1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - switch/port utility functions 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2018, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/idr.h> 11 #include <linux/module.h> 12 #include <linux/nvmem-provider.h> 13 #include <linux/pm_runtime.h> 14 #include <linux/sched/signal.h> 15 #include <linux/sizes.h> 16 #include <linux/slab.h> 17 #include <linux/string_helpers.h> 18 19 #include "tb.h" 20 21 /* Switch NVM support */ 22 23 struct nvm_auth_status { 24 struct list_head list; 25 uuid_t uuid; 26 u32 status; 27 }; 28 29 /* 30 * Hold NVM authentication failure status per switch This information 31 * needs to stay around even when the switch gets power cycled so we 32 * keep it separately. 33 */ 34 static LIST_HEAD(nvm_auth_status_cache); 35 static DEFINE_MUTEX(nvm_auth_status_lock); 36 37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 38 { 39 struct nvm_auth_status *st; 40 41 list_for_each_entry(st, &nvm_auth_status_cache, list) { 42 if (uuid_equal(&st->uuid, sw->uuid)) 43 return st; 44 } 45 46 return NULL; 47 } 48 49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 50 { 51 struct nvm_auth_status *st; 52 53 mutex_lock(&nvm_auth_status_lock); 54 st = __nvm_get_auth_status(sw); 55 mutex_unlock(&nvm_auth_status_lock); 56 57 *status = st ? st->status : 0; 58 } 59 60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 61 { 62 struct nvm_auth_status *st; 63 64 if (WARN_ON(!sw->uuid)) 65 return; 66 67 mutex_lock(&nvm_auth_status_lock); 68 st = __nvm_get_auth_status(sw); 69 70 if (!st) { 71 st = kzalloc(sizeof(*st), GFP_KERNEL); 72 if (!st) 73 goto unlock; 74 75 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 76 INIT_LIST_HEAD(&st->list); 77 list_add_tail(&st->list, &nvm_auth_status_cache); 78 } 79 80 st->status = status; 81 unlock: 82 mutex_unlock(&nvm_auth_status_lock); 83 } 84 85 static void nvm_clear_auth_status(const struct tb_switch *sw) 86 { 87 struct nvm_auth_status *st; 88 89 mutex_lock(&nvm_auth_status_lock); 90 st = __nvm_get_auth_status(sw); 91 if (st) { 92 list_del(&st->list); 93 kfree(st); 94 } 95 mutex_unlock(&nvm_auth_status_lock); 96 } 97 98 static int nvm_validate_and_write(struct tb_switch *sw) 99 { 100 unsigned int image_size; 101 const u8 *buf; 102 int ret; 103 104 ret = tb_nvm_validate(sw->nvm); 105 if (ret) 106 return ret; 107 108 ret = tb_nvm_write_headers(sw->nvm); 109 if (ret) 110 return ret; 111 112 buf = sw->nvm->buf_data_start; 113 image_size = sw->nvm->buf_data_size; 114 115 if (tb_switch_is_usb4(sw)) 116 ret = usb4_switch_nvm_write(sw, 0, buf, image_size); 117 else 118 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size); 119 if (ret) 120 return ret; 121 122 sw->nvm->flushed = true; 123 return 0; 124 } 125 126 static int nvm_authenticate_host_dma_port(struct tb_switch *sw) 127 { 128 int ret = 0; 129 130 /* 131 * Root switch NVM upgrade requires that we disconnect the 132 * existing paths first (in case it is not in safe mode 133 * already). 134 */ 135 if (!sw->safe_mode) { 136 u32 status; 137 138 ret = tb_domain_disconnect_all_paths(sw->tb); 139 if (ret) 140 return ret; 141 /* 142 * The host controller goes away pretty soon after this if 143 * everything goes well so getting timeout is expected. 144 */ 145 ret = dma_port_flash_update_auth(sw->dma_port); 146 if (!ret || ret == -ETIMEDOUT) 147 return 0; 148 149 /* 150 * Any error from update auth operation requires power 151 * cycling of the host router. 152 */ 153 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n"); 154 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0) 155 nvm_set_auth_status(sw, status); 156 } 157 158 /* 159 * From safe mode we can get out by just power cycling the 160 * switch. 161 */ 162 dma_port_power_cycle(sw->dma_port); 163 return ret; 164 } 165 166 static int nvm_authenticate_device_dma_port(struct tb_switch *sw) 167 { 168 int ret, retries = 10; 169 170 ret = dma_port_flash_update_auth(sw->dma_port); 171 switch (ret) { 172 case 0: 173 case -ETIMEDOUT: 174 case -EACCES: 175 case -EINVAL: 176 /* Power cycle is required */ 177 break; 178 default: 179 return ret; 180 } 181 182 /* 183 * Poll here for the authentication status. It takes some time 184 * for the device to respond (we get timeout for a while). Once 185 * we get response the device needs to be power cycled in order 186 * to the new NVM to be taken into use. 187 */ 188 do { 189 u32 status; 190 191 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 192 if (ret < 0 && ret != -ETIMEDOUT) 193 return ret; 194 if (ret > 0) { 195 if (status) { 196 tb_sw_warn(sw, "failed to authenticate NVM\n"); 197 nvm_set_auth_status(sw, status); 198 } 199 200 tb_sw_info(sw, "power cycling the switch now\n"); 201 dma_port_power_cycle(sw->dma_port); 202 return 0; 203 } 204 205 msleep(500); 206 } while (--retries); 207 208 return -ETIMEDOUT; 209 } 210 211 static void nvm_authenticate_start_dma_port(struct tb_switch *sw) 212 { 213 struct pci_dev *root_port; 214 215 /* 216 * During host router NVM upgrade we should not allow root port to 217 * go into D3cold because some root ports cannot trigger PME 218 * itself. To be on the safe side keep the root port in D0 during 219 * the whole upgrade process. 220 */ 221 root_port = pcie_find_root_port(sw->tb->nhi->pdev); 222 if (root_port) 223 pm_runtime_get_noresume(&root_port->dev); 224 } 225 226 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw) 227 { 228 struct pci_dev *root_port; 229 230 root_port = pcie_find_root_port(sw->tb->nhi->pdev); 231 if (root_port) 232 pm_runtime_put(&root_port->dev); 233 } 234 235 static inline bool nvm_readable(struct tb_switch *sw) 236 { 237 if (tb_switch_is_usb4(sw)) { 238 /* 239 * USB4 devices must support NVM operations but it is 240 * optional for hosts. Therefore we query the NVM sector 241 * size here and if it is supported assume NVM 242 * operations are implemented. 243 */ 244 return usb4_switch_nvm_sector_size(sw) > 0; 245 } 246 247 /* Thunderbolt 2 and 3 devices support NVM through DMA port */ 248 return !!sw->dma_port; 249 } 250 251 static inline bool nvm_upgradeable(struct tb_switch *sw) 252 { 253 if (sw->no_nvm_upgrade) 254 return false; 255 return nvm_readable(sw); 256 } 257 258 static int nvm_authenticate(struct tb_switch *sw, bool auth_only) 259 { 260 int ret; 261 262 if (tb_switch_is_usb4(sw)) { 263 if (auth_only) { 264 ret = usb4_switch_nvm_set_offset(sw, 0); 265 if (ret) 266 return ret; 267 } 268 sw->nvm->authenticating = true; 269 return usb4_switch_nvm_authenticate(sw); 270 } 271 if (auth_only) 272 return -EOPNOTSUPP; 273 274 sw->nvm->authenticating = true; 275 if (!tb_route(sw)) { 276 nvm_authenticate_start_dma_port(sw); 277 ret = nvm_authenticate_host_dma_port(sw); 278 } else { 279 ret = nvm_authenticate_device_dma_port(sw); 280 } 281 282 return ret; 283 } 284 285 /** 286 * tb_switch_nvm_read() - Read router NVM 287 * @sw: Router whose NVM to read 288 * @address: Start address on the NVM 289 * @buf: Buffer where the read data is copied 290 * @size: Size of the buffer in bytes 291 * 292 * Reads from router NVM and returns the requested data in @buf. Locking 293 * is up to the caller. Returns %0 in success and negative errno in case 294 * of failure. 295 */ 296 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf, 297 size_t size) 298 { 299 if (tb_switch_is_usb4(sw)) 300 return usb4_switch_nvm_read(sw, address, buf, size); 301 return dma_port_flash_read(sw->dma_port, address, buf, size); 302 } 303 304 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes) 305 { 306 struct tb_nvm *nvm = priv; 307 struct tb_switch *sw = tb_to_switch(nvm->dev); 308 int ret; 309 310 pm_runtime_get_sync(&sw->dev); 311 312 if (!mutex_trylock(&sw->tb->lock)) { 313 ret = restart_syscall(); 314 goto out; 315 } 316 317 ret = tb_switch_nvm_read(sw, offset, val, bytes); 318 mutex_unlock(&sw->tb->lock); 319 320 out: 321 pm_runtime_mark_last_busy(&sw->dev); 322 pm_runtime_put_autosuspend(&sw->dev); 323 324 return ret; 325 } 326 327 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes) 328 { 329 struct tb_nvm *nvm = priv; 330 struct tb_switch *sw = tb_to_switch(nvm->dev); 331 int ret; 332 333 if (!mutex_trylock(&sw->tb->lock)) 334 return restart_syscall(); 335 336 /* 337 * Since writing the NVM image might require some special steps, 338 * for example when CSS headers are written, we cache the image 339 * locally here and handle the special cases when the user asks 340 * us to authenticate the image. 341 */ 342 ret = tb_nvm_write_buf(nvm, offset, val, bytes); 343 mutex_unlock(&sw->tb->lock); 344 345 return ret; 346 } 347 348 static int tb_switch_nvm_add(struct tb_switch *sw) 349 { 350 struct tb_nvm *nvm; 351 int ret; 352 353 if (!nvm_readable(sw)) 354 return 0; 355 356 nvm = tb_nvm_alloc(&sw->dev); 357 if (IS_ERR(nvm)) { 358 ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm); 359 goto err_nvm; 360 } 361 362 ret = tb_nvm_read_version(nvm); 363 if (ret) 364 goto err_nvm; 365 366 /* 367 * If the switch is in safe-mode the only accessible portion of 368 * the NVM is the non-active one where userspace is expected to 369 * write new functional NVM. 370 */ 371 if (!sw->safe_mode) { 372 ret = tb_nvm_add_active(nvm, nvm_read); 373 if (ret) 374 goto err_nvm; 375 } 376 377 if (!sw->no_nvm_upgrade) { 378 ret = tb_nvm_add_non_active(nvm, nvm_write); 379 if (ret) 380 goto err_nvm; 381 } 382 383 sw->nvm = nvm; 384 return 0; 385 386 err_nvm: 387 tb_sw_dbg(sw, "NVM upgrade disabled\n"); 388 sw->no_nvm_upgrade = true; 389 if (!IS_ERR(nvm)) 390 tb_nvm_free(nvm); 391 392 return ret; 393 } 394 395 static void tb_switch_nvm_remove(struct tb_switch *sw) 396 { 397 struct tb_nvm *nvm; 398 399 nvm = sw->nvm; 400 sw->nvm = NULL; 401 402 if (!nvm) 403 return; 404 405 /* Remove authentication status in case the switch is unplugged */ 406 if (!nvm->authenticating) 407 nvm_clear_auth_status(sw); 408 409 tb_nvm_free(nvm); 410 } 411 412 /* port utility functions */ 413 414 static const char *tb_port_type(const struct tb_regs_port_header *port) 415 { 416 switch (port->type >> 16) { 417 case 0: 418 switch ((u8) port->type) { 419 case 0: 420 return "Inactive"; 421 case 1: 422 return "Port"; 423 case 2: 424 return "NHI"; 425 default: 426 return "unknown"; 427 } 428 case 0x2: 429 return "Ethernet"; 430 case 0x8: 431 return "SATA"; 432 case 0xe: 433 return "DP/HDMI"; 434 case 0x10: 435 return "PCIe"; 436 case 0x20: 437 return "USB"; 438 default: 439 return "unknown"; 440 } 441 } 442 443 static void tb_dump_port(struct tb *tb, const struct tb_port *port) 444 { 445 const struct tb_regs_port_header *regs = &port->config; 446 447 tb_dbg(tb, 448 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 449 regs->port_number, regs->vendor_id, regs->device_id, 450 regs->revision, regs->thunderbolt_version, tb_port_type(regs), 451 regs->type); 452 tb_dbg(tb, " Max hop id (in/out): %d/%d\n", 453 regs->max_in_hop_id, regs->max_out_hop_id); 454 tb_dbg(tb, " Max counters: %d\n", regs->max_counters); 455 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits); 456 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits, 457 port->ctl_credits); 458 } 459 460 /** 461 * tb_port_state() - get connectedness state of a port 462 * @port: the port to check 463 * 464 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 465 * 466 * Return: Returns an enum tb_port_state on success or an error code on failure. 467 */ 468 int tb_port_state(struct tb_port *port) 469 { 470 struct tb_cap_phy phy; 471 int res; 472 if (port->cap_phy == 0) { 473 tb_port_WARN(port, "does not have a PHY\n"); 474 return -EINVAL; 475 } 476 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 477 if (res) 478 return res; 479 return phy.state; 480 } 481 482 /** 483 * tb_wait_for_port() - wait for a port to become ready 484 * @port: Port to wait 485 * @wait_if_unplugged: Wait also when port is unplugged 486 * 487 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 488 * wait_if_unplugged is set then we also wait if the port is in state 489 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 490 * switch resume). Otherwise we only wait if a device is registered but the link 491 * has not yet been established. 