1 /* 2 * Thunderbolt Cactus Ridge driver - switch/port utility functions 3 * 4 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 5 */ 6 7 #include <linux/delay.h> 8 #include <linux/idr.h> 9 #include <linux/nvmem-provider.h> 10 #include <linux/sizes.h> 11 #include <linux/slab.h> 12 #include <linux/vmalloc.h> 13 14 #include "tb.h" 15 16 /* Switch authorization from userspace is serialized by this lock */ 17 static DEFINE_MUTEX(switch_lock); 18 19 /* Switch NVM support */ 20 21 #define NVM_DEVID 0x05 22 #define NVM_VERSION 0x08 23 #define NVM_CSS 0x10 24 #define NVM_FLASH_SIZE 0x45 25 26 #define NVM_MIN_SIZE SZ_32K 27 #define NVM_MAX_SIZE SZ_512K 28 29 static DEFINE_IDA(nvm_ida); 30 31 struct nvm_auth_status { 32 struct list_head list; 33 uuid_be uuid; 34 u32 status; 35 }; 36 37 /* 38 * Hold NVM authentication failure status per switch This information 39 * needs to stay around even when the switch gets power cycled so we 40 * keep it separately. 41 */ 42 static LIST_HEAD(nvm_auth_status_cache); 43 static DEFINE_MUTEX(nvm_auth_status_lock); 44 45 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 46 { 47 struct nvm_auth_status *st; 48 49 list_for_each_entry(st, &nvm_auth_status_cache, list) { 50 if (!uuid_be_cmp(st->uuid, *sw->uuid)) 51 return st; 52 } 53 54 return NULL; 55 } 56 57 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 58 { 59 struct nvm_auth_status *st; 60 61 mutex_lock(&nvm_auth_status_lock); 62 st = __nvm_get_auth_status(sw); 63 mutex_unlock(&nvm_auth_status_lock); 64 65 *status = st ? st->status : 0; 66 } 67 68 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 69 { 70 struct nvm_auth_status *st; 71 72 if (WARN_ON(!sw->uuid)) 73 return; 74 75 mutex_lock(&nvm_auth_status_lock); 76 st = __nvm_get_auth_status(sw); 77 78 if (!st) { 79 st = kzalloc(sizeof(*st), GFP_KERNEL); 80 if (!st) 81 goto unlock; 82 83 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 84 INIT_LIST_HEAD(&st->list); 85 list_add_tail(&st->list, &nvm_auth_status_cache); 86 } 87 88 st->status = status; 89 unlock: 90 mutex_unlock(&nvm_auth_status_lock); 91 } 92 93 static void nvm_clear_auth_status(const struct tb_switch *sw) 94 { 95 struct nvm_auth_status *st; 96 97 mutex_lock(&nvm_auth_status_lock); 98 st = __nvm_get_auth_status(sw); 99 if (st) { 100 list_del(&st->list); 101 kfree(st); 102 } 103 mutex_unlock(&nvm_auth_status_lock); 104 } 105 106 static int nvm_validate_and_write(struct tb_switch *sw) 107 { 108 unsigned int image_size, hdr_size; 109 const u8 *buf = sw->nvm->buf; 110 u16 ds_size; 111 int ret; 112 113 if (!buf) 114 return -EINVAL; 115 116 image_size = sw->nvm->buf_data_size; 117 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) 118 return -EINVAL; 119 120 /* 121 * FARB pointer must point inside the image and must at least 122 * contain parts of the digital section we will be reading here. 123 */ 124 hdr_size = (*(u32 *)buf) & 0xffffff; 125 if (hdr_size + NVM_DEVID + 2 >= image_size) 126 return -EINVAL; 127 128 /* Digital section start should be aligned to 4k page */ 129 if (!IS_ALIGNED(hdr_size, SZ_4K)) 130 return -EINVAL; 131 132 /* 133 * Read digital section size and check that it also fits inside 134 * the image. 135 */ 136 ds_size = *(u16 *)(buf + hdr_size); 137 if (ds_size >= image_size) 138 return -EINVAL; 139 140 if (!sw->safe_mode) { 141 u16 device_id; 142 143 /* 144 * Make sure the device ID in the image matches the one 145 * we read from the switch config space. 146 */ 147 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID); 148 if (device_id != sw->config.device_id) 149 return -EINVAL; 150 151 if (sw->generation < 3) { 152 /* Write CSS headers first */ 153 ret = dma_port_flash_write(sw->dma_port, 154 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS, 155 DMA_PORT_CSS_MAX_SIZE); 156 if (ret) 157 return ret; 158 } 159 160 /* Skip headers in the image */ 161 buf += hdr_size; 162 image_size -= hdr_size; 163 } 164 165 return dma_port_flash_write(sw->dma_port, 0, buf, image_size); 166 } 167 168 static int nvm_authenticate_host(struct tb_switch *sw) 169 { 170 int ret; 171 172 /* 173 * Root switch NVM upgrade requires that we disconnect the 174 * existing PCIe paths first (in case it is not in safe mode 175 * already). 176 */ 177 if (!sw->safe_mode) { 178 ret = tb_domain_disconnect_pcie_paths(sw->tb); 179 if (ret) 180 return ret; 181 /* 182 * The host controller goes away pretty soon after this if 183 * everything goes well so getting timeout is expected. 184 */ 185 ret = dma_port_flash_update_auth(sw->dma_port); 186 return ret == -ETIMEDOUT ? 0 : ret; 187 } 188 189 /* 190 * From safe mode we can get out by just power cycling the 191 * switch. 