1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - switch/port utility functions 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2018, Intel Corporation 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/idr.h> 11 #include <linux/nvmem-provider.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 #include <linux/vmalloc.h> 17 18 #include "tb.h" 19 20 /* Switch NVM support */ 21 22 #define NVM_DEVID 0x05 23 #define NVM_VERSION 0x08 24 #define NVM_CSS 0x10 25 #define NVM_FLASH_SIZE 0x45 26 27 #define NVM_MIN_SIZE SZ_32K 28 #define NVM_MAX_SIZE SZ_512K 29 30 static DEFINE_IDA(nvm_ida); 31 32 struct nvm_auth_status { 33 struct list_head list; 34 uuid_t uuid; 35 u32 status; 36 }; 37 38 /* 39 * Hold NVM authentication failure status per switch This information 40 * needs to stay around even when the switch gets power cycled so we 41 * keep it separately. 42 */ 43 static LIST_HEAD(nvm_auth_status_cache); 44 static DEFINE_MUTEX(nvm_auth_status_lock); 45 46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) 47 { 48 struct nvm_auth_status *st; 49 50 list_for_each_entry(st, &nvm_auth_status_cache, list) { 51 if (uuid_equal(&st->uuid, sw->uuid)) 52 return st; 53 } 54 55 return NULL; 56 } 57 58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) 59 { 60 struct nvm_auth_status *st; 61 62 mutex_lock(&nvm_auth_status_lock); 63 st = __nvm_get_auth_status(sw); 64 mutex_unlock(&nvm_auth_status_lock); 65 66 *status = st ? st->status : 0; 67 } 68 69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) 70 { 71 struct nvm_auth_status *st; 72 73 if (WARN_ON(!sw->uuid)) 74 return; 75 76 mutex_lock(&nvm_auth_status_lock); 77 st = __nvm_get_auth_status(sw); 78 79 if (!st) { 80 st = kzalloc(sizeof(*st), GFP_KERNEL); 81 if (!st) 82 goto unlock; 83 84 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); 85 INIT_LIST_HEAD(&st->list); 86 list_add_tail(&st->list, &nvm_auth_status_cache); 87 } 88 89 st->status = status; 90 unlock: 91 mutex_unlock(&nvm_auth_status_lock); 92 } 93 94 static void nvm_clear_auth_status(const struct tb_switch *sw) 95 { 96 struct nvm_auth_status *st; 97 98 mutex_lock(&nvm_auth_status_lock); 99 st = __nvm_get_auth_status(sw); 100 if (st) { 101 list_del(&st->list); 102 kfree(st); 103 } 104 mutex_unlock(&nvm_auth_status_lock); 105 } 106 107 static int nvm_validate_and_write(struct tb_switch *sw) 108 { 109 unsigned int image_size, hdr_size; 110 const u8 *buf = sw->nvm->buf; 111 u16 ds_size; 112 int ret; 113 114 if (!buf) 115 return -EINVAL; 116 117 image_size = sw->nvm->buf_data_size; 118 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) 119 return -EINVAL; 120 121 /* 122 * FARB pointer must point inside the image and must at least 123 * contain parts of the digital section we will be reading here. 124 */ 125 hdr_size = (*(u32 *)buf) & 0xffffff; 126 if (hdr_size + NVM_DEVID + 2 >= image_size) 127 return -EINVAL; 128 129 /* Digital section start should be aligned to 4k page */ 130 if (!IS_ALIGNED(hdr_size, SZ_4K)) 131 return -EINVAL; 132 133 /* 134 * Read digital section size and check that it also fits inside 135 * the image. 136 */ 137 ds_size = *(u16 *)(buf + hdr_size); 138 if (ds_size >= image_size) 139 return -EINVAL; 140 141 if (!sw->safe_mode) { 142 u16 device_id; 143 144 /* 145 * Make sure the device ID in the image matches the one 146 * we read from the switch config space. 147 */ 148 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID); 149 if (device_id != sw->config.device_id) 150 return -EINVAL; 151 152 if (sw->generation < 3) { 153 /* Write CSS headers first */ 154 ret = dma_port_flash_write(sw->dma_port, 155 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS, 156 DMA_PORT_CSS_MAX_SIZE); 157 if (ret) 158 return ret; 159 } 160 161 /* Skip headers in the image */ 162 buf += hdr_size; 163 image_size -= hdr_size; 164 } 165 166 return dma_port_flash_write(sw->dma_port, 0, buf, image_size); 167 } 168 169 static int nvm_authenticate_host(struct tb_switch *sw) 170 { 171 int ret; 172 173 /* 174 * Root switch NVM upgrade requires that we disconnect the 175 * existing paths first (in case it is not in safe mode 176 * already). 177 */ 178 if (!sw->safe_mode) { 179 ret = tb_domain_disconnect_all_paths(sw->tb); 180 if (ret) 181 return ret; 182 /* 183 * The host controller goes away pretty soon after this if 184 * everything goes well so getting timeout is expected. 185 */ 186 ret = dma_port_flash_update_auth(sw->dma_port); 187 return ret == -ETIMEDOUT ? 0 : ret; 188 } 189 190 /* 191 * From safe mode we can get out by just power cycling the 192 * switch. 193 */ 194 dma_port_power_cycle(sw->dma_port); 195 return 0; 196 } 197 198 static int nvm_authenticate_device(struct tb_switch *sw) 199 { 200 int ret, retries = 10; 201 202 ret = dma_port_flash_update_auth(sw->dma_port); 203 if (ret && ret != -ETIMEDOUT) 204 return ret; 205 206 /* 207 * Poll here for the authentication status. It takes some time 208 * for the device to respond (we get timeout for a while). Once 209 * we get response the device needs to be power cycled in order 210 * to the new NVM to be taken into use. 211 */ 212 do { 213 u32 status; 214 215 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 216 if (ret < 0 && ret != -ETIMEDOUT) 217 return ret; 218 if (ret > 0) { 219 if (status) { 220 tb_sw_warn(sw, "failed to authenticate NVM\n"); 221 nvm_set_auth_status(sw, status); 222 } 223 224 tb_sw_info(sw, "power cycling the switch now\n"); 225 dma_port_power_cycle(sw->dma_port); 226 return 0; 227 } 228 229 msleep(500); 230 } while (--retries); 231 232 return -ETIMEDOUT; 233 } 234 235 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val, 236 size_t bytes) 237 { 238 struct tb_switch *sw = priv; 239 int ret; 240 241 pm_runtime_get_sync(&sw->dev); 242 ret = dma_port_flash_read(sw->dma_port, offset, val, bytes); 243 pm_runtime_mark_last_busy(&sw->dev); 244 pm_runtime_put_autosuspend(&sw->dev); 245 246 return ret; 247 } 248 249 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val, 250 size_t bytes) 251 { 252 struct tb_switch *sw = priv; 253 int ret = 0; 254 255 if (!mutex_trylock(&sw->tb->lock)) 256 return restart_syscall(); 257 258 /* 259 * Since writing the NVM image might require some special steps, 260 * for example when CSS headers are written, we cache the image 261 * locally here and handle the special cases when the user asks 262 * us to authenticate the image. 