xref: /openbmc/linux/drivers/thunderbolt/switch.c (revision 4da722ca)
1 /*
2  * Thunderbolt Cactus Ridge driver - switch/port utility functions
3  *
4  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/idr.h>
9 #include <linux/nvmem-provider.h>
10 #include <linux/sizes.h>
11 #include <linux/slab.h>
12 #include <linux/vmalloc.h>
13 
14 #include "tb.h"
15 
16 /* Switch authorization from userspace is serialized by this lock */
17 static DEFINE_MUTEX(switch_lock);
18 
19 /* Switch NVM support */
20 
21 #define NVM_DEVID		0x05
22 #define NVM_VERSION		0x08
23 #define NVM_CSS			0x10
24 #define NVM_FLASH_SIZE		0x45
25 
26 #define NVM_MIN_SIZE		SZ_32K
27 #define NVM_MAX_SIZE		SZ_512K
28 
29 static DEFINE_IDA(nvm_ida);
30 
31 struct nvm_auth_status {
32 	struct list_head list;
33 	uuid_be uuid;
34 	u32 status;
35 };
36 
37 /*
38  * Hold NVM authentication failure status per switch This information
39  * needs to stay around even when the switch gets power cycled so we
40  * keep it separately.
41  */
42 static LIST_HEAD(nvm_auth_status_cache);
43 static DEFINE_MUTEX(nvm_auth_status_lock);
44 
45 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
46 {
47 	struct nvm_auth_status *st;
48 
49 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
50 		if (!uuid_be_cmp(st->uuid, *sw->uuid))
51 			return st;
52 	}
53 
54 	return NULL;
55 }
56 
57 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
58 {
59 	struct nvm_auth_status *st;
60 
61 	mutex_lock(&nvm_auth_status_lock);
62 	st = __nvm_get_auth_status(sw);
63 	mutex_unlock(&nvm_auth_status_lock);
64 
65 	*status = st ? st->status : 0;
66 }
67 
68 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
69 {
70 	struct nvm_auth_status *st;
71 
72 	if (WARN_ON(!sw->uuid))
73 		return;
74 
75 	mutex_lock(&nvm_auth_status_lock);
76 	st = __nvm_get_auth_status(sw);
77 
78 	if (!st) {
79 		st = kzalloc(sizeof(*st), GFP_KERNEL);
80 		if (!st)
81 			goto unlock;
82 
83 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
84 		INIT_LIST_HEAD(&st->list);
85 		list_add_tail(&st->list, &nvm_auth_status_cache);
86 	}
87 
88 	st->status = status;
89 unlock:
90 	mutex_unlock(&nvm_auth_status_lock);
91 }
92 
93 static void nvm_clear_auth_status(const struct tb_switch *sw)
94 {
95 	struct nvm_auth_status *st;
96 
97 	mutex_lock(&nvm_auth_status_lock);
98 	st = __nvm_get_auth_status(sw);
99 	if (st) {
100 		list_del(&st->list);
101 		kfree(st);
102 	}
103 	mutex_unlock(&nvm_auth_status_lock);
104 }
105 
106 static int nvm_validate_and_write(struct tb_switch *sw)
107 {
108 	unsigned int image_size, hdr_size;
109 	const u8 *buf = sw->nvm->buf;
110 	u16 ds_size;
111 	int ret;
112 
113 	if (!buf)
114 		return -EINVAL;
115 
116 	image_size = sw->nvm->buf_data_size;
117 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
118 		return -EINVAL;
119 
120 	/*
121 	 * FARB pointer must point inside the image and must at least
122 	 * contain parts of the digital section we will be reading here.
123 	 */
124 	hdr_size = (*(u32 *)buf) & 0xffffff;
125 	if (hdr_size + NVM_DEVID + 2 >= image_size)
126 		return -EINVAL;
127 
128 	/* Digital section start should be aligned to 4k page */
129 	if (!IS_ALIGNED(hdr_size, SZ_4K))
130 		return -EINVAL;
131 
132 	/*
133 	 * Read digital section size and check that it also fits inside
134 	 * the image.
135 	 */
136 	ds_size = *(u16 *)(buf + hdr_size);
137 	if (ds_size >= image_size)
138 		return -EINVAL;
139 
140 	if (!sw->safe_mode) {
141 		u16 device_id;
142 
143 		/*
144 		 * Make sure the device ID in the image matches the one
145 		 * we read from the switch config space.
146 		 */
147 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
148 		if (device_id != sw->config.device_id)
149 			return -EINVAL;
150 
151 		if (sw->generation < 3) {
152 			/* Write CSS headers first */
153 			ret = dma_port_flash_write(sw->dma_port,
154 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
155 				DMA_PORT_CSS_MAX_SIZE);
156 			if (ret)
157 				return ret;
158 		}
159 
160 		/* Skip headers in the image */
161 		buf += hdr_size;
162 		image_size -= hdr_size;
163 	}
164 
165 	return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
166 }
167 
168 static int nvm_authenticate_host(struct tb_switch *sw)
169 {
170 	int ret;
171 
172 	/*
173 	 * Root switch NVM upgrade requires that we disconnect the
174 	 * existing PCIe paths first (in case it is not in safe mode
175 	 * already).
176 	 */
177 	if (!sw->safe_mode) {
178 		ret = tb_domain_disconnect_pcie_paths(sw->tb);
179 		if (ret)
180 			return ret;
181 		/*
182 		 * The host controller goes away pretty soon after this if
183 		 * everything goes well so getting timeout is expected.
184 		 */
185 		ret = dma_port_flash_update_auth(sw->dma_port);
186 		return ret == -ETIMEDOUT ? 0 : ret;
187 	}
188 
189 	/*
190 	 * From safe mode we can get out by just power cycling the
191 	 * switch.