192 */ 193 dma_port_power_cycle(sw->dma_port); 194 return 0; 195 } 196 197 static int nvm_authenticate_device(struct tb_switch *sw) 198 { 199 int ret, retries = 10; 200 201 ret = dma_port_flash_update_auth(sw->dma_port); 202 if (ret && ret != -ETIMEDOUT) 203 return ret; 204 205 /* 206 * Poll here for the authentication status. It takes some time 207 * for the device to respond (we get timeout for a while). Once 208 * we get response the device needs to be power cycled in order 209 * to the new NVM to be taken into use. 210 */ 211 do { 212 u32 status; 213 214 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 215 if (ret < 0 && ret != -ETIMEDOUT) 216 return ret; 217 if (ret > 0) { 218 if (status) { 219 tb_sw_warn(sw, "failed to authenticate NVM\n"); 220 nvm_set_auth_status(sw, status); 221 } 222 223 tb_sw_info(sw, "power cycling the switch now\n"); 224 dma_port_power_cycle(sw->dma_port); 225 return 0; 226 } 227 228 msleep(500); 229 } while (--retries); 230 231 return -ETIMEDOUT; 232 } 233 234 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val, 235 size_t bytes) 236 { 237 struct tb_switch *sw = priv; 238 239 return dma_port_flash_read(sw->dma_port, offset, val, bytes); 240 } 241 242 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val, 243 size_t bytes) 244 { 245 struct tb_switch *sw = priv; 246 int ret = 0; 247 248 if (mutex_lock_interruptible(&switch_lock)) 249 return -ERESTARTSYS; 250 251 /* 252 * Since writing the NVM image might require some special steps, 253 * for example when CSS headers are written, we cache the image 254 * locally here and handle the special cases when the user asks 255 * us to authenticate the image. 256 */ 257 if (!sw->nvm->buf) { 258 sw->nvm->buf = vmalloc(NVM_MAX_SIZE); 259 if (!sw->nvm->buf) { 260 ret = -ENOMEM; 261 goto unlock; 262 } 263 } 264 265 sw->nvm->buf_data_size = offset + bytes; 266 memcpy(sw->nvm->buf + offset, val, bytes); 267 268 unlock: 269 mutex_unlock(&switch_lock); 270 271 return ret; 272 } 273 274 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id, 275 size_t size, bool active) 276 { 277 struct nvmem_config config; 278 279 memset(&config, 0, sizeof(config)); 280 281 if (active) { 282 config.name = "nvm_active"; 283 config.reg_read = tb_switch_nvm_read; 284 } else { 285 config.name = "nvm_non_active"; 286 config.reg_write = tb_switch_nvm_write; 287 } 288 289 config.id = id; 290 config.stride = 4; 291 config.word_size = 4; 292 config.size = size; 293 config.dev = &sw->dev; 294 config.owner = THIS_MODULE; 295 config.root_only = true; 296 config.priv = sw; 297 298 return nvmem_register(&config); 299 } 300 301 static int tb_switch_nvm_add(struct tb_switch *sw) 302 { 303 struct nvmem_device *nvm_dev; 304 struct tb_switch_nvm *nvm; 305 u32 val; 306 int ret; 307 308 if (!sw->dma_port) 309 return 0; 310 311 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 312 if (!nvm) 313 return -ENOMEM; 314 315 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL); 316 317 /* 318 * If the switch is in safe-mode the only accessible portion of 319 * the NVM is the non-active one where userspace is expected to 320 * write new functional NVM. 321 */ 322 if (!sw->safe_mode) { 323 u32 nvm_size, hdr_size; 324 325 ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val, 326 sizeof(val)); 327 if (ret) 328 goto err_ida; 329 330 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; 331 nvm_size = (SZ_1M << (val & 7)) / 8; 332 nvm_size = (nvm_size - hdr_size) / 2; 333 334 ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val, 335 sizeof(val)); 336 if (ret) 337 goto err_ida; 338 339 nvm->major = val >> 16; 340 nvm->minor = val >> 8; 341 342 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true); 343 if (IS_ERR(nvm_dev)) { 344 ret = PTR_ERR(nvm_dev); 345 goto err_ida; 346 } 347 nvm->active = nvm_dev; 348 } 349 350 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false); 351 if (IS_ERR(nvm_dev)) { 352 ret = PTR_ERR(nvm_dev); 353 goto err_nvm_active; 354 } 355 nvm->non_active = nvm_dev; 356 357 mutex_lock(&switch_lock); 358 sw->nvm = nvm; 359 mutex_unlock(&switch_lock); 360 361 return 0; 362 363 err_nvm_active: 364 if (nvm->active) 365 nvmem_unregister(nvm->active); 366 err_ida: 367 ida_simple_remove(&nvm_ida, nvm->id); 368 kfree(nvm); 369 370 return ret; 371 } 372 373 static void tb_switch_nvm_remove(struct tb_switch *sw) 374 { 375 struct tb_switch_nvm *nvm; 376 377 mutex_lock(&switch_lock); 378 nvm = sw->nvm; 379 sw->nvm = NULL; 380 mutex_unlock(&switch_lock); 381 382 if (!nvm) 383 return; 384 385 /* Remove authentication status in case the switch is unplugged */ 386 if (!nvm->authenticating) 387 nvm_clear_auth_status(sw); 388 389 nvmem_unregister(nvm->non_active); 390 if (nvm->active) 391 nvmem_unregister(nvm->active); 392 ida_simple_remove(&nvm_ida, nvm->id); 393 vfree(nvm->buf); 394 kfree(nvm); 395 } 396 397 /* port utility functions */ 398 399 static const char *tb_port_type(struct tb_regs_port_header *port) 400 { 401 switch (port->type >> 16) { 402 case 0: 403 switch ((u8) port->type) { 404 case 0: 405 return "Inactive"; 406 case 1: 407 return "Port"; 408 case 2: 409 return "NHI"; 410 default: 411 return "unknown"; 412 } 413 case 0x2: 414 return "Ethernet"; 415 case 0x8: 416 return "SATA"; 417 case 0xe: 418 return "DP/HDMI"; 419 case 0x10: 420 return "PCIe"; 421 case 0x20: 422 