xref: /openbmc/linux/drivers/thunderbolt/switch.c (revision 5b7b8c0a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 
18 #include "tb.h"
19 
20 /* Switch NVM support */
21 
22 #define NVM_DEVID		0x05
23 #define NVM_VERSION		0x08
24 #define NVM_CSS			0x10
25 #define NVM_FLASH_SIZE		0x45
26 
27 #define NVM_MIN_SIZE		SZ_32K
28 #define NVM_MAX_SIZE		SZ_512K
29 
30 static DEFINE_IDA(nvm_ida);
31 
32 struct nvm_auth_status {
33 	struct list_head list;
34 	uuid_t uuid;
35 	u32 status;
36 };
37 
38 /*
39  * Hold NVM authentication failure status per switch This information
40  * needs to stay around even when the switch gets power cycled so we
41  * keep it separately.
42  */
43 static LIST_HEAD(nvm_auth_status_cache);
44 static DEFINE_MUTEX(nvm_auth_status_lock);
45 
46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
47 {
48 	struct nvm_auth_status *st;
49 
50 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
51 		if (uuid_equal(&st->uuid, sw->uuid))
52 			return st;
53 	}
54 
55 	return NULL;
56 }
57 
58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
59 {
60 	struct nvm_auth_status *st;
61 
62 	mutex_lock(&nvm_auth_status_lock);
63 	st = __nvm_get_auth_status(sw);
64 	mutex_unlock(&nvm_auth_status_lock);
65 
66 	*status = st ? st->status : 0;
67 }
68 
69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
70 {
71 	struct nvm_auth_status *st;
72 
73 	if (WARN_ON(!sw->uuid))
74 		return;
75 
76 	mutex_lock(&nvm_auth_status_lock);
77 	st = __nvm_get_auth_status(sw);
78 
79 	if (!st) {
80 		st = kzalloc(sizeof(*st), GFP_KERNEL);
81 		if (!st)
82 			goto unlock;
83 
84 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
85 		INIT_LIST_HEAD(&st->list);
86 		list_add_tail(&st->list, &nvm_auth_status_cache);
87 	}
88 
89 	st->status = status;
90 unlock:
91 	mutex_unlock(&nvm_auth_status_lock);
92 }
93 
94 static void nvm_clear_auth_status(const struct tb_switch *sw)
95 {
96 	struct nvm_auth_status *st;
97 
98 	mutex_lock(&nvm_auth_status_lock);
99 	st = __nvm_get_auth_status(sw);
100 	if (st) {
101 		list_del(&st->list);
102 		kfree(st);
103 	}
104 	mutex_unlock(&nvm_auth_status_lock);
105 }
106 
107 static int nvm_validate_and_write(struct tb_switch *sw)
108 {
109 	unsigned int image_size, hdr_size;
110 	const u8 *buf = sw->nvm->buf;
111 	u16 ds_size;
112 	int ret;
113 
114 	if (!buf)
115 		return -EINVAL;
116 
117 	image_size = sw->nvm->buf_data_size;
118 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
119 		return -EINVAL;
120 
121 	/*
122 	 * FARB pointer must point inside the image and must at least
123 	 * contain parts of the digital section we will be reading here.
124 	 */
125 	hdr_size = (*(u32 *)buf) & 0xffffff;
126 	if (hdr_size + NVM_DEVID + 2 >= image_size)
127 		return -EINVAL;
128 
129 	/* Digital section start should be aligned to 4k page */
130 	if (!IS_ALIGNED(hdr_size, SZ_4K))
131 		return -EINVAL;
132 
133 	/*
134 	 * Read digital section size and check that it also fits inside
135 	 * the image.
136 	 */
137 	ds_size = *(u16 *)(buf + hdr_size);
138 	if (ds_size >= image_size)
139 		return -EINVAL;
140 
141 	if (!sw->safe_mode) {
142 		u16 device_id;
143 
144 		/*
145 		 * Make sure the device ID in the image matches the one
146 		 * we read from the switch config space.
147 		 */
148 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
149 		if (device_id != sw->config.device_id)
150 			return -EINVAL;
151 
152 		if (sw->generation < 3) {
153 			/* Write CSS headers first */
154 			ret = dma_port_flash_write(sw->dma_port,
155 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
156 				DMA_PORT_CSS_MAX_SIZE);
157 			if (ret)
158 				return ret;
159 		}
160 
161 		/* Skip headers in the image */
162 		buf += hdr_size;
163 		image_size -= hdr_size;
164 	}
165 
166 	if (tb_switch_is_usb4(sw))
167 		return usb4_switch_nvm_write(sw, 0, buf, image_size);
168 	return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
169 }
170 
171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
172 {
173 	int ret = 0;
174 
175 	/*
176 	 * Root switch NVM upgrade requires that we disconnect the
177 	 * existing paths first (in case it is not in safe mode
178 	 * already).
179 	 */
180 	if (!sw->safe_mode) {
181 		u32 status;
182 
183 		ret = tb_domain_disconnect_all_paths(sw->tb);
184 		if (ret)
185 			return ret;
186 		/*
187 		 * The host controller goes away pretty soon after this if
188 		 * everything goes well so getting timeout is expected.
189 		 */
190 		ret = dma_port_flash_update_auth(sw->dma_port);
191 		if (!ret || ret == -ETIMEDOUT)
192 			return 0;
193 
194 		/*
195 		 * Any error from update auth operation requires power
196 		 * cycling of the host router.
197 		 */
198 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 			nvm_set_auth_status(sw, status);
201 	}
202 
203 	/*
204 	 * From safe mode we can get out by just power cycling the
205 	 * switch.
206 	 */
207 	dma_port_power_cycle(sw->dma_port);
208 	return ret;
209 }
210 
211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
212 {
213 	int ret, retries = 10;
214 
215 	ret = dma_port_flash_update_auth(sw->dma_port);
216 	switch (ret) {
217 	case 0:
218 	case -ETIMEDOUT:
219 	case -EACCES:
220 	case -EINVAL:
221 		/* Power cycle is required */
222 		break;
223 	default:
224 		return ret;
225 	}
226 
227 	/*
228 	 * Poll here for the authentication status. It takes some time
229 	 * for the device to respond (we get timeout for a while). Once
230 	 * we get response the device needs to be power cycled in order
231 	 * to the new NVM to be taken into use.
232 	 */
233 	do {
234 		u32 status;
235 
236 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 		if (ret < 0 && ret != -ETIMEDOUT)
238 			return ret;
239 		if (ret > 0) {
240 			if (status) {
241 				tb_sw_warn(sw, "failed to authenticate NVM\n");
242 				nvm_set_auth_status(sw, status);
243 			}
244 
245 			tb_sw_info(sw, "power cycling the switch now\n");
246 			dma_port_power_cycle(sw->dma_port);
247 			return 0;
248 		}
249 
250 		msleep(500);
251 	} while (--retries);
252 
253 	return -ETIMEDOUT;
254 }
255 
256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257 {
258 	struct pci_dev *root_port;
259 
260 	/*
261 	 * During host router NVM upgrade we should not allow root port to
262 	 * go into D3cold because some root ports cannot trigger PME
263 	 * itself. To be on the safe side keep the root port in D0 during
264 	 * the whole upgrade process.
265 	 */
266 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
267 	if (root_port)
268 		pm_runtime_get_noresume(&root_port->dev);
269 }
270 
271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272 {
273 	struct pci_dev *root_port;
274 
275 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
276 	if (root_port)
277 		pm_runtime_put(&root_port->dev);
278 }
279 
280 static inline bool nvm_readable(struct tb_switch *sw)
281 {
282 	if (tb_switch_is_usb4(sw)) {
283 		/*
284 		 * USB4 devices must support NVM operations but it is
285 		 * optional for hosts. Therefore we query the NVM sector
286 		 * size here and if it is supported assume NVM
287 		 * operations are implemented.
288 		 */
289 		return usb4_switch_nvm_sector_size(sw) > 0;
290 	}
291 
292 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 	return !!sw->dma_port;
294 }
295 
296 static inline bool nvm_upgradeable(struct tb_switch *sw)
297 {
298 	if (sw->no_nvm_upgrade)
299 		return false;
300 	return nvm_readable(sw);
301 }
302 
303 static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 			   void *buf, size_t size)
305 {
306 	if (tb_switch_is_usb4(sw))
307 		return usb4_switch_nvm_read(sw, address, buf, size);
308 	return dma_port_flash_read(sw->dma_port, address, buf, size);
309 }
310 
311 static int nvm_authenticate(struct tb_switch *sw)
312 {
313 	int ret;
314 
315 	if (tb_switch_is_usb4(sw))
316 		return usb4_switch_nvm_authenticate(sw);
317 
318 	if (!tb_route(sw)) {
319 		nvm_authenticate_start_dma_port(sw);
320 		ret = nvm_authenticate_host_dma_port(sw);
321 	} else {
322 		ret = nvm_authenticate_device_dma_port(sw);
323 	}
324 
325 	return ret;
326 }
327 
328 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
329 			      size_t bytes)
330 {
331 	struct tb_switch *sw = priv;
332 	int ret;
333 
334 	pm_runtime_get_sync(&sw->dev);
335 
336 	if (!mutex_trylock(&sw->tb->lock)) {
337 		ret = restart_syscall();
338 		goto out;
339 	}
340 
341 	ret = nvm_read(sw, offset, val, bytes);
342 	mutex_unlock(&sw->tb->lock);
343 
344 out:
345 	pm_runtime_mark_last_busy(&sw->dev);
346 	pm_runtime_put_autosuspend(&sw->dev);
347 
348 	return ret;
349 }
350 
351 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
352 			       size_t bytes)
353 {
354 	struct tb_switch *sw = priv;
355 	int ret = 0;
356 
357 	if (!mutex_trylock(&sw->tb->lock))
358 		return restart_syscall();
359 
360 	/*
361 	 * Since writing the NVM image might require some special steps,
362 	 * for example when CSS headers are written, we cache the image
363 	 * locally here and handle the special cases when the user asks
364 	 * us to authenticate the image.
