418 case 2: 419 return "NHI"; 420 default: 421 return "unknown"; 422 } 423 case 0x2: 424 return "Ethernet"; 425 case 0x8: 426 return "SATA"; 427 case 0xe: 428 return "DP/HDMI"; 429 case 0x10: 430 return "PCIe"; 431 case 0x20: 432 return "USB"; 433 default: 434 return "unknown"; 435 } 436 } 437 438 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port) 439 { 440 tb_dbg(tb, 441 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 442 port->port_number, port->vendor_id, port->device_id, 443 port->revision, port->thunderbolt_version, tb_port_type(port), 444 port->type); 445 tb_dbg(tb, " Max hop id (in/out): %d/%d\n", 446 port->max_in_hop_id, port->max_out_hop_id); 447 tb_dbg(tb, " Max counters: %d\n", port->max_counters); 448 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits); 449 } 450 451 /** 452 * tb_port_state() - get connectedness state of a port 453 * 454 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 455 * 456 * Return: Returns an enum tb_port_state on success or an error code on failure. 457 */ 458 static int tb_port_state(struct tb_port *port) 459 { 460 struct tb_cap_phy phy; 461 int res; 462 if (port->cap_phy == 0) { 463 tb_port_WARN(port, "does not have a PHY\n"); 464 return -EINVAL; 465 } 466 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 467 if (res) 468 return res; 469 return phy.state; 470 } 471 472 /** 473 * tb_wait_for_port() - wait for a port to become ready 474 * 475 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 476 * wait_if_unplugged is set then we also wait if the port is in state 477 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 478 * switch resume). Otherwise we only wait if a device is registered but the link 479 * has not yet been established. 480 * 481 * Return: Returns an error code on failure. Returns 0 if the port is not 482 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 483 * if the port is connected and in state TB_PORT_UP. 484 */ 485 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 486 { 487 int retries = 10; 488 int state; 489 if (!port->cap_phy) { 490 tb_port_WARN(port, "does not have PHY\n"); 491 return -EINVAL; 492 } 493 if (tb_is_upstream_port(port)) { 494 tb_port_WARN(port, "is the upstream port\n"); 495 return -EINVAL; 496 } 497 498 while (retries--) { 499 state = tb_port_state(port); 500 if (state < 0) 501 return state; 502 if (state == TB_PORT_DISABLED) { 503 tb_port_info(port, "is disabled (state: 0)\n"); 504 return 0; 505 } 506 if (state == TB_PORT_UNPLUGGED) { 507 if (wait_if_unplugged) { 508 /* used during resume */ 509 tb_port_info(port, 510 "is unplugged (state: 7), retrying...\n"); 511 msleep(100); 512 continue; 513 } 514 tb_port_info(port, "is unplugged (state: 7)\n"); 515 return 0; 516 } 517 if (state == TB_PORT_UP) { 518 tb_port_info(port, 519 "is connected, link is up (state: 2)\n"); 520 return 1; 521 } 522 523 /* 524 * After plug-in the state is TB_PORT_CONNECTING. Give it some 525 * time. 526 */ 527 tb_port_info(port, 528 "is connected, link is not up (state: %d), retrying...\n", 529 state); 530 msleep(100); 531 } 532 tb_port_warn(port, 533 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 534 return 0; 535 } 536 537 /** 538 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 539 * 540 * Change the number of NFC credits allocated to @port by @credits. To remove 541 * NFC credits pass a negative amount of credits. 542 * 543 * Return: Returns 0 on success or an error code on failure. 544 */ 545 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 546 { 547 if (credits == 0) 548 return 0; 549 tb_port_info(port, 550 "adding %#x NFC credits (%#x -> %#x)", 551 credits, 552 port->config.nfc_credits, 553 port->config.nfc_credits + credits); 554 port->config.nfc_credits += credits; 555 return tb_port_write(port, &port->config.nfc_credits, 556 TB_CFG_PORT, 4, 1); 557 } 558 559 /** 560 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 561 * 562 * Return: Returns 0 on success or an error code on failure. 563 */ 564 int tb_port_clear_counter(struct tb_port *port, int counter) 565 { 566 u32 zero[3] = { 0, 0, 0 }; 567 tb_port_info(port, "clearing counter %d\n", counter); 568 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 569 } 570 571 /** 572 * tb_init_port() - initialize a port 573 * 574 * This is a helper method for tb_switch_alloc. Does not check or initialize 575 * any downstream switches. 