263 */ 264 if (!sw->nvm->buf) { 265 sw->nvm->buf = vmalloc(NVM_MAX_SIZE); 266 if (!sw->nvm->buf) { 267 ret = -ENOMEM; 268 goto unlock; 269 } 270 } 271 272 sw->nvm->buf_data_size = offset + bytes; 273 memcpy(sw->nvm->buf + offset, val, bytes); 274 275 unlock: 276 mutex_unlock(&sw->tb->lock); 277 278 return ret; 279 } 280 281 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id, 282 size_t size, bool active) 283 { 284 struct nvmem_config config; 285 286 memset(&config, 0, sizeof(config)); 287 288 if (active) { 289 config.name = "nvm_active"; 290 config.reg_read = tb_switch_nvm_read; 291 config.read_only = true; 292 } else { 293 config.name = "nvm_non_active"; 294 config.reg_write = tb_switch_nvm_write; 295 config.root_only = true; 296 } 297 298 config.id = id; 299 config.stride = 4; 300 config.word_size = 4; 301 config.size = size; 302 config.dev = &sw->dev; 303 config.owner = THIS_MODULE; 304 config.priv = sw; 305 306 return nvmem_register(&config); 307 } 308 309 static int tb_switch_nvm_add(struct tb_switch *sw) 310 { 311 struct nvmem_device *nvm_dev; 312 struct tb_switch_nvm *nvm; 313 u32 val; 314 int ret; 315 316 if (!sw->dma_port) 317 return 0; 318 319 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 320 if (!nvm) 321 return -ENOMEM; 322 323 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL); 324 325 /* 326 * If the switch is in safe-mode the only accessible portion of 327 * the NVM is the non-active one where userspace is expected to 328 * write new functional NVM. 329 */ 330 if (!sw->safe_mode) { 331 u32 nvm_size, hdr_size; 332 333 ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val, 334 sizeof(val)); 335 if (ret) 336 goto err_ida; 337 338 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; 339 nvm_size = (SZ_1M << (val & 7)) / 8; 340 nvm_size = (nvm_size - hdr_size) / 2; 341 342 ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val, 343 sizeof(val)); 344 if (ret) 345 goto err_ida; 346 347 nvm->major = val >> 16; 348 nvm->minor = val >> 8; 349 350 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true); 351 if (IS_ERR(nvm_dev)) { 352 ret = PTR_ERR(nvm_dev); 353 goto err_ida; 354 } 355 nvm->active = nvm_dev; 356 } 357 358 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false); 359 if (IS_ERR(nvm_dev)) { 360 ret = PTR_ERR(nvm_dev); 361 goto err_nvm_active; 362 } 363 nvm->non_active = nvm_dev; 364 365 sw->nvm = nvm; 366 return 0; 367 368 err_nvm_active: 369 if (nvm->active) 370 nvmem_unregister(nvm->active); 371 err_ida: 372 ida_simple_remove(&nvm_ida, nvm->id); 373 kfree(nvm); 374 375 return ret; 376 } 377 378 static void tb_switch_nvm_remove(struct tb_switch *sw) 379 { 380 struct tb_switch_nvm *nvm; 381 382 nvm = sw->nvm; 383 sw->nvm = NULL; 384 385 if (!nvm) 386 return; 387 388 /* Remove authentication status in case the switch is unplugged */ 389 if (!nvm->authenticating) 390 nvm_clear_auth_status(sw); 391 392 nvmem_unregister(nvm->non_active); 393 if (nvm->active) 394 nvmem_unregister(nvm->active); 395 ida_simple_remove(&nvm_ida, nvm->id); 396 vfree(nvm->buf); 397 kfree(nvm); 398 } 399 400 /* port utility functions */ 401 402 static const char *tb_port_type(struct tb_regs_port_header *port) 403 { 404 switch (port->type >> 16) { 405 case 0: 406 switch ((u8) port->type) { 407 case 0: 408 return "Inactive"; 409 case 1: 410 return "Port"; 411 case 2: 412 return "NHI"; 413 default: 414 return "unknown"; 415 } 416 case 0x2: 417 return "Ethernet"; 418 case 0x8: 419 return "SATA"; 420 case 0xe: 421 return "DP/HDMI"; 422 case 0x10: 423 return "PCIe"; 424 case 0x20: 425 return "USB"; 426 default: 427 return "unknown"; 428 } 429 } 430 431 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port) 432 { 433 tb_dbg(tb, 434 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", 435 port->port_number, port->vendor_id, port->device_id, 436 port->revision, port->thunderbolt_version, tb_port_type(port), 437 port->type); 438 tb_dbg(tb, " Max hop id (in/out): %d/%d\n", 439 port->max_in_hop_id, port->max_out_hop_id); 440 tb_dbg(tb, " Max counters: %d\n", port->max_counters); 441 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits); 442 } 443 444 /** 445 * tb_port_state() - get connectedness state of a port 446 * 447 * The port must have a TB_CAP_PHY (i.e. it should be a real port). 448 * 449 * Return: Returns an enum tb_port_state on success or an error code on failure. 450 */ 451 static int tb_port_state(struct tb_port *port) 452 { 453 struct tb_cap_phy phy; 454 int res; 455 if (port->cap_phy == 0) { 456 tb_port_WARN(port, "does not have a PHY\n"); 457 return -EINVAL; 458 } 459 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); 460 if (res) 461 return res; 462 return phy.state; 463 } 464 465 /** 466 * tb_wait_for_port() - wait for a port to become ready 467 * 468 * Wait up to 1 second for a port to reach state TB_PORT_UP. If 469 * wait_if_unplugged is set then we also wait if the port is in state 470 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after 471 * switch resume). Otherwise we only wait if a device is registered but the link 472 * has not yet been established. 473 * 474 * Return: Returns an error code on failure. Returns 0 if the port is not 475 * connected or failed to reach state TB_PORT_UP within one second. Returns 1 476 * if the port is connected and in state TB_PORT_UP. 477 */ 478 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) 479 { 480 int retries = 10; 481 int state; 482 if (!port->cap_phy) { 483 tb_port_WARN(port, "does not have PHY\n"); 484 return -EINVAL; 485 } 486 if (tb_is_upstream_port(port)) { 487 tb_port_WARN(port, "is the upstream port\n"); 488 return -EINVAL; 489 } 490 491 while (retries--) { 492 state = tb_port_state(port); 493 if (state < 0) 494 return state; 495 if (state == TB_PORT_DISABLED) { 496 tb_port_dbg(port, "is disabled (state: 0)\n"); 497 return 0; 498 } 499 if (state == TB_PORT_UNPLUGGED) { 500 if (wait_if_unplugged) { 501 /* used during resume */ 502 tb_port_dbg(port, 503 "is unplugged (state: 7), retrying...