365 	 */
366 	if (!sw->nvm->buf) {
367 		sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
368 		if (!sw->nvm->buf) {
369 			ret = -ENOMEM;
370 			goto unlock;
371 		}
372 	}
373 
374 	sw->nvm->buf_data_size = offset + bytes;
375 	memcpy(sw->nvm->buf + offset, val, bytes);
376 
377 unlock:
378 	mutex_unlock(&sw->tb->lock);
379 
380 	return ret;
381 }
382 
383 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
384 					   size_t size, bool active)
385 {
386 	struct nvmem_config config;
387 
388 	memset(&config, 0, sizeof(config));
389 
390 	if (active) {
391 		config.name = "nvm_active";
392 		config.reg_read = tb_switch_nvm_read;
393 		config.read_only = true;
394 	} else {
395 		config.name = "nvm_non_active";
396 		config.reg_write = tb_switch_nvm_write;
397 		config.root_only = true;
398 	}
399 
400 	config.id = id;
401 	config.stride = 4;
402 	config.word_size = 4;
403 	config.size = size;
404 	config.dev = &sw->dev;
405 	config.owner = THIS_MODULE;
406 	config.priv = sw;
407 
408 	return nvmem_register(&config);
409 }
410 
411 static int tb_switch_nvm_add(struct tb_switch *sw)
412 {
413 	struct nvmem_device *nvm_dev;
414 	struct tb_switch_nvm *nvm;
415 	u32 val;
416 	int ret;
417 
418 	if (!nvm_readable(sw))
419 		return 0;
420 
421 	/*
422 	 * The NVM format of non-Intel hardware is not known so
423 	 * currently restrict NVM upgrade for Intel hardware. We may
424 	 * relax this in the future when we learn other NVM formats.
425 	 */
426 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) {
427 		dev_info(&sw->dev,
428 			 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
429 			 sw->config.vendor_id);
430 		return 0;
431 	}
432 
433 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
434 	if (!nvm)
435 		return -ENOMEM;
436 
437 	nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
438 
439 	/*
440 	 * If the switch is in safe-mode the only accessible portion of
441 	 * the NVM is the non-active one where userspace is expected to
442 	 * write new functional NVM.
443 	 */
444 	if (!sw->safe_mode) {
445 		u32 nvm_size, hdr_size;
446 
447 		ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
448 		if (ret)
449 			goto err_ida;
450 
451 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
452 		nvm_size = (SZ_1M << (val & 7)) / 8;
453 		nvm_size = (nvm_size - hdr_size) / 2;
454 
455 		ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
456 		if (ret)
457 			goto err_ida;
458 
459 		nvm->major = val >> 16;
460 		nvm->minor = val >> 8;
461 
462 		nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
463 		if (IS_ERR(nvm_dev)) {
464 			ret = PTR_ERR(nvm_dev);
465 			goto err_ida;
466 		}
467 		nvm->active = nvm_dev;
468 	}
469 
470 	if (!sw->no_nvm_upgrade) {
471 		nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
472 		if (IS_ERR(nvm_dev)) {
473 			ret = PTR_ERR(nvm_dev);
474 			goto err_nvm_active;
475 		}
476 		nvm->non_active = nvm_dev;
477 	}
478 
479 	sw->nvm = nvm;
480 	return 0;
481 
482 err_nvm_active:
483 	if (nvm->active)
484 		nvmem_unregister(nvm->active);
485 err_ida:
486 	ida_simple_remove(&nvm_ida, nvm->id);
487 	kfree(nvm);
488 
489 	return ret;
490 }
491 
492 static void tb_switch_nvm_remove(struct tb_switch *sw)
493 {
494 	struct tb_switch_nvm *nvm;
495 
496 	nvm = sw->nvm;
497 	sw->nvm = NULL;
498 
499 	if (!nvm)
500 		return;
501 
502 	/* Remove authentication status in case the switch is unplugged */
503 	if (!nvm->authenticating)
504 		nvm_clear_auth_status(sw);
505 
506 	if (nvm->non_active)
507 		nvmem_unregister(nvm->non_active);
508 	if (nvm->active)
509 		nvmem_unregister(nvm->active);
510 	ida_simple_remove(&nvm_ida, nvm->id);
511 	vfree(nvm->buf);
512 	kfree(nvm);
513 }
514 
515 /* port utility functions */
516 
517 static const char *tb_port_type(struct tb_regs_port_header *port)
518 {
519 	switch (port->type >> 16) {
520 	case 0:
521 		switch ((u8) port->type) {
522 		case 0:
523 			return "Inactive";
524 		case 1:
525 			return "Port";
526 		case 2:
527 			return "NHI";
528 		default:
529 			return "unknown";
530 		}
531 	case 0x2:
532 		return "Ethernet";
533 	case 0x8:
534 		return "SATA";
535 	case 0xe:
536 		return "DP/HDMI";
537 	case 0x10:
538 		return "PCIe";
539 	case 0x20:
540 		return "USB";
541 	default:
542 		return "unknown";
543 	}
544 }
545 
546 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
547 {
548 	tb_dbg(tb,
549 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
550 	       port->port_number, port->vendor_id, port->device_id,
551 	       port->revision, port->thunderbolt_version, tb_port_type(port),
552 	       port->type);
553 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
554 	       port->max_in_hop_id, port->max_out_hop_id);
555 	tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
556 	tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
557 }
558 
559 /**
560  * tb_port_state() - get connectedness state of a port
561  *
562  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
563  *
564  * Return: Returns an enum tb_port_state on success or an error code on failure.
565  */
566 static int tb_port_state(struct tb_port *port)
567 {
568 	struct tb_cap_phy phy;
569 	int res;
570 	if (port->cap_phy == 0) {
571 		tb_port_WARN(port, "does not have a PHY\n");
572 		return -EINVAL;
573 	}
574 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
575 	if (res)
576 		return res;
577 	return phy.state;
578 }
579 
580 /**
581  * tb_wait_for_port() - wait for a port to become ready
582  *
583  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
584  * wait_if_unplugged is set then we also wait if the port is in state
585  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
586  * switch resume). Otherwise we only wait if a device is registered but the link
587  * has not yet been established.
588  *
589  * Return: Returns an error code on failure. Returns 0 if the port is not
590  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
591  * if the port is connected and in state TB_PORT_UP.
592  */
593 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
594 {
595 	int retries = 10;
596 	int state;
597 	if (!port->cap_phy) {
598 		tb_port_WARN(port, "does not have PHY\n");
599 		return -EINVAL;
600 	}
601 	if (tb_is_upstream_port(port)) {
602 		tb_port_WARN(port, "is the upstream port\n");
603 		return -EINVAL;
604 	}
605 
606 	while (retries--) {
607 		state = tb_port_state(port);
608 		if (state < 0)
609 			return state;
610 		if (state == TB_PORT_DISABLED) {
611 			tb_port_dbg(port, "is disabled (state: 0)\n");
612 			return 0;
613 		}
614 		if (state == TB_PORT_UNPLUGGED) {
615 			if (wait_if_unplugged) {
616 				/* used during resume */
617 				tb_port_dbg(port,
618 					    "is unplugged (state: 7), retrying...\n");
619 				msleep(100);
620 				continue;
621 			}
622 			tb_port_dbg(port, "is unplugged (state: 7)\n");
623 			return 0;
624 		}
625 		if (state == TB_PORT_UP) {
626 			tb_port_dbg(port, "is connected, link is up (state: 2)\n");
627 			return 1;
628 		}
629 
630 		/*
631 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
632 		 * time.
633 		 */
634 		tb_port_dbg(port,
635 			    "is connected, link is not up (state: %d), retrying...\n",
636 			    state);
637 		msleep(100);
638 	}
639 	tb_port_warn(port,
640 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
641 	return 0;
642 }
643 
644 /**
645  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
646  *
647  * Change the number of NFC credits allocated to @port by @credits. To remove
648  * NFC credits pass a negative amount of credits.
649  *
650  * Return: Returns 0 on success or an error code on failure.
651  */
652 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
653 {
654 	u32 nfc_credits;
655 
656 	if (credits == 0 || port->sw->is_unplugged)
657 		return 0;
658 
659 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
660 	nfc_credits += credits;
661 
662 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
663 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
664 
665 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
666 	port->config.nfc_credits |= nfc_credits;
667 
668 	return tb_port_write(port, &port->config.nfc_credits,
669 			     TB_CFG_PORT, ADP_CS_4, 1);
670 }
671 
672 /**
673  * tb_port_set_initial_credits() - Set initial port link credits allocated
674  * @port: Port to set the initial credits
675  * @credits: Number of credits to to allocate
676  *
677  * Set initial credits value to be used for ingress shared buffering.
678  */
679 int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
680 {
681 	u32 data;
682 	int ret;
683 
684 	ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
685 	if (ret)
686 		return ret;
687 
688 	data &= ~ADP_CS_5_LCA_MASK;
689 	data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
690 
691 	return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
692 }
693 
694 /**
695  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
696  *
697  * Return: Returns 0 on success or an error code on failure.
698  */
699 int tb_port_clear_counter(struct tb_port *port, int counter)
700 {
701 	u32 zero[3] = { 0, 0, 0 };
702 	tb_port_dbg(port, "clearing counter %d\n", counter);
703 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
704 }
705 
706 /**
707  * tb_port_unlock() - Unlock downstream port
708  * @port: Port to unlock
709  *
710  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
711  * downstream router accessible for CM.
712  */
713 int tb_port_unlock(struct tb_port *port)
714 {
715 	if (tb_switch_is_icm(port->sw))
716 		return 0;
717 	if (!tb_port_is_null(port))
718 		return -EINVAL;
719 	if (tb_switch_is_usb4(port->sw))
720 		return usb4_port_unlock(port);
721 	return 0;
722 }
723 
724 /**
725  * tb_init_port() - initialize a port
726  *
727  * This is a helper method for tb_switch_alloc. Does not check or initialize
728  * any downstream switches.
729  *
730  * Return: Returns 0 on success or an error code on failure.