576 * 577 * Return: Returns 0 on success or an error code on failure. 578 */ 579 static int tb_init_port(struct tb_port *port) 580 { 581 int res; 582 int cap; 583 584 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 585 if (res) 586 return res; 587 588 /* Port 0 is the switch itself and has no PHY. */ 589 if (port->config.type == TB_TYPE_PORT && port->port != 0) { 590 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 591 592 if (cap > 0) 593 port->cap_phy = cap; 594 else 595 tb_port_WARN(port, "non switch port without a PHY\n"); 596 } 597 598 tb_dump_port(port->sw->tb, &port->config); 599 600 /* TODO: Read dual link port, DP port and more from EEPROM. */ 601 return 0; 602 603 } 604 605 /* switch utility functions */ 606 607 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw) 608 { 609 tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n", 610 sw->vendor_id, sw->device_id, sw->revision, 611 sw->thunderbolt_version); 612 tb_dbg(tb, " Max Port Number: %d\n", sw->max_port_number); 613 tb_dbg(tb, " Config:\n"); 614 tb_dbg(tb, 615 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 616 sw->upstream_port_number, sw->depth, 617 (((u64) sw->route_hi) << 32) | sw->route_lo, 618 sw->enabled, sw->plug_events_delay); 619 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n", 620 sw->__unknown1, sw->__unknown4); 621 } 622 623 /** 624 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET 625 * 626 * Return: Returns 0 on success or an error code on failure. 627 */ 628 int tb_switch_reset(struct tb *tb, u64 route) 629 { 630 struct tb_cfg_result res; 631 struct tb_regs_switch_header header = { 632 header.route_hi = route >> 32, 633 header.route_lo = route, 634 header.enabled = true, 635 }; 636 tb_dbg(tb, "resetting switch at %llx\n", route); 637 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route, 638 0, 2, 2, 2); 639 if (res.err) 640 return res.err; 641 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT); 642 if (res.err > 0) 643 return -EIO; 644 return res.err; 645 } 646 647 struct tb_switch *get_switch_at_route(struct tb_switch *sw, u64 route) 648 { 649 u8 next_port = route; /* 650 * Routes use a stride of 8 bits, 651 * eventhough a port index has 6 bits at most. 652 * */ 653 if (route == 0) 654 return sw; 655 if (next_port > sw->config.max_port_number) 656 return NULL; 657 if (tb_is_upstream_port(&sw->ports[next_port])) 658 return NULL; 659 if (!sw->ports[next_port].remote) 660 return NULL; 661 return get_switch_at_route(sw->ports[next_port].remote->sw, 662 route >> TB_ROUTE_SHIFT); 663 } 664 665 /** 666 * tb_plug_events_active() - enable/disable plug events on a switch 667 * 668 * Also configures a sane plug_events_delay of 255ms. 669 * 670 * Return: Returns 0 on success or an error code on failure. 671 */ 672 static int tb_plug_events_active(struct tb_switch *sw, bool active) 673 { 674 u32 data; 675 int res; 676 677 if (!sw->config.enabled) 678 return 0; 679 680 sw->config.plug_events_delay = 0xff; 681 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 682 if (res) 683 return res; 684 685 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 686 if (res) 687 return res; 688 689 if (active) { 690 data = data & 0xFFFFFF83; 691 switch (sw->config.device_id) { 692 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 693 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 694 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 695 break; 696 default: 697 data |= 4; 698 } 699 } else { 700 data = data | 0x7c; 701 } 702 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 703 sw->cap_plug_events + 1, 1); 704 } 705 706 static ssize_t authorized_show(struct device *dev, 707 struct device_attribute *attr, 708 char *buf) 709 { 710 struct tb_switch *sw = tb_to_switch(dev); 711 712 return sprintf(buf, "%u\n", sw->authorized); 713 } 714 715 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 716 { 717 int ret = -EINVAL; 718 719 if (mutex_lock_interruptible(&switch_lock)) 720 return -ERESTARTSYS; 721 722 if (sw->authorized) 723 goto unlock; 724 725 /* 726 * Make sure there is no PCIe rescan ongoing when a new PCIe 727 * tunnel is created. Otherwise the PCIe rescan code might find 728 * the new tunnel too early. 