192 	 */
193 	dma_port_power_cycle(sw->dma_port);
194 	return 0;
195 }
196 
197 static int nvm_authenticate_device(struct tb_switch *sw)
198 {
199 	int ret, retries = 10;
200 
201 	ret = dma_port_flash_update_auth(sw->dma_port);
202 	if (ret && ret != -ETIMEDOUT)
203 		return ret;
204 
205 	/*
206 	 * Poll here for the authentication status. It takes some time
207 	 * for the device to respond (we get timeout for a while). Once
208 	 * we get response the device needs to be power cycled in order
209 	 * to the new NVM to be taken into use.
210 	 */
211 	do {
212 		u32 status;
213 
214 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
215 		if (ret < 0 && ret != -ETIMEDOUT)
216 			return ret;
217 		if (ret > 0) {
218 			if (status) {
219 				tb_sw_warn(sw, "failed to authenticate NVM\n");
220 				nvm_set_auth_status(sw, status);
221 			}
222 
223 			tb_sw_info(sw, "power cycling the switch now\n");
224 			dma_port_power_cycle(sw->dma_port);
225 			return 0;
226 		}
227 
228 		msleep(500);
229 	} while (--retries);
230 
231 	return -ETIMEDOUT;
232 }
233 
234 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
235 			      size_t bytes)
236 {
237 	struct tb_switch *sw = priv;
238 
239 	return dma_port_flash_read(sw->dma_port, offset, val, bytes);
240 }
241 
242 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
243 			       size_t bytes)
244 {
245 	struct tb_switch *sw = priv;
246 	int ret = 0;
247 
248 	if (mutex_lock_interruptible(&switch_lock))
249 		return -ERESTARTSYS;
250 
251 	/*
252 	 * Since writing the NVM image might require some special steps,
253 	 * for example when CSS headers are written, we cache the image
254 	 * locally here and handle the special cases when the user asks
255 	 * us to authenticate the image.
256 	 */
257 	if (!sw->nvm->buf) {
258 		sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
259 		if (!sw->nvm->buf) {
260 			ret = -ENOMEM;
261 			goto unlock;
262 		}
263 	}
264 
265 	sw->nvm->buf_data_size = offset + bytes;
266 	memcpy(sw->nvm->buf + offset, val, bytes);
267 
268 unlock:
269 	mutex_unlock(&switch_lock);
270 
271 	return ret;
272 }
273 
274 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
275 					   size_t size, bool active)
276 {
277 	struct nvmem_config config;
278 
279 	memset(&config, 0, sizeof(config));
280 
281 	if (active) {
282 		config.name = "nvm_active";
283 		config.reg_read = tb_switch_nvm_read;
284 	} else {
285 		config.name = "nvm_non_active";
286 		config.reg_write = tb_switch_nvm_write;
287 	}
288 
289 	config.id = id;
290 	config.stride = 4;
291 	config.word_size = 4;
292 	config.size = size;
293 	config.dev = &sw->dev;
294 	config.owner = THIS_MODULE;
295 	config.root_only = true;
296 	config.priv = sw;
297 
298 	return nvmem_register(&config);
299 }
300 
301 static int tb_switch_nvm_add(struct tb_switch *sw)
302 {
303 	struct nvmem_device *nvm_dev;
304 	struct tb_switch_nvm *nvm;
305 	u32 val;
306 	int ret;
307 
308 	if (!sw->dma_port)
309 		return 0;
310 
311 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
312 	if (!nvm)
313 		return -ENOMEM;
314 
315 	nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
316 
317 	/*
318 	 * If the switch is in safe-mode the only accessible portion of
319 	 * the NVM is the non-active one where userspace is expected to
320 	 * write new functional NVM.
321 	 */
322 	if (!sw->safe_mode) {
323 		u32 nvm_size, hdr_size;
324 
325 		ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
326 					  sizeof(val));
327 		if (ret)
328 			goto err_ida;
329 
330 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
331 		nvm_size = (SZ_1M << (val & 7)) / 8;
332 		nvm_size = (nvm_size - hdr_size) / 2;
333 
334 		ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
335 					  sizeof(val));
336 		if (ret)
337 			goto err_ida;
338 
339 		nvm->major = val >> 16;
340 		nvm->minor = val >> 8;
341 
342 		nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
343 		if (IS_ERR(nvm_dev)) {
344 			ret = PTR_ERR(nvm_dev);
345 			goto err_ida;
346 		}
347 		nvm->active = nvm_dev;
348 	}
349 
350 	nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
351 	if (IS_ERR(nvm_dev)) {
352 		ret = PTR_ERR(nvm_dev);
353 		goto err_nvm_active;
354 	}
355 	nvm->non_active = nvm_dev;
356 
357 	mutex_lock(&switch_lock);
358 	sw->nvm = nvm;
359 	mutex_unlock(&switch_lock);
360 
361 	return 0;
362 
363 err_nvm_active:
364 	if (nvm->active)
365 		nvmem_unregister(nvm->active);
366 err_ida:
367 	ida_simple_remove(&nvm_ida, nvm->id);
368 	kfree(nvm);
369 
370 	return ret;
371 }
372 
373 static void tb_switch_nvm_remove(struct tb_switch *sw)
374 {
375 	struct tb_switch_nvm *nvm;
376 
377 	mutex_lock(&switch_lock);
378 	nvm = sw->nvm;
379 	sw->nvm = NULL;
380 	mutex_unlock(&switch_lock);
381 
382 	if (!nvm)
383 		return;
384 
385 	/* Remove authentication status in case the switch is unplugged */
386 	if (!nvm->authenticating)
387 		nvm_clear_auth_status(sw);
388 
389 	nvmem_unregister(nvm->non_active);
390 	if (nvm->active)
391 		nvmem_unregister(nvm->active);
392 	ida_simple_remove(&nvm_ida, nvm->id);
393 	vfree(nvm->buf);
394 	kfree(nvm);
395 }
396 
397 /* port utility functions */
398 
399 static const char *tb_port_type(struct tb_regs_port_header *port)
400 {
401 	switch (port->type >> 16) {
402 	case 0:
403 		switch ((u8) port->type) {
404 		case 0:
405 			return "Inactive";
406 		case 1:
407 			return "Port";
408 		case 2:
409 			return "NHI";
410 		default:
411 			return "unknown";
412 		}
413 	case 0x2:
414 		return "Ethernet";
415 	case 0x8:
416 		return "SATA";
417 	case 0xe:
418 		return "DP/HDMI";
419 	case 0x10:
420 		return "PCIe";
421 	case 0x20:
422 		return "USB";
423 	default:
424 		return "unknown";
425 	}
426 }
427 
428 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
429 {
430 	tb_info(tb,
431 		" Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
432 		port->port_number, port->vendor_id, port->device_id,
433 		port->revision, port->thunderbolt_version, tb_port_type(port),
434 		port->type);
435 	tb_info(tb, "  Max hop id (in/out): %d/%d\n",
436 		port->max_in_hop_id, port->max_out_hop_id);
437 	tb_info(tb, "  Max counters: %d\n", port->max_counters);
438 	tb_info(tb, "  NFC Credits: %#x\n", port->nfc_credits);
439 }
440 
441 /**
442  * tb_port_state() - get connectedness state of a port
443  *
444  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
445  *
446  * Return: Returns an enum tb_port_state on success or an error code on failure.