731  */
732 static int tb_init_port(struct tb_port *port)
733 {
734 	int res;
735 	int cap;
736 
737 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
738 	if (res) {
739 		if (res == -ENODEV) {
740 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
741 			       port->port);
742 			return 0;
743 		}
744 		return res;
745 	}
746 
747 	/* Port 0 is the switch itself and has no PHY. */
748 	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
749 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
750 
751 		if (cap > 0)
752 			port->cap_phy = cap;
753 		else
754 			tb_port_WARN(port, "non switch port without a PHY\n");
755 
756 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
757 		if (cap > 0)
758 			port->cap_usb4 = cap;
759 	} else if (port->port != 0) {
760 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
761 		if (cap > 0)
762 			port->cap_adap = cap;
763 	}
764 
765 	tb_dump_port(port->sw->tb, &port->config);
766 
767 	/* Control port does not need HopID allocation */
768 	if (port->port) {
769 		ida_init(&port->in_hopids);
770 		ida_init(&port->out_hopids);
771 	}
772 
773 	INIT_LIST_HEAD(&port->list);
774 	return 0;
775 
776 }
777 
778 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
779 			       int max_hopid)
780 {
781 	int port_max_hopid;
782 	struct ida *ida;
783 
784 	if (in) {
785 		port_max_hopid = port->config.max_in_hop_id;
786 		ida = &port->in_hopids;
787 	} else {
788 		port_max_hopid = port->config.max_out_hop_id;
789 		ida = &port->out_hopids;
790 	}
791 
792 	/*
793 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
794 	 * reserved.
795 	 */
796 	if (port->config.type != TB_TYPE_NHI && min_hopid < TB_PATH_MIN_HOPID)
797 		min_hopid = TB_PATH_MIN_HOPID;
798 
799 	if (max_hopid < 0 || max_hopid > port_max_hopid)
800 		max_hopid = port_max_hopid;
801 
802 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
803 }
804 
805 /**
806  * tb_port_alloc_in_hopid() - Allocate input HopID from port
807  * @port: Port to allocate HopID for
808  * @min_hopid: Minimum acceptable input HopID
809  * @max_hopid: Maximum acceptable input HopID
810  *
811  * Return: HopID between @min_hopid and @max_hopid or negative errno in
812  * case of error.
813  */
814 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
815 {
816 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
817 }
818 
819 /**
820  * tb_port_alloc_out_hopid() - Allocate output HopID from port
821  * @port: Port to allocate HopID for
822  * @min_hopid: Minimum acceptable output HopID
823  * @max_hopid: Maximum acceptable output HopID
824  *
825  * Return: HopID between @min_hopid and @max_hopid or negative errno in
826  * case of error.
827  */
828 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
829 {
830 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
831 }
832 
833 /**
834  * tb_port_release_in_hopid() - Release allocated input HopID from port
835  * @port: Port whose HopID to release
836  * @hopid: HopID to release
837  */
838 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
839 {
840 	ida_simple_remove(&port->in_hopids, hopid);
841 }
842 
843 /**
844  * tb_port_release_out_hopid() - Release allocated output HopID from port
845  * @port: Port whose HopID to release
846  * @hopid: HopID to release
847  */
848 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
849 {
850 	ida_simple_remove(&port->out_hopids, hopid);
851 }
852 
853 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
854 					  const struct tb_switch *sw)
855 {
856 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
857 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
858 }
859 
860 /**
861  * tb_next_port_on_path() - Return next port for given port on a path
862  * @start: Start port of the walk
863  * @end: End port of the walk
864  * @prev: Previous port (%NULL if this is the first)
865  *
866  * This function can be used to walk from one port to another if they
867  * are connected through zero or more switches. If the @prev is dual
868  * link port, the function follows that link and returns another end on
869  * that same link.
870  *
871  * If the @end port has been reached, return %NULL.
872  *
873  * Domain tb->lock must be held when this function is called.
874  */
875 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
876 				     struct tb_port *prev)
877 {
878 	struct tb_port *next;
879 
880 	if (!prev)
881 		return start;
882 
883 	if (prev->sw == end->sw) {
884 		if (prev == end)
885 			return NULL;
886 		return end;
887 	}
888 
889 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
890 		next = tb_port_at(tb_route(end->sw), prev->sw);
891 		/* Walk down the topology if next == prev */
892 		if (prev->remote &&
893 		    (next == prev || next->dual_link_port == prev))
894 			next = prev->remote;
895 	} else {
896 		if (tb_is_upstream_port(prev)) {
897 			next = prev->remote;
898 		} else {
899 			next = tb_upstream_port(prev->sw);
900 			/*
901 			 * Keep the same link if prev and next are both
902 			 * dual link ports.
903 			 */
904 			if (next->dual_link_port &&
905 			    next->link_nr != prev->link_nr) {
906 				next = next->dual_link_port;
907 			}
908 		}
909 	}
910 
911 	return next != prev ? next : NULL;
912 }
913 
914 /**
915  * tb_port_get_link_speed() - Get current link speed
916  * @port: Port to check (USB4 or CIO)
917  *
918  * Returns link speed in Gb/s or negative errno in case of failure.
919  */
920 int tb_port_get_link_speed(struct tb_port *port)
921 {
922 	u32 val, speed;
923 	int ret;
924 
925 	if (!port->cap_phy)
926 		return -EINVAL;
927 
928 	ret = tb_port_read(port, &val, TB_CFG_PORT,
929 			   port->cap_phy + LANE_ADP_CS_1, 1);
930 	if (ret)
931 		return ret;
932 
933 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
934 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
935 	return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
936 }
937 
938 static int tb_port_get_link_width(struct tb_port *port)
939 {
940 	u32 val;
941 	int ret;
942 
943 	if (!port->cap_phy)
944 		return -EINVAL;
945 
946 	ret = tb_port_read(port, &val, TB_CFG_PORT,
947 			   port->cap_phy + LANE_ADP_CS_1, 1);
948 	if (ret)
949 		return ret;
950 
951 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
952 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
953 }
954 
955 static bool tb_port_is_width_supported(struct tb_port *port, int width)
956 {
957 	u32 phy, widths;
958 	int ret;
959 
960 	if (!port->cap_phy)
961 		return false;
962 
963 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
964 			   port->cap_phy + LANE_ADP_CS_0, 1);
965 	if (ret)
966 		return false;
967 
968 	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
969 		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
970 
971 	return !!(widths & width);
972 }
973 
974 static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
975 {
976 	u32 val;
977 	int ret;
978 
979 	if (!port->cap_phy)
980 		return -EINVAL;
981 
982 	ret = tb_port_read(port, &val, TB_CFG_PORT,
983 			   port->cap_phy + LANE_ADP_CS_1, 1);
984 	if (ret)
985 		return ret;
986 
987 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
988 	switch (width) {
989 	case 1:
990 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
991 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
992 		break;
993 	case 2:
994 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
995 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
996 		break;
997 	default:
998 		return -EINVAL;
999 	}
1000 
1001 	val |= LANE_ADP_CS_1_LB;
1002 
1003 	return tb_port_write(port, &val, TB_CFG_PORT,
1004 			     port->cap_phy + LANE_ADP_CS_1, 1);
1005 }
1006 
1007 static int tb_port_lane_bonding_enable(struct tb_port *port)
1008 {
1009 	int ret;
1010 
1011 	/*
1012 	 * Enable lane bonding for both links if not already enabled by
1013 	 * for example the boot firmware.
1014 	 */
1015 	ret = tb_port_get_link_width(port);
1016 	if (ret == 1) {
1017 		ret = tb_port_set_link_width(port, 2);
1018 		if (ret)
1019 			return ret;
1020 	}
1021 
1022 	ret = tb_port_get_link_width(port->dual_link_port);
1023 	if (ret == 1) {
1024 		ret = tb_port_set_link_width(port->dual_link_port, 2);
1025 		if (ret) {
1026 			tb_port_set_link_width(port, 1);
1027 			return ret;
1028 		}
1029 	}
1030 
1031 	port->bonded = true;
1032 	port->dual_link_port->bonded = true;
1033 
1034 	return 0;
1035 }
1036 
1037 static void tb_port_lane_bonding_disable(struct tb_port *port)
1038 {
1039 	port->dual_link_port->bonded = false;
1040 	port->bonded = false;
1041 
1042 	tb_port_set_link_width(port->dual_link_port, 1);
1043 	tb_port_set_link_width(port, 1);
1044 }
1045 
1046 /**
1047  * tb_port_is_enabled() - Is the adapter port enabled
1048  * @port: Port to check
1049  */
1050 bool tb_port_is_enabled(struct tb_port *port)
1051 {
1052 	switch (port->config.type) {
1053 	case TB_TYPE_PCIE_UP:
1054 	case TB_TYPE_PCIE_DOWN:
1055 		return tb_pci_port_is_enabled(port);
1056 
1057 	case TB_TYPE_DP_HDMI_IN:
1058 	case TB_TYPE_DP_HDMI_OUT:
1059 		return tb_dp_port_is_enabled(port);
1060 
1061 	case TB_TYPE_USB3_UP:
1062 	case TB_TYPE_USB3_DOWN:
1063 		return tb_usb3_port_is_enabled(port);
1064 
1065 	default:
1066 		return false;
1067 	}
1068 }
1069 
1070 /**
1071  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1072  * @port: USB3 adapter port to check
1073  */
1074 bool tb_usb3_port_is_enabled(struct tb_port *port)
1075 {
1076 	u32 data;
1077 
1078 	if (tb_port_read(port, &data, TB_CFG_PORT,
1079 			 port->cap_adap + ADP_USB3_CS_0, 1))
1080 		return false;
1081 
1082 	return !!(data & ADP_USB3_CS_0_PE);
1083 }
1084 
1085 /**
1086  * tb_usb3_port_enable() - Enable USB3 adapter port
1087  * @port: USB3 adapter port to enable
1088  * @enable: Enable/disable the USB3 adapter
1089  */
1090 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1091 {
1092 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1093 			  : ADP_USB3_CS_0_V;
1094 
1095 	if (!port->cap_adap)
1096 		return -ENXIO;
1097 	return tb_port_write(port, &word, TB_CFG_PORT,
1098 			     port->cap_adap + ADP_USB3_CS_0, 1);
1099 }
1100 
1101 /**
1102  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1103  * @port: PCIe port to check
1104  */
1105 bool tb_pci_port_is_enabled(struct tb_port *port)
1106 {
1107 	u32 data;
1108 
1109 	if (tb_port_read(port, &data, TB_CFG_PORT,
1110 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1111 		return false;
1112 
1113 	return !!(data & ADP_PCIE_CS_0_PE);
1114 }
1115 
1116 /**
1117  * tb_pci_port_enable() - Enable PCIe adapter port
1118  * @port: PCIe port to enable
1119  * @enable: Enable/disable the PCIe adapter
1120  */
1121 int tb_pci_port_enable(struct tb_port *port, bool enable)
1122 {
1123 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1124 	if (!port->cap_adap)
1125 		return -ENXIO;
1126 	return tb_port_write(port, &word, TB_CFG_PORT,
1127 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1128 }
1129 
1130 /**
1131  * tb_dp_port_hpd_is_active() - Is HPD already active
1132  * @port: DP out port to check
1133  *
1134  * Checks if the DP OUT adapter port has HDP bit already set.