return "USB"; 423 default: 424 return "unknown"; 425 } 426 } 427 428 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port) 429 { 430 tb_info(tb, 431 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 432 port->port_number, port->vendor_id, port->device_id, 433 port->revision, port->thunderbolt_version, tb_port_type(port), 434 port->type); 435 tb_info(tb, " Max hop id (in/out): %d/%d\n", 436 port->max_in_hop_id, port->max_out_hop_id); 437 tb_info(tb, " Max counters: %d\n", port->max_counters); 438 tb_info(tb, " NFC Credits: %#x\n", port->nfc_credits); 439 } 440 441 /** 442 * tb_port_state() - get connectedness state of a port 443 * 444 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 445 * 446 * Return: Returns an enum tb_port_state on success or an error code on failure. 447 */ 448 static int tb_port_state(struct tb_port *port) 449 { 450 struct tb_cap_phy phy; 451 int res; 452 if (port->cap_phy == 0) { 453 tb_port_WARN(port, "does not have a PHY\n"); 454 return -EINVAL; 455 } 456 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 457 if (res) 458 return res; 459 return phy.state; 460 } 461 462 /** 463 * tb_wait_for_port() - wait for a port to become ready 464 * 465 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 466 * wait_if_unplugged is set then we also wait if the port is in state 467 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 468 * switch resume). Otherwise we only wait if a device is registered but the link 469 * has not yet been established. 470 * 471 * Return: Returns an error code on failure. Returns 0 if the port is not 472 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 473 * if the port is connected and in state TB_PORT_UP. 474 */ 475 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 476 { 477 int retries = 10; 478 int state; 479 if (!port->cap_phy) { 480 tb_port_WARN(port, "does not have PHY\n"); 481 return -EINVAL; 482 } 483 if (tb_is_upstream_port(port)) { 484 tb_port_WARN(port, "is the upstream port\n"); 485 return -EINVAL; 486 } 487 488 while (retries--) { 489 state = tb_port_state(port); 490 if (state < 0) 491 return state; 492 if (state == TB_PORT_DISABLED) { 493 tb_port_info(port, "is disabled (state: 0)\n"); 494 return 0; 495 } 496 if (state == TB_PORT_UNPLUGGED) { 497 if (wait_if_unplugged) { 498 /* used during resume */ 499 tb_port_info(port, 500 "is unplugged (state: 7), retrying...\n"); 501 msleep(100); 502 continue; 503 } 504 tb_port_info(port, "is unplugged (state: 7)\n"); 505 return 0; 506 } 507 if (state == TB_PORT_UP) { 508 tb_port_info(port, 509 "is connected, link is up (state: 2)\n"); 510 return 1; 511 } 512 513 /* 514 * After plug-in the state is TB_PORT_CONNECTING. Give it some 515 * time. 516 */ 517 tb_port_info(port, 518 "is connected, link is not up (state: %d), retrying...\n", 519 state); 520 msleep(100); 521 } 522 tb_port_warn(port, 523 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 524 return 0; 525 } 526 527 /** 528 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 529 * 530 * Change the number of NFC credits allocated to @port by @credits. To remove 531 * NFC credits pass a negative amount of credits. 532 * 533 * Return: Returns 0 on success or an error code on failure. 534 */ 535 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 536 { 537 if (credits == 0) 538 return 0; 539 tb_port_info(port, 540 "adding %#x NFC credits (%#x -> %#x)", 541 credits, 542 port->config.nfc_credits, 543 port->config.nfc_credits + credits); 544 port->config.nfc_credits += credits; 545 return tb_port_write(port, &port->config.nfc_credits, 546 TB_CFG_PORT, 4, 1); 547 } 548 549 /** 550 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 551 * 552 * Return: Returns 0 on success or an error code on failure. 553 */ 554 int tb_port_clear_counter(struct tb_port *port, int counter) 555 { 556 u32 zero[3] = { 0, 0, 0 }; 557 tb_port_info(port, "clearing counter %d\n", counter); 558 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 559 } 560 561 /** 562 * tb_init_port() - initialize a port 563 * 564 * This is a helper method for tb_switch_alloc. Does not check or initialize 565 * any downstream switches. 566 * 567 * Return: Returns 0 on success or an error code on failure. 568 */ 569 static int tb_init_port(struct tb_port *port) 570 { 571 int res; 572 int cap; 573 574 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 575 if (res) 576 return res; 577 578 /* Port 0 is the switch itself and has no PHY. */ 579 if (port->config.type == TB_TYPE_PORT && port->port != 0) { 580 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 581 582 if (cap > 0) 583 port->cap_phy = cap; 584 else 585 tb_port_WARN(port, "non switch port without a PHY\n"); 586 } 587 588 tb_dump_port(port->sw->tb, &port->config); 589 590 /* TODO: Read dual link port, DP port and more from EEPROM. */ 591 return 0; 592 593 } 594 595 /* switch utility functions */ 596 597 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw) 598 { 599 tb_info(tb, 600 " Switch: %x:%x (Revision: %d, TB Version: %d)\n", 601 sw->vendor_id, sw->device_id, sw->revision, 602 sw->thunderbolt_version); 603 tb_info(tb, " Max Port Number: %d\n", sw->max_port_number); 604 tb_info(tb, " Config:\n"); 605 tb_info(tb, 606 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 607 sw->upstream_port_number, sw->depth, 608 (((u64) sw->route_hi) << 32) | sw->route_lo, 609 sw->enabled, sw->plug_events_delay); 610 tb_info(tb, 611 " unknown1: %#x unknown4: %#x\n", 612 sw->__unknown1, sw->__unknown4); 613 } 614 615 /** 616 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET 617 * 618 * Return: Returns 0 on success or an error code on failure. 