729 */ 730 pci_lock_rescan_remove(); 731 pm_runtime_get_sync(&sw->dev); 732 733 switch (val) { 734 /* Approve switch */ 735 case 1: 736 if (sw->key) 737 ret = tb_domain_approve_switch_key(sw->tb, sw); 738 else 739 ret = tb_domain_approve_switch(sw->tb, sw); 740 break; 741 742 /* Challenge switch */ 743 case 2: 744 if (sw->key) 745 ret = tb_domain_challenge_switch_key(sw->tb, sw); 746 break; 747 748 default: 749 break; 750 } 751 752 pm_runtime_mark_last_busy(&sw->dev); 753 pm_runtime_put_autosuspend(&sw->dev); 754 pci_unlock_rescan_remove(); 755 756 if (!ret) { 757 sw->authorized = val; 758 /* Notify status change to the userspace */ 759 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 760 } 761 762 unlock: 763 mutex_unlock(&switch_lock); 764 return ret; 765 } 766 767 static ssize_t authorized_store(struct device *dev, 768 struct device_attribute *attr, 769 const char *buf, size_t count) 770 { 771 struct tb_switch *sw = tb_to_switch(dev); 772 unsigned int val; 773 ssize_t ret; 774 775 ret = kstrtouint(buf, 0, &val); 776 if (ret) 777 return ret; 778 if (val > 2) 779 return -EINVAL; 780 781 ret = tb_switch_set_authorized(sw, val); 782 783 return ret ? ret : count; 784 } 785 static DEVICE_ATTR_RW(authorized); 786 787 static ssize_t boot_show(struct device *dev, struct device_attribute *attr, 788 char *buf) 789 { 790 struct tb_switch *sw = tb_to_switch(dev); 791 792 return sprintf(buf, "%u\n", sw->boot); 793 } 794 static DEVICE_ATTR_RO(boot); 795 796 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 797 char *buf) 798 { 799 struct tb_switch *sw = tb_to_switch(dev); 800 801 return sprintf(buf, "%#x\n", sw->device); 802 } 803 static DEVICE_ATTR_RO(device); 804 805 static ssize_t 806 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 807 { 808 struct tb_switch *sw = tb_to_switch(dev); 809 810 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : ""); 811 } 812 static DEVICE_ATTR_RO(device_name); 813 814 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 815 char *buf) 816 { 817 struct tb_switch *sw = tb_to_switch(dev); 818 ssize_t ret; 819 820 if (mutex_lock_interruptible(&switch_lock)) 821 return -ERESTARTSYS; 822 823 if (sw->key) 824 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 825 else 826 ret = sprintf(buf, "\n"); 827 828 mutex_unlock(&switch_lock); 829 return ret; 830 } 831 832 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 833 const char *buf, size_t count) 834 { 835 struct tb_switch *sw = tb_to_switch(dev); 836 u8 key[TB_SWITCH_KEY_SIZE]; 837 ssize_t ret = count; 838 bool clear = false; 839 840 if (!strcmp(buf, "\n")) 841 clear = true; 842 else if (hex2bin(key, buf, sizeof(key))) 843 return -EINVAL; 844 845 if (mutex_lock_interruptible(&switch_lock)) 846 return -ERESTARTSYS; 847 848 if (sw->authorized) { 849 ret = -EBUSY; 850 } else { 851 kfree(sw->key); 852 if (clear) { 853 sw->key = NULL; 854 } else { 855 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 856 if (!sw->key) 857 ret = -ENOMEM; 858 } 859 } 860 861 mutex_unlock(&switch_lock); 862 return ret; 863 } 864 static DEVICE_ATTR(key, 0600, key_show, key_store); 865 866 static ssize_t nvm_authenticate_show(struct device *dev, 867 struct device_attribute *attr, char *buf) 868 { 869 struct tb_switch *sw = tb_to_switch(dev); 870 u32 status; 871 872 nvm_get_auth_status(sw, &status); 873 return sprintf(buf, "%#x\n", status); 874 } 875 876 static ssize_t nvm_authenticate_store(struct device *dev, 877 struct device_attribute *attr, const char *buf, size_t count) 878 { 879 struct tb_switch *sw = tb_to_switch(dev); 880 bool val; 881 int ret; 882 883 if (mutex_lock_interruptible(&switch_lock)) 884 return -ERESTARTSYS; 885 886 /* If NVMem devices are not yet added */ 887 if (!sw->nvm) { 888 ret = -EAGAIN; 889 goto exit_unlock; 890 } 891 892 ret = kstrtobool(buf, &val); 893 if (ret) 894 goto exit_unlock; 895 896 /* Always clear the authentication status */ 897 nvm_clear_auth_status(sw); 898 899 if (val) { 900 if (!sw->nvm->buf) { 901 ret = -EINVAL; 902 goto exit_unlock; 903 } 904 905 pm_runtime_get_sync(&sw->dev); 906 ret = nvm_validate_and_write(sw); 907 if (ret) { 908 pm_runtime_mark_last_busy(&sw->dev); 909 pm_runtime_put_autosuspend(&sw->dev); 910 goto exit_unlock; 911 } 912 913 sw->nvm->authenticating = true; 914 915 if (!tb_route(sw)) 916 ret = nvm_authenticate_host(sw); 917 else 918 ret = nvm_authenticate_device(sw); 919 pm_runtime_mark_last_busy(&sw->dev); 920 pm_runtime_put_autosuspend(&sw->dev); 921 } 922 923 exit_unlock: 924 mutex_unlock(&switch_lock); 925 926 if (ret) 927 return ret; 928 return count; 929 } 930 static DEVICE_ATTR_RW(nvm_authenticate); 931 932 static ssize_t nvm_version_show(struct device *dev, 933 struct device_attribute *attr, char *buf) 934 { 935 struct tb_switch *sw = tb_to_switch(dev); 936 int ret; 937 938 if (mutex_lock_interruptible(&switch_lock)) 939 return -ERESTARTSYS; 940 941 if (sw->safe_mode) 942 ret = -ENODATA; 943 else if (!sw->nvm) 944 ret = -EAGAIN; 945 else 946 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 947 948 mutex_unlock(&switch_lock); 949 950 return ret; 951 } 952 static DEVICE_ATTR_RO(nvm_version); 953 954 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 955 char *buf) 956 { 957 struct tb_switch *sw = tb_to_switch(dev); 958 959 return sprintf(buf, "%#x\n", sw->vendor); 960 } 961 static DEVICE_ATTR_RO(vendor); 962 963 static ssize_t 964 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 965 { 966 struct tb_switch *sw = tb_to_switch(dev); 967 968 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : ""); 969 } 970 static DEVICE_ATTR_RO(vendor_name); 971 972 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 973 char *buf) 974 { 975 struct tb_switch *sw = tb_to_switch(dev); 976 977 return sprintf(buf, "%pUb\n", sw->uuid); 978 } 979 static DEVICE_ATTR_RO(unique_id); 980 981 static struct attribute *switch_attrs[] = { 982 &dev_attr_authorized.attr, 983 &dev_attr_boot.attr, 984 &dev_attr_device.attr, 985 &dev_attr_device_name.attr, 986 &dev_attr_key.attr, 987 &dev_attr_nvm_authenticate.attr, 988 &dev_attr_nvm_version.attr, 989 &dev_attr_vendor.attr, 990 &dev_attr_vendor_name.attr, 991 &dev_attr_unique_id.attr, 992 NULL, 993 }; 994 995 static umode_t switch_attr_is_visible(struct kobject *kobj, 996 struct attribute *attr, int n) 997 { 998 struct device *dev = container_of(kobj, struct device, kobj); 999 struct tb_switch *sw = tb_to_switch(dev); 1000 1001 if (attr == &dev_attr_key.attr) { 1002 if (tb_route(sw) && 1003 sw->tb->security_level == TB_SECURITY_SECURE && 1004 sw->security_level == TB_SECURITY_SECURE) 1005 return attr->mode; 1006 return 0; 1007 } else if (attr == &dev_attr_nvm_authenticate.attr || 1008 attr == &dev_attr_nvm_version.attr) { 1009 if (sw->dma_port) 1010 return attr->mode; 1011 return 0; 1012 } else if (attr == &dev_attr_boot.attr) { 1013 if (tb_route(sw)) 1014 return attr->mode; 1015 return 0; 1016 } 1017 1018 return sw->safe_mode ? 0 : attr->mode; 1019 } 1020 1021 static struct attribute_group switch_group = { 1022 .is_visible = switch_attr_is_visible, 1023 .attrs = switch_attrs, 1024 }; 1025 1026 static const struct attribute_group *switch_groups[] = { 1027 &switch_group, 1028 NULL, 1029 }; 1030 1031 static void tb_switch_release(struct device *dev) 1032 { 1033 struct tb_switch *sw = tb_to_switch(dev); 1034 1035 dma_port_free(sw->dma_port); 1036 1037 kfree(sw->uuid); 1038 kfree(sw->device_name); 1039 kfree(sw->vendor_name); 1040 kfree(sw->ports); 1041 kfree(sw->drom); 1042 kfree(sw->key); 1043 kfree(sw); 1044 } 1045 1046 /* 1047 * Currently only need to provide the callbacks. Everything else is handled 1048 * in the connection manager. 1049 */ 1050 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev) 1051 { 1052 return 0; 1053 } 1054 1055 static int __maybe_unused tb_switch_runtime_resume(struct device *dev) 1056 { 1057 return 0; 1058 } 1059 1060 static const struct dev_pm_ops tb_switch_pm_ops = { 1061 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume, 1062 NULL) 1063 }; 1064 1065 struct device_type tb_switch_type = { 1066 .name = "thunderbolt_device", 1067 .release = tb_switch_release, 1068 .pm = &tb_switch_pm_ops, 1069 }; 1070 1071 static int tb_switch_get_generation(struct tb_switch *sw) 1072 { 1073 switch (sw->config.device_id) { 1074 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1075 