1135  */
1136 int tb_dp_port_hpd_is_active(struct tb_port *port)
1137 {
1138 	u32 data;
1139 	int ret;
1140 
1141 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1142 			   port->cap_adap + ADP_DP_CS_2, 1);
1143 	if (ret)
1144 		return ret;
1145 
1146 	return !!(data & ADP_DP_CS_2_HDP);
1147 }
1148 
1149 /**
1150  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1151  * @port: Port to clear HPD
1152  *
1153  * If the DP IN port has HDP set, this function can be used to clear it.
1154  */
1155 int tb_dp_port_hpd_clear(struct tb_port *port)
1156 {
1157 	u32 data;
1158 	int ret;
1159 
1160 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1161 			   port->cap_adap + ADP_DP_CS_3, 1);
1162 	if (ret)
1163 		return ret;
1164 
1165 	data |= ADP_DP_CS_3_HDPC;
1166 	return tb_port_write(port, &data, TB_CFG_PORT,
1167 			     port->cap_adap + ADP_DP_CS_3, 1);
1168 }
1169 
1170 /**
1171  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1172  * @port: DP IN/OUT port to set hops
1173  * @video: Video Hop ID
1174  * @aux_tx: AUX TX Hop ID
1175  * @aux_rx: AUX RX Hop ID
1176  *
1177  * Programs specified Hop IDs for DP IN/OUT port.
1178  */
1179 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1180 			unsigned int aux_tx, unsigned int aux_rx)
1181 {
1182 	u32 data[2];
1183 	int ret;
1184 
1185 	ret = tb_port_read(port, data, TB_CFG_PORT,
1186 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1187 	if (ret)
1188 		return ret;
1189 
1190 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1191 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1192 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1193 
1194 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1195 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1196 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1197 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1198 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1199 
1200 	return tb_port_write(port, data, TB_CFG_PORT,
1201 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1202 }
1203 
1204 /**
1205  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1206  * @port: DP adapter port to check
1207  */
1208 bool tb_dp_port_is_enabled(struct tb_port *port)
1209 {
1210 	u32 data[2];
1211 
1212 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1213 			 ARRAY_SIZE(data)))
1214 		return false;
1215 
1216 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1217 }
1218 
1219 /**
1220  * tb_dp_port_enable() - Enables/disables DP paths of a port
1221  * @port: DP IN/OUT port
1222  * @enable: Enable/disable DP path
1223  *
1224  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1225  * calling this function.
1226  */
1227 int tb_dp_port_enable(struct tb_port *port, bool enable)
1228 {
1229 	u32 data[2];
1230 	int ret;
1231 
1232 	ret = tb_port_read(port, data, TB_CFG_PORT,
1233 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1234 	if (ret)
1235 		return ret;
1236 
1237 	if (enable)
1238 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1239 	else
1240 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1241 
1242 	return tb_port_write(port, data, TB_CFG_PORT,
1243 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1244 }
1245 
1246 /* switch utility functions */
1247 
1248 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1249 {
1250 	switch (sw->generation) {
1251 	case 1:
1252 		return "Thunderbolt 1";
1253 	case 2:
1254 		return "Thunderbolt 2";
1255 	case 3:
1256 		return "Thunderbolt 3";
1257 	case 4:
1258 		return "USB4";
1259 	default:
1260 		return "Unknown";
1261 	}
1262 }
1263 
1264 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1265 {
1266 	const struct tb_regs_switch_header *regs = &sw->config;
1267 
1268 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1269 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1270 	       regs->revision, regs->thunderbolt_version);
1271 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1272 	tb_dbg(tb, "  Config:\n");
1273 	tb_dbg(tb,
1274 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1275 	       regs->upstream_port_number, regs->depth,
1276 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1277 	       regs->enabled, regs->plug_events_delay);
1278 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1279 	       regs->__unknown1, regs->__unknown4);
1280 }
1281 
1282 /**
1283  * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1284  *
1285  * Return: Returns 0 on success or an error code on failure.
1286  */
1287 int tb_switch_reset(struct tb *tb, u64 route)
1288 {
1289 	struct tb_cfg_result res;
1290 	struct tb_regs_switch_header header = {
1291 		header.route_hi = route >> 32,
1292 		header.route_lo = route,
1293 		header.enabled = true,
1294 	};
1295 	tb_dbg(tb, "resetting switch at %llx\n", route);
1296 	res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
1297 			0, 2, 2, 2);
1298 	if (res.err)
1299 		return res.err;
1300 	res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
1301 	if (res.err > 0)
1302 		return -EIO;
1303 	return res.err;
1304 }
1305 
1306 /**
1307  * tb_plug_events_active() - enable/disable plug events on a switch
1308  *
1309  * Also configures a sane plug_events_delay of 255ms.
1310  *
1311  * Return: Returns 0 on success or an error code on failure.
1312  */
1313 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1314 {
1315 	u32 data;
1316 	int res;
1317 
1318 	if (tb_switch_is_icm(sw))
1319 		return 0;
1320 
1321 	sw->config.plug_events_delay = 0xff;
1322 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1323 	if (res)
1324 		return res;
1325 
1326 	/* Plug events are always enabled in USB4 */
1327 	if (tb_switch_is_usb4(sw))
1328 		return 0;
1329 
1330 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1331 	if (res)
1332 		return res;
1333 
1334 	if (active) {
1335 		data = data & 0xFFFFFF83;
1336 		switch (sw->config.device_id) {
1337 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1338 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1339 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1340 			break;
1341 		default:
1342 			data |= 4;
1343 		}
1344 	} else {
1345 		data = data | 0x7c;
1346 	}
1347 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1348 			   sw->cap_plug_events + 1, 1);
1349 }
1350 
1351 static ssize_t authorized_show(struct device *dev,
1352 			       struct device_attribute *attr,
1353 			       char *buf)
1354 {
1355 	struct tb_switch *sw = tb_to_switch(dev);
1356 
1357 	return sprintf(buf, "%u\n", sw->authorized);
1358 }
1359 
1360 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1361 {
1362 	int ret = -EINVAL;
1363 
1364 	if (!mutex_trylock(&sw->tb->lock))
1365 		return restart_syscall();
1366 
1367 	if (sw->authorized)
1368 		goto unlock;
1369 
1370 	switch (val) {
1371 	/* Approve switch */
1372 	case 1:
1373 		if (sw->key)
1374 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1375 		else
1376 			ret = tb_domain_approve_switch(sw->tb, sw);
1377 		break;
1378 
1379 	/* Challenge switch */
1380 	case 2:
1381 		if (sw->key)
1382 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1383 		break;
1384 
1385 	default:
1386 		break;
1387 	}
1388 
1389 	if (!ret) {
1390 		sw->authorized = val;
1391 		/* Notify status change to the userspace */
1392 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1393 	}
1394 
1395 unlock:
1396 	mutex_unlock(&sw->tb->lock);
1397 	return ret;
1398 }
1399 
1400 static ssize_t authorized_store(struct device *dev,
1401 				struct device_attribute *attr,
1402 				const char *buf, size_t count)
1403 {
1404 	struct tb_switch *sw = tb_to_switch(dev);
1405 	unsigned int val;
1406 	ssize_t ret;
1407 
1408 	ret = kstrtouint(buf, 0, &val);
1409 	if (ret)
1410 		return ret;
1411 	if (val > 2)
1412 		return -EINVAL;
1413 
1414 	pm_runtime_get_sync(&sw->dev);
1415 	ret = tb_switch_set_authorized(sw, val);
1416 	pm_runtime_mark_last_busy(&sw->dev);
1417 	pm_runtime_put_autosuspend(&sw->dev);
1418 
1419 	return ret ? ret : count;
1420 }
1421 static DEVICE_ATTR_RW(authorized);
1422 
1423 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1424 			 char *buf)
1425 {
1426 	struct tb_switch *sw = tb_to_switch(dev);
1427 
1428 	return sprintf(buf, "%u\n", sw->boot);
1429 }
1430 static DEVICE_ATTR_RO(boot);
1431 
1432 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1433 			   char *buf)
1434 {
1435 	struct tb_switch *sw = tb_to_switch(dev);
1436 
1437 	return sprintf(buf, "%#x\n", sw->device);
1438 }
1439 static DEVICE_ATTR_RO(device);
1440 
1441 static ssize_t
1442 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1443 {
1444 	struct tb_switch *sw = tb_to_switch(dev);
1445 
1446 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1447 }
1448 static DEVICE_ATTR_RO(device_name);
1449 
1450 static ssize_t
1451 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1452 {
1453 	struct tb_switch *sw = tb_to_switch(dev);
1454 
1455 	return sprintf(buf, "%u\n", sw->generation);
1456 }
1457 static DEVICE_ATTR_RO(generation);
1458 
1459 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1460 			char *buf)
1461 {
1462 	struct tb_switch *sw = tb_to_switch(dev);
1463 	ssize_t ret;
1464 
1465 	if (!mutex_trylock(&sw->tb->lock))
1466 		return restart_syscall();
1467 
1468 	if (sw->key)
1469 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1470 	else
1471 		ret = sprintf(buf, "\n");
1472 
1473 	mutex_unlock(&sw->tb->lock);
1474 	return ret;
1475 }
1476 
1477 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1478 			 const char *buf, size_t count)
1479 {
1480 	struct tb_switch *sw = tb_to_switch(dev);
1481 	u8 key[TB_SWITCH_KEY_SIZE];
1482 	ssize_t ret = count;
1483 	bool clear = false;
1484 
1485 	if (!strcmp(buf, "\n"))
1486 		clear = true;
1487 	else if (hex2bin(key, buf, sizeof(key)))
1488 		return -EINVAL;
1489 
1490 	if (!mutex_trylock(&sw->tb->lock))
1491 		return restart_syscall();
1492 
1493 	if (sw->authorized) {
1494 		ret = -EBUSY;
1495 	} else {
1496 		kfree(sw->key);
1497 		if (clear) {
1498 			sw->key = NULL;
1499 		} else {
1500 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1501 			if (!sw->key)
1502 				ret = -ENOMEM;
1503 		}
1504 	}
1505 
1506 	mutex_unlock(&sw->tb->lock);
1507 	return ret;
1508 }
1509 static DEVICE_ATTR(key, 0600, key_show, key_store);
1510 
1511 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1512 			  char *buf)
1513 {
1514 	struct tb_switch *sw = tb_to_switch(dev);
1515 
1516 	return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1517 }
1518 
1519 /*
1520  * Currently all lanes must run at the same speed but we expose here
1521  * both directions to allow possible asymmetric links in the future.