\n"); 504 msleep(100); 505 continue; 506 } 507 tb_port_dbg(port, "is unplugged (state: 7)\n"); 508 return 0; 509 } 510 if (state == TB_PORT_UP) { 511 tb_port_dbg(port, "is connected, link is up (state: 2)\n"); 512 return 1; 513 } 514 515 /* 516 * After plug-in the state is TB_PORT_CONNECTING. Give it some 517 * time. 518 */ 519 tb_port_dbg(port, 520 "is connected, link is not up (state: %d), retrying...\n", 521 state); 522 msleep(100); 523 } 524 tb_port_warn(port, 525 "failed to reach state TB_PORT_UP. Ignoring port...\n"); 526 return 0; 527 } 528 529 /** 530 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port 531 * 532 * Change the number of NFC credits allocated to @port by @credits. To remove 533 * NFC credits pass a negative amount of credits. 534 * 535 * Return: Returns 0 on success or an error code on failure. 536 */ 537 int tb_port_add_nfc_credits(struct tb_port *port, int credits) 538 { 539 u32 nfc_credits; 540 541 if (credits == 0 || port->sw->is_unplugged) 542 return 0; 543 544 nfc_credits = port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK; 545 nfc_credits += credits; 546 547 tb_port_dbg(port, "adding %d NFC credits to %lu", 548 credits, port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK); 549 550 port->config.nfc_credits &= ~TB_PORT_NFC_CREDITS_MASK; 551 port->config.nfc_credits |= nfc_credits; 552 553 return tb_port_write(port, &port->config.nfc_credits, 554 TB_CFG_PORT, 4, 1); 555 } 556 557 /** 558 * tb_port_set_initial_credits() - Set initial port link credits allocated 559 * @port: Port to set the initial credits 560 * @credits: Number of credits to to allocate 561 * 562 * Set initial credits value to be used for ingress shared buffering. 563 */ 564 int tb_port_set_initial_credits(struct tb_port *port, u32 credits) 565 { 566 u32 data; 567 int ret; 568 569 ret = tb_port_read(port, &data, TB_CFG_PORT, 5, 1); 570 if (ret) 571 return ret; 572 573 data &= ~TB_PORT_LCA_MASK; 574 data |= (credits << TB_PORT_LCA_SHIFT) & TB_PORT_LCA_MASK; 575 576 return tb_port_write(port, &data, TB_CFG_PORT, 5, 1); 577 } 578 579 /** 580 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER 581 * 582 * Return: Returns 0 on success or an error code on failure. 583 */ 584 int tb_port_clear_counter(struct tb_port *port, int counter) 585 { 586 u32 zero[3] = { 0, 0, 0 }; 587 tb_port_dbg(port, "clearing counter %d\n", counter); 588 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); 589 } 590 591 /** 592 * tb_init_port() - initialize a port 593 * 594 * This is a helper method for tb_switch_alloc. Does not check or initialize 595 * any downstream switches. 596 * 597 * Return: Returns 0 on success or an error code on failure. 598 */ 599 static int tb_init_port(struct tb_port *port) 600 { 601 int res; 602 int cap; 603 604 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); 605 if (res) 606 return res; 607 608 /* Port 0 is the switch itself and has no PHY. */ 609 if (port->config.type == TB_TYPE_PORT && port->port != 0) { 610 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); 611 612 if (cap > 0) 613 port->cap_phy = cap; 614 else 615 tb_port_WARN(port, "non switch port without a PHY\n"); 616 } else if (port->port != 0) { 617 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP); 618 if (cap > 0) 619 port->cap_adap = cap; 620 } 621 622 tb_dump_port(port->sw->tb, &port->config); 623 624 /* Control port does not need HopID allocation */ 625 if (port->port) { 626 ida_init(&port->in_hopids); 627 ida_init(&port->out_hopids); 628 } 629 630 return 0; 631 632 } 633 634 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid, 635 int max_hopid) 636 { 637 int port_max_hopid; 638 struct ida *ida; 639 640 if (in) { 641 port_max_hopid = port->config.max_in_hop_id; 642 ida = &port->in_hopids; 643 } else { 644 port_max_hopid = port->config.max_out_hop_id; 645 ida = &port->out_hopids; 646 } 647 648 /* HopIDs 0-7 are reserved */ 649 if (min_hopid < TB_PATH_MIN_HOPID) 650 min_hopid = TB_PATH_MIN_HOPID; 651 652 if (max_hopid < 0 || max_hopid > port_max_hopid) 653 max_hopid = port_max_hopid; 654 655 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL); 656 } 657 658 /** 659 * tb_port_alloc_in_hopid() - Allocate input HopID from port 660 * @port: Port to allocate HopID for 661 * @min_hopid: Minimum acceptable input HopID 662 * @max_hopid: Maximum acceptable input HopID 663 * 664 * Return: HopID between @min_hopid and @max_hopid or negative errno in 665 * case of error. 666 */ 667 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid) 668 { 669 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid); 670 } 671 672 /** 673 * tb_port_alloc_out_hopid() - Allocate output HopID from port 674 * @port: Port to allocate HopID for 675 * @min_hopid: Minimum acceptable output HopID 676 * @max_hopid: Maximum acceptable output HopID 677 * 678 * Return: HopID between @min_hopid and @max_hopid or negative errno in 679 * case of error. 680 */ 681 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid) 682 { 683 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid); 684 } 685 686 /** 687 * tb_port_release_in_hopid() - Release allocated input HopID from port 688 * @port: Port whose HopID to release 689 * @hopid: HopID to release 690 */ 691 void tb_port_release_in_hopid(struct tb_port *port, int hopid) 692 { 693 ida_simple_remove(&port->in_hopids, hopid); 694 } 695 696 /** 697 * tb_port_release_out_hopid() - Release allocated output HopID from port 698 * @port: Port whose HopID to release 699 * @hopid: HopID to release 700 */ 701 void tb_port_release_out_hopid(struct tb_port *port, int hopid) 702 { 703 ida_simple_remove(&port->out_hopids, hopid); 704 } 705 706 /** 707 * tb_next_port_on_path() - Return next port for given port on a path 708 * @start: Start port of the walk 709 * @end: End port of the walk 710 * @prev: Previous port (%NULL if this is the first) 711 * 712 * This function can be used to walk from one port to another if they 713 * are connected through zero or more switches. If the @prev is dual 714 * link port, the function follows that link and returns another end on 715 * that same link. 716 * 717 * If the @end port has been reached, return %NULL. 718 * 719 * Domain tb->lock must be held when this function is called. 