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1076 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 1077 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 1078 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 1079 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1080 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 1081 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 1082 return 1; 1083 1084 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 1085 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 1086 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 1087 return 2; 1088 1089 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 1090 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 1091 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 1092 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 1093 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 1094 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: 1095 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: 1096 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: 1097 return 3; 1098 1099 default: 1100 /* 1101 * For unknown switches assume generation to be 1 to be 1102 * on the safe side. 1103 */ 1104 tb_sw_warn(sw, "unsupported switch device id %#x\n", 1105 sw->config.device_id); 1106 return 1; 1107 } 1108 } 1109 1110 /** 1111 * tb_switch_alloc() - allocate a switch 1112 * @tb: Pointer to the owning domain 1113 * @parent: Parent device for this switch 1114 * @route: Route string for this switch 1115 * 1116 * Allocates and initializes a switch. Will not upload configuration to 1117 * the switch. For that you need to call tb_switch_configure() 1118 * separately. The returned switch should be released by calling 1119 * tb_switch_put(). 1120 * 1121 * Return: Pointer to the allocated switch or %NULL in case of failure 1122 */ 1123 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 1124 u64 route) 1125 { 1126 int i; 1127 int cap; 1128 struct tb_switch *sw; 1129 int upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 1130 if (upstream_port < 0) 1131 return NULL; 1132 1133 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1134 if (!sw) 1135 return NULL; 1136 1137 sw->tb = tb; 1138 if (tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5)) 1139 goto err_free_sw_ports; 1140 1141 tb_dbg(tb, "current switch config:\n"); 1142 tb_dump_switch(tb, &sw->config); 1143 1144 /* configure switch */ 1145 sw->config.upstream_port_number = upstream_port; 1146 sw->config.depth = tb_route_length(route); 1147 sw->config.route_lo = route; 1148 sw->config.route_hi = route >> 32; 1149 sw->config.enabled = 0; 1150 1151 /* initialize ports */ 1152 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 1153 GFP_KERNEL); 1154 if (!sw->ports) 1155 goto err_free_sw_ports; 1156 1157 for (i = 0; i <= sw->config.max_port_number; i++) { 1158 /* minimum setup for tb_find_cap and tb_drom_read to work */ 1159 sw->ports[i].sw = sw; 1160 sw->ports[i].port = i; 1161 } 1162 1163 sw->generation = tb_switch_get_generation(sw); 1164 1165 cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 1166 if (cap < 0) { 1167 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 1168 goto err_free_sw_ports; 1169 } 1170 sw->cap_plug_events = cap; 1171 1172 /* Root switch is always authorized */ 1173 if (!route) 1174 sw->authorized = true; 1175 1176 device_initialize(&sw->dev); 1177 sw->dev.parent = parent; 1178 sw->dev.bus = &tb_bus_type; 1179 sw->dev.type = &tb_switch_type; 1180 sw->dev.groups = switch_groups; 1181 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1182 1183 return sw; 1184 1185 err_free_sw_ports: 1186 kfree(sw->ports); 1187 kfree(sw); 1188 1189 return NULL; 1190 } 1191 1192 /** 1193 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 1194 * @tb: Pointer to the owning domain 1195 * @parent: Parent device for this switch 1196 * @route: Route string for this switch 1197 * 1198 * This creates a switch in safe mode. This means the switch pretty much 1199 * lacks all capabilities except DMA configuration port before it is 1200 * flashed with a valid NVM firmware. 1201 * 1202 * The returned switch must be released by calling tb_switch_put(). 