447  */
448 static int tb_port_state(struct tb_port *port)
449 {
450 	struct tb_cap_phy phy;
451 	int res;
452 	if (port->cap_phy == 0) {
453 		tb_port_WARN(port, "does not have a PHY\n");
454 		return -EINVAL;
455 	}
456 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
457 	if (res)
458 		return res;
459 	return phy.state;
460 }
461 
462 /**
463  * tb_wait_for_port() - wait for a port to become ready
464  *
465  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
466  * wait_if_unplugged is set then we also wait if the port is in state
467  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
468  * switch resume). Otherwise we only wait if a device is registered but the link
469  * has not yet been established.
470  *
471  * Return: Returns an error code on failure. Returns 0 if the port is not
472  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
473  * if the port is connected and in state TB_PORT_UP.
474  */
475 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
476 {
477 	int retries = 10;
478 	int state;
479 	if (!port->cap_phy) {
480 		tb_port_WARN(port, "does not have PHY\n");
481 		return -EINVAL;
482 	}
483 	if (tb_is_upstream_port(port)) {
484 		tb_port_WARN(port, "is the upstream port\n");
485 		return -EINVAL;
486 	}
487 
488 	while (retries--) {
489 		state = tb_port_state(port);
490 		if (state < 0)
491 			return state;
492 		if (state == TB_PORT_DISABLED) {
493 			tb_port_info(port, "is disabled (state: 0)\n");
494 			return 0;
495 		}
496 		if (state == TB_PORT_UNPLUGGED) {
497 			if (wait_if_unplugged) {
498 				/* used during resume */
499 				tb_port_info(port,
500 					     "is unplugged (state: 7), retrying...\n");
501 				msleep(100);
502 				continue;
503 			}
504 			tb_port_info(port, "is unplugged (state: 7)\n");
505 			return 0;
506 		}
507 		if (state == TB_PORT_UP) {
508 			tb_port_info(port,
509 				     "is connected, link is up (state: 2)\n");
510 			return 1;
511 		}
512 
513 		/*
514 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
515 		 * time.
516 		 */
517 		tb_port_info(port,
518 			     "is connected, link is not up (state: %d), retrying...\n",
519 			     state);
520 		msleep(100);
521 	}
522 	tb_port_warn(port,
523 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
524 	return 0;
525 }
526 
527 /**
528  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
529  *
530  * Change the number of NFC credits allocated to @port by @credits. To remove
531  * NFC credits pass a negative amount of credits.
532  *
533  * Return: Returns 0 on success or an error code on failure.
534  */
535 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
536 {
537 	if (credits == 0)
538 		return 0;
539 	tb_port_info(port,
540 		     "adding %#x NFC credits (%#x -> %#x)",
541 		     credits,
542 		     port->config.nfc_credits,
543 		     port->config.nfc_credits + credits);
544 	port->config.nfc_credits += credits;
545 	return tb_port_write(port, &port->config.nfc_credits,
546 			     TB_CFG_PORT, 4, 1);
547 }
548 
549 /**
550  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
551  *
552  * Return: Returns 0 on success or an error code on failure.
553  */
554 int tb_port_clear_counter(struct tb_port *port, int counter)
555 {
556 	u32 zero[3] = { 0, 0, 0 };
557 	tb_port_info(port, "clearing counter %d\n", counter);
558 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
559 }
560 
561 /**
562  * tb_init_port() - initialize a port
563  *
564  * This is a helper method for tb_switch_alloc. Does not check or initialize
565  * any downstream switches.
566  *
567  * Return: Returns 0 on success or an error code on failure.