492 * 493 * Return: Returns an error code on failure. Returns 0 if the port is not 494 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 495 * if the port is connected and in state TB_PORT_UP. 496 */ 497 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 498 { 499 int retries = 10; 500 int state; 501 if (!port->cap_phy) { 502 tb_port_WARN(port, "does not have PHY\n"); 503 return -EINVAL; 504 } 505 if (tb_is_upstream_port(port)) { 506 tb_port_WARN(port, "is the upstream port\n"); 507 return -EINVAL; 508 } 509 510 while (retries--) { 511 state = tb_port_state(port); 512 switch (state) { 513 case TB_PORT_DISABLED: 514 tb_port_dbg(port, "is disabled (state: 0)\n"); 515 return 0; 516 517 case TB_PORT_UNPLUGGED: 518 if (wait_if_unplugged) { 519 /* used during resume */ 520 tb_port_dbg(port, 521 "is unplugged (state: 7), retrying...\n"); 522 msleep(100); 523 break; 524 } 525 tb_port_dbg(port, "is unplugged (state: 7)\n"); 526 return 0; 527 528 case TB_PORT_UP: 529 case TB_PORT_TX_CL0S: 530 case TB_PORT_RX_CL0S: 531 case TB_PORT_CL1: 532 case TB_PORT_CL2: 533 tb_port_dbg(port, "is connected, link is up (state: %d)\n", state); 534 return 1; 535 536 default: 537 if (state < 0) 538 return state; 539 540 /* 541 * After plug-in the state is TB_PORT_CONNECTING. Give it some 542 * time. 543 */ 544 tb_port_dbg(port, 545 "is connected, link is not up (state: %d), retrying...\n", 546 state); 547 msleep(100); 548 } 549 550 } 551 tb_port_warn(port, 552 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 553 return 0; 554 } 555 556 /** 557 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 558 * @port: Port to add/remove NFC credits 559 * @credits: Credits to add/remove 560 * 561 * Change the number of NFC credits allocated to @port by @credits. To remove 562 * NFC credits pass a negative amount of credits. 563 * 564 * Return: Returns 0 on success or an error code on failure. 565 */ 566 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 567 { 568 u32 nfc_credits; 569 570 if (credits == 0 || port->sw->is_unplugged) 571 return 0; 572 573 /* 574 * USB4 restricts programming NFC buffers to lane adapters only 575 * so skip other ports. 576 */ 577 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port)) 578 return 0; 579 580 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK; 581 if (credits < 0) 582 credits = max_t(int, -nfc_credits, credits); 583 584 nfc_credits += credits; 585 586 tb_port_dbg(port, "adding %d NFC credits to %lu", credits, 587 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK); 588 589 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK; 590 port->config.nfc_credits |= nfc_credits; 591 592 return tb_port_write(port, &port->config.nfc_credits, 593 TB_CFG_PORT, ADP_CS_4, 1); 594 } 595 596 /** 597 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 598 * @port: Port whose counters to clear 599 * @counter: Counter index to clear 600 * 601 * Return: Returns 0 on success or an error code on failure. 602 */ 603 int tb_port_clear_counter(struct tb_port *port, int counter) 604 { 605 u32 zero[3] = { 0, 0, 0 }; 606 tb_port_dbg(port, "clearing counter %d\n", counter); 607 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 608 } 609 610 /** 611 * tb_port_unlock() - Unlock downstream port 612 * @port: Port to unlock 613 * 614 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the 615 * downstream router accessible for CM. 616 */ 617 int tb_port_unlock(struct tb_port *port) 618 { 619 if (tb_switch_is_icm(port->sw)) 620 return 0; 621 if (!tb_port_is_null(port)) 622 return -EINVAL; 623 if (tb_switch_is_usb4(port->sw)) 624 return usb4_port_unlock(port); 625 return 0; 626 } 627 628 static int __tb_port_enable(struct tb_port *port, bool enable) 629 { 630 int ret; 631 u32 phy; 632 633 if (!tb_port_is_null(port)) 634 return -EINVAL; 635 636 ret = tb_port_read(port, &phy, TB_CFG_PORT, 637 port->cap_phy + LANE_ADP_CS_1, 1); 638 if (ret) 639 return ret; 640 641 if (enable) 642 phy &= ~LANE_ADP_CS_1_LD; 643 else 644 phy |= LANE_ADP_CS_1_LD; 645 646 647 ret = tb_port_write(port, &phy, TB_CFG_PORT, 648 port->cap_phy + LANE_ADP_CS_1, 1); 649 if (ret) 650 return ret; 651 652 tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable)); 653 return 0; 654 } 655 656 /** 657 * tb_port_enable() - Enable lane adapter 658 * @port: Port to enable (can be %NULL) 659 * 660 * This is used for lane 0 and 1 adapters to enable it. 661 */ 662 int tb_port_enable(struct tb_port *port) 663 { 664 return __tb_port_enable(port, true); 665 } 666 667 /** 668 * tb_port_disable() - Disable lane adapter 669 * @port: Port to disable (can be %NULL) 670 * 671 * This is used for lane 0 and 1 adapters to disable it. 672 */ 673 int tb_port_disable(struct tb_port *port) 674 { 675 return __tb_port_enable(port, false); 676 } 677 678 /* 679 * tb_init_port() - initialize a port 680 * 681 * This is a helper method for tb_switch_alloc. Does not check or initialize 682 * any downstream switches. 683 * 684 * Return: Returns 0 on success or an error code on failure. 685 */ 686 static int tb_init_port(struct tb_port *port) 687 { 688 int res; 689 int cap; 690 691 INIT_LIST_HEAD(&port->list); 692 693 /* Control adapter does not have configuration space */ 694 if (!port->port) 695 return 0; 696 697 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 698 if (res) { 699 if (res == -ENODEV) { 700 tb_dbg(port->sw->tb, " Port %d: not implemented\n", 701 port->port); 702 port->disabled = true; 703 return 0; 704 } 705 return res; 706 } 707 708 /* Port 0 is the switch itself and has no PHY. */ 709 if (port->config.type == TB_TYPE_PORT) { 710 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 711 712 if (cap > 0) 713 port->cap_phy = cap; 714 else 715 tb_port_WARN(port, "non switch port without a PHY\n"); 716 717 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4); 718 if (cap > 0) 719 port->cap_usb4 = cap; 720 721 /* 722 * USB4 ports the buffers allocated for the control path 723 * can be read from the path config space. Legacy 724 * devices we use hard-coded value. 725 */ 726 if (port->cap_usb4) { 727 struct tb_regs_hop hop; 728 729 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2)) 730 port->ctl_credits = hop.initial_credits; 731 } 732 if (!port->ctl_credits) 733 port->ctl_credits = 2; 734 735 } else { 736 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP); 737 if (cap > 0) 738 port->cap_adap = cap; 739 } 740 741 port->total_credits = 742 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >> 743 ADP_CS_4_TOTAL_BUFFERS_SHIFT; 744 745 tb_dump_port(port->sw->tb, port); 746 return 0; 747 } 748 749 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid, 750 int max_hopid) 751 { 752 int port_max_hopid; 753 struct ida *ida; 754 755 if (in) { 756 port_max_hopid = port->config.max_in_hop_id; 757 ida = &port->in_hopids; 758 } else { 759 port_max_hopid = port->config.max_out_hop_id; 760 ida = &port->out_hopids; 761 } 762 763 /* 764 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are 765 * reserved. 766 */ 767 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID) 768 min_hopid = TB_PATH_MIN_HOPID; 769 770 if (max_hopid < 0 || max_hopid > port_max_hopid) 771 max_hopid = port_max_hopid; 772 773 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL); 774 } 775 776 /** 777 * tb_port_alloc_in_hopid() - Allocate input HopID from port 778 * @port: Port to allocate HopID for 779 * @min_hopid: Minimum acceptable input HopID 780 * @max_hopid: Maximum acceptable input HopID 781 * 782 * Return: HopID between @min_hopid and @max_hopid or negative errno in 783 * case of error. 784 */ 785 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid) 786 { 787 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid); 788 } 789 790 /** 791 * tb_port_alloc_out_hopid() - Allocate output HopID from port 792 * @port: Port to allocate HopID for 793 * @min_hopid: Minimum acceptable output HopID 794 * @max_hopid: Maximum acceptable output HopID 795 * 796 * Return: HopID between @min_hopid and @max_hopid or negative errno in 797 * case of error. 798 */ 799 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid) 800 { 801 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid); 802 } 803 804 /** 805 * tb_port_release_in_hopid() - Release allocated input HopID from port 806 * @port: Port whose HopID to release 807 * @hopid: HopID to release 808 */ 809 void tb_port_release_in_hopid(struct tb_port *port, int hopid) 810 { 811 ida_simple_remove(&port->in_hopids, hopid); 812 } 813 814 /** 815 * tb_port_release_out_hopid() - Release allocated output HopID from port 816 * @port: Port whose HopID to release 817 * @hopid: HopID to release 818 */ 819 void tb_port_release_out_hopid(struct tb_port *port, int hopid) 820 { 821 ida_simple_remove(&port->out_hopids, hopid); 822 } 823 824 static inline bool tb_switch_is_reachable(const struct tb_switch *parent, 825 const struct tb_switch *sw) 826 { 827 u64 mask = (1ULL << parent->config.depth * 8) - 1; 828 return (tb_route(parent) & mask) == (tb_route(sw) & mask); 829 } 830 831 /** 832 * tb_next_port_on_path() - Return next port for given port on a path 833 * @start: Start port of the walk 834 * @end: End port of the walk 835 * @prev: Previous port (%NULL if this is the first) 836 * 837 * This function can be used to walk from one port to another if they 838 * are connected through zero or more switches. If the @prev is dual 839 * link port, the function follows that link and returns another end on 840 * that same link. 841 * 842 * If the @end port has been reached, return %NULL. 843 * 844 * Domain tb->lock must be held when this function is called. 845 */ 846 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end, 847 struct tb_port *prev) 848 { 849 struct tb_port *next; 850 851 if (!prev) 852 return start; 853 854 if (prev->sw == end->sw) { 855 if (prev == end) 856 return NULL; 857 return end; 858 } 859 860 if (tb_switch_is_reachable(prev->sw, end->sw)) { 861 next = tb_port_at(tb_route(end->sw), prev->sw); 862 /* Walk down the topology if next == prev */ 863 if (prev->remote && 864 (next == prev || next->dual_link_port == prev)) 865 next = prev->remote; 866 } else { 867 if (tb_is_upstream_port(prev)) { 868 next = prev->remote; 869 } else { 870 next = tb_upstream_port(prev->sw); 871 /* 872 * Keep the same link if prev and next are both 873 * dual link ports. 874 */ 875 if (next->dual_link_port && 876 next->link_nr != prev->link_nr) { 877 next = next->dual_link_port; 878 } 879 } 880 } 881 882 return next != prev ? next : NULL; 883 } 884 885 /** 886 * tb_port_get_link_speed() - Get current link speed 887 * @port: Port to check (USB4 or CIO) 888 * 889 * Returns link speed in Gb/s or negative errno in case of failure. 890 */ 891 int tb_port_get_link_speed(struct tb_port *port) 892 { 893 u32 val, speed; 894 int ret; 895 896 if (!port->cap_phy) 897 return -EINVAL; 898 899 ret = tb_port_read(port, &val, TB_CFG_PORT, 900 port->cap_phy + LANE_ADP_CS_1, 1); 901 if (ret) 902 return ret; 903 904 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >> 905 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT; 906 907 switch (speed) { 908 case LANE_ADP_CS_1_CURRENT_SPEED_GEN4: 909 return 40; 910 case LANE_ADP_CS_1_CURRENT_SPEED_GEN3: 911 return 20; 912 default: 913 return 10; 914 } 915 } 916 917 /** 918 * tb_port_get_link_width() - Get current link width 919 * @port: Port to check (USB4 or CIO) 920 * 921 * Returns link width. Return the link width as encoded in &enum 922 * tb_link_width or negative errno in case of failure. 