619 */ 620 int tb_switch_reset(struct tb *tb, u64 route) 621 { 622 struct tb_cfg_result res; 623 struct tb_regs_switch_header header = { 624 header.route_hi = route >> 32, 625 header.route_lo = route, 626 header.enabled = true, 627 }; 628 tb_info(tb, "resetting switch at %llx\n", route); 629 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route, 630 0, 2, 2, 2); 631 if (res.err) 632 return res.err; 633 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT); 634 if (res.err > 0) 635 return -EIO; 636 return res.err; 637 } 638 639 struct tb_switch *get_switch_at_route(struct tb_switch *sw, u64 route) 640 { 641 u8 next_port = route; /* 642 * Routes use a stride of 8 bits, 643 * eventhough a port index has 6 bits at most. 644 * */ 645 if (route == 0) 646 return sw; 647 if (next_port > sw->config.max_port_number) 648 return NULL; 649 if (tb_is_upstream_port(&sw->ports[next_port])) 650 return NULL; 651 if (!sw->ports[next_port].remote) 652 return NULL; 653 return get_switch_at_route(sw->ports[next_port].remote->sw, 654 route >> TB_ROUTE_SHIFT); 655 } 656 657 /** 658 * tb_plug_events_active() - enable/disable plug events on a switch 659 * 660 * Also configures a sane plug_events_delay of 255ms. 661 * 662 * Return: Returns 0 on success or an error code on failure. 663 */ 664 static int tb_plug_events_active(struct tb_switch *sw, bool active) 665 { 666 u32 data; 667 int res; 668 669 if (!sw->config.enabled) 670 return 0; 671 672 sw->config.plug_events_delay = 0xff; 673 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 674 if (res) 675 return res; 676 677 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 678 if (res) 679 return res; 680 681 if (active) { 682 data = data & 0xFFFFFF83; 683 switch (sw->config.device_id) { 684 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 685 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 686 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 687 break; 688 default: 689 data |= 4; 690 } 691 } else { 692 data = data | 0x7c; 693 } 694 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 695 sw->cap_plug_events + 1, 1); 696 } 697 698 static ssize_t authorized_show(struct device *dev, 699 struct device_attribute *attr, 700 char *buf) 701 { 702 struct tb_switch *sw = tb_to_switch(dev); 703 704 return sprintf(buf, "%u\n", sw->authorized); 705 } 706 707 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 708 { 709 int ret = -EINVAL; 710 711 if (mutex_lock_interruptible(&switch_lock)) 712 return -ERESTARTSYS; 713 714 if (sw->authorized) 715 goto unlock; 716 717 switch (val) { 718 /* Approve switch */ 719 case 1: 720 if (sw->key) 721 ret = tb_domain_approve_switch_key(sw->tb, sw); 722 else 723 ret = tb_domain_approve_switch(sw->tb, sw); 724 break; 725 726 /* Challenge switch */ 727 case 2: 728 if (sw->key) 729 ret = tb_domain_challenge_switch_key(sw->tb, sw); 730 break; 731 732 default: 733 break; 734 } 735 736 if (!ret) { 737 sw->authorized = val; 738 /* Notify status change to the userspace */ 739 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 740 } 741 742 unlock: 743 mutex_unlock(&switch_lock); 744 return ret; 745 } 746 747 static ssize_t authorized_store(struct device *dev, 748 struct device_attribute *attr, 749 const char *buf, size_t count) 750 { 751 struct tb_switch *sw = tb_to_switch(dev); 752 unsigned int val; 753 ssize_t ret; 754 755 ret = kstrtouint(buf, 0, &val); 756 if (ret) 757 return ret; 758 if (val > 2) 759 return -EINVAL; 760 761 ret = tb_switch_set_authorized(sw, val); 762 763 return ret ? ret : count; 764 } 765 static DEVICE_ATTR_RW(authorized); 766 767 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 768 char *buf) 769 { 770 struct tb_switch *sw = tb_to_switch(dev); 771 772 return sprintf(buf, "%#x\n", sw->device); 773 } 774 static DEVICE_ATTR_RO(device); 775 776 static ssize_t 777 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 778 { 779 struct tb_switch *sw = tb_to_switch(dev); 780 781 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : ""); 782 } 783 static DEVICE_ATTR_RO(device_name); 784 785 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 786 char *buf) 787 { 788 struct tb_switch *sw = tb_to_switch(dev); 789 ssize_t ret; 790 791 if (mutex_lock_interruptible(&switch_lock)) 792 return -ERESTARTSYS; 793 794 if (sw->key) 795 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 