1203 * 1204 * Return: Pointer to the allocated switch or %NULL in case of failure 1205 */ 1206 struct tb_switch * 1207 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 1208 { 1209 struct tb_switch *sw; 1210 1211 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1212 if (!sw) 1213 return NULL; 1214 1215 sw->tb = tb; 1216 sw->config.depth = tb_route_length(route); 1217 sw->config.route_hi = upper_32_bits(route); 1218 sw->config.route_lo = lower_32_bits(route); 1219 sw->safe_mode = true; 1220 1221 device_initialize(&sw->dev); 1222 sw->dev.parent = parent; 1223 sw->dev.bus = &tb_bus_type; 1224 sw->dev.type = &tb_switch_type; 1225 sw->dev.groups = switch_groups; 1226 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1227 1228 return sw; 1229 } 1230 1231 /** 1232 * tb_switch_configure() - Uploads configuration to the switch 1233 * @sw: Switch to configure 1234 * 1235 * Call this function before the switch is added to the system. It will 1236 * upload configuration to the switch and makes it available for the 1237 * connection manager to use. 1238 * 1239 * Return: %0 in case of success and negative errno in case of failure 1240 */ 1241 int tb_switch_configure(struct tb_switch *sw) 1242 { 1243 struct tb *tb = sw->tb; 1244 u64 route; 1245 int ret; 1246 1247 route = tb_route(sw); 1248 tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n", 1249 route, tb_route_length(route), sw->config.upstream_port_number); 1250 1251 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 1252 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 1253 sw->config.vendor_id); 1254 1255 sw->config.enabled = 1; 1256 1257 /* upload configuration */ 1258 ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3); 1259 if (ret) 1260 return ret; 1261 1262 return tb_plug_events_active(sw, true); 1263 } 1264 1265 static void tb_switch_set_uuid(struct tb_switch *sw) 1266 { 1267 u32 uuid[4]; 1268 int cap; 1269 1270 if (sw->uuid) 1271 return; 1272 1273 /* 1274 * The newer controllers include fused UUID as part of link 1275 * controller specific registers 1276 */ 1277 cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 1278 if (cap > 0) { 1279 tb_sw_read(sw, uuid, TB_CFG_SWITCH, cap + 3, 4); 1280 } else { 1281 /* 1282 * ICM generates UUID based on UID and fills the upper 1283 * two words with ones. This is not strictly following 1284 * UUID format but we want to be compatible with it so 1285 * we do the same here. 1286 */ 1287 uuid[0] = sw->uid & 0xffffffff; 1288 uuid[1] = (sw->uid >> 32) & 0xffffffff; 1289 uuid[2] = 0xffffffff; 1290 uuid[3] = 0xffffffff; 1291 } 1292 1293 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 1294 } 1295 1296 static int tb_switch_add_dma_port(struct tb_switch *sw) 1297 { 1298 u32 status; 1299 int ret; 1300 1301 switch (sw->generation) { 1302 case 3: 1303 break; 1304 1305 case 2: 1306 /* Only root switch can be upgraded */ 1307 if (tb_route(sw)) 1308 return 0; 1309 break; 1310 1311 default: 1312 /* 1313 * DMA port is the only thing available when the switch 1314 * is in safe mode. 1315 */ 1316 if (!sw->safe_mode) 1317 return 0; 1318 break; 1319 } 1320 1321 if (sw->no_nvm_upgrade) 1322 return 0; 1323 1324 sw->dma_port = dma_port_alloc(sw); 1325 if (!sw->dma_port) 1326 return 0; 1327 1328 /* 1329 * Check status of the previous flash authentication. If there 1330 * is one we need to power cycle the switch in any case to make 1331 * it functional again. 1332 */ 1333 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 1334 if (ret <= 0) 1335 return ret; 1336 1337 if (status) { 1338 tb_sw_info(sw, "switch flash authentication failed\n"); 1339 tb_switch_set_uuid(sw); 1340 nvm_set_auth_status(sw, status); 1341 } 1342 1343 tb_sw_info(sw, "power cycling the switch now\n"); 1344 dma_port_power_cycle(sw->dma_port); 1345 1346 /* 1347 * We return error here which causes the switch adding failure. 1348 * It should appear back after power cycle is complete. 1349 */ 1350 return -ESHUTDOWN; 1351 } 1352 1353 /** 1354 * tb_switch_add() - Add a switch to the domain 1355 * @sw: Switch to add 1356 * 1357 * This is the last step in adding switch to the domain. It will read 1358 * identification information from DROM and initializes ports so that 1359 * they can be used to connect other switches. The switch will be 1360 * exposed to the userspace when this function successfully returns. To 1361 * remove and release the switch, call tb_switch_remove(). 