923 */ 924 int tb_port_get_link_width(struct tb_port *port) 925 { 926 u32 val; 927 int ret; 928 929 if (!port->cap_phy) 930 return -EINVAL; 931 932 ret = tb_port_read(port, &val, TB_CFG_PORT, 933 port->cap_phy + LANE_ADP_CS_1, 1); 934 if (ret) 935 return ret; 936 937 /* Matches the values in enum tb_link_width */ 938 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >> 939 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT; 940 } 941 942 static bool tb_port_is_width_supported(struct tb_port *port, 943 unsigned int width_mask) 944 { 945 u32 phy, widths; 946 int ret; 947 948 if (!port->cap_phy) 949 return false; 950 951 ret = tb_port_read(port, &phy, TB_CFG_PORT, 952 port->cap_phy + LANE_ADP_CS_0, 1); 953 if (ret) 954 return false; 955 956 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >> 957 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT; 958 959 return widths & width_mask; 960 } 961 962 static bool is_gen4_link(struct tb_port *port) 963 { 964 return tb_port_get_link_speed(port) > 20; 965 } 966 967 /** 968 * tb_port_set_link_width() - Set target link width of the lane adapter 969 * @port: Lane adapter 970 * @width: Target link width 971 * 972 * Sets the target link width of the lane adapter to @width. Does not 973 * enable/disable lane bonding. For that call tb_port_set_lane_bonding(). 974 * 975 * Return: %0 in case of success and negative errno in case of error 976 */ 977 int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width) 978 { 979 u32 val; 980 int ret; 981 982 if (!port->cap_phy) 983 return -EINVAL; 984 985 ret = tb_port_read(port, &val, TB_CFG_PORT, 986 port->cap_phy + LANE_ADP_CS_1, 1); 987 if (ret) 988 return ret; 989 990 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK; 991 switch (width) { 992 case TB_LINK_WIDTH_SINGLE: 993 /* Gen 4 link cannot be single */ 994 if (is_gen4_link(port)) 995 return -EOPNOTSUPP; 996 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE << 997 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 998 break; 999 case TB_LINK_WIDTH_DUAL: 1000 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL << 1001 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; 1002 break; 1003 default: 1004 return -EINVAL; 1005 } 1006 1007 return tb_port_write(port, &val, TB_CFG_PORT, 1008 port->cap_phy + LANE_ADP_CS_1, 1); 1009 } 1010 1011 /** 1012 * tb_port_set_lane_bonding() - Enable/disable lane bonding 1013 * @port: Lane adapter 1014 * @bonding: enable/disable bonding 1015 * 1016 * Enables or disables lane bonding. This should be called after target 1017 * link width has been set (tb_port_set_link_width()). Note in most 1018 * cases one should use tb_port_lane_bonding_enable() instead to enable 1019 * lane bonding. 1020 * 1021 * Return: %0 in case of success and negative errno in case of error 1022 */ 1023 static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding) 1024 { 1025 u32 val; 1026 int ret; 1027 1028 if (!port->cap_phy) 1029 return -EINVAL; 1030 1031 ret = tb_port_read(port, &val, TB_CFG_PORT, 1032 port->cap_phy + LANE_ADP_CS_1, 1); 1033 if (ret) 1034 return ret; 1035 1036 if (bonding) 1037 val |= LANE_ADP_CS_1_LB; 1038 else 1039 val &= ~LANE_ADP_CS_1_LB; 1040 1041 return tb_port_write(port, &val, TB_CFG_PORT, 1042 port->cap_phy + LANE_ADP_CS_1, 1); 1043 } 1044 1045 /** 1046 * tb_port_lane_bonding_enable() - Enable bonding on port 1047 * @port: port to enable 1048 * 1049 * Enable bonding by setting the link width of the port and the other 1050 * port in case of dual link port. Does not wait for the link to 1051 * actually reach the bonded state so caller needs to call 1052 * tb_port_wait_for_link_width() before enabling any paths through the 1053 * link to make sure the link is in expected state. 1054 * 1055 * Return: %0 in case of success and negative errno in case of error 1056 */ 1057 int tb_port_lane_bonding_enable(struct tb_port *port) 1058 { 1059 enum tb_link_width width; 1060 int ret; 1061 1062 /* 1063 * Enable lane bonding for both links if not already enabled by 1064 * for example the boot firmware. 1065 */ 1066 width = tb_port_get_link_width(port); 1067 if (width == TB_LINK_WIDTH_SINGLE) { 1068 ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL); 1069 if (ret) 1070 goto err_lane0; 1071 } 1072 1073 width = tb_port_get_link_width(port->dual_link_port); 1074 if (width == TB_LINK_WIDTH_SINGLE) { 1075 ret = tb_port_set_link_width(port->dual_link_port, 1076 TB_LINK_WIDTH_DUAL); 1077 if (ret) 1078 goto err_lane0; 1079 } 1080 1081 /* 1082 * Only set bonding if the link was not already bonded. This 1083 * avoids the lane adapter to re-enter bonding state. 1084 */ 1085 if (width == TB_LINK_WIDTH_SINGLE && !tb_is_upstream_port(port)) { 1086 ret = tb_port_set_lane_bonding(port, true); 1087 if (ret) 1088 goto err_lane1; 1089 } 1090 1091 /* 1092 * When lane 0 bonding is set it will affect lane 1 too so 1093 * update both. 1094 */ 1095 port->bonded = true; 1096 port->dual_link_port->bonded = true; 1097 1098 return 0; 1099 1100 err_lane1: 1101 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE); 1102 err_lane0: 1103 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE); 1104 1105 return ret; 1106 } 1107 1108 /** 1109 * tb_port_lane_bonding_disable() - Disable bonding on port 1110 * @port: port to disable 1111 * 1112 * Disable bonding by setting the link width of the port and the 1113 * other port in case of dual link port. 1114 */ 1115 void tb_port_lane_bonding_disable(struct tb_port *port) 1116 { 1117 tb_port_set_lane_bonding(port, false); 1118 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE); 1119 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE); 1120 port->dual_link_port->bonded = false; 1121 port->bonded = false; 1122 } 1123 1124 /** 1125 * tb_port_wait_for_link_width() - Wait until link reaches specific width 1126 * @port: Port to wait for 1127 * @width_mask: Expected link width mask 1128 * @timeout_msec: Timeout in ms how long to wait 1129 * 1130 * Should be used after both ends of the link have been bonded (or 1131 * bonding has been disabled) to wait until the link actually reaches 1132 * the expected state. Returns %-ETIMEDOUT if the width was not reached 1133 * within the given timeout, %0 if it did. Can be passed a mask of 1134 * expected widths and succeeds if any of the widths is reached. 1135 */ 1136 int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width_mask, 1137 int timeout_msec) 1138 { 1139 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 1140 int ret; 1141 1142 /* Gen 4 link does not support single lane */ 1143 if ((width_mask & TB_LINK_WIDTH_SINGLE) && is_gen4_link(port)) 1144 return -EOPNOTSUPP; 1145 1146 do { 1147 ret = tb_port_get_link_width(port); 1148 if (ret < 0) { 1149 /* 1150 * Sometimes we get port locked error when 1151 * polling the lanes so we can ignore it and 1152 * retry. 1153 */ 1154 if (ret != -EACCES) 1155 return ret; 1156 } else if (ret & width_mask) { 1157 return 0; 1158 } 1159 1160 usleep_range(1000, 2000); 1161 } while (ktime_before(ktime_get(), timeout)); 1162 1163 return -ETIMEDOUT; 1164 } 1165 1166 static int tb_port_do_update_credits(struct tb_port *port) 1167 { 1168 u32 nfc_credits; 1169 int ret; 1170 1171 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1); 1172 if (ret) 1173 return ret; 1174 1175 if (nfc_credits != port->config.nfc_credits) { 1176 u32 total; 1177 1178 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >> 1179 ADP_CS_4_TOTAL_BUFFERS_SHIFT; 1180 1181 tb_port_dbg(port, "total credits changed %u -> %u\n", 1182 port->total_credits, total); 1183 1184 port->config.nfc_credits = nfc_credits; 1185 port->total_credits = total; 1186 } 1187 1188 return 0; 1189 } 1190 1191 /** 1192 * tb_port_update_credits() - Re-read port total credits 1193 * @port: Port to update 1194 * 1195 * After the link is bonded (or bonding was disabled) the port total 1196 * credits may change, so this function needs to be called to re-read 1197 * the credits. Updates also the second lane adapter. 1198 */ 1199 int tb_port_update_credits(struct tb_port *port) 1200 { 1201 int ret; 1202 1203 ret = tb_port_do_update_credits(port); 1204 if (ret) 1205 return ret; 1206 return tb_port_do_update_credits(port->dual_link_port); 1207 } 1208 1209 static int tb_port_start_lane_initialization(struct tb_port *port) 1210 { 1211 int ret; 1212 1213 if (tb_switch_is_usb4(port->sw)) 1214 return 0; 1215 1216 ret = tb_lc_start_lane_initialization(port); 1217 return ret == -EINVAL ? 0 : ret; 1218 } 1219 1220 /* 1221 * Returns true if the port had something (router, XDomain) connected 1222 * before suspend. 1223 */ 1224 static bool tb_port_resume(struct tb_port *port) 1225 { 1226 bool has_remote = tb_port_has_remote(port); 1227 1228 if (port->usb4) { 1229 usb4_port_device_resume(port->usb4); 1230 } else if (!has_remote) { 1231 /* 1232 * For disconnected downstream lane adapters start lane 1233 * initialization now so we detect future connects. 1234 * 1235 * For XDomain start the lane initialzation now so the 1236 * link gets re-established. 1237 * 1238 * This is only needed for non-USB4 ports. 1239 */ 1240 if (!tb_is_upstream_port(port) || port->xdomain) 1241 tb_port_start_lane_initialization(port); 1242 } 1243 1244 return has_remote || port->xdomain; 1245 } 1246 1247 /** 1248 * tb_port_is_enabled() - Is the adapter port enabled 1249 * @port: Port to check 1250 */ 1251 bool tb_port_is_enabled(struct tb_port *port) 1252 { 1253 switch (port->config.type) { 1254 case TB_TYPE_PCIE_UP: 1255 case TB_TYPE_PCIE_DOWN: 1256 return tb_pci_port_is_enabled(port); 1257 1258 case TB_TYPE_DP_HDMI_IN: 1259 case TB_TYPE_DP_HDMI_OUT: 1260 return tb_dp_port_is_enabled(port); 1261 1262 case TB_TYPE_USB3_UP: 1263 case TB_TYPE_USB3_DOWN: 1264 return tb_usb3_port_is_enabled(port); 1265 1266 default: 1267 return false; 1268 } 1269 } 1270 1271 /** 1272 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled 1273 * @port: USB3 adapter port to check 1274 */ 1275 bool tb_usb3_port_is_enabled(struct tb_port *port) 1276 { 1277 u32 data; 1278 1279 if (tb_port_read(port, &data, TB_CFG_PORT, 1280 port->cap_adap + ADP_USB3_CS_0, 1)) 1281 return false; 1282 1283 return !!(data & ADP_USB3_CS_0_PE); 1284 } 1285 1286 /** 1287 * tb_usb3_port_enable() - Enable USB3 adapter port 1288 * @port: USB3 adapter port to enable 1289 * @enable: Enable/disable the USB3 adapter 1290 */ 1291 int tb_usb3_port_enable(struct tb_port *port, bool enable) 1292 { 1293 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V) 1294 : ADP_USB3_CS_0_V; 1295 1296 if (!port->cap_adap) 1297 return -ENXIO; 1298 return tb_port_write(port, &word, TB_CFG_PORT, 1299 port->cap_adap + ADP_USB3_CS_0, 1); 1300 } 1301 1302 /** 1303 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled 1304 * @port: PCIe port to check 1305 */ 1306 bool tb_pci_port_is_enabled(struct tb_port *port) 1307 { 1308 u32 data; 1309 1310 if (tb_port_read(port, &data, TB_CFG_PORT, 1311 port->cap_adap + ADP_PCIE_CS_0, 1)) 1312 return false; 1313 1314 return !!(data & ADP_PCIE_CS_0_PE); 1315 } 1316 1317 /** 1318 * tb_pci_port_enable() - Enable PCIe adapter port 1319 * @port: PCIe port to enable 1320 * @enable: Enable/disable the PCIe adapter 1321 */ 1322 int tb_pci_port_enable(struct tb_port *port, bool enable) 1323 { 1324 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0; 1325 if (!port->cap_adap) 1326 return -ENXIO; 1327 return tb_port_write(port, &word, TB_CFG_PORT, 1328 port->cap_adap + ADP_PCIE_CS_0, 1); 1329 } 1330 1331 /** 1332 * tb_dp_port_hpd_is_active() - Is HPD already active 1333 * @port: DP out port to check 1334 * 1335 * Checks if the DP OUT adapter port has HDP bit already set. 1336 */ 1337 int tb_dp_port_hpd_is_active(struct tb_port *port) 1338 { 1339 u32 data; 1340 int ret; 1341 1342 ret = tb_port_read(port, &data, TB_CFG_PORT, 1343 port->cap_adap + ADP_DP_CS_2, 1); 1344 if (ret) 1345 return ret; 1346 1347 return !!