796 else 797 ret = sprintf(buf, "\n"); 798 799 mutex_unlock(&switch_lock); 800 return ret; 801 } 802 803 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 804 const char *buf, size_t count) 805 { 806 struct tb_switch *sw = tb_to_switch(dev); 807 u8 key[TB_SWITCH_KEY_SIZE]; 808 ssize_t ret = count; 809 810 if (count < 64) 811 return -EINVAL; 812 813 if (hex2bin(key, buf, sizeof(key))) 814 return -EINVAL; 815 816 if (mutex_lock_interruptible(&switch_lock)) 817 return -ERESTARTSYS; 818 819 if (sw->authorized) { 820 ret = -EBUSY; 821 } else { 822 kfree(sw->key); 823 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 824 if (!sw->key) 825 ret = -ENOMEM; 826 } 827 828 mutex_unlock(&switch_lock); 829 return ret; 830 } 831 static DEVICE_ATTR_RW(key); 832 833 static ssize_t nvm_authenticate_show(struct device *dev, 834 struct device_attribute *attr, char *buf) 835 { 836 struct tb_switch *sw = tb_to_switch(dev); 837 u32 status; 838 839 nvm_get_auth_status(sw, &status); 840 return sprintf(buf, "%#x\n", status); 841 } 842 843 static ssize_t nvm_authenticate_store(struct device *dev, 844 struct device_attribute *attr, const char *buf, size_t count) 845 { 846 struct tb_switch *sw = tb_to_switch(dev); 847 bool val; 848 int ret; 849 850 if (mutex_lock_interruptible(&switch_lock)) 851 return -ERESTARTSYS; 852 853 /* If NVMem devices are not yet added */ 854 if (!sw->nvm) { 855 ret = -EAGAIN; 856 goto exit_unlock; 857 } 858 859 ret = kstrtobool(buf, &val); 860 if (ret) 861 goto exit_unlock; 862 863 /* Always clear the authentication status */ 864 nvm_clear_auth_status(sw); 865 866 if (val) { 867 ret = nvm_validate_and_write(sw); 868 if (ret) 869 goto exit_unlock; 870 871 sw->nvm->authenticating = true; 872 873 if (!tb_route(sw)) 874 ret = nvm_authenticate_host(sw); 875 else 876 ret = nvm_authenticate_device(sw); 877 } 878 879 exit_unlock: 880 mutex_unlock(&switch_lock); 881 882 if (ret) 883 return ret; 884 return count; 885 } 886 static DEVICE_ATTR_RW(nvm_authenticate); 887 888 static ssize_t nvm_version_show(struct device *dev, 889 struct device_attribute *attr, char *buf) 890 { 891 struct tb_switch *sw = tb_to_switch(dev); 892 int ret; 893 894 if (mutex_lock_interruptible(&switch_lock)) 895 return -ERESTARTSYS; 896 897 if (sw->safe_mode) 898 ret = -ENODATA; 899 else if (!sw->nvm) 900 ret = -EAGAIN; 901 else 902 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 903 904 mutex_unlock(&switch_lock); 905 906 return ret; 907 } 908 static DEVICE_ATTR_RO(nvm_version); 909 910 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 911 char *buf) 912 { 913 struct tb_switch *sw = tb_to_switch(dev); 914 915 return sprintf(buf, "%#x\n", sw->vendor); 916 } 917 static DEVICE_ATTR_RO(vendor); 918 919 static ssize_t 920 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 921 { 922 struct tb_switch *sw = tb_to_switch(dev); 923 924 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : ""); 925 } 926 static DEVICE_ATTR_RO(vendor_name); 927 928 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 929 char *buf) 930 { 931 struct tb_switch *sw = tb_to_switch(dev); 932 933 return sprintf(buf, "%pUb\n", sw->uuid); 934 } 935 static DEVICE_ATTR_RO(unique_id); 936 937 static struct attribute *switch_attrs[] = { 938 &dev_attr_authorized.attr, 939 &dev_attr_device.attr, 940 &dev_attr_device_name.attr, 941 &dev_attr_key.attr, 942 &dev_attr_nvm_authenticate.attr, 943 &dev_attr_nvm_version.attr, 944 &dev_attr_vendor.attr, 945 &dev_attr_vendor_name.attr, 946 &dev_attr_unique_id.attr, 947 NULL, 948 }; 949 950 static umode_t switch_attr_is_visible(struct kobject *kobj, 951 struct attribute *attr, int n) 952 { 953 struct device *dev = container_of(kobj, struct device, kobj); 954 struct tb_switch *sw = tb_to_switch(dev); 955 956 if (attr == &dev_attr_key.attr) { 957 if (tb_route(sw) && 958 sw->tb->security_level == TB_SECURITY_SECURE && 959 sw->security_level == TB_SECURITY_SECURE) 960 return attr->mode; 961 return 0; 962 } else if (attr == &dev_attr_nvm_authenticate.attr || 963 attr == &dev_attr_nvm_version.attr) { 964 if (sw->dma_port) 965 return attr->mode; 966 return 0; 967 } 968 969 return sw->safe_mode ? 0 : attr->mode; 970 } 971 972 static struct attribute_group switch_group = { 973 .is_visible = switch_attr_is_visible, 974 .attrs = switch_attrs, 975 }; 976 977 static const struct attribute_group *switch_groups[] = { 978 &switch_group, 979 NULL, 980 }; 981 982 static void tb_switch_release(struct device *dev) 983 { 984 struct tb_switch *sw = tb_to_switch(dev); 985 986 dma_port_free(sw->dma_port); 987 988 kfree(sw->uuid); 989 kfree(sw->device_name); 990 kfree(sw->vendor_name); 991 kfree(sw->ports); 992 kfree(sw->drom); 993 kfree(sw->key); 994 kfree(sw); 995 } 996 997 struct device_type tb_switch_type = { 998 .name = "thunderbolt_device", 999 .release = tb_switch_release, 1000 }; 1001 1002 static int tb_switch_get_generation(struct tb_switch *sw) 1003 { 1004 switch (sw->config.device_id) { 1005 