1522  */
1523 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1524 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1525 
1526 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1527 			  char *buf)
1528 {
1529 	struct tb_switch *sw = tb_to_switch(dev);
1530 
1531 	return sprintf(buf, "%u\n", sw->link_width);
1532 }
1533 
1534 /*
1535  * Currently link has same amount of lanes both directions (1 or 2) but
1536  * expose them separately to allow possible asymmetric links in the future.
1537  */
1538 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1539 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1540 
1541 static ssize_t nvm_authenticate_show(struct device *dev,
1542 	struct device_attribute *attr, char *buf)
1543 {
1544 	struct tb_switch *sw = tb_to_switch(dev);
1545 	u32 status;
1546 
1547 	nvm_get_auth_status(sw, &status);
1548 	return sprintf(buf, "%#x\n", status);
1549 }
1550 
1551 static ssize_t nvm_authenticate_store(struct device *dev,
1552 	struct device_attribute *attr, const char *buf, size_t count)
1553 {
1554 	struct tb_switch *sw = tb_to_switch(dev);
1555 	bool val;
1556 	int ret;
1557 
1558 	pm_runtime_get_sync(&sw->dev);
1559 
1560 	if (!mutex_trylock(&sw->tb->lock)) {
1561 		ret = restart_syscall();
1562 		goto exit_rpm;
1563 	}
1564 
1565 	/* If NVMem devices are not yet added */
1566 	if (!sw->nvm) {
1567 		ret = -EAGAIN;
1568 		goto exit_unlock;
1569 	}
1570 
1571 	ret = kstrtobool(buf, &val);
1572 	if (ret)
1573 		goto exit_unlock;
1574 
1575 	/* Always clear the authentication status */
1576 	nvm_clear_auth_status(sw);
1577 
1578 	if (val) {
1579 		if (!sw->nvm->buf) {
1580 			ret = -EINVAL;
1581 			goto exit_unlock;
1582 		}
1583 
1584 		ret = nvm_validate_and_write(sw);
1585 		if (ret)
1586 			goto exit_unlock;
1587 
1588 		sw->nvm->authenticating = true;
1589 		ret = nvm_authenticate(sw);
1590 	}
1591 
1592 exit_unlock:
1593 	mutex_unlock(&sw->tb->lock);
1594 exit_rpm:
1595 	pm_runtime_mark_last_busy(&sw->dev);
1596 	pm_runtime_put_autosuspend(&sw->dev);
1597 
1598 	if (ret)
1599 		return ret;
1600 	return count;
1601 }
1602 static DEVICE_ATTR_RW(nvm_authenticate);
1603 
1604 static ssize_t nvm_version_show(struct device *dev,
1605 				struct device_attribute *attr, char *buf)
1606 {
1607 	struct tb_switch *sw = tb_to_switch(dev);
1608 	int ret;
1609 
1610 	if (!mutex_trylock(&sw->tb->lock))
1611 		return restart_syscall();
1612 
1613 	if (sw->safe_mode)
1614 		ret = -ENODATA;
1615 	else if (!sw->nvm)
1616 		ret = -EAGAIN;
1617 	else
1618 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1619 
1620 	mutex_unlock(&sw->tb->lock);
1621 
1622 	return ret;
1623 }
1624 static DEVICE_ATTR_RO(nvm_version);
1625 
1626 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1627 			   char *buf)
1628 {
1629 	struct tb_switch *sw = tb_to_switch(dev);
1630 
1631 	return sprintf(buf, "%#x\n", sw->vendor);
1632 }
1633 static DEVICE_ATTR_RO(vendor);
1634 
1635 static ssize_t
1636 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1637 {
1638 	struct tb_switch *sw = tb_to_switch(dev);
1639 
1640 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1641 }
1642 static DEVICE_ATTR_RO(vendor_name);
1643 
1644 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1645 			      char *buf)
1646 {
1647 	struct tb_switch *sw = tb_to_switch(dev);
1648 
1649 	return sprintf(buf, "%pUb\n", sw->uuid);
1650 }
1651 static DEVICE_ATTR_RO(unique_id);
1652 
1653 static struct attribute *switch_attrs[] = {
1654 	&dev_attr_authorized.attr,
1655 	&dev_attr_boot.attr,
1656 	&dev_attr_device.attr,
1657 	&dev_attr_device_name.attr,
1658 	&dev_attr_generation.attr,
1659 	&dev_attr_key.attr,
1660 	&dev_attr_nvm_authenticate.attr,
1661 	&dev_attr_nvm_version.attr,
1662 	&dev_attr_rx_speed.attr,
1663 	&dev_attr_rx_lanes.attr,
1664 	&dev_attr_tx_speed.attr,
1665 	&dev_attr_tx_lanes.attr,
1666 	&dev_attr_vendor.attr,
1667 	&dev_attr_vendor_name.attr,
1668 	&dev_attr_unique_id.attr,
1669 	NULL,
1670 };
1671 
1672 static umode_t switch_attr_is_visible(struct kobject *kobj,
1673 				      struct attribute *attr, int n)
1674 {
1675 	struct device *dev = container_of(kobj, struct device, kobj);
1676 	struct tb_switch *sw = tb_to_switch(dev);
1677 
1678 	if (attr == &dev_attr_device.attr) {
1679 		if (!sw->device)
1680 			return 0;
1681 	} else if (attr == &dev_attr_device_name.attr) {
1682 		if (!sw->device_name)
1683 			return 0;
1684 	} else if (attr == &dev_attr_vendor.attr)  {
1685 		if (!sw->vendor)
1686 			return 0;
1687 	} else if (attr == &dev_attr_vendor_name.attr)  {
1688 		if (!sw->vendor_name)
1689 			return 0;
1690 	} else if (attr == &dev_attr_key.attr) {
1691 		if (tb_route(sw) &&
1692 		    sw->tb->security_level == TB_SECURITY_SECURE &&
1693 		    sw->security_level == TB_SECURITY_SECURE)
1694 			return attr->mode;
1695 		return 0;
1696 	} else if (attr == &dev_attr_rx_speed.attr ||
1697 		   attr == &dev_attr_rx_lanes.attr ||
1698 		   attr == &dev_attr_tx_speed.attr ||
1699 		   attr == &dev_attr_tx_lanes.attr) {
1700 		if (tb_route(sw))
1701 			return attr->mode;
1702 		return 0;
1703 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
1704 		if (nvm_upgradeable(sw))
1705 			return attr->mode;
1706 		return 0;
1707 	} else if (attr == &dev_attr_nvm_version.attr) {
1708 		if (nvm_readable(sw))
1709 			return attr->mode;
1710 		return 0;
1711 	} else if (attr == &dev_attr_boot.attr) {
1712 		if (tb_route(sw))
1713 			return attr->mode;
1714 		return 0;
1715 	}
1716 
1717 	return sw->safe_mode ? 0 : attr->mode;
1718 }
1719 
1720 static struct attribute_group switch_group = {
1721 	.is_visible = switch_attr_is_visible,
1722 	.attrs = switch_attrs,
1723 };
1724 
1725 static const struct attribute_group *switch_groups[] = {
1726 	&switch_group,
1727 	NULL,
1728 };
1729 
1730 static void tb_switch_release(struct device *dev)
1731 {
1732 	struct tb_switch *sw = tb_to_switch(dev);
1733 	struct tb_port *port;
1734 
1735 	dma_port_free(sw->dma_port);
1736 
1737 	tb_switch_for_each_port(sw, port) {
1738 		if (!port->disabled) {
1739 			ida_destroy(&port->in_hopids);
1740 			ida_destroy(&port->out_hopids);
1741 		}
1742 	}
1743 
1744 	kfree(sw->uuid);
1745 	kfree(sw->device_name);
1746 	kfree(sw->vendor_name);
1747 	kfree(sw->ports);
1748 	kfree(sw->drom);
1749 	kfree(sw->key);
1750 	kfree(sw);
1751 }
1752 
1753 /*
1754  * Currently only need to provide the callbacks. Everything else is handled
1755  * in the connection manager.
1756  */
1757 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1758 {
1759 	struct tb_switch *sw = tb_to_switch(dev);
1760 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1761 
1762 	if (cm_ops->runtime_suspend_switch)
1763 		return cm_ops->runtime_suspend_switch(sw);
1764 
1765 	return 0;
1766 }
1767 
1768 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1769 {
1770 	struct tb_switch *sw = tb_to_switch(dev);
1771 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1772 
1773 	if (cm_ops->runtime_resume_switch)
1774 		return cm_ops->runtime_resume_switch(sw);
1775 	return 0;
1776 }
1777 
1778 static const struct dev_pm_ops tb_switch_pm_ops = {
1779 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1780 			   NULL)
1781 };
1782 
1783 struct device_type tb_switch_type = {
1784 	.name = "thunderbolt_device",
1785 	.release = tb_switch_release,
1786 	.pm = &tb_switch_pm_ops,
1787 };
1788 
1789 static int tb_switch_get_generation(struct tb_switch *sw)
1790 {
1791 	switch (sw->config.device_id) {
1792 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1793 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1794 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1795 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1796 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1797 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1798 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1799 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1800 		return 1;
1801 
1802 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1803 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1804 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1805 		return 2;
1806 
1807 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1808 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1809 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1810 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1811 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1812 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1813 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1814 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1815 	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1816 	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1817 		return 3;
1818 
1819 	default:
1820 		if (tb_switch_is_usb4(sw))
1821 			return 4;
1822 
1823 		/*
1824 		 * For unknown switches assume generation to be 1 to be
1825 		 * on the safe side.