(data & ADP_DP_CS_2_HDP); 1348 } 1349 1350 /** 1351 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port 1352 * @port: Port to clear HPD 1353 * 1354 * If the DP IN port has HDP set, this function can be used to clear it. 1355 */ 1356 int tb_dp_port_hpd_clear(struct tb_port *port) 1357 { 1358 u32 data; 1359 int ret; 1360 1361 ret = tb_port_read(port, &data, TB_CFG_PORT, 1362 port->cap_adap + ADP_DP_CS_3, 1); 1363 if (ret) 1364 return ret; 1365 1366 data |= ADP_DP_CS_3_HDPC; 1367 return tb_port_write(port, &data, TB_CFG_PORT, 1368 port->cap_adap + ADP_DP_CS_3, 1); 1369 } 1370 1371 /** 1372 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port 1373 * @port: DP IN/OUT port to set hops 1374 * @video: Video Hop ID 1375 * @aux_tx: AUX TX Hop ID 1376 * @aux_rx: AUX RX Hop ID 1377 * 1378 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4 1379 * router DP adapters too but does not program the values as the fields 1380 * are read-only. 1381 */ 1382 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video, 1383 unsigned int aux_tx, unsigned int aux_rx) 1384 { 1385 u32 data[2]; 1386 int ret; 1387 1388 if (tb_switch_is_usb4(port->sw)) 1389 return 0; 1390 1391 ret = tb_port_read(port, data, TB_CFG_PORT, 1392 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1393 if (ret) 1394 return ret; 1395 1396 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK; 1397 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1398 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1399 1400 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) & 1401 ADP_DP_CS_0_VIDEO_HOPID_MASK; 1402 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK; 1403 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) & 1404 ADP_DP_CS_1_AUX_RX_HOPID_MASK; 1405 1406 return tb_port_write(port, data, TB_CFG_PORT, 1407 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1408 } 1409 1410 /** 1411 * tb_dp_port_is_enabled() - Is DP adapter port enabled 1412 * @port: DP adapter port to check 1413 */ 1414 bool tb_dp_port_is_enabled(struct tb_port *port) 1415 { 1416 u32 data[2]; 1417 1418 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0, 1419 ARRAY_SIZE(data))) 1420 return false; 1421 1422 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE)); 1423 } 1424 1425 /** 1426 * tb_dp_port_enable() - Enables/disables DP paths of a port 1427 * @port: DP IN/OUT port 1428 * @enable: Enable/disable DP path 1429 * 1430 * Once Hop IDs are programmed DP paths can be enabled or disabled by 1431 * calling this function. 1432 */ 1433 int tb_dp_port_enable(struct tb_port *port, bool enable) 1434 { 1435 u32 data[2]; 1436 int ret; 1437 1438 ret = tb_port_read(port, data, TB_CFG_PORT, 1439 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1440 if (ret) 1441 return ret; 1442 1443 if (enable) 1444 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE; 1445 else 1446 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE); 1447 1448 return tb_port_write(port, data, TB_CFG_PORT, 1449 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); 1450 } 1451 1452 /* switch utility functions */ 1453 1454 static const char *tb_switch_generation_name(const struct tb_switch *sw) 1455 { 1456 switch (sw->generation) { 1457 case 1: 1458 return "Thunderbolt 1"; 1459 case 2: 1460 return "Thunderbolt 2"; 1461 case 3: 1462 return "Thunderbolt 3"; 1463 case 4: 1464 return "USB4"; 1465 default: 1466 return "Unknown"; 1467 } 1468 } 1469 1470 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw) 1471 { 1472 const struct tb_regs_switch_header *regs = &sw->config; 1473 1474 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n", 1475 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id, 1476 regs->revision, regs->thunderbolt_version); 1477 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number); 1478 tb_dbg(tb, " Config:\n"); 1479 tb_dbg(tb, 1480 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 1481 regs->upstream_port_number, regs->depth, 1482 (((u64) regs->route_hi) << 32) | regs->route_lo, 1483 regs->enabled, regs->plug_events_delay); 1484 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n", 1485 regs->__unknown1, regs->__unknown4); 1486 } 1487 1488 /** 1489 * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET 1490 * @sw: Switch to reset 1491 * 1492 * Return: Returns 0 on success or an error code on failure. 1493 */ 1494 int tb_switch_reset(struct tb_switch *sw) 1495 { 1496 struct tb_cfg_result res; 1497 1498 if (sw->generation > 1) 1499 return 0; 1500 1501 tb_sw_dbg(sw, "resetting switch\n"); 1502 1503 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2, 1504 TB_CFG_SWITCH, 2, 2); 1505 if (res.err) 1506 return res.err; 1507 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw)); 1508 if (res.err > 0) 1509 return -EIO; 1510 return res.err; 1511 } 1512 1513 /** 1514 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset 1515 * @sw: Router to read the offset value from 1516 * @offset: Offset in the router config space to read from 1517 * @bit: Bit mask in the offset to wait for 1518 * @value: Value of the bits to wait for 1519 * @timeout_msec: Timeout in ms how long to wait 1520 * 1521 * Wait till the specified bits in specified offset reach specified value. 1522 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached 1523 * within the given timeout or a negative errno in case of failure. 1524 */ 1525 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit, 1526 u32 value, int timeout_msec) 1527 { 1528 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); 1529 1530 do { 1531 u32 val; 1532 int ret; 1533 1534 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1); 1535 if (ret) 1536 return ret; 1537 1538 if ((val & bit) == value) 1539 return 0; 1540 1541 usleep_range(50, 100); 1542 } while (ktime_before(ktime_get(), timeout)); 1543 1544 return -ETIMEDOUT; 1545 } 1546 1547 /* 1548 * tb_plug_events_active() - enable/disable plug events on a switch 1549 * 1550 * Also configures a sane plug_events_delay of 255ms. 1551 * 1552 * Return: Returns 0 on success or an error code on failure. 1553 */ 1554 static int tb_plug_events_active(struct tb_switch *sw, bool active) 1555 { 1556 u32 data; 1557 int res; 1558 1559 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw)) 1560 return 0; 1561 1562 sw->config.plug_events_delay = 0xff; 1563 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 1564 if (res) 1565 return res; 1566 1567 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 1568 if (res) 1569 return res; 1570 1571 if (active) { 1572 data = data & 0xFFFFFF83; 1573 switch (sw->config.device_id) { 1574 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1575 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1576 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1577 break; 1578 default: 1579 /* 1580 * Skip Alpine Ridge, it needs to have vendor 1581 * specific USB hotplug event enabled for the 1582 * internal xHCI to work. 1583 */ 1584 if (!tb_switch_is_alpine_ridge(sw)) 1585 data |= TB_PLUG_EVENTS_USB_DISABLE; 1586 } 1587 } else { 1588 data = data | 0x7c; 1589 } 1590 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 1591 sw->cap_plug_events + 1, 1); 1592 } 1593 1594 static ssize_t authorized_show(struct device *dev, 1595 struct device_attribute *attr, 1596 char *buf) 1597 { 1598 struct tb_switch *sw = tb_to_switch(dev); 1599 1600 return sysfs_emit(buf, "%u\n", sw->authorized); 1601 } 1602 1603 static int disapprove_switch(struct device *dev, void *not_used) 1604 { 1605 char *envp[] = { "AUTHORIZED=0", NULL }; 1606 struct tb_switch *sw; 1607 1608 sw = tb_to_switch(dev); 1609 if (sw && sw->authorized) { 1610 int ret; 1611 1612 /* First children */ 1613 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch); 1614 if (ret) 1615 return ret; 1616 1617 ret = tb_domain_disapprove_switch(sw->tb, sw); 1618 if (ret) 1619 return ret; 1620 1621 sw->authorized = 0; 1622 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp); 1623 } 1624 1625 return 0; 1626 } 1627 1628 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 1629 { 1630 char envp_string[13]; 1631 int ret = -EINVAL; 1632 char *envp[] = { envp_string, NULL }; 1633 1634 if (!mutex_trylock(&sw->tb->lock)) 1635 return restart_syscall(); 1636 1637 if (!!sw->authorized == !!val) 1638 goto unlock; 1639 1640 switch (val) { 1641 /* Disapprove switch */ 1642 case 0: 1643 if (tb_route(sw)) { 1644 ret = disapprove_switch(&sw->dev, NULL); 1645 goto unlock; 1646 } 1647 break; 1648 1649 /* Approve switch */ 1650 case 1: 1651 if (sw->key) 1652 ret = tb_domain_approve_switch_key(sw->tb, sw); 1653 else 1654 ret = tb_domain_approve_switch(sw->tb, sw); 1655 break; 1656 1657 /* Challenge switch */ 1658 case 2: 1659 if (sw->key) 1660 ret = tb_domain_challenge_switch_key(sw->tb, sw); 1661 break; 1662 1663 default: 1664 break; 1665 } 1666 1667 if (!ret) { 1668 sw->authorized = val; 1669 /* 1670 * Notify status change to the userspace, informing the new 1671 * value of /sys/bus/thunderbolt/devices/.../authorized. 1672 */ 1673 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized); 1674 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp); 1675 } 1676 1677 unlock: 1678 mutex_unlock(&sw->tb->lock); 1679 return ret; 1680 } 1681 1682 static ssize_t authorized_store(struct device *dev, 1683 struct device_attribute *attr, 1684 const char *buf, size_t count) 1685 { 1686 struct tb_switch *sw = tb_to_switch(dev); 1687 unsigned int val; 1688 ssize_t ret; 1689 1690 ret = kstrtouint(buf, 0, &val); 1691 if (ret) 1692 return ret; 1693 if (val > 2) 1694 return -EINVAL; 1695 1696 pm_runtime_get_sync(&sw->dev); 1697 ret = tb_switch_set_authorized(sw, val); 1698 pm_runtime_mark_last_busy(&sw->dev); 1699 pm_runtime_put_autosuspend(&sw->dev); 1700 1701 return ret ? ret : count; 1702 } 1703 static DEVICE_ATTR_RW(authorized); 1704 1705 static ssize_t boot_show(struct device *dev, struct device_attribute *attr, 1706 char *buf) 1707 { 1708 struct tb_switch *sw = tb_to_switch(dev); 1709 1710 return sysfs_emit(buf, "%u\n", sw->boot); 1711 } 1712 static DEVICE_ATTR_RO(boot); 1713 1714 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 1715 char *buf) 1716 { 1717 struct tb_switch *sw = tb_to_switch(dev); 1718 1719 return sysfs_emit(buf, "%#x\n", sw->device); 1720 } 1721 static DEVICE_ATTR_RO(device); 1722 1723 static ssize_t 1724 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1725 { 1726 struct tb_switch *sw = tb_to_switch(dev); 1727 1728 return sysfs_emit(buf, "%s\n", sw->device_name ?: ""); 1729 } 1730 static DEVICE_ATTR_RO(device_name); 1731 1732 static ssize_t 1733 generation_show(struct device *dev, struct device_attribute *attr, char *buf) 1734 { 1735 struct tb_switch *sw = tb_to_switch(dev); 1736 1737 return sysfs_emit(buf, "%u\n", sw->generation); 1738 } 1739 static DEVICE_ATTR_RO(generation); 1740 1741 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 1742 char *buf) 1743 { 1744 struct tb_switch *sw = tb_to_switch(dev); 1745 ssize_t ret; 1746 1747 if (!mutex_trylock(&sw->tb->lock)) 1748 return restart_syscall(); 1749 1750 if (sw->key) 1751 ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 1752 else 1753 ret = sysfs_emit(buf, "\n"); 1754 1755 mutex_unlock(&sw->tb->lock); 1756 return ret; 1757 } 1758 1759 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 1760 const char *buf, size_t count) 1761 { 1762 struct tb_switch *sw = tb_to_switch(dev); 1763 u8 key[TB_SWITCH_KEY_SIZE]; 1764 ssize_t ret = count; 1765 bool clear = false; 1766 1767 if (!strcmp(buf, "\n")) 1768 clear = true; 1769 else if (hex2bin(key, buf, sizeof(key))) 1770 return -EINVAL; 1771 1772 if (!mutex_trylock(&sw->tb->lock)) 1773 return restart_syscall(); 1774 1775 if (sw->authorized) { 1776 ret = -EBUSY; 1777 } else { 1778 kfree(sw->key); 1779 if (clear) { 1780 sw->key = NULL; 1781 } else { 1782 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 1783 if (!sw->key) 1784 ret = -ENOMEM; 1785 } 1786 } 1787 1788 mutex_unlock(&sw->tb->lock); 1789 return ret; 1790 } 1791 static DEVICE_ATTR(key, 0600, key_show, key_store); 1792 1793 static ssize_t speed_show(struct device *dev, struct device_attribute *attr, 1794 char *buf) 1795 { 1796 struct tb_switch *sw = tb_to_switch(dev); 1797 1798 return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed); 1799 } 1800 1801 /* 1802 * Currently all lanes must run at the same speed but we expose here 1803 * both directions to allow possible asymmetric links in the future. 