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1006 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1007 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 1008 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 1009 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 1010 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1011 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 1012 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 1013 return 1; 1014 1015 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 1016 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 1017 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 1018 return 2; 1019 1020 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 1021 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 1022 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 1023 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 1024 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 1025 return 3; 1026 1027 default: 1028 /* 1029 * For unknown switches assume generation to be 1 to be 1030 * on the safe side. 1031 */ 1032 tb_sw_warn(sw, "unsupported switch device id %#x\n", 1033 sw->config.device_id); 1034 return 1; 1035 } 1036 } 1037 1038 /** 1039 * tb_switch_alloc() - allocate a switch 1040 * @tb: Pointer to the owning domain 1041 * @parent: Parent device for this switch 1042 * @route: Route string for this switch 1043 * 1044 * Allocates and initializes a switch. Will not upload configuration to 1045 * the switch. For that you need to call tb_switch_configure() 1046 * separately. The returned switch should be released by calling 1047 * tb_switch_put(). 1048 * 1049 * Return: Pointer to the allocated switch or %NULL in case of failure 1050 */ 1051 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 1052 u64 route) 1053 { 1054 int i; 1055 int cap; 1056 struct tb_switch *sw; 1057 int upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 1058 if (upstream_port < 0) 1059 return NULL; 1060 1061 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1062 if (!sw) 1063 return NULL; 1064 1065 sw->tb = tb; 1066 if (tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5)) 1067 goto err_free_sw_ports; 1068 1069 tb_info(tb, "current switch config:\n"); 1070 tb_dump_switch(tb, &sw->config); 1071 1072 /* configure switch */ 1073 sw->config.upstream_port_number = upstream_port; 1074 sw->config.depth = tb_route_length(route); 1075 sw->config.route_lo = route; 1076 sw->config.route_hi = route >> 32; 1077 sw->config.enabled = 0; 1078 1079 /* initialize ports */ 1080 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 1081 GFP_KERNEL); 1082 if (!sw->ports) 1083 goto err_free_sw_ports; 1084 1085 for (i = 0; i <= sw->config.max_port_number; i++) { 1086 /* minimum setup for tb_find_cap and tb_drom_read to work */ 1087 sw->ports[i].sw = sw; 1088 sw->ports[i].port = i; 1089 } 1090 1091 sw->generation = tb_switch_get_generation(sw); 1092 1093 cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 1094 if (cap < 0) { 1095 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 1096 goto err_free_sw_ports; 1097 } 1098 sw->cap_plug_events = cap; 1099 1100 /* Root switch is always authorized */ 1101 if (!route) 1102 sw->authorized = true; 1103 1104 device_initialize(&sw->dev); 1105 sw->dev.parent = parent; 1106 sw->dev.bus = &tb_bus_type; 1107 sw->dev.type = &tb_switch_type; 1108 sw->dev.groups = switch_groups; 1109 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1110 1111 return sw; 1112 1113 err_free_sw_ports: 1114 kfree(sw->ports); 1115 kfree(sw); 1116 1117 return NULL; 1118 } 1119 1120 /** 1121 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 1122 * @tb: Pointer to the owning domain 1123 * @parent: Parent device for this switch 1124 * @route: Route string for this switch 1125 * 1126 * This creates a switch in safe mode. This means the switch pretty much 1127 * lacks all capabilities except DMA configuration port before it is 1128 * flashed with a valid NVM firmware. 1129 * 1130 * The returned switch must be released by calling tb_switch_put(). 1131 * 1132 * Return: Pointer to the allocated switch or %NULL in case of failure 1133 */ 1134 struct tb_switch * 1135 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 1136 { 1137 struct tb_switch *sw; 1138 1139 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1140 if (!sw) 1141 return NULL; 1142 1143 sw->tb = tb; 1144 sw->config.depth = tb_route_length(route); 1145 sw->config.route_hi = upper_32_bits(route); 1146 sw->config.route_lo = lower_32_bits(route); 1147 sw->safe_mode = true; 1148 1149 device_initialize(&sw->dev); 1150 sw->dev.parent = parent; 1151 sw->dev.bus = &tb_bus_type; 1152 sw->dev.type = &tb_switch_type; 1153 sw->dev.groups = switch_groups; 1154 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1155 1156 return sw; 1157 } 1158 1159 /** 1160 * tb_switch_configure() - Uploads configuration to the switch 1161 * @sw: Switch to configure 1162 * 1163 * Call this function before the switch is added to