1362 * 1363 * Return: %0 in case of success and negative errno in case of failure 1364 */ 1365 int tb_switch_add(struct tb_switch *sw) 1366 { 1367 int i, ret; 1368 1369 /* 1370 * Initialize DMA control port now before we read DROM. Recent 1371 * host controllers have more complete DROM on NVM that includes 1372 * vendor and model identification strings which we then expose 1373 * to the userspace. NVM can be accessed through DMA 1374 * configuration based mailbox. 1375 */ 1376 ret = tb_switch_add_dma_port(sw); 1377 if (ret) 1378 return ret; 1379 1380 if (!sw->safe_mode) { 1381 /* read drom */ 1382 ret = tb_drom_read(sw); 1383 if (ret) { 1384 tb_sw_warn(sw, "tb_eeprom_read_rom failed\n"); 1385 return ret; 1386 } 1387 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid); 1388 1389 tb_switch_set_uuid(sw); 1390 1391 for (i = 0; i <= sw->config.max_port_number; i++) { 1392 if (sw->ports[i].disabled) { 1393 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n"); 1394 continue; 1395 } 1396 ret = tb_init_port(&sw->ports[i]); 1397 if (ret) 1398 return ret; 1399 } 1400 } 1401 1402 ret = device_add(&sw->dev); 1403 if (ret) 1404 return ret; 1405 1406 if (tb_route(sw)) { 1407 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n", 1408 sw->vendor, sw->device); 1409 if (sw->vendor_name && sw->device_name) 1410 dev_info(&sw->dev, "%s %s\n", sw->vendor_name, 1411 sw->device_name); 1412 } 1413 1414 ret = tb_switch_nvm_add(sw); 1415 if (ret) { 1416 device_del(&sw->dev); 1417 return ret; 1418 } 1419 1420 pm_runtime_set_active(&sw->dev); 1421 if (sw->rpm) { 1422 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY); 1423 pm_runtime_use_autosuspend(&sw->dev); 1424 pm_runtime_mark_last_busy(&sw->dev); 1425 pm_runtime_enable(&sw->dev); 1426 pm_request_autosuspend(&sw->dev); 1427 } 1428 1429 return 0; 1430 } 1431 1432 /** 1433 * tb_switch_remove() - Remove and release a switch 1434 * @sw: Switch to remove 1435 * 1436 * This will remove the switch from the domain and release it after last 1437 * reference count drops to zero. If there are switches connected below 1438 * this switch, they will be removed as well. 1439 */ 1440 void tb_switch_remove(struct tb_switch *sw) 1441 { 1442 int i; 1443 1444 if (sw->rpm) { 1445 pm_runtime_get_sync(&sw->dev); 1446 pm_runtime_disable(&sw->dev); 1447 } 1448 1449 /* port 0 is the switch itself and never has a remote */ 1450 for (i = 1; i <= sw->config.max_port_number; i++) { 1451 if (tb_is_upstream_port(&sw->ports[i])) 1452 continue; 1453 if (sw->ports[i].remote) 1454 tb_switch_remove(sw->ports[i].remote->sw); 1455 sw->ports[i].remote = NULL; 1456 if (sw->ports[i].xdomain) 1457 tb_xdomain_remove(sw->ports[i].xdomain); 1458 sw->ports[i].xdomain = NULL; 1459 } 1460 1461 if (!sw->is_unplugged) 1462 tb_plug_events_active(sw, false); 1463 1464 tb_switch_nvm_remove(sw); 1465 1466 if (tb_route(sw)) 1467 dev_info(&sw->dev, "device disconnected\n"); 1468 device_unregister(&sw->dev); 1469 } 1470 1471 /** 1472 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 1473 */ 1474 void tb_sw_set_unplugged(struct tb_switch *sw) 1475 { 1476 int i; 1477 if (sw == sw->tb->root_switch) { 1478 tb_sw_WARN(sw, "cannot unplug root switch\n"); 1479 return; 1480 } 1481 if (sw->is_unplugged) { 1482 tb_sw_WARN(sw, "is_unplugged already set\n"); 1483 return; 1484 } 1485 sw->is_unplugged = true; 1486 for (i = 0; i <= sw->config.max_port_number; i++) { 1487 if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote) 1488 tb_sw_set_unplugged(sw->ports[i].remote->sw); 1489 } 1490 } 1491 1492 int tb_switch_resume(struct tb_switch *sw) 1493 { 1494 int i, err; 1495 tb_sw_dbg(sw, "resuming switch\n"); 1496 1497 /* 1498 * Check for UID of the connected switches except for root 1499 * switch which we assume cannot be removed. 