1804 */ 1805 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL); 1806 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL); 1807 1808 static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr, 1809 char *buf) 1810 { 1811 struct tb_switch *sw = tb_to_switch(dev); 1812 unsigned int width; 1813 1814 switch (sw->link_width) { 1815 case TB_LINK_WIDTH_SINGLE: 1816 case TB_LINK_WIDTH_ASYM_TX: 1817 width = 1; 1818 break; 1819 case TB_LINK_WIDTH_DUAL: 1820 width = 2; 1821 break; 1822 case TB_LINK_WIDTH_ASYM_RX: 1823 width = 3; 1824 break; 1825 default: 1826 WARN_ON_ONCE(1); 1827 return -EINVAL; 1828 } 1829 1830 return sysfs_emit(buf, "%u\n", width); 1831 } 1832 static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL); 1833 1834 static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr, 1835 char *buf) 1836 { 1837 struct tb_switch *sw = tb_to_switch(dev); 1838 unsigned int width; 1839 1840 switch (sw->link_width) { 1841 case TB_LINK_WIDTH_SINGLE: 1842 case TB_LINK_WIDTH_ASYM_RX: 1843 width = 1; 1844 break; 1845 case TB_LINK_WIDTH_DUAL: 1846 width = 2; 1847 break; 1848 case TB_LINK_WIDTH_ASYM_TX: 1849 width = 3; 1850 break; 1851 default: 1852 WARN_ON_ONCE(1); 1853 return -EINVAL; 1854 } 1855 1856 return sysfs_emit(buf, "%u\n", width); 1857 } 1858 static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL); 1859 1860 static ssize_t nvm_authenticate_show(struct device *dev, 1861 struct device_attribute *attr, char *buf) 1862 { 1863 struct tb_switch *sw = tb_to_switch(dev); 1864 u32 status; 1865 1866 nvm_get_auth_status(sw, &status); 1867 return sysfs_emit(buf, "%#x\n", status); 1868 } 1869 1870 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf, 1871 bool disconnect) 1872 { 1873 struct tb_switch *sw = tb_to_switch(dev); 1874 int val, ret; 1875 1876 pm_runtime_get_sync(&sw->dev); 1877 1878 if (!mutex_trylock(&sw->tb->lock)) { 1879 ret = restart_syscall(); 1880 goto exit_rpm; 1881 } 1882 1883 if (sw->no_nvm_upgrade) { 1884 ret = -EOPNOTSUPP; 1885 goto exit_unlock; 1886 } 1887 1888 /* If NVMem devices are not yet added */ 1889 if (!sw->nvm) { 1890 ret = -EAGAIN; 1891 goto exit_unlock; 1892 } 1893 1894 ret = kstrtoint(buf, 10, &val); 1895 if (ret) 1896 goto exit_unlock; 1897 1898 /* Always clear the authentication status */ 1899 nvm_clear_auth_status(sw); 1900 1901 if (val > 0) { 1902 if (val == AUTHENTICATE_ONLY) { 1903 if (disconnect) 1904 ret = -EINVAL; 1905 else 1906 ret = nvm_authenticate(sw, true); 1907 } else { 1908 if (!sw->nvm->flushed) { 1909 if (!sw->nvm->buf) { 1910 ret = -EINVAL; 1911 goto exit_unlock; 1912 } 1913 1914 ret = nvm_validate_and_write(sw); 1915 if (ret || val == WRITE_ONLY) 1916 goto exit_unlock; 1917 } 1918 if (val == WRITE_AND_AUTHENTICATE) { 1919 if (disconnect) 1920 ret = tb_lc_force_power(sw); 1921 else 1922 ret = nvm_authenticate(sw, false); 1923 } 1924 } 1925 } 1926 1927 exit_unlock: 1928 mutex_unlock(&sw->tb->lock); 1929 exit_rpm: 1930 pm_runtime_mark_last_busy(&sw->dev); 1931 pm_runtime_put_autosuspend(&sw->dev); 1932 1933 return ret; 1934 } 1935 1936 static ssize_t nvm_authenticate_store(struct device *dev, 1937 struct device_attribute *attr, const char *buf, size_t count) 1938 { 1939 int ret = nvm_authenticate_sysfs(dev, buf, false); 1940 if (ret) 1941 return ret; 1942 return count; 1943 } 1944 static DEVICE_ATTR_RW(nvm_authenticate); 1945 1946 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev, 1947 struct device_attribute *attr, char *buf) 1948 { 1949 return nvm_authenticate_show(dev, attr, buf); 1950 } 1951 1952 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev, 1953 struct device_attribute *attr, const char *buf, size_t count) 1954 { 1955 int ret; 1956 1957 ret = nvm_authenticate_sysfs(dev, buf, true); 1958 return ret ? ret : count; 1959 } 1960 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect); 1961 1962 static ssize_t nvm_version_show(struct device *dev, 1963 struct device_attribute *attr, char *buf) 1964 { 1965 struct tb_switch *sw = tb_to_switch(dev); 1966 int ret; 1967 1968 if (!mutex_trylock(&sw->tb->lock)) 1969 return restart_syscall(); 1970 1971 if (sw->safe_mode) 1972 ret = -ENODATA; 1973 else if (!sw->nvm) 1974 ret = -EAGAIN; 1975 else 1976 ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 1977 1978 mutex_unlock(&sw->tb->lock); 1979 1980 return ret; 1981 } 1982 static DEVICE_ATTR_RO(nvm_version); 1983 1984 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 1985 char *buf) 1986 { 1987 struct tb_switch *sw = tb_to_switch(dev); 1988 1989 return sysfs_emit(buf, "%#x\n", sw->vendor); 1990 } 1991 static DEVICE_ATTR_RO(vendor); 1992 1993 static ssize_t 1994 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1995 { 1996 struct tb_switch *sw = tb_to_switch(dev); 1997 1998 return sysfs_emit(buf, "%s\n", sw->vendor_name ?: ""); 1999 } 2000 static DEVICE_ATTR_RO(vendor_name); 2001 2002 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 2003 char *buf) 2004 { 2005 struct tb_switch *sw = tb_to_switch(dev); 2006 2007 return sysfs_emit(buf, "%pUb\n", sw->uuid); 2008 } 2009 static DEVICE_ATTR_RO(unique_id); 2010 2011 static struct attribute *switch_attrs[] = { 2012 &dev_attr_authorized.attr, 2013 &dev_attr_boot.attr, 2014 &dev_attr_device.attr, 2015 &dev_attr_device_name.attr, 2016 &dev_attr_generation.attr, 2017 &dev_attr_key.attr, 2018 &dev_attr_nvm_authenticate.attr, 2019 &dev_attr_nvm_authenticate_on_disconnect.attr, 2020 &dev_attr_nvm_version.attr, 2021 &dev_attr_rx_speed.attr, 2022 &dev_attr_rx_lanes.attr, 2023 &dev_attr_tx_speed.attr, 2024 &dev_attr_tx_lanes.attr, 2025 &dev_attr_vendor.attr, 2026 &dev_attr_vendor_name.attr, 2027 &dev_attr_unique_id.attr, 2028 NULL, 2029 }; 2030 2031 static umode_t switch_attr_is_visible(struct kobject *kobj, 2032 struct attribute *attr, int n) 2033 { 2034 struct device *dev = kobj_to_dev(kobj); 2035 struct tb_switch *sw = tb_to_switch(dev); 2036 2037 if (attr == &dev_attr_authorized.attr) { 2038 if (sw->tb->security_level == TB_SECURITY_NOPCIE || 2039 sw->tb->security_level == TB_SECURITY_DPONLY) 2040 return 0; 2041 } else if (attr == &dev_attr_device.attr) { 2042 if (!sw->device) 2043 return 0; 2044 } else if (attr == &dev_attr_device_name.attr) { 2045 if (!sw->device_name) 2046 return 0; 2047 } else if (attr == &dev_attr_vendor.attr) { 2048 if (!sw->vendor) 2049 return 0; 2050 } else if (attr == &dev_attr_vendor_name.attr) { 2051 if (!sw->vendor_name) 2052 return 0; 2053 } else if (attr == &dev_attr_key.attr) { 2054 if (tb_route(sw) && 2055 sw->tb->security_level == TB_SECURITY_SECURE && 2056 sw->security_level == TB_SECURITY_SECURE) 2057 return attr->mode; 2058 return 0; 2059 } else if (attr == &dev_attr_rx_speed.attr || 2060 attr == &dev_attr_rx_lanes.attr || 2061 attr == &dev_attr_tx_speed.attr || 2062 attr == &dev_attr_tx_lanes.attr) { 2063 if (tb_route(sw)) 2064 return attr->mode; 2065 return 0; 2066 } else if (attr == &dev_attr_nvm_authenticate.attr) { 2067 if (nvm_upgradeable(sw)) 2068 return attr->mode; 2069 return 0; 2070 } else if (attr == &dev_attr_nvm_version.attr) { 2071 if (nvm_readable(sw)) 2072 return attr->mode; 2073 return 0; 2074 } else if (attr == &dev_attr_boot.attr) { 2075 if (tb_route(sw)) 2076 return attr->mode; 2077 return 0; 2078 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) { 2079 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER) 2080 return attr->mode; 2081 return 0; 2082 } 2083 2084 return sw->safe_mode ? 0 : attr->mode; 2085 } 2086 2087 static const struct attribute_group switch_group = { 2088 .is_visible = switch_attr_is_visible, 2089 .attrs = switch_attrs, 2090 }; 2091 2092 static const struct attribute_group *switch_groups[] = { 2093 &switch_group, 2094 NULL, 2095 }; 2096 2097 static void tb_switch_release(struct device *dev) 2098 { 2099 struct tb_switch *sw = tb_to_switch(dev); 2100 struct tb_port *port; 2101 2102 dma_port_free(sw->dma_port); 2103 2104 tb_switch_for_each_port(sw, port) { 2105 ida_destroy(&port->in_hopids); 2106 ida_destroy(&port->out_hopids); 2107 } 2108 2109 kfree(sw->uuid); 2110 kfree(sw->device_name); 2111 kfree(sw->vendor_name); 2112 kfree(sw->ports); 2113 kfree(sw->drom); 2114 kfree(sw->key); 2115 kfree(sw); 2116 } 2117 2118 static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env) 2119 { 2120 const struct tb_switch *sw = tb_to_switch(dev); 2121 const char *type; 2122 2123 if (tb_switch_is_usb4(sw)) { 2124 if (add_uevent_var(env, "USB4_VERSION=%u.0", 2125 usb4_switch_version(sw))) 2126 return -ENOMEM; 2127 } 2128 2129 if (!tb_route(sw)) { 2130 type = "host"; 2131 } else { 2132 const struct tb_port *port; 2133 bool hub = false; 2134 2135 /* Device is hub if it has any downstream ports */ 2136 tb_switch_for_each_port(sw, port) { 2137 if (!port->disabled && !tb_is_upstream_port(port) && 2138 tb_port_is_null(port)) { 2139 hub = true; 2140 break; 2141 } 2142 } 2143 2144 type = hub ? "hub" : "device"; 2145 } 2146 2147 if (add_uevent_var(env, "USB4_TYPE=%s", type)) 2148 return -ENOMEM; 2149 return 0; 2150 } 2151 2152 /* 2153 * Currently only need to provide the callbacks. Everything else is handled 2154 * in the connection manager. 2155 */ 2156 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev) 2157 { 2158 struct tb_switch *sw = tb_to_switch(dev); 2159 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 2160 2161 if (cm_ops->runtime_suspend_switch) 2162 return cm_ops->runtime_suspend_switch(sw); 2163 2164 return 0; 2165 } 2166 2167 static int __maybe_unused tb_switch_runtime_resume(struct device *dev) 2168 { 2169 struct tb_switch *sw = tb_to_switch(dev); 2170 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; 2171 2172 if (cm_ops->runtime_resume_switch) 2173 return cm_ops->runtime_resume_switch(sw); 2174 return 0; 2175 } 2176 2177 static const struct dev_pm_ops tb_switch_pm_ops = { 2178 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume, 2179 NULL) 2180 }; 2181 2182 struct device_type tb_switch_type = { 2183 .name = "thunderbolt_device", 2184 .release = tb_switch_release, 2185 .uevent = tb_switch_uevent, 2186 .pm = &tb_switch_pm_ops, 2187 }; 2188 2189 static int tb_switch_get_generation(struct tb_switch *sw) 2190 { 2191 if (tb_switch_is_usb4(sw)) 2192 return 4; 2193 2194 if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) { 2195 switch (sw->config.device_id) { 2196 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 2197 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 2198 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 2199 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 2200 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 2201 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 2202 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 2203 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 2204 return 1; 2205 2206 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 2207 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 2208 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 2209 return 2; 2210 2211 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 2212 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 2213 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 2214 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 2215 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 2216 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: 2217 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: 2218 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: 2219 case PCI_DEVICE_ID_INTEL_ICL_NHI0: 2220 case PCI_DEVICE_ID_INTEL_ICL_NHI1: 2221 return 3; 2222 } 2223 } 2224 2225 /* 2226 * For unknown switches assume generation to be 1 to be on the 2227 * safe side. 2228 */ 2229 tb_sw_warn(sw, "unsupported switch device id %#x\n", 2230 sw->config.device_id); 2231 return 1; 2232 } 2233 2234 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth) 2235 { 2236 int max_depth; 2237 2238 if (tb_switch_is_usb4(sw) || 2239 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch))) 2240 max_depth = USB4_SWITCH_MAX_DEPTH; 2241 else 2242 max_depth = TB_SWITCH_MAX_DEPTH; 2243 2244 return depth > max_depth; 2245 } 2246 2247 /** 2248 * tb_switch_alloc() - allocate a switch 2249 * @tb: Pointer to the owning domain 2250 * @parent: Parent device for this switch 2251 * @route: Route string for this switch 2252 * 2253 * Allocates and initializes a switch. Will not upload configuration to 2254 * the switch. For that you need to call tb_switch_configure() 2255 * separately. The returned switch should be released by calling 2256 * tb_switch_put(). 2257 * 2258 * Return: Pointer to the allocated switch or ERR_PTR() in case of 2259 * failure. 