720 */ 721 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end, 722 struct tb_port *prev) 723 { 724 struct tb_port *next; 725 726 if (!prev) 727 return start; 728 729 if (prev->sw == end->sw) { 730 if (prev == end) 731 return NULL; 732 return end; 733 } 734 735 if (start->sw->config.depth < end->sw->config.depth) { 736 if (prev->remote && 737 prev->remote->sw->config.depth > prev->sw->config.depth) 738 next = prev->remote; 739 else 740 next = tb_port_at(tb_route(end->sw), prev->sw); 741 } else { 742 if (tb_is_upstream_port(prev)) { 743 next = prev->remote; 744 } else { 745 next = tb_upstream_port(prev->sw); 746 /* 747 * Keep the same link if prev and next are both 748 * dual link ports. 749 */ 750 if (next->dual_link_port && 751 next->link_nr != prev->link_nr) { 752 next = next->dual_link_port; 753 } 754 } 755 } 756 757 return next; 758 } 759 760 /** 761 * tb_port_is_enabled() - Is the adapter port enabled 762 * @port: Port to check 763 */ 764 bool tb_port_is_enabled(struct tb_port *port) 765 { 766 switch (port->config.type) { 767 case TB_TYPE_PCIE_UP: 768 case TB_TYPE_PCIE_DOWN: 769 return tb_pci_port_is_enabled(port); 770 771 case TB_TYPE_DP_HDMI_IN: 772 case TB_TYPE_DP_HDMI_OUT: 773 return tb_dp_port_is_enabled(port); 774 775 default: 776 return false; 777 } 778 } 779 780 /** 781 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled 782 * @port: PCIe port to check 783 */ 784 bool tb_pci_port_is_enabled(struct tb_port *port) 785 { 786 u32 data; 787 788 if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1)) 789 return false; 790 791 return !!(data & TB_PCI_EN); 792 } 793 794 /** 795 * tb_pci_port_enable() - Enable PCIe adapter port 796 * @port: PCIe port to enable 797 * @enable: Enable/disable the PCIe adapter 798 */ 799 int tb_pci_port_enable(struct tb_port *port, bool enable) 800 { 801 u32 word = enable ? TB_PCI_EN : 0x0; 802 if (!port->cap_adap) 803 return -ENXIO; 804 return tb_port_write(port, &word, TB_CFG_PORT, port->cap_adap, 1); 805 } 806 807 /** 808 * tb_dp_port_hpd_is_active() - Is HPD already active 809 * @port: DP out port to check 810 * 811 * Checks if the DP OUT adapter port has HDP bit already set. 812 */ 813 int tb_dp_port_hpd_is_active(struct tb_port *port) 814 { 815 u32 data; 816 int ret; 817 818 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 2, 1); 819 if (ret) 820 return ret; 821 822 return !!(data & TB_DP_HDP); 823 } 824 825 /** 826 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port 827 * @port: Port to clear HPD 828 * 829 * If the DP IN port has HDP set, this function can be used to clear it. 830 */ 831 int tb_dp_port_hpd_clear(struct tb_port *port) 832 { 833 u32 data; 834 int ret; 835 836 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1); 837 if (ret) 838 return ret; 839 840 data |= TB_DP_HPDC; 841 return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1); 842 } 843 844 /** 845 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port 846 * @port: DP IN/OUT port to set hops 847 * @video: Video Hop ID 848 * @aux_tx: AUX TX Hop ID 849 * @aux_rx: AUX RX Hop ID 850 * 851 * Programs specified Hop IDs for DP IN/OUT port. 852 */ 853 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video, 854 unsigned int aux_tx, unsigned int aux_rx) 855 { 856 u32 data[2]; 857 int ret; 858 859 ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap, 860 ARRAY_SIZE(data)); 861 if (ret) 862 return ret; 863 864 data[0] &= ~TB_DP_VIDEO_HOPID_MASK; 865 data[1] &= ~(TB_DP_AUX_RX_HOPID_MASK | TB_DP_AUX_TX_HOPID_MASK); 866 867 data[0] |= (video << TB_DP_VIDEO_HOPID_SHIFT) & TB_DP_VIDEO_HOPID_MASK; 868 data[1] |= aux_tx & TB_DP_AUX_TX_HOPID_MASK; 869 data[1] |= (aux_rx << TB_DP_AUX_RX_HOPID_SHIFT) & TB_DP_AUX_RX_HOPID_MASK; 870 871 return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap, 872 ARRAY_SIZE(data)); 873 } 874 875 /** 876 * tb_dp_port_is_enabled() - Is DP adapter port enabled 877 * @port: DP adapter port to check 878 */ 879 bool tb_dp_port_is_enabled(struct tb_port *port) 880 { 881 u32 data; 882 883 if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1)) 884 return false; 885 886 return !!(data & (TB_DP_VIDEO_EN | TB_DP_AUX_EN)); 887 } 888 889 /** 890 * tb_dp_port_enable() - Enables/disables DP paths of a port 891 * @port: DP IN/OUT port 892 * @enable: Enable/disable DP path 893 * 894 * Once Hop IDs are programmed DP paths can be enabled or disabled by 895 * calling this function. 896 */ 897 int tb_dp_port_enable(struct tb_port *port, bool enable) 898 { 899 u32 data; 900 int ret; 901 902 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1); 903 if (ret) 904 return ret; 905 906 if (enable) 907 data |= TB_DP_VIDEO_EN | TB_DP_AUX_EN; 908 else 909 data &= ~(TB_DP_VIDEO_EN | TB_DP_AUX_EN); 910 911 return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap, 1); 912 } 913 914 /* switch utility functions */ 915 916 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw) 917 { 918 tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n", 919 sw->vendor_id, sw->device_id, sw->revision, 920 sw->thunderbolt_version); 921 tb_dbg(tb, " Max Port Number: %d\n", sw->max_port_number); 922 tb_dbg(tb, " Config:\n"); 923 tb_dbg(tb, 924 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", 925 sw->upstream_port_number, sw->depth, 926 (((u64) sw->route_hi) << 32) | sw->route_lo, 927 sw->enabled, sw->plug_events_delay); 928 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n", 929 sw->__unknown1, sw->__unknown4); 930 } 931 932 /** 933 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET 934 * 935 * Return: Returns 0 on success or an error code on failure. 936 */ 937 int tb_switch_reset(struct tb *tb, u64 route) 938 { 939 struct tb_cfg_result res; 940 struct tb_regs_switch_header header = { 941 header.route_hi = route >> 32, 942 header.route_lo = route, 943 header.enabled = true, 944 }; 945 tb_dbg(tb, "resetting switch at %llx\n", route); 946 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route, 947 0, 2, 2, 2); 948 if (res.err) 949 return res.err; 950 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT); 951 if (res.err > 0) 952 return -EIO; 953 return res.err; 954 } 955 956 /** 957 * tb_plug_events_active() - enable/disable plug events on a switch 958 * 959 * Also configures a sane plug_events_delay of 255ms. 960 * 961 * Return: Returns 0 on success or an error code on failure. 