568  */
569 static int tb_init_port(struct tb_port *port)
570 {
571 	int res;
572 	int cap;
573 
574 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
575 	if (res)
576 		return res;
577 
578 	/* Port 0 is the switch itself and has no PHY. */
579 	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
580 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
581 
582 		if (cap > 0)
583 			port->cap_phy = cap;
584 		else
585 			tb_port_WARN(port, "non switch port without a PHY\n");
586 	}
587 
588 	tb_dump_port(port->sw->tb, &port->config);
589 
590 	/* TODO: Read dual link port, DP port and more from EEPROM. */
591 	return 0;
592 
593 }
594 
595 /* switch utility functions */
596 
597 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
598 {
599 	tb_info(tb,
600 		" Switch: %x:%x (Revision: %d, TB Version: %d)\n",
601 		sw->vendor_id, sw->device_id, sw->revision,
602 		sw->thunderbolt_version);
603 	tb_info(tb, "  Max Port Number: %d\n", sw->max_port_number);
604 	tb_info(tb, "  Config:\n");
605 	tb_info(tb,
606 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
607 		sw->upstream_port_number, sw->depth,
608 		(((u64) sw->route_hi) << 32) | sw->route_lo,
609 		sw->enabled, sw->plug_events_delay);
610 	tb_info(tb,
611 		"   unknown1: %#x unknown4: %#x\n",
612 		sw->__unknown1, sw->__unknown4);
613 }
614 
615 /**
616  * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
617  *
618  * Return: Returns 0 on success or an error code on failure.
619  */
620 int tb_switch_reset(struct tb *tb, u64 route)
621 {
622 	struct tb_cfg_result res;
623 	struct tb_regs_switch_header header = {
624 		header.route_hi = route >> 32,
625 		header.route_lo = route,
626 		header.enabled = true,
627 	};
628 	tb_info(tb, "resetting switch at %llx\n", route);
629 	res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
630 			0, 2, 2, 2);
631 	if (res.err)
632 		return res.err;
633 	res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
634 	if (res.err > 0)
635 		return -EIO;
636 	return res.err;
637 }
638 
639 struct tb_switch *get_switch_at_route(struct tb_switch *sw, u64 route)
640 {
641 	u8 next_port = route; /*
642 			       * Routes use a stride of 8 bits,
643 			       * eventhough a port index has 6 bits at most.
644 			       * */
645 	if (route == 0)
646 		return sw;
647 	if (next_port > sw->config.max_port_number)
648 		return NULL;
649 	if (tb_is_upstream_port(&sw->ports[next_port]))
650 		return NULL;
651 	if (!sw->ports[next_port].remote)
652 		return NULL;
653 	return get_switch_at_route(sw->ports[next_port].remote->sw,
654 				   route >> TB_ROUTE_SHIFT);
655 }
656 
657 /**
658  * tb_plug_events_active() - enable/disable plug events on a switch
659  *
660  * Also configures a sane plug_events_delay of 255ms.
661  *
662  * Return: Returns 0 on success or an error code on failure.
663  */
664 static int tb_plug_events_active(struct tb_switch *sw, bool active)
665 {
666 	u32 data;
667 	int res;
668 
669 	if (!sw->config.enabled)
670 		return 0;
671 
672 	sw->config.plug_events_delay = 0xff;
673 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
674 	if (res)
675 		return res;
676 
677 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
678 	if (res)
679 		return res;
680 
681 	if (active) {
682 		data = data & 0xFFFFFF83;
683 		switch (sw->config.device_id) {
684 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
685 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
686 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
687 			break;
688 		default:
689 			data |= 4;
690 		}
691 	} else {
692 		data = data | 0x7c;
693 	}
694 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
695 			   sw->cap_plug_events + 1, 1);
696 }
697 
698 static ssize_t authorized_show(struct device *dev,
699 			       struct device_attribute *attr,
700 			       char *buf)
701 {
702 	struct tb_switch *sw = tb_to_switch(dev);
703 
704 	return sprintf(buf, "%u\n", sw->authorized);
705 }
706 
707 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
708 {
709 	int ret = -EINVAL;
710 
711 	if (mutex_lock_interruptible(&switch_lock))
712 		return -ERESTARTSYS;
713 
714 	if (sw->authorized)
715 		goto unlock;
716 
717 	switch (val) {
718 	/* Approve switch */
719 	case 1:
720 		if (sw->key)
721 			ret = tb_domain_approve_switch_key(sw->tb, sw);
722 		else
723 			ret = tb_domain_approve_switch(sw->tb, sw);
724 		break;
725 
726 	/* Challenge switch */
727 	case 2:
728 		if (sw->key)
729 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
730 		break;
731 
732 	default:
733 		break;
734 	}
735 
736 	if (!ret) {
737 		sw->authorized = val;
738 		/* Notify status change to the userspace */
739 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
740 	}
741 
742 unlock:
743 	mutex_unlock(&switch_lock);
744 	return ret;
745 }
746 
747 static ssize_t authorized_store(struct device *dev,
748 				struct device_attribute *attr,
749 				const char *buf, size_t count)
750 {
751 	struct tb_switch *sw = tb_to_switch(dev);
752 	unsigned int val;
753 	ssize_t ret;
754 
755 	ret = kstrtouint(buf, 0, &val);
756 	if (ret)
757 		return ret;
758 	if (val > 2)
759 		return -EINVAL;
760 
761 	ret = tb_switch_set_authorized(sw, val);
762 
763 	return ret ? ret : count;
764 }
765 static DEVICE_ATTR_RW(authorized);
766 
767 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
768 			   char *buf)
769 {
770 	struct tb_switch *sw = tb_to_switch(dev);
771 
772 	return sprintf(buf, "%#x\n", sw->device);
773 }
774 static DEVICE_ATTR_RO(device);
775 
776 static ssize_t
777 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
778 {
779 	struct tb_switch *sw = tb_to_switch(dev);
780 
781 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
782 }
783 static DEVICE_ATTR_RO(device_name);
784 
785 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
786 			char *buf)
787 {
788 	struct tb_switch *sw = tb_to_switch(dev);
789 	ssize_t ret;
790 
791 	if (mutex_lock_interruptible(&switch_lock))
792 		return -ERESTARTSYS;
793 
794 	if (sw->key)
795 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
796 	else
797 		ret = sprintf(buf, "\n");
798 
799 	mutex_unlock(&switch_lock);
800 	return ret;
801 }
802 