the system. It will 1164 * upload configuration to the switch and makes it available for the 1165 * connection manager to use. 1166 * 1167 * Return: %0 in case of success and negative errno in case of failure 1168 */ 1169 int tb_switch_configure(struct tb_switch *sw) 1170 { 1171 struct tb *tb = sw->tb; 1172 u64 route; 1173 int ret; 1174 1175 route = tb_route(sw); 1176 tb_info(tb, 1177 "initializing Switch at %#llx (depth: %d, up port: %d)\n", 1178 route, tb_route_length(route), sw->config.upstream_port_number); 1179 1180 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 1181 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 1182 sw->config.vendor_id); 1183 1184 sw->config.enabled = 1; 1185 1186 /* upload configuration */ 1187 ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3); 1188 if (ret) 1189 return ret; 1190 1191 return tb_plug_events_active(sw, true); 1192 } 1193 1194 static void tb_switch_set_uuid(struct tb_switch *sw) 1195 { 1196 u32 uuid[4]; 1197 int cap; 1198 1199 if (sw->uuid) 1200 return; 1201 1202 /* 1203 * The newer controllers include fused UUID as part of link 1204 * controller specific registers 1205 */ 1206 cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 1207 if (cap > 0) { 1208 tb_sw_read(sw, uuid, TB_CFG_SWITCH, cap + 3, 4); 1209 } else { 1210 /* 1211 * ICM generates UUID based on UID and fills the upper 1212 * two words with ones. This is not strictly following 1213 * UUID format but we want to be compatible with it so 1214 * we do the same here. 1215 */ 1216 uuid[0] = sw->uid & 0xffffffff; 1217 uuid[1] = (sw->uid >> 32) & 0xffffffff; 1218 uuid[2] = 0xffffffff; 1219 uuid[3] = 0xffffffff; 1220 } 1221 1222 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 1223 } 1224 1225 static int tb_switch_add_dma_port(struct tb_switch *sw) 1226 { 1227 u32 status; 1228 int ret; 1229 1230 switch (sw->generation) { 1231 case 3: 1232 break; 1233 1234 case 2: 1235 /* Only root switch can be upgraded */ 1236 if (tb_route(sw)) 1237 return 0; 1238 break; 1239 1240 default: 1241 /* 1242 * DMA port is the only thing available when the switch 1243 * is in safe mode. 1244 */ 1245 if (!sw->safe_mode) 1246 return 0; 1247 break; 1248 } 1249 1250 if (sw->no_nvm_upgrade) 1251 return 0; 1252 1253 sw->dma_port = dma_port_alloc(sw); 1254 if (!sw->dma_port) 1255 return 0; 1256 1257 /* 1258 * Check status of the previous flash authentication. If there 1259 * is one we need to power cycle the switch in any case to make 1260 * it functional again. 1261 */ 1262 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 1263 if (ret <= 0) 1264 return ret; 1265 1266 if (status) { 1267 tb_sw_info(sw, "switch flash authentication failed\n"); 1268 tb_switch_set_uuid(sw); 1269 nvm_set_auth_status(sw, status); 1270 } 1271 1272 tb_sw_info(sw, "power cycling the switch now\n"); 1273 dma_port_power_cycle(sw->dma_port); 1274 1275 /* 1276 * We return error here which causes the switch adding failure. 1277 * It should appear back after power cycle is complete. 1278 */ 1279 return -ESHUTDOWN; 1280 } 1281 1282 /** 1283 * tb_switch_add() - Add a switch to the domain 1284 * @sw: Switch to add 1285 * 1286 * This is the last step in adding switch to the domain. It will read 1287 * identification information from DROM and initializes ports so that 1288 * they can be used to connect other switches. The switch will be 1289 * exposed to the userspace when this function successfully returns. To 1290 * remove and release the switch, call tb_switch_remove(). 1291 * 1292 * Return: %0 in case of success and negative errno in case of failure 1293 */ 1294 int tb_switch_add(struct tb_switch *sw) 1295 { 1296 int i, ret; 1297 1298 /* 1299 * Initialize DMA control port now before we read DROM. Recent 1300 * host controllers have more complete DROM on NVM that includes 1301 * vendor and model identification strings which we then expose 1302 * to the userspace. NVM can be accessed through DMA 1303 * configuration based mailbox. 1304 */ 1305 ret = tb_switch_add_dma_port(sw); 1306 if (ret) 1307 return ret; 1308 1309 if (!sw->safe_mode) { 1310 /* read drom */ 1311 ret = tb_drom_read(sw); 1312 if (ret) { 1313 tb_sw_warn(sw, "tb_eeprom_read_rom failed\n"); 1314 return ret; 1315 } 1316 tb_sw_info(sw, "uid: %#llx\n", sw->uid); 1317 1318 tb_switch_set_uuid(sw); 1319 1320 for (i = 0; i <= sw->config.max_port_number; i++) { 1321 if (sw->ports[i].disabled) { 1322 tb_port_info(&sw->ports[i], "disabled by eeprom\n"); 1323 continue; 1324 } 1325 ret = tb_init_port(&sw->ports[i]); 1326 if (ret) 1327 return ret; 1328 } 1329 } 1330 1331 ret = device_add(&sw->dev); 1332 if (ret) 1333 return ret; 1334 1335 ret = tb_switch_nvm_add(sw); 1336 if (ret) 1337 device_del(&sw->dev); 1338 1339 return ret; 1340 } 1341 1342 /** 1343 * tb_switch_remove() - Remove and release a switch 1344 * @sw: Switch to remove 1345 * 1346 * This will remove the switch from the domain and release it after last 1347 * reference count drops to zero. If there are switches connected