2260 */ 2261 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 2262 u64 route) 2263 { 2264 struct tb_switch *sw; 2265 int upstream_port; 2266 int i, ret, depth; 2267 2268 /* Unlock the downstream port so we can access the switch below */ 2269 if (route) { 2270 struct tb_switch *parent_sw = tb_to_switch(parent); 2271 struct tb_port *down; 2272 2273 down = tb_port_at(route, parent_sw); 2274 tb_port_unlock(down); 2275 } 2276 2277 depth = tb_route_length(route); 2278 2279 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 2280 if (upstream_port < 0) 2281 return ERR_PTR(upstream_port); 2282 2283 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 2284 if (!sw) 2285 return ERR_PTR(-ENOMEM); 2286 2287 sw->tb = tb; 2288 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5); 2289 if (ret) 2290 goto err_free_sw_ports; 2291 2292 sw->generation = tb_switch_get_generation(sw); 2293 2294 tb_dbg(tb, "current switch config:\n"); 2295 tb_dump_switch(tb, sw); 2296 2297 /* configure switch */ 2298 sw->config.upstream_port_number = upstream_port; 2299 sw->config.depth = depth; 2300 sw->config.route_hi = upper_32_bits(route); 2301 sw->config.route_lo = lower_32_bits(route); 2302 sw->config.enabled = 0; 2303 2304 /* Make sure we do not exceed maximum topology limit */ 2305 if (tb_switch_exceeds_max_depth(sw, depth)) { 2306 ret = -EADDRNOTAVAIL; 2307 goto err_free_sw_ports; 2308 } 2309 2310 /* initialize ports */ 2311 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 2312 GFP_KERNEL); 2313 if (!sw->ports) { 2314 ret = -ENOMEM; 2315 goto err_free_sw_ports; 2316 } 2317 2318 for (i = 0; i <= sw->config.max_port_number; i++) { 2319 /* minimum setup for tb_find_cap and tb_drom_read to work */ 2320 sw->ports[i].sw = sw; 2321 sw->ports[i].port = i; 2322 2323 /* Control port does not need HopID allocation */ 2324 if (i) { 2325 ida_init(&sw->ports[i].in_hopids); 2326 ida_init(&sw->ports[i].out_hopids); 2327 } 2328 } 2329 2330 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 2331 if (ret > 0) 2332 sw->cap_plug_events = ret; 2333 2334 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2); 2335 if (ret > 0) 2336 sw->cap_vsec_tmu = ret; 2337 2338 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 2339 if (ret > 0) 2340 sw->cap_lc = ret; 2341 2342 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP); 2343 if (ret > 0) 2344 sw->cap_lp = ret; 2345 2346 /* Root switch is always authorized */ 2347 if (!route) 2348 sw->authorized = true; 2349 2350 device_initialize(&sw->dev); 2351 sw->dev.parent = parent; 2352 sw->dev.bus = &tb_bus_type; 2353 sw->dev.type = &tb_switch_type; 2354 sw->dev.groups = switch_groups; 2355 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 2356 2357 return sw; 2358 2359 err_free_sw_ports: 2360 kfree(sw->ports); 2361 kfree(sw); 2362 2363 return ERR_PTR(ret); 2364 } 2365 2366 /** 2367 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 2368 * @tb: Pointer to the owning domain 2369 * @parent: Parent device for this switch 2370 * @route: Route string for this switch 2371 * 2372 * This creates a switch in safe mode. This means the switch pretty much 2373 * lacks all capabilities except DMA configuration port before it is 2374 * flashed with a valid NVM firmware. 2375 * 2376 * The returned switch must be released by calling tb_switch_put(). 2377 * 2378 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure 2379 */ 2380 struct tb_switch * 2381 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 2382 { 2383 struct tb_switch *sw; 2384 2385 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 2386 if (!sw) 2387 return ERR_PTR(-ENOMEM); 2388 2389 sw->tb = tb; 2390 sw->config.depth = tb_route_length(route); 2391 sw->config.route_hi = upper_32_bits(route); 2392 sw->config.route_lo = lower_32_bits(route); 2393 sw->safe_mode = true; 2394 2395 device_initialize(&sw->dev); 2396 sw->dev.parent = parent; 2397 sw->dev.bus = &tb_bus_type; 2398 sw->dev.type = &tb_switch_type; 2399 sw->dev.groups = switch_groups; 2400 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 2401 2402 return sw; 2403 } 2404 2405 /** 2406 * tb_switch_configure() - Uploads configuration to the switch 2407 * @sw: Switch to configure 2408 * 2409 * Call this function before the switch is added to the system. It will 2410 * upload configuration to the switch and makes it available for the 2411 * connection manager to use. Can be called to the switch again after 2412 * resume from low power states to re-initialize it. 2413 * 2414 * Return: %0 in case of success and negative errno in case of failure 2415 */ 2416 int tb_switch_configure(struct tb_switch *sw) 2417 { 2418 struct tb *tb = sw->tb; 2419 u64 route; 2420 int ret; 2421 2422 route = tb_route(sw); 2423 2424 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n", 2425 sw->config.enabled ? "restoring" : "initializing", route, 2426 tb_route_length(route), sw->config.upstream_port_number); 2427 2428 sw->config.enabled = 1; 2429 2430 if (tb_switch_is_usb4(sw)) { 2431 /* 2432 * For USB4 devices, we need to program the CM version 2433 * accordingly so that it knows to expose all the 2434 * additional capabilities. Program it according to USB4 2435 * version to avoid changing existing (v1) routers behaviour. 2436 */ 2437 if (usb4_switch_version(sw) < 2) 2438 sw->config.cmuv = ROUTER_CS_4_CMUV_V1; 2439 else 2440 sw->config.cmuv = ROUTER_CS_4_CMUV_V2; 2441 sw->config.plug_events_delay = 0xa; 2442 2443 /* Enumerate the switch */ 2444 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2445 ROUTER_CS_1, 4); 2446 if (ret) 2447 return ret; 2448 2449 ret = usb4_switch_setup(sw); 2450 } else { 2451 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 2452 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 2453 sw->config.vendor_id); 2454 2455 if (!sw->cap_plug_events) { 2456 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 2457 return -ENODEV; 2458 } 2459 2460 /* Enumerate the switch */ 2461 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, 2462 ROUTER_CS_1, 3); 2463 } 2464 if (ret) 2465 return ret; 2466 2467 return tb_plug_events_active(sw, true); 2468 } 2469 2470 /** 2471 * tb_switch_configuration_valid() - Set the tunneling configuration to be valid 2472 * @sw: Router to configure 2473 * 2474 * Needs to be called before any tunnels can be setup through the 2475 * router. Can be called to any router. 2476 * 2477 * Returns %0 in success and negative errno otherwise. 2478 */ 2479 int tb_switch_configuration_valid(struct tb_switch *sw) 2480 { 2481 if (tb_switch_is_usb4(sw)) 2482 return usb4_switch_configuration_valid(sw); 2483 return 0; 2484 } 2485 2486 static int tb_switch_set_uuid(struct tb_switch *sw) 2487 { 2488 bool uid = false; 2489 u32 uuid[4]; 2490 int ret; 2491 2492 if (sw->uuid) 2493 return 0; 2494 2495 if (tb_switch_is_usb4(sw)) { 2496 ret = usb4_switch_read_uid(sw, &sw->uid); 2497 if (ret) 2498 return ret; 2499 uid = true; 2500 } else { 2501 /* 2502 * The newer controllers include fused UUID as part of 2503 * link controller specific registers 2504 */ 2505 ret = tb_lc_read_uuid(sw, uuid); 2506 if (ret) { 2507 if (ret != -EINVAL) 2508 return ret; 2509 uid = true; 2510 } 2511 } 2512 2513 if (uid) { 2514 /* 2515 * ICM generates UUID based on UID and fills the upper 2516 * two words with ones. This is not strictly following 2517 * UUID format but we want to be compatible with it so 2518 * we do the same here. 2519 */ 2520 uuid[0] = sw->uid & 0xffffffff; 2521 uuid[1] = (sw->uid >> 32) & 0xffffffff; 2522 uuid[2] = 0xffffffff; 2523 uuid[3] = 0xffffffff; 2524 } 2525 2526 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 2527 if (!sw->uuid) 2528 return -ENOMEM; 2529 return 0; 2530 } 2531 2532 static int tb_switch_add_dma_port(struct tb_switch *sw) 2533 { 2534 u32 status; 2535 int ret; 2536 2537 switch (sw->generation) { 2538 case 2: 2539 /* Only root switch can be upgraded */ 2540 if (tb_route(sw)) 2541 return 0; 2542 2543 fallthrough; 2544 case 3: 2545 case 4: 2546 ret = tb_switch_set_uuid(sw); 2547 if (ret) 2548 return ret; 2549 break; 2550 2551 default: 2552 /* 2553 * DMA port is the only thing available when the switch 2554 * is in safe mode. 2555 */ 2556 if (!sw->safe_mode) 2557 return 0; 2558 break; 2559 } 2560 2561 if (sw->no_nvm_upgrade) 2562 return 0; 2563 2564 if (tb_switch_is_usb4(sw)) { 2565 ret = usb4_switch_nvm_authenticate_status(sw, &status); 2566 if (ret) 2567 return ret; 2568 2569 if (status) { 2570 tb_sw_info(sw, "switch flash authentication failed\n"); 2571 nvm_set_auth_status(sw, status); 2572 } 2573 2574 return 0; 2575 } 2576 2577 /* Root switch DMA port requires running firmware */ 2578 if (!tb_route(sw) && !tb_switch_is_icm(sw)) 2579 return 0; 2580 2581 sw->dma_port = dma_port_alloc(sw); 2582 if (!sw->dma_port) 2583 return 0; 2584 2585 /* 2586 * If there is status already set then authentication failed 2587 * when the dma_port_flash_update_auth() returned. Power cycling 2588 * is not needed (it was done already) so only thing we do here 2589 * is to unblock runtime PM of the root port. 2590 */ 2591 nvm_get_auth_status(sw, &status); 2592 if (status) { 2593 if (!tb_route(sw)) 2594 nvm_authenticate_complete_dma_port(sw); 2595 return 0; 2596 } 2597 2598 /* 2599 * Check status of the previous flash authentication. If there 2600 * is one we need to power cycle the switch in any case to make 2601 * it functional again. 2602 */ 2603 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 2604 if (ret <= 0) 2605 return ret; 2606 2607 /* Now we can allow root port to suspend again */ 2608 if (!tb_route(sw)) 2609 nvm_authenticate_complete_dma_port(sw); 2610 2611 if (status) { 2612 tb_sw_info(sw, "switch flash authentication failed\n"); 2613 nvm_set_auth_status(sw, status); 2614 } 2615 2616 tb_sw_info(sw, "power cycling the switch now\n"); 2617 dma_port_power_cycle(sw->dma_port); 2618 2619 /* 2620 * We return error here which causes the switch adding failure. 2621 * It should appear back after power cycle is complete. 2622 */ 2623 return -ESHUTDOWN; 2624 } 2625 2626 static void tb_switch_default_link_ports(struct tb_switch *sw) 2627 { 2628 int i; 2629 2630 for (i = 1; i <= sw->config.max_port_number; i++) { 2631 struct tb_port *port = &sw->ports[i]; 2632 struct tb_port *subordinate; 2633 2634 if (!tb_port_is_null(port)) 2635 continue; 2636 2637 /* Check for the subordinate port */ 2638 if (i == sw->config.max_port_number || 2639 !tb_port_is_null(&sw->ports[i + 1])) 2640 continue; 2641 2642 /* Link them if not already done so (by DROM) */ 2643 subordinate = &sw->ports[i + 1]; 2644 if (!port->dual_link_port && !subordinate->dual_link_port) { 2645 port->link_nr = 0; 2646 port->dual_link_port = subordinate; 2647 subordinate->link_nr = 1; 2648 subordinate->dual_link_port = port; 2649 2650 tb_sw_dbg(sw, "linked ports %d <-> %d\n", 2651 port->port, subordinate->port); 2652 } 2653 } 2654 } 2655 2656 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw) 2657 { 2658 const struct tb_port *up = tb_upstream_port(sw); 2659 2660 if (!up->dual_link_port || !up->dual_link_port->remote) 2661 return false; 2662 2663 if (tb_switch_is_usb4(sw)) 2664 return usb4_switch_lane_bonding_possible(sw); 2665 return tb_lc_lane_bonding_possible(sw); 2666 } 2667 2668 static int tb_switch_update_link_attributes(struct tb_switch *sw) 2669 { 2670 struct tb_port *up; 2671 bool change = false; 2672 int ret; 2673 2674 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2675 return 0; 2676 2677 up = tb_upstream_port(sw); 2678 2679 ret = tb_port_get_link_speed(up); 2680 if (ret < 0) 2681 return ret; 2682 if (sw->link_speed != ret) 2683 change = true; 2684 sw->link_speed = ret; 2685 2686 ret = tb_port_get_link_width(up); 2687 if (ret < 0) 2688 return ret; 2689 if (sw->link_width != ret) 2690 change = true; 2691 sw->link_width = ret; 2692 2693 /* Notify userspace that there is possible link attribute change */ 2694 if (device_is_registered(&sw->dev) && change) 2695 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 2696 2697 return 0; 2698 } 2699 2700 /** 2701 * tb_switch_lane_bonding_enable() - Enable lane bonding 2702 * @sw: Switch to enable lane bonding 2703 * 2704 * Connection manager can call this function to enable lane bonding of a 2705 * switch. If conditions are correct and both switches support the feature, 2706 * lanes are bonded. It is safe to call this to any switch. 