803 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
804 			 const char *buf, size_t count)
805 {
806 	struct tb_switch *sw = tb_to_switch(dev);
807 	u8 key[TB_SWITCH_KEY_SIZE];
808 	ssize_t ret = count;
809 
810 	if (count < 64)
811 		return -EINVAL;
812 
813 	if (hex2bin(key, buf, sizeof(key)))
814 		return -EINVAL;
815 
816 	if (mutex_lock_interruptible(&switch_lock))
817 		return -ERESTARTSYS;
818 
819 	if (sw->authorized) {
820 		ret = -EBUSY;
821 	} else {
822 		kfree(sw->key);
823 		sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
824 		if (!sw->key)
825 			ret = -ENOMEM;
826 	}
827 
828 	mutex_unlock(&switch_lock);
829 	return ret;
830 }
831 static DEVICE_ATTR_RW(key);
832 
833 static ssize_t nvm_authenticate_show(struct device *dev,
834 	struct device_attribute *attr, char *buf)
835 {
836 	struct tb_switch *sw = tb_to_switch(dev);
837 	u32 status;
838 
839 	nvm_get_auth_status(sw, &status);
840 	return sprintf(buf, "%#x\n", status);
841 }
842 
843 static ssize_t nvm_authenticate_store(struct device *dev,
844 	struct device_attribute *attr, const char *buf, size_t count)
845 {
846 	struct tb_switch *sw = tb_to_switch(dev);
847 	bool val;
848 	int ret;
849 
850 	if (mutex_lock_interruptible(&switch_lock))
851 		return -ERESTARTSYS;
852 
853 	/* If NVMem devices are not yet added */
854 	if (!sw->nvm) {
855 		ret = -EAGAIN;
856 		goto exit_unlock;
857 	}
858 
859 	ret = kstrtobool(buf, &val);
860 	if (ret)
861 		goto exit_unlock;
862 
863 	/* Always clear the authentication status */
864 	nvm_clear_auth_status(sw);
865 
866 	if (val) {
867 		ret = nvm_validate_and_write(sw);
868 		if (ret)
869 			goto exit_unlock;
870 
871 		sw->nvm->authenticating = true;
872 
873 		if (!tb_route(sw))
874 			ret = nvm_authenticate_host(sw);
875 		else
876 			ret = nvm_authenticate_device(sw);
877 	}
878 
879 exit_unlock:
880 	mutex_unlock(&switch_lock);
881 
882 	if (ret)
883 		return ret;
884 	return count;
885 }
886 static DEVICE_ATTR_RW(nvm_authenticate);
887 
888 static ssize_t nvm_version_show(struct device *dev,
889 				struct device_attribute *attr, char *buf)
890 {
891 	struct tb_switch *sw = tb_to_switch(dev);
892 	int ret;
893 
894 	if (mutex_lock_interruptible(&switch_lock))
895 		return -ERESTARTSYS;
896 
897 	if (sw->safe_mode)
898 		ret = -ENODATA;
899 	else if (!sw->nvm)
900 		ret = -EAGAIN;
901 	else
902 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
903 
904 	mutex_unlock(&switch_lock);
905 
906 	return ret;
907 }
908 static DEVICE_ATTR_RO(nvm_version);
909 
910 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
911 			   char *buf)
912 {
913 	struct tb_switch *sw = tb_to_switch(dev);
914 
915 	return sprintf(buf, "%#x\n", sw->vendor);
916 }
917 static DEVICE_ATTR_RO(vendor);
918 
919 static ssize_t
920 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
921 {
922 	struct tb_switch *sw = tb_to_switch(dev);
923 
924 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
925 }
926 static DEVICE_ATTR_RO(vendor_name);
927 
928 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
929 			      char *buf)
930 {
931 	struct tb_switch *sw = tb_to_switch(dev);
932 
933 	return sprintf(buf, "%pUb\n", sw->uuid);
934 }
935 static DEVICE_ATTR_RO(unique_id);
936 
937 static struct attribute *switch_attrs[] = {
938 	&dev_attr_authorized.attr,
939 	&dev_attr_device.attr,
940 	&dev_attr_device_name.attr,
941 	&dev_attr_key.attr,
942 	&dev_attr_nvm_authenticate.attr,
943 	&dev_attr_nvm_version.attr,
944 	&dev_attr_vendor.attr,
945 	&dev_attr_vendor_name.attr,
946 	&dev_attr_unique_id.attr,
947 	NULL,
948 };
949 
950 static umode_t switch_attr_is_visible(struct kobject *kobj,
951 				      struct attribute *attr, int n)
952 {
953 	struct device *dev = container_of(kobj, struct device, kobj);
954 	struct tb_switch *sw = tb_to_switch(dev);
955 
956 	if (attr == &dev_attr_key.attr) {
957 		if (tb_route(sw) &&
958 		    sw->tb->security_level == TB_SECURITY_SECURE &&
959 		    sw->security_level == TB_SECURITY_SECURE)
960 			return attr->mode;
961 		return 0;
962 	} else if (attr == &dev_attr_nvm_authenticate.attr ||
963 		   attr == &dev_attr_nvm_version.attr) {
964 		if (sw->dma_port)
965 			return attr->mode;
966 		return 0;
967 	}
968 
969 	return sw->safe_mode ? 0 : attr->mode;
970 }
971 
972 static struct attribute_group switch_group = {
973 	.is_visible = switch_attr_is_visible,
974 	.attrs = switch_attrs,
975 };
976 
977 static const struct attribute_group *switch_groups[] = {
978 	&switch_group,
979 	NULL,
980 };
981 
982 static void tb_switch_release(struct device *dev)
983 {
984 	struct tb_switch *sw = tb_to_switch(dev);
985 
986 	dma_port_free(sw->dma_port);
987 
988 	kfree(sw->uuid);
989 	kfree(sw->device_name);
990 	kfree(sw->vendor_name);
991 	kfree(sw->ports);
992 	kfree(sw->drom);
993 	kfree(sw->key);
994 	kfree(sw);
995 }
996 
997 struct device_type tb_switch_type = {
998 	.name = "thunderbolt_device",
999 	.release = tb_switch_release,
1000 };
1001 
1002 static int tb_switch_get_generation(struct tb_switch *sw)
1003 {
1004 	switch (sw->config.device_id) {
1005 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1006 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1007 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1008 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1009 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1010 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1011 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1012 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1013 		return 1;
1014 
1015 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1016 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1017 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1018 		return 2;
1019 
1020 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1021 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1022 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1023 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1024 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1025 		return 3;
1026 
1027 	default:
1028 		/*
1029 		 * For unknown switches assume generation to be 1 to be
1030 		 * on the safe side.