962 */ 963 static int tb_plug_events_active(struct tb_switch *sw, bool active) 964 { 965 u32 data; 966 int res; 967 968 if (!sw->config.enabled) 969 return 0; 970 971 sw->config.plug_events_delay = 0xff; 972 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); 973 if (res) 974 return res; 975 976 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); 977 if (res) 978 return res; 979 980 if (active) { 981 data = data & 0xFFFFFF83; 982 switch (sw->config.device_id) { 983 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 984 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 985 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 986 break; 987 default: 988 data |= 4; 989 } 990 } else { 991 data = data | 0x7c; 992 } 993 return tb_sw_write(sw, &data, TB_CFG_SWITCH, 994 sw->cap_plug_events + 1, 1); 995 } 996 997 static ssize_t authorized_show(struct device *dev, 998 struct device_attribute *attr, 999 char *buf) 1000 { 1001 struct tb_switch *sw = tb_to_switch(dev); 1002 1003 return sprintf(buf, "%u\n", sw->authorized); 1004 } 1005 1006 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) 1007 { 1008 int ret = -EINVAL; 1009 1010 if (!mutex_trylock(&sw->tb->lock)) 1011 return restart_syscall(); 1012 1013 if (sw->authorized) 1014 goto unlock; 1015 1016 /* 1017 * Make sure there is no PCIe rescan ongoing when a new PCIe 1018 * tunnel is created. Otherwise the PCIe rescan code might find 1019 * the new tunnel too early. 1020 */ 1021 pci_lock_rescan_remove(); 1022 pm_runtime_get_sync(&sw->dev); 1023 1024 switch (val) { 1025 /* Approve switch */ 1026 case 1: 1027 if (sw->key) 1028 ret = tb_domain_approve_switch_key(sw->tb, sw); 1029 else 1030 ret = tb_domain_approve_switch(sw->tb, sw); 1031 break; 1032 1033 /* Challenge switch */ 1034 case 2: 1035 if (sw->key) 1036 ret = tb_domain_challenge_switch_key(sw->tb, sw); 1037 break; 1038 1039 default: 1040 break; 1041 } 1042 1043 pm_runtime_mark_last_busy(&sw->dev); 1044 pm_runtime_put_autosuspend(&sw->dev); 1045 pci_unlock_rescan_remove(); 1046 1047 if (!ret) { 1048 sw->authorized = val; 1049 /* Notify status change to the userspace */ 1050 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); 1051 } 1052 1053 unlock: 1054 mutex_unlock(&sw->tb->lock); 1055 return ret; 1056 } 1057 1058 static ssize_t authorized_store(struct device *dev, 1059 struct device_attribute *attr, 1060 const char *buf, size_t count) 1061 { 1062 struct tb_switch *sw = tb_to_switch(dev); 1063 unsigned int val; 1064 ssize_t ret; 1065 1066 ret = kstrtouint(buf, 0, &val); 1067 if (ret) 1068 return ret; 1069 if (val > 2) 1070 return -EINVAL; 1071 1072 ret = tb_switch_set_authorized(sw, val); 1073 1074 return ret ? ret : count; 1075 } 1076 static DEVICE_ATTR_RW(authorized); 1077 1078 static ssize_t boot_show(struct device *dev, struct device_attribute *attr, 1079 char *buf) 1080 { 1081 struct tb_switch *sw = tb_to_switch(dev); 1082 1083 return sprintf(buf, "%u\n", sw->boot); 1084 } 1085 static DEVICE_ATTR_RO(boot); 1086 1087 static ssize_t device_show(struct device *dev, struct device_attribute *attr, 1088 char *buf) 1089 { 1090 struct tb_switch *sw = tb_to_switch(dev); 1091 1092 return sprintf(buf, "%#x\n", sw->device); 1093 } 1094 static DEVICE_ATTR_RO(device); 1095 1096 static ssize_t 1097 device_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1098 { 1099 struct tb_switch *sw = tb_to_switch(dev); 1100 1101 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : ""); 1102 } 1103 static DEVICE_ATTR_RO(device_name); 1104 1105 static ssize_t key_show(struct device *dev, struct device_attribute *attr, 1106 char *buf) 1107 { 1108 struct tb_switch *sw = tb_to_switch(dev); 1109 ssize_t ret; 1110 1111 if (!mutex_trylock(&sw->tb->lock)) 1112 return restart_syscall(); 1113 1114 if (sw->key) 1115 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); 1116 else 1117 ret = sprintf(buf, "\n"); 1118 1119 mutex_unlock(&sw->tb->lock); 1120 return ret; 1121 } 1122 1123 static ssize_t key_store(struct device *dev, struct device_attribute *attr, 1124 const char *buf, size_t count) 1125 { 1126 struct tb_switch *sw = tb_to_switch(dev); 1127 u8 key[TB_SWITCH_KEY_SIZE]; 1128 ssize_t ret = count; 1129 bool clear = false; 1130 1131 if (!strcmp(buf, "\n")) 1132 clear = true; 1133 else if (hex2bin(key, buf, sizeof(key))) 1134 return -EINVAL; 1135 1136 if (!mutex_trylock(&sw->tb->lock)) 1137 return restart_syscall(); 1138 1139 if (sw->authorized) { 1140 ret = -EBUSY; 1141 } else { 1142 kfree(sw->key); 1143 if (clear) { 1144 sw->key = NULL; 1145 } else { 1146 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); 1147 if (!sw->key) 1148 ret = -ENOMEM; 1149 } 1150 } 1151 1152 mutex_unlock(&sw->tb->lock); 1153 return ret; 1154 } 1155 static DEVICE_ATTR(key, 0600, key_show, key_store); 1156 1157 static void nvm_authenticate_start(struct tb_switch *sw) 1158 { 1159 struct pci_dev *root_port; 1160 1161 /* 1162 * During host router NVM upgrade we should not allow root port to 1163 * go into D3cold because some root ports cannot trigger PME 1164 * itself. To be on the safe side keep the root port in D0 during 1165 * the whole upgrade process. 1166 */ 1167 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev); 1168 if (root_port) 1169 pm_runtime_get_noresume(&root_port->dev); 1170 } 1171 1172 static void nvm_authenticate_complete(struct tb_switch *sw) 1173 { 1174 struct pci_dev *root_port; 1175 1176 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev); 1177 if (root_port) 1178 pm_runtime_put(&root_port->dev); 1179 } 1180 1181 static ssize_t nvm_authenticate_show(struct device *dev, 1182 struct device_attribute *attr, char *buf) 1183 { 1184 struct tb_switch *sw = tb_to_switch(dev); 1185 u32 status; 1186 1187 nvm_get_auth_status(sw, &status); 1188 return sprintf(buf, "%#x\n", status); 1189 } 1190 1191 static ssize_t nvm_authenticate_store(struct device *dev, 1192 struct device_attribute *attr, const char *buf, size_t count) 1193 { 1194 struct tb_switch *sw = tb_to_switch(dev); 1195 bool val; 1196 int ret; 1197 1198 if (!mutex_trylock(&sw->tb->lock)) 1199 return restart_syscall(); 1200 1201 /* If NVMem devices are not yet added */ 1202 if (!sw->nvm) { 1203 ret = -EAGAIN; 1204 goto exit_unlock; 1205 } 1206 1207 ret = kstrtobool(buf, &val); 1208 if (ret) 1209 goto exit_unlock; 1210 1211 /* Always clear the authentication status */ 1212 nvm_clear_auth_status(sw); 1213 1214 if (val) { 1215 if (!sw->nvm->buf) { 1216 ret = -EINVAL; 1217 goto exit_unlock; 1218 } 1219 1220 pm_runtime_get_sync(&sw->dev); 1221 ret = nvm_validate_and_write(sw); 1222 if (ret) { 1223 pm_runtime_mark_last_busy(&sw->dev); 1224 pm_runtime_put_autosuspend(&sw->dev); 1225 goto exit_unlock; 1226 } 1227 1228 sw->nvm->authenticating = true; 1229 1230 if (!tb_route(sw)) { 1231 /* 1232 * Keep root port from suspending as long as the 1233 * NVM upgrade process is running. 