1826 		 */
1827 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
1828 			   sw->config.device_id);
1829 		return 1;
1830 	}
1831 }
1832 
1833 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1834 {
1835 	int max_depth;
1836 
1837 	if (tb_switch_is_usb4(sw) ||
1838 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1839 		max_depth = USB4_SWITCH_MAX_DEPTH;
1840 	else
1841 		max_depth = TB_SWITCH_MAX_DEPTH;
1842 
1843 	return depth > max_depth;
1844 }
1845 
1846 /**
1847  * tb_switch_alloc() - allocate a switch
1848  * @tb: Pointer to the owning domain
1849  * @parent: Parent device for this switch
1850  * @route: Route string for this switch
1851  *
1852  * Allocates and initializes a switch. Will not upload configuration to
1853  * the switch. For that you need to call tb_switch_configure()
1854  * separately. The returned switch should be released by calling
1855  * tb_switch_put().
1856  *
1857  * Return: Pointer to the allocated switch or ERR_PTR() in case of
1858  * failure.
1859  */
1860 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1861 				  u64 route)
1862 {
1863 	struct tb_switch *sw;
1864 	int upstream_port;
1865 	int i, ret, depth;
1866 
1867 	/* Unlock the downstream port so we can access the switch below */
1868 	if (route) {
1869 		struct tb_switch *parent_sw = tb_to_switch(parent);
1870 		struct tb_port *down;
1871 
1872 		down = tb_port_at(route, parent_sw);
1873 		tb_port_unlock(down);
1874 	}
1875 
1876 	depth = tb_route_length(route);
1877 
1878 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1879 	if (upstream_port < 0)
1880 		return ERR_PTR(upstream_port);
1881 
1882 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1883 	if (!sw)
1884 		return ERR_PTR(-ENOMEM);
1885 
1886 	sw->tb = tb;
1887 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1888 	if (ret)
1889 		goto err_free_sw_ports;
1890 
1891 	sw->generation = tb_switch_get_generation(sw);
1892 
1893 	tb_dbg(tb, "current switch config:\n");
1894 	tb_dump_switch(tb, sw);
1895 
1896 	/* configure switch */
1897 	sw->config.upstream_port_number = upstream_port;
1898 	sw->config.depth = depth;
1899 	sw->config.route_hi = upper_32_bits(route);
1900 	sw->config.route_lo = lower_32_bits(route);
1901 	sw->config.enabled = 0;
1902 
1903 	/* Make sure we do not exceed maximum topology limit */
1904 	if (tb_switch_exceeds_max_depth(sw, depth)) {
1905 		ret = -EADDRNOTAVAIL;
1906 		goto err_free_sw_ports;
1907 	}
1908 
1909 	/* initialize ports */
1910 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1911 				GFP_KERNEL);
1912 	if (!sw->ports) {
1913 		ret = -ENOMEM;
1914 		goto err_free_sw_ports;
1915 	}
1916 
1917 	for (i = 0; i <= sw->config.max_port_number; i++) {
1918 		/* minimum setup for tb_find_cap and tb_drom_read to work */
1919 		sw->ports[i].sw = sw;
1920 		sw->ports[i].port = i;
1921 	}
1922 
1923 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1924 	if (ret > 0)
1925 		sw->cap_plug_events = ret;
1926 
1927 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1928 	if (ret > 0)
1929 		sw->cap_lc = ret;
1930 
1931 	/* Root switch is always authorized */
1932 	if (!route)
1933 		sw->authorized = true;
1934 
1935 	device_initialize(&sw->dev);
1936 	sw->dev.parent = parent;
1937 	sw->dev.bus = &tb_bus_type;
1938 	sw->dev.type = &tb_switch_type;
1939 	sw->dev.groups = switch_groups;
1940 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1941 
1942 	return sw;
1943 
1944 err_free_sw_ports:
1945 	kfree(sw->ports);
1946 	kfree(sw);
1947 
1948 	return ERR_PTR(ret);
1949 }
1950 
1951 /**
1952  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1953  * @tb: Pointer to the owning domain
1954  * @parent: Parent device for this switch
1955  * @route: Route string for this switch
1956  *
1957  * This creates a switch in safe mode. This means the switch pretty much
1958  * lacks all capabilities except DMA configuration port before it is
1959  * flashed with a valid NVM firmware.
1960  *
1961  * The returned switch must be released by calling tb_switch_put().
1962  *
1963  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1964  */
1965 struct tb_switch *
1966 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1967 {
1968 	struct tb_switch *sw;
1969 
1970 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1971 	if (!sw)
1972 		return ERR_PTR(-ENOMEM);
1973 
1974 	sw->tb = tb;
1975 	sw->config.depth = tb_route_length(route);
1976 	sw->config.route_hi = upper_32_bits(route);
1977 	sw->config.route_lo = lower_32_bits(route);
1978 	sw->safe_mode = true;
1979 
1980 	device_initialize(&sw->dev);
1981 	sw->dev.parent = parent;
1982 	sw->dev.bus = &tb_bus_type;
1983 	sw->dev.type = &tb_switch_type;
1984 	sw->dev.groups = switch_groups;
1985 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1986 
1987 	return sw;
1988 }
1989 
1990 /**
1991  * tb_switch_configure() - Uploads configuration to the switch
1992  * @sw: Switch to configure
1993  *
1994  * Call this function before the switch is added to the system. It will
1995  * upload configuration to the switch and makes it available for the
1996  * connection manager to use. Can be called to the switch again after
1997  * resume from low power states to re-initialize it.
1998  *
1999  * Return: %0 in case of success and negative errno in case of failure
2000  */
2001 int tb_switch_configure(struct tb_switch *sw)
2002 {
2003 	struct tb *tb = sw->tb;
2004 	u64 route;
2005 	int ret;
2006 
2007 	route = tb_route(sw);
2008 
2009 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2010 	       sw->config.enabled ? "restoring " : "initializing", route,
2011 	       tb_route_length(route), sw->config.upstream_port_number);
2012 
2013 	sw->config.enabled = 1;
2014 
2015 	if (tb_switch_is_usb4(sw)) {
2016 		/*
2017 		 * For USB4 devices, we need to program the CM version
2018 		 * accordingly so that it knows to expose all the
2019 		 * additional capabilities.
2020 		 */
2021 		sw->config.cmuv = USB4_VERSION_1_0;
2022 
2023 		/* Enumerate the switch */
2024 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2025 				  ROUTER_CS_1, 4);
2026 		if (ret)
2027 			return ret;
2028 
2029 		ret = usb4_switch_setup(sw);
2030 		if (ret)
2031 			return ret;
2032 
2033 		ret = usb4_switch_configure_link(sw);
2034 	} else {
2035 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2036 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2037 				   sw->config.vendor_id);
2038 
2039 		if (!sw->cap_plug_events) {
2040 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2041 			return -ENODEV;
2042 		}
2043 
2044 		/* Enumerate the switch */
2045 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2046 				  ROUTER_CS_1, 3);
2047 		if (ret)
2048 			return ret;
2049 
2050 		ret = tb_lc_configure_link(sw);
2051 	}
2052 	if (ret)
2053 		return ret;
2054 
2055 	return tb_plug_events_active(sw, true);
2056 }
2057 
2058 static int tb_switch_set_uuid(struct tb_switch *sw)
2059 {
2060 	bool uid = false;
2061 	u32 uuid[4];
2062 	int ret;
2063 
2064 	if (sw->uuid)
2065 		return 0;
2066 
2067 	if (tb_switch_is_usb4(sw)) {
2068 		ret = usb4_switch_read_uid(sw, &sw->uid);
2069 		if (ret)
2070 			return ret;
2071 		uid = true;
2072 	} else {
2073 		/*
2074 		 * The newer controllers include fused UUID as part of
2075 		 * link controller specific registers
2076 		 */
2077 		ret = tb_lc_read_uuid(sw, uuid);
2078 		if (ret) {
2079 			if (ret != -EINVAL)
2080 				return ret;
2081 			uid = true;
2082 		}
2083 	}
2084 
2085 	if (uid) {
2086 		/*
2087 		 * ICM generates UUID based on UID and fills the upper
2088 		 * two words with ones. This is not strictly following
2089 		 * UUID format but we want to be compatible with it so
2090 		 * we do the same here.
2091 		 */
2092 		uuid[0] = sw->uid & 0xffffffff;
2093 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2094 		uuid[2] = 0xffffffff;
2095 		uuid[3] = 0xffffffff;
2096 	}
2097 
2098 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2099 	if (!sw->uuid)
2100 		return -ENOMEM;
2101 	return 0;
2102 }
2103 
2104 static int tb_switch_add_dma_port(struct tb_switch *sw)
2105 {
2106 	u32 status;
2107 	int ret;
2108 
2109 	switch (sw->generation) {
2110 	case 2:
2111 		/* Only root switch can be upgraded */
2112 		if (tb_route(sw))
2113 			return 0;
2114 
2115 		/* fallthrough */
2116 	case 3:
2117 		ret = tb_switch_set_uuid(sw);
2118 		if (ret)
2119 			return ret;
2120 		break;
2121 
2122 	default:
2123 		/*
2124 		 * DMA port is the only thing available when the switch
2125 		 * is in safe mode.
2126 		 */
2127 		if (!sw->safe_mode)
2128 			return 0;
2129 		break;
2130 	}
2131 
2132 	/* Root switch DMA port requires running firmware */
2133 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2134 		return 0;
2135 
2136 	sw->dma_port = dma_port_alloc(sw);
2137 	if (!sw->dma_port)
2138 		return 0;
2139 
2140 	if (sw->no_nvm_upgrade)
2141 		return 0;
2142 
2143 	/*
2144 	 * If there is status already set then authentication failed
2145 	 * when the dma_port_flash_update_auth() returned. Power cycling
2146 	 * is not needed (it was done already) so only thing we do here
2147 	 * is to unblock runtime PM of the root port.