1031 		 */
1032 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
1033 			   sw->config.device_id);
1034 		return 1;
1035 	}
1036 }
1037 
1038 /**
1039  * tb_switch_alloc() - allocate a switch
1040  * @tb: Pointer to the owning domain
1041  * @parent: Parent device for this switch
1042  * @route: Route string for this switch
1043  *
1044  * Allocates and initializes a switch. Will not upload configuration to
1045  * the switch. For that you need to call tb_switch_configure()
1046  * separately. The returned switch should be released by calling
1047  * tb_switch_put().
1048  *
1049  * Return: Pointer to the allocated switch or %NULL in case of failure
1050  */
1051 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1052 				  u64 route)
1053 {
1054 	int i;
1055 	int cap;
1056 	struct tb_switch *sw;
1057 	int upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1058 	if (upstream_port < 0)
1059 		return NULL;
1060 
1061 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1062 	if (!sw)
1063 		return NULL;
1064 
1065 	sw->tb = tb;
1066 	if (tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5))
1067 		goto err_free_sw_ports;
1068 
1069 	tb_info(tb, "current switch config:\n");
1070 	tb_dump_switch(tb, &sw->config);
1071 
1072 	/* configure switch */
1073 	sw->config.upstream_port_number = upstream_port;
1074 	sw->config.depth = tb_route_length(route);
1075 	sw->config.route_lo = route;
1076 	sw->config.route_hi = route >> 32;
1077 	sw->config.enabled = 0;
1078 
1079 	/* initialize ports */
1080 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1081 				GFP_KERNEL);
1082 	if (!sw->ports)
1083 		goto err_free_sw_ports;
1084 
1085 	for (i = 0; i <= sw->config.max_port_number; i++) {
1086 		/* minimum setup for tb_find_cap and tb_drom_read to work */
1087 		sw->ports[i].sw = sw;
1088 		sw->ports[i].port = i;
1089 	}
1090 
1091 	sw->generation = tb_switch_get_generation(sw);
1092 
1093 	cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1094 	if (cap < 0) {
1095 		tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1096 		goto err_free_sw_ports;
1097 	}
1098 	sw->cap_plug_events = cap;
1099 
1100 	/* Root switch is always authorized */
1101 	if (!route)
1102 		sw->authorized = true;
1103 
1104 	device_initialize(&sw->dev);
1105 	sw->dev.parent = parent;
1106 	sw->dev.bus = &tb_bus_type;
1107 	sw->dev.type = &tb_switch_type;
1108 	sw->dev.groups = switch_groups;
1109 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1110 
1111 	return sw;
1112 
1113 err_free_sw_ports:
1114 	kfree(sw->ports);
1115 	kfree(sw);
1116 
1117 	return NULL;
1118 }
1119 
1120 /**
1121  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1122  * @tb: Pointer to the owning domain
1123  * @parent: Parent device for this switch
1124  * @route: Route string for this switch
1125  *
1126  * This creates a switch in safe mode. This means the switch pretty much
1127  * lacks all capabilities except DMA configuration port before it is
1128  * flashed with a valid NVM firmware.
1129  *
1130  * The returned switch must be released by calling tb_switch_put().
1131  *
1132  * Return: Pointer to the allocated switch or %NULL in case of failure
1133  */
1134 struct tb_switch *
1135 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1136 {
1137 	struct tb_switch *sw;
1138 
1139 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1140 	if (!sw)
1141 		return NULL;
1142 
1143 	sw->tb = tb;
1144 	sw->config.depth = tb_route_length(route);
1145 	sw->config.route_hi = upper_32_bits(route);
1146 	sw->config.route_lo = lower_32_bits(route);
1147 	sw->safe_mode = true;
1148 
1149 	device_initialize(&sw->dev);
1150 	sw->dev.parent = parent;
1151 	sw->dev.bus = &tb_bus_type;
1152 	sw->dev.type = &tb_switch_type;
1153 	sw->dev.groups = switch_groups;
1154 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1155 
1156 	return sw;
1157 }
1158 
1159 /**
1160  * tb_switch_configure() - Uploads configuration to the switch
1161  * @sw: Switch to configure
1162  *
1163  * Call this function before the switch is added to the system. It will
1164  * upload configuration to the switch and makes it available for the
1165  * connection manager to use.