1234 */ 1235 nvm_authenticate_start(sw); 1236 ret = nvm_authenticate_host(sw); 1237 if (ret) 1238 nvm_authenticate_complete(sw); 1239 } else { 1240 ret = nvm_authenticate_device(sw); 1241 } 1242 pm_runtime_mark_last_busy(&sw->dev); 1243 pm_runtime_put_autosuspend(&sw->dev); 1244 } 1245 1246 exit_unlock: 1247 mutex_unlock(&sw->tb->lock); 1248 1249 if (ret) 1250 return ret; 1251 return count; 1252 } 1253 static DEVICE_ATTR_RW(nvm_authenticate); 1254 1255 static ssize_t nvm_version_show(struct device *dev, 1256 struct device_attribute *attr, char *buf) 1257 { 1258 struct tb_switch *sw = tb_to_switch(dev); 1259 int ret; 1260 1261 if (!mutex_trylock(&sw->tb->lock)) 1262 return restart_syscall(); 1263 1264 if (sw->safe_mode) 1265 ret = -ENODATA; 1266 else if (!sw->nvm) 1267 ret = -EAGAIN; 1268 else 1269 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); 1270 1271 mutex_unlock(&sw->tb->lock); 1272 1273 return ret; 1274 } 1275 static DEVICE_ATTR_RO(nvm_version); 1276 1277 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, 1278 char *buf) 1279 { 1280 struct tb_switch *sw = tb_to_switch(dev); 1281 1282 return sprintf(buf, "%#x\n", sw->vendor); 1283 } 1284 static DEVICE_ATTR_RO(vendor); 1285 1286 static ssize_t 1287 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) 1288 { 1289 struct tb_switch *sw = tb_to_switch(dev); 1290 1291 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : ""); 1292 } 1293 static DEVICE_ATTR_RO(vendor_name); 1294 1295 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, 1296 char *buf) 1297 { 1298 struct tb_switch *sw = tb_to_switch(dev); 1299 1300 return sprintf(buf, "%pUb\n", sw->uuid); 1301 } 1302 static DEVICE_ATTR_RO(unique_id); 1303 1304 static struct attribute *switch_attrs[] = { 1305 &dev_attr_authorized.attr, 1306 &dev_attr_boot.attr, 1307 &dev_attr_device.attr, 1308 &dev_attr_device_name.attr, 1309 &dev_attr_key.attr, 1310 &dev_attr_nvm_authenticate.attr, 1311 &dev_attr_nvm_version.attr, 1312 &dev_attr_vendor.attr, 1313 &dev_attr_vendor_name.attr, 1314 &dev_attr_unique_id.attr, 1315 NULL, 1316 }; 1317 1318 static umode_t switch_attr_is_visible(struct kobject *kobj, 1319 struct attribute *attr, int n) 1320 { 1321 struct device *dev = container_of(kobj, struct device, kobj); 1322 struct tb_switch *sw = tb_to_switch(dev); 1323 1324 if (attr == &dev_attr_key.attr) { 1325 if (tb_route(sw) && 1326 sw->tb->security_level == TB_SECURITY_SECURE && 1327 sw->security_level == TB_SECURITY_SECURE) 1328 return attr->mode; 1329 return 0; 1330 } else if (attr == &dev_attr_nvm_authenticate.attr || 1331 attr == &dev_attr_nvm_version.attr) { 1332 if (sw->dma_port) 1333 return attr->mode; 1334 return 0; 1335 } else if (attr == &dev_attr_boot.attr) { 1336 if (tb_route(sw)) 1337 return attr->mode; 1338 return 0; 1339 } 1340 1341 return sw->safe_mode ? 0 : attr->mode; 1342 } 1343 1344 static struct attribute_group switch_group = { 1345 .is_visible = switch_attr_is_visible, 1346 .attrs = switch_attrs, 1347 }; 1348 1349 static const struct attribute_group *switch_groups[] = { 1350 &switch_group, 1351 NULL, 1352 }; 1353 1354 static void tb_switch_release(struct device *dev) 1355 { 1356 struct tb_switch *sw = tb_to_switch(dev); 1357 int i; 1358 1359 dma_port_free(sw->dma_port); 1360 1361 for (i = 1; i <= sw->config.max_port_number; i++) { 1362 if (!sw->ports[i].disabled) { 1363 ida_destroy(&sw->ports[i].in_hopids); 1364 ida_destroy(&sw->ports[i].out_hopids); 1365 } 1366 } 1367 1368 kfree(sw->uuid); 1369 kfree(sw->device_name); 1370 kfree(sw->vendor_name); 1371 kfree(sw->ports); 1372 kfree(sw->drom); 1373 kfree(sw->key); 1374 kfree(sw); 1375 } 1376 1377 /* 1378 * Currently only need to provide the callbacks. Everything else is handled 1379 * in the connection manager. 1380 */ 1381 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev) 1382 { 1383 return 0; 1384 } 1385 1386 static int __maybe_unused tb_switch_runtime_resume(struct device *dev) 1387 { 1388 return 0; 1389 } 1390 1391 static const struct dev_pm_ops tb_switch_pm_ops = { 1392 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume, 1393 NULL) 1394 }; 1395 1396 struct device_type tb_switch_type = { 1397 .name = "thunderbolt_device", 1398 .release = tb_switch_release, 1399 .pm = &tb_switch_pm_ops, 1400 }; 1401 1402 static int tb_switch_get_generation(struct tb_switch *sw) 1403 { 1404 switch (sw->config.device_id) { 1405 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: 1406 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: 1407 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: 1408 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: 1409 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: 1410 case PCI_DEVICE_ID_INTEL_PORT_RIDGE: 1411 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: 1412 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: 1413 return 1; 1414 1415 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: 1416 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: 1417 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: 1418 return 2; 1419 1420 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: 1421 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: 1422 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: 1423 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: 1424 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: 1425 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: 1426 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: 1427 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: 1428 return 3; 1429 1430 default: 1431 /* 1432 * For unknown switches assume generation to be 1 to be 1433 * on the safe side. 1434 */ 1435 tb_sw_warn(sw, "unsupported switch device id %#x\n", 1436 sw->config.device_id); 1437 return 1; 1438 } 1439 } 1440 1441 /** 1442 * tb_switch_alloc() - allocate a switch 1443 * @tb: Pointer to the owning domain 1444 * @parent: Parent device for this switch 1445 * @route: Route string for this switch 1446 * 1447 * Allocates and initializes a switch. Will not upload configuration to 1448 * the switch. For that you need to call tb_switch_configure() 1449 * separately. The returned switch should be released by calling 1450 * tb_switch_put(). 