2148 	 */
2149 	nvm_get_auth_status(sw, &status);
2150 	if (status) {
2151 		if (!tb_route(sw))
2152 			nvm_authenticate_complete_dma_port(sw);
2153 		return 0;
2154 	}
2155 
2156 	/*
2157 	 * Check status of the previous flash authentication. If there
2158 	 * is one we need to power cycle the switch in any case to make
2159 	 * it functional again.
2160 	 */
2161 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2162 	if (ret <= 0)
2163 		return ret;
2164 
2165 	/* Now we can allow root port to suspend again */
2166 	if (!tb_route(sw))
2167 		nvm_authenticate_complete_dma_port(sw);
2168 
2169 	if (status) {
2170 		tb_sw_info(sw, "switch flash authentication failed\n");
2171 		nvm_set_auth_status(sw, status);
2172 	}
2173 
2174 	tb_sw_info(sw, "power cycling the switch now\n");
2175 	dma_port_power_cycle(sw->dma_port);
2176 
2177 	/*
2178 	 * We return error here which causes the switch adding failure.
2179 	 * It should appear back after power cycle is complete.
2180 	 */
2181 	return -ESHUTDOWN;
2182 }
2183 
2184 static void tb_switch_default_link_ports(struct tb_switch *sw)
2185 {
2186 	int i;
2187 
2188 	for (i = 1; i <= sw->config.max_port_number; i += 2) {
2189 		struct tb_port *port = &sw->ports[i];
2190 		struct tb_port *subordinate;
2191 
2192 		if (!tb_port_is_null(port))
2193 			continue;
2194 
2195 		/* Check for the subordinate port */
2196 		if (i == sw->config.max_port_number ||
2197 		    !tb_port_is_null(&sw->ports[i + 1]))
2198 			continue;
2199 
2200 		/* Link them if not already done so (by DROM) */
2201 		subordinate = &sw->ports[i + 1];
2202 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2203 			port->link_nr = 0;
2204 			port->dual_link_port = subordinate;
2205 			subordinate->link_nr = 1;
2206 			subordinate->dual_link_port = port;
2207 
2208 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2209 				  port->port, subordinate->port);
2210 		}
2211 	}
2212 }
2213 
2214 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2215 {
2216 	const struct tb_port *up = tb_upstream_port(sw);
2217 
2218 	if (!up->dual_link_port || !up->dual_link_port->remote)
2219 		return false;
2220 
2221 	if (tb_switch_is_usb4(sw))
2222 		return usb4_switch_lane_bonding_possible(sw);
2223 	return tb_lc_lane_bonding_possible(sw);
2224 }
2225 
2226 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2227 {
2228 	struct tb_port *up;
2229 	bool change = false;
2230 	int ret;
2231 
2232 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2233 		return 0;
2234 
2235 	up = tb_upstream_port(sw);
2236 
2237 	ret = tb_port_get_link_speed(up);
2238 	if (ret < 0)
2239 		return ret;
2240 	if (sw->link_speed != ret)
2241 		change = true;
2242 	sw->link_speed = ret;
2243 
2244 	ret = tb_port_get_link_width(up);
2245 	if (ret < 0)
2246 		return ret;
2247 	if (sw->link_width != ret)
2248 		change = true;
2249 	sw->link_width = ret;
2250 
2251 	/* Notify userspace that there is possible link attribute change */
2252 	if (device_is_registered(&sw->dev) && change)
2253 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2254 
2255 	return 0;
2256 }
2257 
2258 /**
2259  * tb_switch_lane_bonding_enable() - Enable lane bonding
2260  * @sw: Switch to enable lane bonding
2261  *
2262  * Connection manager can call this function to enable lane bonding of a
2263  * switch. If conditions are correct and both switches support the feature,
2264  * lanes are bonded. It is safe to call this to any switch.
2265  */
2266 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2267 {
2268 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2269 	struct tb_port *up, *down;
2270 	u64 route = tb_route(sw);
2271 	int ret;
2272 
2273 	if (!route)
2274 		return 0;
2275 
2276 	if (!tb_switch_lane_bonding_possible(sw))
2277 		return 0;
2278 
2279 	up = tb_upstream_port(sw);
2280 	down = tb_port_at(route, parent);
2281 
2282 	if (!tb_port_is_width_supported(up, 2) ||
2283 	    !tb_port_is_width_supported(down, 2))
2284 		return 0;
2285 
2286 	ret = tb_port_lane_bonding_enable(up);
2287 	if (ret) {
2288 		tb_port_warn(up, "failed to enable lane bonding\n");
2289 		return ret;
2290 	}
2291 
2292 	ret = tb_port_lane_bonding_enable(down);
2293 	if (ret) {
2294 		tb_port_warn(down, "failed to enable lane bonding\n");
2295 		tb_port_lane_bonding_disable(up);
2296 		return ret;
2297 	}
2298 
2299 	tb_switch_update_link_attributes(sw);
2300 
2301 	tb_sw_dbg(sw, "lane bonding enabled\n");
2302 	return ret;
2303 }
2304 
2305 /**
2306  * tb_switch_lane_bonding_disable() - Disable lane bonding
2307  * @sw: Switch whose lane bonding to disable
2308  *
2309  * Disables lane bonding between @sw and parent. This can be called even
2310  * if lanes were not bonded originally.
2311  */
2312 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2313 {
2314 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2315 	struct tb_port *up, *down;
2316 
2317 	if (!tb_route(sw))
2318 		return;
2319 
2320 	up = tb_upstream_port(sw);
2321 	if (!up->bonded)
2322 		return;
2323 
2324 	down = tb_port_at(tb_route(sw), parent);
2325 
2326 	tb_port_lane_bonding_disable(up);
2327 	tb_port_lane_bonding_disable(down);
2328 
2329 	tb_switch_update_link_attributes(sw);
2330 	tb_sw_dbg(sw, "lane bonding disabled\n");
2331 }
2332 
2333 /**
2334  * tb_switch_add() - Add a switch to the domain
2335  * @sw: Switch to add
2336  *
2337  * This is the last step in adding switch to the domain. It will read
2338  * identification information from DROM and initializes ports so that
2339  * they can be used to connect other switches. The switch will be
2340  * exposed to the userspace when this function successfully returns. To
2341  * remove and release the switch, call tb_switch_remove().
2342  *
2343  * Return: %0 in case of success and negative errno in case of failure
2344  */
2345 int tb_switch_add(struct tb_switch *sw)
2346 {
2347 	int i, ret;
2348 
2349 	/*
2350 	 * Initialize DMA control port now before we read DROM. Recent
2351 	 * host controllers have more complete DROM on NVM that includes
2352 	 * vendor and model identification strings which we then expose
2353 	 * to the userspace. NVM can be accessed through DMA
2354 	 * configuration based mailbox.
2355 	 */
2356 	ret = tb_switch_add_dma_port(sw);
2357 	if (ret) {
2358 		dev_err(&sw->dev, "failed to add DMA port\n");
2359 		return ret;
2360 	}
2361 
2362 	if (!sw->safe_mode) {
2363 		/* read drom */
2364 		ret = tb_drom_read(sw);
2365 		if (ret) {
2366 			dev_err(&sw->dev, "reading DROM failed\n");
2367 			return ret;
2368 		}
2369 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2370 
2371 		ret = tb_switch_set_uuid(sw);
2372 		if (ret) {
2373 			dev_err(&sw->dev, "failed to set UUID\n");
2374 			return ret;
2375 		}
2376 
2377 		for (i = 0; i <= sw->config.max_port_number; i++) {
2378 			if (sw->ports[i].disabled) {
2379 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2380 				continue;
2381 			}
2382 			ret = tb_init_port(&sw->ports[i]);
2383 			if (ret) {
2384 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
2385 				return ret;
2386 			}
2387 		}
2388 
2389 		tb_switch_default_link_ports(sw);
2390 
2391 		ret = tb_switch_update_link_attributes(sw);
2392 		if (ret)
2393 			return ret;
2394 
2395 		ret = tb_switch_tmu_init(sw);
2396 		if (ret)
2397 			return ret;
2398 	}
2399 
2400 	ret = device_add(&sw->dev);
2401 	if (ret) {
2402 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
2403 		return ret;
2404 	}
2405 
2406 	if (tb_route(sw)) {
2407 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2408 			 sw->vendor, sw->device);
2409 		if (sw->vendor_name && sw->device_name)
2410 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2411 				 sw->device_name);
2412 	}
2413 
2414 	ret = tb_switch_nvm_add(sw);
2415 	if (ret) {
2416 		dev_err(&sw->dev, "failed to add NVM devices\n");
2417 		device_del(&sw->dev);
2418 		return ret;
2419 	}
2420 
2421 	pm_runtime_set_active(&sw->dev);
2422 	if (sw->rpm) {
2423 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2424 		pm_runtime_use_autosuspend(&sw->dev);
2425 		pm_runtime_mark_last_busy(&sw->dev);
2426 		pm_runtime_enable(&sw->dev);
2427 		pm_request_autosuspend(&sw->dev);
2428 	}
2429 
2430 	return 0;
2431 }
2432 
2433 /**
2434  * tb_switch_remove() - Remove and release a switch
2435  * @sw: Switch to remove
2436  *
2437  * This will remove the switch from the domain and release it after last
2438  * reference count drops to zero. If there are switches connected below
2439  * this switch, they will be removed as well.