1166  *
1167  * Return: %0 in case of success and negative errno in case of failure
1168  */
1169 int tb_switch_configure(struct tb_switch *sw)
1170 {
1171 	struct tb *tb = sw->tb;
1172 	u64 route;
1173 	int ret;
1174 
1175 	route = tb_route(sw);
1176 	tb_info(tb,
1177 		"initializing Switch at %#llx (depth: %d, up port: %d)\n",
1178 		route, tb_route_length(route), sw->config.upstream_port_number);
1179 
1180 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
1181 		tb_sw_warn(sw, "unknown switch vendor id %#x\n",
1182 			   sw->config.vendor_id);
1183 
1184 	sw->config.enabled = 1;
1185 
1186 	/* upload configuration */
1187 	ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
1188 	if (ret)
1189 		return ret;
1190 
1191 	return tb_plug_events_active(sw, true);
1192 }
1193 
1194 static void tb_switch_set_uuid(struct tb_switch *sw)
1195 {
1196 	u32 uuid[4];
1197 	int cap;
1198 
1199 	if (sw->uuid)
1200 		return;
1201 
1202 	/*
1203 	 * The newer controllers include fused UUID as part of link
1204 	 * controller specific registers
1205 	 */
1206 	cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1207 	if (cap > 0) {
1208 		tb_sw_read(sw, uuid, TB_CFG_SWITCH, cap + 3, 4);
1209 	} else {
1210 		/*
1211 		 * ICM generates UUID based on UID and fills the upper
1212 		 * two words with ones. This is not strictly following
1213 		 * UUID format but we want to be compatible with it so
1214 		 * we do the same here.
1215 		 */
1216 		uuid[0] = sw->uid & 0xffffffff;
1217 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
1218 		uuid[2] = 0xffffffff;
1219 		uuid[3] = 0xffffffff;
1220 	}
1221 
1222 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1223 }
1224 
1225 static int tb_switch_add_dma_port(struct tb_switch *sw)
1226 {
1227 	u32 status;
1228 	int ret;
1229 
1230 	switch (sw->generation) {
1231 	case 3:
1232 		break;
1233 
1234 	case 2:
1235 		/* Only root switch can be upgraded */
1236 		if (tb_route(sw))
1237 			return 0;
1238 		break;
1239 
1240 	default:
1241 		/*
1242 		 * DMA port is the only thing available when the switch
1243 		 * is in safe mode.
1244 		 */
1245 		if (!sw->safe_mode)
1246 			return 0;
1247 		break;
1248 	}
1249 
1250 	if (sw->no_nvm_upgrade)
1251 		return 0;
1252 
1253 	sw->dma_port = dma_port_alloc(sw);
1254 	if (!sw->dma_port)
1255 		return 0;
1256 
1257 	/*
1258 	 * Check status of the previous flash authentication. If there
1259 	 * is one we need to power cycle the switch in any case to make
1260 	 * it functional again.
1261 	 */
1262 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
1263 	if (ret <= 0)
1264 		return ret;
1265 
1266 	if (status) {
1267 		tb_sw_info(sw, "switch flash authentication failed\n");
1268 		tb_switch_set_uuid(sw);
1269 		nvm_set_auth_status(sw, status);
1270 	}
1271 
1272 	tb_sw_info(sw, "power cycling the switch now\n");
1273 	dma_port_power_cycle(sw->dma_port);
1274 
1275 	/*
1276 	 * We return error here which causes the switch adding failure.
1277 	 * It should appear back after power cycle is complete.
1278 	 */
1279 	return -ESHUTDOWN;
1280 }
1281 
1282 /**
1283  * tb_switch_add() - Add a switch to the domain
1284  * @sw: Switch to add
1285  *
1286  * This is the last step in adding switch to the domain. It will read
1287  * identification information from DROM and initializes ports so that
1288  * they can be used to connect other switches. The switch will be
1289  * exposed to the userspace when this function successfully returns. To
1290  * remove and release the switch, call tb_switch_remove().
1291  *
1292  * Return: %0 in case of success and negative errno in case of failure
1293  */
1294 int tb_switch_add(struct tb_switch *sw)
1295 {
1296 	int i, ret;
1297 
1298 	/*
1299 	 * Initialize DMA control port now before we read DROM. Recent
1300 	 * host controllers have more complete DROM on NVM that includes
1301 	 * vendor and model identification strings which we then expose
1302 	 * to the userspace. NVM can be accessed through DMA
1303 	 * configuration based mailbox.
1304 	 */
1305 	ret = tb_switch_add_dma_port(sw);
1306 	if (ret)
1307 		return ret;
1308 
1309 	if (!sw->safe_mode) {
1310 		/* read drom */
1311 		ret = tb_drom_read(sw);
1312 		if (ret) {
1313 			tb_sw_warn(sw, "tb_eeprom_read_rom failed\n");
1314 			return ret;
1315 		}
1316 		tb_sw_info(sw, "uid: %#llx\n", sw->uid);
1317 
1318 		tb_switch_set_uuid(sw);
1319 
1320 		for (i = 0; i <= sw->config.max_port_number; i++) {
1321 			if (sw->ports[i].disabled) {
1322 				tb_port_info(&sw->ports[i], "disabled by eeprom\n");
1323 				continue;
1324 			}
1325 			ret = tb_init_port(&sw->ports[i]);
1326 			if (ret)
1327 				return ret;
1328 		}
1329 	}
1330 
1331 	ret = device_add(&sw->dev);
1332 	if (ret)
1333 		return ret;
1334 
1335 	ret = tb_switch_nvm_add(sw);
1336 	if (ret)
1337 		device_del(&sw->dev);
1338 
1339 	return ret;
1340 }
1341 
1342 /**
1343  * tb_switch_remove() - Remove and release a switch
1344  * @sw: Switch to remove
1345  *
1346  * This will remove the switch from the domain and release it after last
1347  * reference count drops to zero. If there are switches connected below
1348  * this switch, they will be removed as well.