2707 */ 2708 int tb_switch_lane_bonding_enable(struct tb_switch *sw) 2709 { 2710 struct tb_port *up, *down; 2711 u64 route = tb_route(sw); 2712 unsigned int width_mask; 2713 int ret; 2714 2715 if (!route) 2716 return 0; 2717 2718 if (!tb_switch_lane_bonding_possible(sw)) 2719 return 0; 2720 2721 up = tb_upstream_port(sw); 2722 down = tb_switch_downstream_port(sw); 2723 2724 if (!tb_port_is_width_supported(up, TB_LINK_WIDTH_DUAL) || 2725 !tb_port_is_width_supported(down, TB_LINK_WIDTH_DUAL)) 2726 return 0; 2727 2728 /* 2729 * Both lanes need to be in CL0. Here we assume lane 0 already be in 2730 * CL0 and check just for lane 1. 2731 */ 2732 if (tb_wait_for_port(down->dual_link_port, false) <= 0) 2733 return -ENOTCONN; 2734 2735 ret = tb_port_lane_bonding_enable(up); 2736 if (ret) { 2737 tb_port_warn(up, "failed to enable lane bonding\n"); 2738 return ret; 2739 } 2740 2741 ret = tb_port_lane_bonding_enable(down); 2742 if (ret) { 2743 tb_port_warn(down, "failed to enable lane bonding\n"); 2744 tb_port_lane_bonding_disable(up); 2745 return ret; 2746 } 2747 2748 /* Any of the widths are all bonded */ 2749 width_mask = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX | 2750 TB_LINK_WIDTH_ASYM_RX; 2751 2752 ret = tb_port_wait_for_link_width(down, width_mask, 100); 2753 if (ret) { 2754 tb_port_warn(down, "timeout enabling lane bonding\n"); 2755 return ret; 2756 } 2757 2758 tb_port_update_credits(down); 2759 tb_port_update_credits(up); 2760 tb_switch_update_link_attributes(sw); 2761 2762 tb_sw_dbg(sw, "lane bonding enabled\n"); 2763 return ret; 2764 } 2765 2766 /** 2767 * tb_switch_lane_bonding_disable() - Disable lane bonding 2768 * @sw: Switch whose lane bonding to disable 2769 * 2770 * Disables lane bonding between @sw and parent. This can be called even 2771 * if lanes were not bonded originally. 2772 */ 2773 void tb_switch_lane_bonding_disable(struct tb_switch *sw) 2774 { 2775 struct tb_port *up, *down; 2776 int ret; 2777 2778 if (!tb_route(sw)) 2779 return; 2780 2781 up = tb_upstream_port(sw); 2782 if (!up->bonded) 2783 return; 2784 2785 down = tb_switch_downstream_port(sw); 2786 2787 tb_port_lane_bonding_disable(up); 2788 tb_port_lane_bonding_disable(down); 2789 2790 /* 2791 * It is fine if we get other errors as the router might have 2792 * been unplugged. 2793 */ 2794 ret = tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100); 2795 if (ret == -ETIMEDOUT) 2796 tb_sw_warn(sw, "timeout disabling lane bonding\n"); 2797 2798 tb_port_update_credits(down); 2799 tb_port_update_credits(up); 2800 tb_switch_update_link_attributes(sw); 2801 2802 tb_sw_dbg(sw, "lane bonding disabled\n"); 2803 } 2804 2805 /** 2806 * tb_switch_configure_link() - Set link configured 2807 * @sw: Switch whose link is configured 2808 * 2809 * Sets the link upstream from @sw configured (from both ends) so that 2810 * it will not be disconnected when the domain exits sleep. Can be 2811 * called for any switch. 2812 * 2813 * It is recommended that this is called after lane bonding is enabled. 2814 * 2815 * Returns %0 on success and negative errno in case of error. 2816 */ 2817 int tb_switch_configure_link(struct tb_switch *sw) 2818 { 2819 struct tb_port *up, *down; 2820 int ret; 2821 2822 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2823 return 0; 2824 2825 up = tb_upstream_port(sw); 2826 if (tb_switch_is_usb4(up->sw)) 2827 ret = usb4_port_configure(up); 2828 else 2829 ret = tb_lc_configure_port(up); 2830 if (ret) 2831 return ret; 2832 2833 down = up->remote; 2834 if (tb_switch_is_usb4(down->sw)) 2835 return usb4_port_configure(down); 2836 return tb_lc_configure_port(down); 2837 } 2838 2839 /** 2840 * tb_switch_unconfigure_link() - Unconfigure link 2841 * @sw: Switch whose link is unconfigured 2842 * 2843 * Sets the link unconfigured so the @sw will be disconnected if the 2844 * domain exists sleep. 2845 */ 2846 void tb_switch_unconfigure_link(struct tb_switch *sw) 2847 { 2848 struct tb_port *up, *down; 2849 2850 if (sw->is_unplugged) 2851 return; 2852 if (!tb_route(sw) || tb_switch_is_icm(sw)) 2853 return; 2854 2855 up = tb_upstream_port(sw); 2856 if (tb_switch_is_usb4(up->sw)) 2857 usb4_port_unconfigure(up); 2858 else 2859 tb_lc_unconfigure_port(up); 2860 2861 down = up->remote; 2862 if (tb_switch_is_usb4(down->sw)) 2863 usb4_port_unconfigure(down); 2864 else 2865 tb_lc_unconfigure_port(down); 2866 } 2867 2868 static void tb_switch_credits_init(struct tb_switch *sw) 2869 { 2870 if (tb_switch_is_icm(sw)) 2871 return; 2872 if (!tb_switch_is_usb4(sw)) 2873 return; 2874 if (usb4_switch_credits_init(sw)) 2875 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n"); 2876 } 2877 2878 static int tb_switch_port_hotplug_enable(struct tb_switch *sw) 2879 { 2880 struct tb_port *port; 2881 2882 if (tb_switch_is_icm(sw)) 2883 return 0; 2884 2885 tb_switch_for_each_port(sw, port) { 2886 int res; 2887 2888 if (!port->cap_usb4) 2889 continue; 2890 2891 res = usb4_port_hotplug_enable(port); 2892 if (res) 2893 return res; 2894 } 2895 return 0; 2896 } 2897 2898 /** 2899 * tb_switch_add() - Add a switch to the domain 2900 * @sw: Switch to add 2901 * 2902 * This is the last step in adding switch to the domain. It will read 2903 * identification information from DROM and initializes ports so that 2904 * they can be used to connect other switches. The switch will be 2905 * exposed to the userspace when this function successfully returns. To 2906 * remove and release the switch, call tb_switch_remove(). 2907 * 2908 * Return: %0 in case of success and negative errno in case of failure 2909 */ 2910 int tb_switch_add(struct tb_switch *sw) 2911 { 2912 int i, ret; 2913 2914 /* 2915 * Initialize DMA control port now before we read DROM. Recent 2916 * host controllers have more complete DROM on NVM that includes 2917 * vendor and model identification strings which we then expose 2918 * to the userspace. NVM can be accessed through DMA 2919 * configuration based mailbox. 2920 */ 2921 ret = tb_switch_add_dma_port(sw); 2922 if (ret) { 2923 dev_err(&sw->dev, "failed to add DMA port\n"); 2924 return ret; 2925 } 2926 2927 if (!sw->safe_mode) { 2928 tb_switch_credits_init(sw); 2929 2930 /* read drom */ 2931 ret = tb_drom_read(sw); 2932 if (ret) 2933 dev_warn(&sw->dev, "reading DROM failed: %d\n", ret); 2934 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid); 2935 2936 ret = tb_switch_set_uuid(sw); 2937 if (ret) { 2938 dev_err(&sw->dev, "failed to set UUID\n"); 2939 return ret; 2940 } 2941 2942 for (i = 0; i <= sw->config.max_port_number; i++) { 2943 if (sw->ports[i].disabled) { 2944 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n"); 2945 continue; 2946 } 2947 ret = tb_init_port(&sw->ports[i]); 2948 if (ret) { 2949 dev_err(&sw->dev, "failed to initialize port %d\n", i); 2950 return ret; 2951 } 2952 } 2953 2954 tb_check_quirks(sw); 2955 2956 tb_switch_default_link_ports(sw); 2957 2958 ret = tb_switch_update_link_attributes(sw); 2959 if (ret) 2960 return ret; 2961 2962 ret = tb_switch_clx_init(sw); 2963 if (ret) 2964 return ret; 2965 2966 ret = tb_switch_tmu_init(sw); 2967 if (ret) 2968 return ret; 2969 } 2970 2971 ret = tb_switch_port_hotplug_enable(sw); 2972 if (ret) 2973 return ret; 2974 2975 ret = device_add(&sw->dev); 2976 if (ret) { 2977 dev_err(&sw->dev, "failed to add device: %d\n", ret); 2978 return ret; 2979 } 2980 2981 if (tb_route(sw)) { 2982 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n", 2983 sw->vendor, sw->device); 2984 if (sw->vendor_name && sw->device_name) 2985 dev_info(&sw->dev, "%s %s\n", sw->vendor_name, 2986 sw->device_name); 2987 } 2988 2989 ret = usb4_switch_add_ports(sw); 2990 if (ret) { 2991 dev_err(&sw->dev, "failed to add USB4 ports\n"); 2992 goto err_del; 2993 } 2994 2995 ret = tb_switch_nvm_add(sw); 2996 if (ret) { 2997 dev_err(&sw->dev, "failed to add NVM devices\n"); 2998 goto err_ports; 2999 } 3000 3001 /* 3002 * Thunderbolt routers do not generate wakeups themselves but 3003 * they forward wakeups from tunneled protocols, so enable it 3004 * here. 3005 */ 3006 device_init_wakeup(&sw->dev, true); 3007 3008 pm_runtime_set_active(&sw->dev); 3009 if (sw->rpm) { 3010 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY); 3011 pm_runtime_use_autosuspend(&sw->dev); 3012 pm_runtime_mark_last_busy(&sw->dev); 3013 pm_runtime_enable(&sw->dev); 3014 pm_request_autosuspend(&sw->dev); 3015 } 3016 3017 tb_switch_debugfs_init(sw); 3018 return 0; 3019 3020 err_ports: 3021 usb4_switch_remove_ports(sw); 3022 err_del: 3023 device_del(&sw->dev); 3024 3025 return ret; 3026 } 3027 3028 /** 3029 * tb_switch_remove() - Remove and release a switch 3030 * @sw: Switch to remove 3031 * 3032 * This will remove the switch from the domain and release it after last 3033 * reference count drops to zero. If there are switches connected below 3034 * this switch, they will be removed as well. 3035 */ 3036 void tb_switch_remove(struct tb_switch *sw) 3037 { 3038 struct tb_port *port; 3039 3040 tb_switch_debugfs_remove(sw); 3041 3042 if (sw->rpm) { 3043 pm_runtime_get_sync(&sw->dev); 3044 pm_runtime_disable(&sw->dev); 3045 } 3046 3047 /* port 0 is the switch itself and never has a remote */ 3048 tb_switch_for_each_port(sw, port) { 3049 if (tb_port_has_remote(port)) { 3050 tb_switch_remove(port->remote->sw); 3051 port->remote = NULL; 3052 } else if (port->xdomain) { 3053 tb_xdomain_remove(port->xdomain); 3054 port->xdomain = NULL; 3055 } 3056 3057 /* Remove any downstream retimers */ 3058 tb_retimer_remove_all(port); 3059 } 3060 3061 if (!sw->is_unplugged) 3062 tb_plug_events_active(sw, false); 3063 3064 tb_switch_nvm_remove(sw); 3065 usb4_switch_remove_ports(sw); 3066 3067 if (tb_route(sw)) 3068 dev_info(&sw->dev, "device disconnected\n"); 3069 device_unregister(&sw->dev); 3070 } 3071 3072 /** 3073 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 3074 * @sw: Router to mark unplugged 3075 */ 3076 void tb_sw_set_unplugged(struct tb_switch *sw) 3077 { 3078 struct tb_port *port; 3079 3080 if (sw == sw->tb->root_switch) { 3081 tb_sw_WARN(sw, "cannot unplug root switch\n"); 3082 return; 3083 } 3084 if (sw->is_unplugged) { 3085 tb_sw_WARN(sw, "is_unplugged already set\n"); 3086 return; 3087 } 3088 sw->is_unplugged = true; 3089 tb_switch_for_each_port(sw, port) { 3090 if (tb_port_has_remote(port)) 3091 tb_sw_set_unplugged(port->remote->sw); 3092 else if (port->xdomain) 3093 port->xdomain->is_unplugged = true; 3094 } 3095 } 3096 3097 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags) 3098 { 3099 if (flags) 3100 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags); 3101 else 3102 tb_sw_dbg(sw, "disabling wakeup\n"); 3103 3104 if (tb_switch_is_usb4(sw)) 3105 return usb4_switch_set_wake(sw, flags); 3106 return tb_lc_set_wake(sw, flags); 3107 } 3108 3109 int tb_switch_resume(struct tb_switch *sw) 3110 { 3111 struct tb_port *port; 3112 int err; 3113 3114 tb_sw_dbg(sw, "resuming switch\n"); 3115 3116 /* 3117 * Check for UID of the connected switches except for root 3118 * switch which we assume cannot be removed. 3119 */ 3120 if (tb_route(sw)) { 3121 u64 uid; 3122 3123 /* 3124 * Check first that we can still read the switch config 3125 * space. It may be that there is now another domain 3126 * connected. 3127 */ 3128 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw)); 3129 if (err < 0) { 3130 tb_sw_info(sw, "switch not present anymore\n"); 3131 return err; 3132 } 3133 3134 /* We don't have any way to confirm this was the same device */ 3135 if (!sw->uid) 3136 return -ENODEV; 3137 3138 if (tb_switch_is_usb4(sw)) 3139 err = usb4_switch_read_uid(sw, &uid); 3140 else 3141 err = tb_drom_read_uid_only(sw, &uid); 3142 if (err) { 3143 tb_sw_warn(sw, "uid read failed\n"); 3144 return err; 3145 } 3146 if (sw->uid != uid) { 3147 tb_sw_info(sw, 3148 "changed while suspended (uid %#llx -> %#llx)\n", 3149 sw->uid, uid); 3150 return -ENODEV; 3151 } 3152 } 3153 3154 err = tb_switch_configure(sw); 3155 if (err) 3156 return err; 3157 3158 /* Disable wakes */ 3159 tb_switch_set_wake(sw, 0); 3160 3161 err = tb_switch_tmu_init(sw); 3162 if (err) 3163 return err; 3164 3165 /* check for surviving downstream switches */ 3166 tb_switch_for_each_port(sw, port) { 3167 if (!tb_port_is_null(port)) 3168 continue; 3169 3170 if (!tb_port_resume(port)) 3171 continue; 3172 3173 if (tb_wait_for_port(port, true) <= 0) { 3174 tb_port_warn(port, 3175 "lost during suspend, disconnecting\n"); 3176 if (tb_port_has_remote(port)) 3177 tb_sw_set_unplugged(port->remote->sw); 3178 else if (port->xdomain) 3179 port->xdomain->is_unplugged = true; 3180 } else { 3181 /* 3182 * Always unlock the port so the downstream 3183 * switch/domain is accessible. 