1500 */ 1501 if (tb_route(sw)) { 1502 u64 uid; 1503 1504 err = tb_drom_read_uid_only(sw, &uid); 1505 if (err) { 1506 tb_sw_warn(sw, "uid read failed\n"); 1507 return err; 1508 } 1509 if (sw->uid != uid) { 1510 tb_sw_info(sw, 1511 "changed while suspended (uid %#llx -> %#llx)\n", 1512 sw->uid, uid); 1513 return -ENODEV; 1514 } 1515 } 1516 1517 /* upload configuration */ 1518 err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3); 1519 if (err) 1520 return err; 1521 1522 err = tb_plug_events_active(sw, true); 1523 if (err) 1524 return err; 1525 1526 /* check for surviving downstream switches */ 1527 for (i = 1; i <= sw->config.max_port_number; i++) { 1528 struct tb_port *port = &sw->ports[i]; 1529 if (tb_is_upstream_port(port)) 1530 continue; 1531 if (!port->remote) 1532 continue; 1533 if (tb_wait_for_port(port, true) <= 0 1534 || tb_switch_resume(port->remote->sw)) { 1535 tb_port_warn(port, 1536 "lost during suspend, disconnecting\n"); 1537 tb_sw_set_unplugged(port->remote->sw); 1538 } 1539 } 1540 return 0; 1541 } 1542 1543 void tb_switch_suspend(struct tb_switch *sw) 1544 { 1545 int i, err; 1546 err = tb_plug_events_active(sw, false); 1547 if (err) 1548 return; 1549 1550 for (i = 1; i <= sw->config.max_port_number; i++) { 1551 if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote) 1552 tb_switch_suspend(sw->ports[i].remote->sw); 1553 } 1554 /* 1555 * TODO: invoke tb_cfg_prepare_to_sleep here? does not seem to have any 1556 * effect? 1557 */ 1558 } 1559 1560 struct tb_sw_lookup { 1561 struct tb *tb; 1562 u8 link; 1563 u8 depth; 1564 const uuid_t *uuid; 1565 u64 route; 1566 }; 1567 1568 static int tb_switch_match(struct device *dev, void *data) 1569 { 1570 struct tb_switch *sw = tb_to_switch(dev); 1571 struct tb_sw_lookup *lookup = data; 1572 1573 if (!sw) 1574 return 0; 1575 if (sw->tb != lookup->tb) 1576 return 0; 1577 1578 if (lookup->uuid) 1579 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 1580 1581 if (lookup->route) { 1582 return sw->config.route_lo == lower_32_bits(lookup->route) && 1583 sw->config.route_hi == upper_32_bits(lookup->route); 1584 } 1585 1586 /* Root switch is matched only by depth */ 1587 if (!lookup->depth) 1588 return !sw->depth; 1589 1590 return sw->link == lookup->link && sw->depth == lookup->depth; 1591 } 1592 1593 /** 1594 * tb_switch_find_by_link_depth() - Find switch by link and depth 1595 * @tb: Domain the switch belongs 1596 * @link: Link number the switch is connected 1597 * @depth: Depth of the switch in link 1598 * 1599 * Returned switch has reference count increased so the caller needs to 1600 * call tb_switch_put() when done with the switch. 1601 */ 1602 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 1603 { 1604 struct tb_sw_lookup lookup; 1605 struct device *dev; 1606 1607 memset(&lookup, 0, sizeof(lookup)); 1608 lookup.tb = tb; 1609 lookup.link = link; 1610 lookup.depth = depth; 1611 1612 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 1613 if (dev) 1614 return tb_to_switch(dev); 1615 1616 return NULL; 1617 } 1618 1619 /** 1620 * tb_switch_find_by_uuid() - Find switch by UUID 1621 * @tb: Domain the switch belongs 1622 * @uuid: UUID to look for 1623 * 1624 * Returned switch has reference count increased so the caller needs to 1625 * call tb_switch_put() when done with the switch. 1626 */ 1627 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) 1628 { 1629 struct tb_sw_lookup lookup; 1630 struct device *dev; 1631 1632 memset(&lookup, 0, sizeof(lookup)); 1633 lookup.tb = tb; 1634 lookup.uuid = uuid; 1635 1636 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 1637 if (dev) 1638 return tb_to_switch(dev); 1639 1640 return NULL; 1641 } 1642 1643 /** 1644 * tb_switch_find_by_route() - Find switch by route string 1645 * @tb: Domain the switch belongs 1646 * @route: Route string to look for 1647 * 1648 * Returned switch has reference count increased so the caller needs to 1649 * call tb_switch_put() when done with the switch. 1650 */ 1651 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route) 1652 { 1653 struct tb_sw_lookup lookup; 1654 struct device *dev; 1655 1656 if (!route) 1657 return tb_switch_get(tb->root_switch); 1658 1659 memset(&lookup, 0, sizeof(lookup)); 1660 lookup.tb = tb; 1661 lookup.route = route; 1662 1663 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 1664 if (dev) 1665 return tb_to_switch(dev); 1666 1667 return NULL; 1668 } 1669 1670 void tb_switch_exit(void) 1671 { 1672 ida_destroy(&nvm_ida); 1673 } 1674