2440  */
2441 void tb_switch_remove(struct tb_switch *sw)
2442 {
2443 	struct tb_port *port;
2444 
2445 	if (sw->rpm) {
2446 		pm_runtime_get_sync(&sw->dev);
2447 		pm_runtime_disable(&sw->dev);
2448 	}
2449 
2450 	/* port 0 is the switch itself and never has a remote */
2451 	tb_switch_for_each_port(sw, port) {
2452 		if (tb_port_has_remote(port)) {
2453 			tb_switch_remove(port->remote->sw);
2454 			port->remote = NULL;
2455 		} else if (port->xdomain) {
2456 			tb_xdomain_remove(port->xdomain);
2457 			port->xdomain = NULL;
2458 		}
2459 	}
2460 
2461 	if (!sw->is_unplugged)
2462 		tb_plug_events_active(sw, false);
2463 
2464 	if (tb_switch_is_usb4(sw))
2465 		usb4_switch_unconfigure_link(sw);
2466 	else
2467 		tb_lc_unconfigure_link(sw);
2468 
2469 	tb_switch_nvm_remove(sw);
2470 
2471 	if (tb_route(sw))
2472 		dev_info(&sw->dev, "device disconnected\n");
2473 	device_unregister(&sw->dev);
2474 }
2475 
2476 /**
2477  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2478  */
2479 void tb_sw_set_unplugged(struct tb_switch *sw)
2480 {
2481 	struct tb_port *port;
2482 
2483 	if (sw == sw->tb->root_switch) {
2484 		tb_sw_WARN(sw, "cannot unplug root switch\n");
2485 		return;
2486 	}
2487 	if (sw->is_unplugged) {
2488 		tb_sw_WARN(sw, "is_unplugged already set\n");
2489 		return;
2490 	}
2491 	sw->is_unplugged = true;
2492 	tb_switch_for_each_port(sw, port) {
2493 		if (tb_port_has_remote(port))
2494 			tb_sw_set_unplugged(port->remote->sw);
2495 		else if (port->xdomain)
2496 			port->xdomain->is_unplugged = true;
2497 	}
2498 }
2499 
2500 int tb_switch_resume(struct tb_switch *sw)
2501 {
2502 	struct tb_port *port;
2503 	int err;
2504 
2505 	tb_sw_dbg(sw, "resuming switch\n");
2506 
2507 	/*
2508 	 * Check for UID of the connected switches except for root
2509 	 * switch which we assume cannot be removed.
2510 	 */
2511 	if (tb_route(sw)) {
2512 		u64 uid;
2513 
2514 		/*
2515 		 * Check first that we can still read the switch config
2516 		 * space. It may be that there is now another domain
2517 		 * connected.
2518 		 */
2519 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2520 		if (err < 0) {
2521 			tb_sw_info(sw, "switch not present anymore\n");
2522 			return err;
2523 		}
2524 
2525 		if (tb_switch_is_usb4(sw))
2526 			err = usb4_switch_read_uid(sw, &uid);
2527 		else
2528 			err = tb_drom_read_uid_only(sw, &uid);
2529 		if (err) {
2530 			tb_sw_warn(sw, "uid read failed\n");
2531 			return err;
2532 		}
2533 		if (sw->uid != uid) {
2534 			tb_sw_info(sw,
2535 				"changed while suspended (uid %#llx -> %#llx)\n",
2536 				sw->uid, uid);
2537 			return -ENODEV;
2538 		}
2539 	}
2540 
2541 	err = tb_switch_configure(sw);
2542 	if (err)
2543 		return err;
2544 
2545 	/* check for surviving downstream switches */
2546 	tb_switch_for_each_port(sw, port) {
2547 		if (!tb_port_has_remote(port) && !port->xdomain)
2548 			continue;
2549 
2550 		if (tb_wait_for_port(port, true) <= 0) {
2551 			tb_port_warn(port,
2552 				     "lost during suspend, disconnecting\n");
2553 			if (tb_port_has_remote(port))
2554 				tb_sw_set_unplugged(port->remote->sw);
2555 			else if (port->xdomain)
2556 				port->xdomain->is_unplugged = true;
2557 		} else if (tb_port_has_remote(port) || port->xdomain) {
2558 			/*
2559 			 * Always unlock the port so the downstream
2560 			 * switch/domain is accessible.
2561 			 */
2562 			if (tb_port_unlock(port))
2563 				tb_port_warn(port, "failed to unlock port\n");
2564 			if (port->remote && tb_switch_resume(port->remote->sw)) {
2565 				tb_port_warn(port,
2566 					     "lost during suspend, disconnecting\n");
2567 				tb_sw_set_unplugged(port->remote->sw);
2568 			}
2569 		}
2570 	}
2571 	return 0;
2572 }
2573 
2574 void tb_switch_suspend(struct tb_switch *sw)
2575 {
2576 	struct tb_port *port;
2577 	int err;
2578 
2579 	err = tb_plug_events_active(sw, false);
2580 	if (err)
2581 		return;
2582 
2583 	tb_switch_for_each_port(sw, port) {
2584 		if (tb_port_has_remote(port))
2585 			tb_switch_suspend(port->remote->sw);
2586 	}
2587 
2588 	if (tb_switch_is_usb4(sw))
2589 		usb4_switch_set_sleep(sw);
2590 	else
2591 		tb_lc_set_sleep(sw);
2592 }
2593 
2594 /**
2595  * tb_switch_query_dp_resource() - Query availability of DP resource
2596  * @sw: Switch whose DP resource is queried
2597  * @in: DP IN port
2598  *
2599  * Queries availability of DP resource for DP tunneling using switch
2600  * specific means. Returns %true if resource is available.
2601  */
2602 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2603 {
2604 	if (tb_switch_is_usb4(sw))
2605 		return usb4_switch_query_dp_resource(sw, in);
2606 	return tb_lc_dp_sink_query(sw, in);
2607 }
2608 
2609 /**
2610  * tb_switch_alloc_dp_resource() - Allocate available DP resource
2611  * @sw: Switch whose DP resource is allocated
2612  * @in: DP IN port
2613  *
2614  * Allocates DP resource for DP tunneling. The resource must be
2615  * available for this to succeed (see tb_switch_query_dp_resource()).
2616  * Returns %0 in success and negative errno otherwise.
2617  */
2618 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2619 {
2620 	if (tb_switch_is_usb4(sw))
2621 		return usb4_switch_alloc_dp_resource(sw, in);
2622 	return tb_lc_dp_sink_alloc(sw, in);
2623 }
2624 
2625 /**
2626  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2627  * @sw: Switch whose DP resource is de-allocated
2628  * @in: DP IN port
2629  *
2630  * De-allocates DP resource that was previously allocated for DP
2631  * tunneling.
2632  */
2633 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2634 {
2635 	int ret;
2636 
2637 	if (tb_switch_is_usb4(sw))
2638 		ret = usb4_switch_dealloc_dp_resource(sw, in);
2639 	else
2640 		ret = tb_lc_dp_sink_dealloc(sw, in);
2641 
2642 	if (ret)
2643 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2644 			   in->port);
2645 }
2646 
2647 struct tb_sw_lookup {
2648 	struct tb *tb;
2649 	u8 link;
2650 	u8 depth;
2651 	const uuid_t *uuid;
2652 	u64 route;
2653 };
2654 
2655 static int tb_switch_match(struct device *dev, const void *data)
2656 {
2657 	struct tb_switch *sw = tb_to_switch(dev);
2658 	const struct tb_sw_lookup *lookup = data;
2659 
2660 	if (!sw)
2661 		return 0;
2662 	if (sw->tb != lookup->tb)
2663 		return 0;
2664 
2665 	if (lookup->uuid)
2666 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2667 
2668 	if (lookup->route) {
2669 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
2670 		       sw->config.route_hi == upper_32_bits(lookup->route);
2671 	}
2672 
2673 	/* Root switch is matched only by depth */
2674 	if (!lookup->depth)
2675 		return !sw->depth;
2676 
2677 	return sw->link == lookup->link && sw->depth == lookup->depth;
2678 }
2679 
2680 /**
2681  * tb_switch_find_by_link_depth() - Find switch by link and depth
2682  * @tb: Domain the switch belongs
2683  * @link: Link number the switch is connected
2684  * @depth: Depth of the switch in link
2685  *
2686  * Returned switch has reference count increased so the caller needs to
2687  * call tb_switch_put() when done with the switch.
2688  */
2689 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2690 {
2691 	struct tb_sw_lookup lookup;
2692 	struct device *dev;
2693 
2694 	memset(&lookup, 0, sizeof(lookup));
2695 	lookup.tb = tb;
2696 	lookup.link = link;
2697 	lookup.depth = depth;
2698 
2699 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2700 	if (dev)
2701 		return tb_to_switch(dev);
2702 
2703 	return NULL;
2704 }
2705 
2706 /**
2707  * tb_switch_find_by_uuid() - Find switch by UUID
2708  * @tb: Domain the switch belongs
2709  * @uuid: UUID to look for
2710  *
2711  * Returned switch has reference count increased so the caller needs to
2712  * call tb_switch_put() when done with the switch.
2713  */
2714 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2715 {
2716 	struct tb_sw_lookup lookup;
2717 	struct device *dev;
2718 
2719 	memset(&lookup, 0, sizeof(lookup));
2720 	lookup.tb = tb;
2721 	lookup.uuid = uuid;
2722 
2723 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2724 	if (dev)
2725 		return tb_to_switch(dev);
2726 
2727 	return NULL;
2728 }
2729 
2730 /**
2731  * tb_switch_find_by_route() - Find switch by route string
2732  * @tb: Domain the switch belongs
2733  * @route: Route string to look for
2734  *
2735  * Returned switch has reference count increased so the caller needs to
2736  * call tb_switch_put() when done with the switch.
2737  */
2738 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2739 {
2740 	struct tb_sw_lookup lookup;
2741 	struct device *dev;
2742 
2743 	if (!route)
2744 		return tb_switch_get(tb->root_switch);
2745 
2746 	memset(&lookup, 0, sizeof(lookup));
2747 	lookup.tb = tb;
2748 	lookup.route = route;
2749 
2750 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2751 	if (dev)
2752 		return tb_to_switch(dev);
2753 
2754 	return NULL;
2755 }
2756 
2757 /**
2758  * tb_switch_find_port() - return the first port of @type on @sw or NULL
2759  * @sw: Switch to find the port from
2760  * @type: Port type to look for
2761  */
2762 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2763 				    enum tb_port_type type)
2764 {
2765 	struct tb_port *port;
2766 
2767 	tb_switch_for_each_port(sw, port) {
2768 		if (port->config.type == type)
2769 			return port;
2770 	}
2771 
2772 	return NULL;
2773 }
2774 
2775 void tb_switch_exit(void)
2776 {
2777 	ida_destroy(&nvm_ida);
2778 }
2779