below 1348 * this switch, they will be removed as well. 1349 */ 1350 void tb_switch_remove(struct tb_switch *sw) 1351 { 1352 int i; 1353 1354 /* port 0 is the switch itself and never has a remote */ 1355 for (i = 1; i <= sw->config.max_port_number; i++) { 1356 if (tb_is_upstream_port(&sw->ports[i])) 1357 continue; 1358 if (sw->ports[i].remote) 1359 tb_switch_remove(sw->ports[i].remote->sw); 1360 sw->ports[i].remote = NULL; 1361 } 1362 1363 if (!sw->is_unplugged) 1364 tb_plug_events_active(sw, false); 1365 1366 tb_switch_nvm_remove(sw); 1367 device_unregister(&sw->dev); 1368 } 1369 1370 /** 1371 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 1372 */ 1373 void tb_sw_set_unplugged(struct tb_switch *sw) 1374 { 1375 int i; 1376 if (sw == sw->tb->root_switch) { 1377 tb_sw_WARN(sw, "cannot unplug root switch\n"); 1378 return; 1379 } 1380 if (sw->is_unplugged) { 1381 tb_sw_WARN(sw, "is_unplugged already set\n"); 1382 return; 1383 } 1384 sw->is_unplugged = true; 1385 for (i = 0; i <= sw->config.max_port_number; i++) { 1386 if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote) 1387 tb_sw_set_unplugged(sw->ports[i].remote->sw); 1388 } 1389 } 1390 1391 int tb_switch_resume(struct tb_switch *sw) 1392 { 1393 int i, err; 1394 tb_sw_info(sw, "resuming switch\n"); 1395 1396 /* 1397 * Check for UID of the connected switches except for root 1398 * switch which we assume cannot be removed. 1399 */ 1400 if (tb_route(sw)) { 1401 u64 uid; 1402 1403 err = tb_drom_read_uid_only(sw, &uid); 1404 if (err) { 1405 tb_sw_warn(sw, "uid read failed\n"); 1406 return err; 1407 } 1408 if (sw->uid != uid) { 1409 tb_sw_info(sw, 1410 "changed while suspended (uid %#llx -> %#llx)\n", 1411 sw->uid, uid); 1412 return -ENODEV; 1413 } 1414 } 1415 1416 /* upload configuration */ 1417 err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3); 1418 if (err) 1419 return err; 1420 1421 err = tb_plug_events_active(sw, true); 1422 if (err) 1423 return err; 1424 1425 /* check for surviving downstream switches */ 1426 for (i = 1; i <= sw->config.max_port_number; i++) { 1427 struct tb_port *port = &sw->ports[i]; 1428 if (tb_is_upstream_port(port)) 1429 continue; 1430 if (!port->remote) 1431 continue; 1432 if (tb_wait_for_port(port, true) <= 0 1433 || tb_switch_resume(port->remote->sw)) { 1434 tb_port_warn(port, 1435 "lost during suspend, disconnecting\n"); 1436 tb_sw_set_unplugged(port->remote->sw); 1437 } 1438 } 1439 return 0; 1440 } 1441 1442 void tb_switch_suspend(struct tb_switch *sw) 1443 { 1444 int i, err; 1445 err = tb_plug_events_active(sw, false); 1446 if (err) 1447 return; 1448 1449 for (i = 1; i <= sw->config.max_port_number; i++) { 1450 if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote) 1451 tb_switch_suspend(sw->ports[i].remote->sw); 1452 } 1453 /* 1454 * TODO: invoke tb_cfg_prepare_to_sleep here? does not seem to have any 1455 * effect? 1456 */ 1457 } 1458 1459 struct tb_sw_lookup { 1460 struct tb *tb; 1461 u8 link; 1462 u8 depth; 1463 const uuid_be *uuid; 1464 }; 1465 1466 static int tb_switch_match(struct device *dev, void *data) 1467 { 1468 struct tb_switch *sw = tb_to_switch(dev); 1469 struct tb_sw_lookup *lookup = data; 1470 1471 if (!sw) 1472 return 0; 1473 if (sw->tb != lookup->tb) 1474 return 0; 1475 1476 if (lookup->uuid) 1477 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 1478 1479 /* Root switch is matched only by depth */ 1480 if (!lookup->depth) 1481 return !sw->depth; 1482 1483 return sw->link == lookup->link && sw->depth == lookup->depth; 1484 } 1485 1486 /** 1487 * tb_switch_find_by_link_depth() - Find switch by link and depth 1488 * @tb: Domain the switch belongs 1489 * @link: Link number the switch is connected 1490 * @depth: Depth of the switch in link 1491 * 1492 * Returned switch has reference count increased so the caller needs to 1493 * call tb_switch_put() when done with the switch. 1494 */ 1495 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 1496 { 1497 struct tb_sw_lookup lookup; 1498 struct device *dev; 1499 1500 memset(&lookup, 0, sizeof(lookup)); 1501 lookup.tb = tb; 1502 lookup.link = link; 1503 lookup.depth = depth; 1504 1505 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 1506 if (dev) 1507 return tb_to_switch(dev); 1508 1509 return NULL; 1510 } 1511 1512 /** 1513 * tb_switch_find_by_link_depth() - Find switch by UUID 1514 * @tb: Domain the switch belongs 1515 * @uuid: UUID to look for 1516 * 1517 * Returned switch has reference count increased so the caller needs to 1518 * call tb_switch_put() when done with the switch. 1519 */ 1520 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_be *uuid) 1521 { 1522 struct tb_sw_lookup lookup; 1523 struct device *dev; 1524 1525 memset(&lookup, 0, sizeof(lookup)); 1526 lookup.tb = tb; 1527 lookup.uuid = uuid; 1528 1529 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 1530 if (dev) 1531 return tb_to_switch(dev); 1532 1533 return NULL; 1534 } 1535 1536 void tb_switch_exit(void) 1537 { 1538 ida_destroy(&nvm_ida); 1539 } 1540