1451 * 1452 * Return: Pointer to the allocated switch or ERR_PTR() in case of 1453 * failure. 1454 */ 1455 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, 1456 u64 route) 1457 { 1458 struct tb_switch *sw; 1459 int upstream_port; 1460 int i, ret, depth; 1461 1462 /* Make sure we do not exceed maximum topology limit */ 1463 depth = tb_route_length(route); 1464 if (depth > TB_SWITCH_MAX_DEPTH) 1465 return ERR_PTR(-EADDRNOTAVAIL); 1466 1467 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); 1468 if (upstream_port < 0) 1469 return ERR_PTR(upstream_port); 1470 1471 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1472 if (!sw) 1473 return ERR_PTR(-ENOMEM); 1474 1475 sw->tb = tb; 1476 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5); 1477 if (ret) 1478 goto err_free_sw_ports; 1479 1480 tb_dbg(tb, "current switch config:\n"); 1481 tb_dump_switch(tb, &sw->config); 1482 1483 /* configure switch */ 1484 sw->config.upstream_port_number = upstream_port; 1485 sw->config.depth = depth; 1486 sw->config.route_hi = upper_32_bits(route); 1487 sw->config.route_lo = lower_32_bits(route); 1488 sw->config.enabled = 0; 1489 1490 /* initialize ports */ 1491 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), 1492 GFP_KERNEL); 1493 if (!sw->ports) { 1494 ret = -ENOMEM; 1495 goto err_free_sw_ports; 1496 } 1497 1498 for (i = 0; i <= sw->config.max_port_number; i++) { 1499 /* minimum setup for tb_find_cap and tb_drom_read to work */ 1500 sw->ports[i].sw = sw; 1501 sw->ports[i].port = i; 1502 } 1503 1504 sw->generation = tb_switch_get_generation(sw); 1505 1506 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); 1507 if (ret < 0) { 1508 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); 1509 goto err_free_sw_ports; 1510 } 1511 sw->cap_plug_events = ret; 1512 1513 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); 1514 if (ret > 0) 1515 sw->cap_lc = ret; 1516 1517 /* Root switch is always authorized */ 1518 if (!route) 1519 sw->authorized = true; 1520 1521 device_initialize(&sw->dev); 1522 sw->dev.parent = parent; 1523 sw->dev.bus = &tb_bus_type; 1524 sw->dev.type = &tb_switch_type; 1525 sw->dev.groups = switch_groups; 1526 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1527 1528 return sw; 1529 1530 err_free_sw_ports: 1531 kfree(sw->ports); 1532 kfree(sw); 1533 1534 return ERR_PTR(ret); 1535 } 1536 1537 /** 1538 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode 1539 * @tb: Pointer to the owning domain 1540 * @parent: Parent device for this switch 1541 * @route: Route string for this switch 1542 * 1543 * This creates a switch in safe mode. This means the switch pretty much 1544 * lacks all capabilities except DMA configuration port before it is 1545 * flashed with a valid NVM firmware. 1546 * 1547 * The returned switch must be released by calling tb_switch_put(). 1548 * 1549 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure 1550 */ 1551 struct tb_switch * 1552 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) 1553 { 1554 struct tb_switch *sw; 1555 1556 sw = kzalloc(sizeof(*sw), GFP_KERNEL); 1557 if (!sw) 1558 return ERR_PTR(-ENOMEM); 1559 1560 sw->tb = tb; 1561 sw->config.depth = tb_route_length(route); 1562 sw->config.route_hi = upper_32_bits(route); 1563 sw->config.route_lo = lower_32_bits(route); 1564 sw->safe_mode = true; 1565 1566 device_initialize(&sw->dev); 1567 sw->dev.parent = parent; 1568 sw->dev.bus = &tb_bus_type; 1569 sw->dev.type = &tb_switch_type; 1570 sw->dev.groups = switch_groups; 1571 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); 1572 1573 return sw; 1574 } 1575 1576 /** 1577 * tb_switch_configure() - Uploads configuration to the switch 1578 * @sw: Switch to configure 1579 * 1580 * Call this function before the switch is added to the system. It will 1581 * upload configuration to the switch and makes it available for the 1582 * connection manager to use. 1583 * 1584 * Return: %0 in case of success and negative errno in case of failure 1585 */ 1586 int tb_switch_configure(struct tb_switch *sw) 1587 { 1588 struct tb *tb = sw->tb; 1589 u64 route; 1590 int ret; 1591 1592 route = tb_route(sw); 1593 tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n", 1594 route, tb_route_length(route), sw->config.upstream_port_number); 1595 1596 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) 1597 tb_sw_warn(sw, "unknown switch vendor id %#x\n", 1598 sw->config.vendor_id); 1599 1600 sw->config.enabled = 1; 1601 1602 /* upload configuration */ 1603 ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3); 1604 if (ret) 1605 return ret; 1606 1607 ret = tb_lc_configure_link(sw); 1608 if (ret) 1609 return ret; 1610 1611 return tb_plug_events_active(sw, true); 1612 } 1613 1614 static int tb_switch_set_uuid(struct tb_switch *sw) 1615 { 1616 u32 uuid[4]; 1617 int ret; 1618 1619 if (sw->uuid) 1620 return 0; 1621 1622 /* 1623 * The newer controllers include fused UUID as part of link 1624 * controller specific registers 1625 */ 1626 ret = tb_lc_read_uuid(sw, uuid); 1627 if (ret) { 1628 /* 1629 * ICM generates UUID based on UID and fills the upper 1630 * two words with ones. This is not strictly following 1631 * UUID format but we want to be compatible with it so 1632 * we do the same here. 1633 */ 1634 uuid[0] = sw->uid & 0xffffffff; 1635 uuid[1] = (sw->uid >> 32) & 0xffffffff; 1636 uuid[2] = 0xffffffff; 1637 uuid[3] = 0xffffffff; 1638 } 1639 1640 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); 1641 if (!sw->uuid) 1642 return -ENOMEM; 1643 return 0; 1644 } 1645 1646 static int tb_switch_add_dma_port(struct tb_switch *sw) 1647 { 1648 u32 status; 1649 int ret; 1650 1651 switch (sw->generation) { 1652 case 3: 1653 break; 1654 1655 case 2: 1656 /* Only root switch can be upgraded */ 1657 if (tb_route(sw)) 1658 return 0; 1659 break; 1660 1661 default: 1662 /* 1663 * DMA port is the only thing available when the switch 1664 * is in safe mode. 1665 */ 1666 if (!sw->safe_mode) 1667 return 0; 1668 break; 1669 } 1670 1671 if (sw->no_nvm_upgrade) 1672 return 0; 1673 1674 sw->dma_port = dma_port_alloc(sw); 1675 if (!sw->dma_port) 1676 return 0; 1677 1678 /* 1679 * Check status of the previous flash authentication. If there 1680 * is one we need to power cycle the switch in any case to make 1681 * it functional again. 