3184 */ 3185 if (tb_port_unlock(port)) 3186 tb_port_warn(port, "failed to unlock port\n"); 3187 if (port->remote && tb_switch_resume(port->remote->sw)) { 3188 tb_port_warn(port, 3189 "lost during suspend, disconnecting\n"); 3190 tb_sw_set_unplugged(port->remote->sw); 3191 } 3192 } 3193 } 3194 return 0; 3195 } 3196 3197 /** 3198 * tb_switch_suspend() - Put a switch to sleep 3199 * @sw: Switch to suspend 3200 * @runtime: Is this runtime suspend or system sleep 3201 * 3202 * Suspends router and all its children. Enables wakes according to 3203 * value of @runtime and then sets sleep bit for the router. If @sw is 3204 * host router the domain is ready to go to sleep once this function 3205 * returns. 3206 */ 3207 void tb_switch_suspend(struct tb_switch *sw, bool runtime) 3208 { 3209 unsigned int flags = 0; 3210 struct tb_port *port; 3211 int err; 3212 3213 tb_sw_dbg(sw, "suspending switch\n"); 3214 3215 /* 3216 * Actually only needed for Titan Ridge but for simplicity can be 3217 * done for USB4 device too as CLx is re-enabled at resume. 3218 */ 3219 tb_switch_clx_disable(sw); 3220 3221 err = tb_plug_events_active(sw, false); 3222 if (err) 3223 return; 3224 3225 tb_switch_for_each_port(sw, port) { 3226 if (tb_port_has_remote(port)) 3227 tb_switch_suspend(port->remote->sw, runtime); 3228 } 3229 3230 if (runtime) { 3231 /* Trigger wake when something is plugged in/out */ 3232 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT; 3233 flags |= TB_WAKE_ON_USB4; 3234 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP; 3235 } else if (device_may_wakeup(&sw->dev)) { 3236 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE; 3237 } 3238 3239 tb_switch_set_wake(sw, flags); 3240 3241 if (tb_switch_is_usb4(sw)) 3242 usb4_switch_set_sleep(sw); 3243 else 3244 tb_lc_set_sleep(sw); 3245 } 3246 3247 /** 3248 * tb_switch_query_dp_resource() - Query availability of DP resource 3249 * @sw: Switch whose DP resource is queried 3250 * @in: DP IN port 3251 * 3252 * Queries availability of DP resource for DP tunneling using switch 3253 * specific means. Returns %true if resource is available. 3254 */ 3255 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) 3256 { 3257 if (tb_switch_is_usb4(sw)) 3258 return usb4_switch_query_dp_resource(sw, in); 3259 return tb_lc_dp_sink_query(sw, in); 3260 } 3261 3262 /** 3263 * tb_switch_alloc_dp_resource() - Allocate available DP resource 3264 * @sw: Switch whose DP resource is allocated 3265 * @in: DP IN port 3266 * 3267 * Allocates DP resource for DP tunneling. The resource must be 3268 * available for this to succeed (see tb_switch_query_dp_resource()). 3269 * Returns %0 in success and negative errno otherwise. 3270 */ 3271 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 3272 { 3273 int ret; 3274 3275 if (tb_switch_is_usb4(sw)) 3276 ret = usb4_switch_alloc_dp_resource(sw, in); 3277 else 3278 ret = tb_lc_dp_sink_alloc(sw, in); 3279 3280 if (ret) 3281 tb_sw_warn(sw, "failed to allocate DP resource for port %d\n", 3282 in->port); 3283 else 3284 tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port); 3285 3286 return ret; 3287 } 3288 3289 /** 3290 * tb_switch_dealloc_dp_resource() - De-allocate DP resource 3291 * @sw: Switch whose DP resource is de-allocated 3292 * @in: DP IN port 3293 * 3294 * De-allocates DP resource that was previously allocated for DP 3295 * tunneling. 3296 */ 3297 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) 3298 { 3299 int ret; 3300 3301 if (tb_switch_is_usb4(sw)) 3302 ret = usb4_switch_dealloc_dp_resource(sw, in); 3303 else 3304 ret = tb_lc_dp_sink_dealloc(sw, in); 3305 3306 if (ret) 3307 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n", 3308 in->port); 3309 else 3310 tb_sw_dbg(sw, "released DP resource for port %d\n", in->port); 3311 } 3312 3313 struct tb_sw_lookup { 3314 struct tb *tb; 3315 u8 link; 3316 u8 depth; 3317 const uuid_t *uuid; 3318 u64 route; 3319 }; 3320 3321 static int tb_switch_match(struct device *dev, const void *data) 3322 { 3323 struct tb_switch *sw = tb_to_switch(dev); 3324 const struct tb_sw_lookup *lookup = data; 3325 3326 if (!sw) 3327 return 0; 3328 if (sw->tb != lookup->tb) 3329 return 0; 3330 3331 if (lookup->uuid) 3332 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 3333 3334 if (lookup->route) { 3335 return sw->config.route_lo == lower_32_bits(lookup->route) && 3336 sw->config.route_hi == upper_32_bits(lookup->route); 3337 } 3338 3339 /* Root switch is matched only by depth */ 3340 if (!lookup->depth) 3341 return !sw->depth; 3342 3343 return sw->link == lookup->link && sw->depth == lookup->depth; 3344 } 3345 3346 /** 3347 * tb_switch_find_by_link_depth() - Find switch by link and depth 3348 * @tb: Domain the switch belongs 3349 * @link: Link number the switch is connected 3350 * @depth: Depth of the switch in link 3351 * 3352 * Returned switch has reference count increased so the caller needs to 3353 * call tb_switch_put() when done with the switch. 3354 */ 3355 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 3356 { 3357 struct tb_sw_lookup lookup; 3358 struct device *dev; 3359 3360 memset(&lookup, 0, sizeof(lookup)); 3361 lookup.tb = tb; 3362 lookup.link = link; 3363 lookup.depth = depth; 3364 3365 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3366 if (dev) 3367 return tb_to_switch(dev); 3368 3369 return NULL; 3370 } 3371 3372 /** 3373 * tb_switch_find_by_uuid() - Find switch by UUID 3374 * @tb: Domain the switch belongs 3375 * @uuid: UUID to look for 3376 * 3377 * Returned switch has reference count increased so the caller needs to 3378 * call tb_switch_put() when done with the switch. 3379 */ 3380 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) 3381 { 3382 struct tb_sw_lookup lookup; 3383 struct device *dev; 3384 3385 memset(&lookup, 0, sizeof(lookup)); 3386 lookup.tb = tb; 3387 lookup.uuid = uuid; 3388 3389 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3390 if (dev) 3391 return tb_to_switch(dev); 3392 3393 return NULL; 3394 } 3395 3396 /** 3397 * tb_switch_find_by_route() - Find switch by route string 3398 * @tb: Domain the switch belongs 3399 * @route: Route string to look for 3400 * 3401 * Returned switch has reference count increased so the caller needs to 3402 * call tb_switch_put() when done with the switch. 3403 */ 3404 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route) 3405 { 3406 struct tb_sw_lookup lookup; 3407 struct device *dev; 3408 3409 if (!route) 3410 return tb_switch_get(tb->root_switch); 3411 3412 memset(&lookup, 0, sizeof(lookup)); 3413 lookup.tb = tb; 3414 lookup.route = route; 3415 3416 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 3417 if (dev) 3418 return tb_to_switch(dev); 3419 3420 return NULL; 3421 } 3422 3423 /** 3424 * tb_switch_find_port() - return the first port of @type on @sw or NULL 3425 * @sw: Switch to find the port from 3426 * @type: Port type to look for 3427 */ 3428 struct tb_port *tb_switch_find_port(struct tb_switch *sw, 3429 enum tb_port_type type) 3430 { 3431 struct tb_port *port; 3432 3433 tb_switch_for_each_port(sw, port) { 3434 if (port->config.type == type) 3435 return port; 3436 } 3437 3438 return NULL; 3439 } 3440 3441 /* 3442 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3 3443 * device. For now used only for Titan Ridge. 3444 */ 3445 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge, 3446 unsigned int pcie_offset, u32 value) 3447 { 3448 u32 offset, command, val; 3449 int ret; 3450 3451 if (sw->generation != 3) 3452 return -EOPNOTSUPP; 3453 3454 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA; 3455 ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1); 3456 if (ret) 3457 return ret; 3458 3459 command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK; 3460 command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT); 3461 command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK; 3462 command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL 3463 << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT; 3464 command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK; 3465 3466 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD; 3467 3468 ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1); 3469 if (ret) 3470 return ret; 3471 3472 ret = tb_switch_wait_for_bit(sw, offset, 3473 TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100); 3474 if (ret) 3475 return ret; 3476 3477 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1); 3478 if (ret) 3479 return ret; 3480 3481 if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK) 3482 return -ETIMEDOUT; 3483 3484 return 0; 3485 } 3486 3487 /** 3488 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state 3489 * @sw: Router to enable PCIe L1 3490 * 3491 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable 3492 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel 3493 * was configured. Due to Intel platforms limitation, shall be called only 3494 * for first hop switch. 3495 */ 3496 int tb_switch_pcie_l1_enable(struct tb_switch *sw) 3497 { 3498 struct tb_switch *parent = tb_switch_parent(sw); 3499 int ret; 3500 3501 if (!tb_route(sw)) 3502 return 0; 3503 3504 if (!tb_switch_is_titan_ridge(sw)) 3505 return 0; 3506 3507 /* Enable PCIe L1 enable only for first hop router (depth = 1) */ 3508 if (tb_route(parent)) 3509 return 0; 3510 3511 /* Write to downstream PCIe bridge #5 aka Dn4 */ 3512 ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1); 3513 if (ret) 3514 return ret; 3515 3516 /* Write to Upstream PCIe bridge #0 aka Up0 */ 3517 return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1); 3518 } 3519 3520 /** 3521 * tb_switch_xhci_connect() - Connect internal xHCI 3522 * @sw: Router whose xHCI to connect 3523 * 3524 * Can be called to any router. For Alpine Ridge and Titan Ridge 3525 * performs special flows that bring the xHCI functional for any device 3526 * connected to the type-C port. Call only after PCIe tunnel has been 3527 * established. The function only does the connect if not done already 3528 * so can be called several times for the same router. 3529 */ 3530 int tb_switch_xhci_connect(struct tb_switch *sw) 3531 { 3532 struct tb_port *port1, *port3; 3533 int ret; 3534 3535 if (sw->generation != 3) 3536 return 0; 3537 3538 port1 = &sw->ports[1]; 3539 port3 = &sw->ports[3]; 3540 3541 if (tb_switch_is_alpine_ridge(sw)) { 3542 bool usb_port1, usb_port3, xhci_port1, xhci_port3; 3543 3544 usb_port1 = tb_lc_is_usb_plugged(port1); 3545 usb_port3 = tb_lc_is_usb_plugged(port3); 3546 xhci_port1 = tb_lc_is_xhci_connected(port1); 3547 xhci_port3 = tb_lc_is_xhci_connected(port3); 3548 3549 /* Figure out correct USB port to connect */ 3550 if (usb_port1 && !xhci_port1) { 3551 ret = tb_lc_xhci_connect(port1); 3552 if (ret) 3553 return ret; 3554 } 3555 if (usb_port3 && !xhci_port3) 3556 return tb_lc_xhci_connect(port3); 3557 } else if (tb_switch_is_titan_ridge(sw)) { 3558 ret = tb_lc_xhci_connect(port1); 3559 if (ret) 3560 return ret; 3561 return tb_lc_xhci_connect(port3); 3562 } 3563 3564 return 0; 3565 } 3566 3567 /** 3568 * tb_switch_xhci_disconnect() - Disconnect internal xHCI 3569 * @sw: Router whose xHCI to disconnect 3570 * 3571 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both 3572 * ports. 3573 */ 3574 void tb_switch_xhci_disconnect(struct tb_switch *sw) 3575 { 3576 if (sw->generation == 3) { 3577 struct tb_port *port1 = &sw->ports[1]; 3578 struct tb_port *port3 = &sw->ports[3]; 3579 3580 tb_lc_xhci_disconnect(port1); 3581 tb_port_dbg(port1, "disconnected xHCI\n"); 3582 tb_lc_xhci_disconnect(port3); 3583 tb_port_dbg(port3, "disconnected xHCI\n"); 3584 } 3585 } 3586