1349  */
1350 void tb_switch_remove(struct tb_switch *sw)
1351 {
1352 	int i;
1353 
1354 	/* port 0 is the switch itself and never has a remote */
1355 	for (i = 1; i <= sw->config.max_port_number; i++) {
1356 		if (tb_is_upstream_port(&sw->ports[i]))
1357 			continue;
1358 		if (sw->ports[i].remote)
1359 			tb_switch_remove(sw->ports[i].remote->sw);
1360 		sw->ports[i].remote = NULL;
1361 	}
1362 
1363 	if (!sw->is_unplugged)
1364 		tb_plug_events_active(sw, false);
1365 
1366 	tb_switch_nvm_remove(sw);
1367 	device_unregister(&sw->dev);
1368 }
1369 
1370 /**
1371  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
1372  */
1373 void tb_sw_set_unplugged(struct tb_switch *sw)
1374 {
1375 	int i;
1376 	if (sw == sw->tb->root_switch) {
1377 		tb_sw_WARN(sw, "cannot unplug root switch\n");
1378 		return;
1379 	}
1380 	if (sw->is_unplugged) {
1381 		tb_sw_WARN(sw, "is_unplugged already set\n");
1382 		return;
1383 	}
1384 	sw->is_unplugged = true;
1385 	for (i = 0; i <= sw->config.max_port_number; i++) {
1386 		if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote)
1387 			tb_sw_set_unplugged(sw->ports[i].remote->sw);
1388 	}
1389 }
1390 
1391 int tb_switch_resume(struct tb_switch *sw)
1392 {
1393 	int i, err;
1394 	tb_sw_info(sw, "resuming switch\n");
1395 
1396 	/*
1397 	 * Check for UID of the connected switches except for root
1398 	 * switch which we assume cannot be removed.
1399 	 */
1400 	if (tb_route(sw)) {
1401 		u64 uid;
1402 
1403 		err = tb_drom_read_uid_only(sw, &uid);
1404 		if (err) {
1405 			tb_sw_warn(sw, "uid read failed\n");
1406 			return err;
1407 		}
1408 		if (sw->uid != uid) {
1409 			tb_sw_info(sw,
1410 				"changed while suspended (uid %#llx -> %#llx)\n",
1411 				sw->uid, uid);
1412 			return -ENODEV;
1413 		}
1414 	}
1415 
1416 	/* upload configuration */
1417 	err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
1418 	if (err)
1419 		return err;
1420 
1421 	err = tb_plug_events_active(sw, true);
1422 	if (err)
1423 		return err;
1424 
1425 	/* check for surviving downstream switches */
1426 	for (i = 1; i <= sw->config.max_port_number; i++) {
1427 		struct tb_port *port = &sw->ports[i];
1428 		if (tb_is_upstream_port(port))
1429 			continue;
1430 		if (!port->remote)
1431 			continue;
1432 		if (tb_wait_for_port(port, true) <= 0
1433 			|| tb_switch_resume(port->remote->sw)) {
1434 			tb_port_warn(port,
1435 				     "lost during suspend, disconnecting\n");
1436 			tb_sw_set_unplugged(port->remote->sw);
1437 		}
1438 	}
1439 	return 0;
1440 }
1441 
1442 void tb_switch_suspend(struct tb_switch *sw)
1443 {
1444 	int i, err;
1445 	err = tb_plug_events_active(sw, false);
1446 	if (err)
1447 		return;
1448 
1449 	for (i = 1; i <= sw->config.max_port_number; i++) {
1450 		if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote)
1451 			tb_switch_suspend(sw->ports[i].remote->sw);
1452 	}
1453 	/*
1454 	 * TODO: invoke tb_cfg_prepare_to_sleep here? does not seem to have any
1455 	 * effect?
1456 	 */
1457 }
1458 
1459 struct tb_sw_lookup {
1460 	struct tb *tb;
1461 	u8 link;
1462 	u8 depth;
1463 	const uuid_be *uuid;
1464 };
1465 
1466 static int tb_switch_match(struct device *dev, void *data)
1467 {
1468 	struct tb_switch *sw = tb_to_switch(dev);
1469 	struct tb_sw_lookup *lookup = data;
1470 
1471 	if (!sw)
1472 		return 0;
1473 	if (sw->tb != lookup->tb)
1474 		return 0;
1475 
1476 	if (lookup->uuid)
1477 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
1478 
1479 	/* Root switch is matched only by depth */
1480 	if (!lookup->depth)
1481 		return !sw->depth;
1482 
1483 	return sw->link == lookup->link && sw->depth == lookup->depth;
1484 }
1485 
1486 /**
1487  * tb_switch_find_by_link_depth() - Find switch by link and depth
1488  * @tb: Domain the switch belongs
1489  * @link: Link number the switch is connected
1490  * @depth: Depth of the switch in link
1491  *
1492  * Returned switch has reference count increased so the caller needs to
1493  * call tb_switch_put() when done with the switch.
1494  */
1495 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
1496 {
1497 	struct tb_sw_lookup lookup;
1498 	struct device *dev;
1499 
1500 	memset(&lookup, 0, sizeof(lookup));
1501 	lookup.tb = tb;
1502 	lookup.link = link;
1503 	lookup.depth = depth;
1504 
1505 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1506 	if (dev)
1507 		return tb_to_switch(dev);
1508 
1509 	return NULL;
1510 }
1511 
1512 /**
1513  * tb_switch_find_by_link_depth() - Find switch by UUID
1514  * @tb: Domain the switch belongs
1515  * @uuid: UUID to look for
1516  *
1517  * Returned switch has reference count increased so the caller needs to
1518  * call tb_switch_put() when done with the switch.
1519  */
1520 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_be *uuid)
1521 {
1522 	struct tb_sw_lookup lookup;
1523 	struct device *dev;
1524 
1525 	memset(&lookup, 0, sizeof(lookup));
1526 	lookup.tb = tb;
1527 	lookup.uuid = uuid;
1528 
1529 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
1530 	if (dev)
1531 		return tb_to_switch(dev);
1532 
1533 	return NULL;
1534 }
1535 
1536 void tb_switch_exit(void)
1537 {
1538 	ida_destroy(&nvm_ida);
1539 }
1540