1682 */ 1683 ret = dma_port_flash_update_auth_status(sw->dma_port, &status); 1684 if (ret <= 0) 1685 return ret; 1686 1687 /* Now we can allow root port to suspend again */ 1688 if (!tb_route(sw)) 1689 nvm_authenticate_complete(sw); 1690 1691 if (status) { 1692 tb_sw_info(sw, "switch flash authentication failed\n"); 1693 ret = tb_switch_set_uuid(sw); 1694 if (ret) 1695 return ret; 1696 nvm_set_auth_status(sw, status); 1697 } 1698 1699 tb_sw_info(sw, "power cycling the switch now\n"); 1700 dma_port_power_cycle(sw->dma_port); 1701 1702 /* 1703 * We return error here which causes the switch adding failure. 1704 * It should appear back after power cycle is complete. 1705 */ 1706 return -ESHUTDOWN; 1707 } 1708 1709 /** 1710 * tb_switch_add() - Add a switch to the domain 1711 * @sw: Switch to add 1712 * 1713 * This is the last step in adding switch to the domain. It will read 1714 * identification information from DROM and initializes ports so that 1715 * they can be used to connect other switches. The switch will be 1716 * exposed to the userspace when this function successfully returns. To 1717 * remove and release the switch, call tb_switch_remove(). 1718 * 1719 * Return: %0 in case of success and negative errno in case of failure 1720 */ 1721 int tb_switch_add(struct tb_switch *sw) 1722 { 1723 int i, ret; 1724 1725 /* 1726 * Initialize DMA control port now before we read DROM. Recent 1727 * host controllers have more complete DROM on NVM that includes 1728 * vendor and model identification strings which we then expose 1729 * to the userspace. NVM can be accessed through DMA 1730 * configuration based mailbox. 1731 */ 1732 ret = tb_switch_add_dma_port(sw); 1733 if (ret) 1734 return ret; 1735 1736 if (!sw->safe_mode) { 1737 /* read drom */ 1738 ret = tb_drom_read(sw); 1739 if (ret) { 1740 tb_sw_warn(sw, "tb_eeprom_read_rom failed\n"); 1741 return ret; 1742 } 1743 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid); 1744 1745 ret = tb_switch_set_uuid(sw); 1746 if (ret) 1747 return ret; 1748 1749 for (i = 0; i <= sw->config.max_port_number; i++) { 1750 if (sw->ports[i].disabled) { 1751 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n"); 1752 continue; 1753 } 1754 ret = tb_init_port(&sw->ports[i]); 1755 if (ret) 1756 return ret; 1757 } 1758 } 1759 1760 ret = device_add(&sw->dev); 1761 if (ret) 1762 return ret; 1763 1764 if (tb_route(sw)) { 1765 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n", 1766 sw->vendor, sw->device); 1767 if (sw->vendor_name && sw->device_name) 1768 dev_info(&sw->dev, "%s %s\n", sw->vendor_name, 1769 sw->device_name); 1770 } 1771 1772 ret = tb_switch_nvm_add(sw); 1773 if (ret) { 1774 device_del(&sw->dev); 1775 return ret; 1776 } 1777 1778 pm_runtime_set_active(&sw->dev); 1779 if (sw->rpm) { 1780 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY); 1781 pm_runtime_use_autosuspend(&sw->dev); 1782 pm_runtime_mark_last_busy(&sw->dev); 1783 pm_runtime_enable(&sw->dev); 1784 pm_request_autosuspend(&sw->dev); 1785 } 1786 1787 return 0; 1788 } 1789 1790 /** 1791 * tb_switch_remove() - Remove and release a switch 1792 * @sw: Switch to remove 1793 * 1794 * This will remove the switch from the domain and release it after last 1795 * reference count drops to zero. If there are switches connected below 1796 * this switch, they will be removed as well. 1797 */ 1798 void tb_switch_remove(struct tb_switch *sw) 1799 { 1800 int i; 1801 1802 if (sw->rpm) { 1803 pm_runtime_get_sync(&sw->dev); 1804 pm_runtime_disable(&sw->dev); 1805 } 1806 1807 /* port 0 is the switch itself and never has a remote */ 1808 for (i = 1; i <= sw->config.max_port_number; i++) { 1809 if (tb_port_has_remote(&sw->ports[i])) { 1810 tb_switch_remove(sw->ports[i].remote->sw); 1811 sw->ports[i].remote = NULL; 1812 } else if (sw->ports[i].xdomain) { 1813 tb_xdomain_remove(sw->ports[i].xdomain); 1814 sw->ports[i].xdomain = NULL; 1815 } 1816 } 1817 1818 if (!sw->is_unplugged) 1819 tb_plug_events_active(sw, false); 1820 tb_lc_unconfigure_link(sw); 1821 1822 tb_switch_nvm_remove(sw); 1823 1824 if (tb_route(sw)) 1825 dev_info(&sw->dev, "device disconnected\n"); 1826 device_unregister(&sw->dev); 1827 } 1828 1829 /** 1830 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches 1831 */ 1832 void tb_sw_set_unplugged(struct tb_switch *sw) 1833 { 1834 int i; 1835 if (sw == sw->tb->root_switch) { 1836 tb_sw_WARN(sw, "cannot unplug root switch\n"); 1837 return; 1838 } 1839 if (sw->is_unplugged) { 1840 tb_sw_WARN(sw, "is_unplugged already set\n"); 1841 return; 1842 } 1843 sw->is_unplugged = true; 1844 for (i = 0; i <= sw->config.max_port_number; i++) { 1845 if (tb_port_has_remote(&sw->ports[i])) 1846 tb_sw_set_unplugged(sw->ports[i].remote->sw); 1847 else if (sw->ports[i].xdomain) 1848 sw->ports[i].xdomain->is_unplugged = true; 1849 } 1850 } 1851 1852 int tb_switch_resume(struct tb_switch *sw) 1853 { 1854 int i, err; 1855 tb_sw_dbg(sw, "resuming switch\n"); 1856 1857 /* 1858 * Check for UID of the connected switches except for root 1859 * switch which we assume cannot be removed. 1860 */ 1861 if (tb_route(sw)) { 1862 u64 uid; 1863 1864 /* 1865 * Check first that we can still read the switch config 1866 * space. It may be that there is now another domain 1867 * connected. 1868 */ 1869 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw)); 1870 if (err < 0) { 1871 tb_sw_info(sw, "switch not present anymore\n"); 1872 return err; 1873 } 1874 1875 err = tb_drom_read_uid_only(sw, &uid); 1876 if (err) { 1877 tb_sw_warn(sw, "uid read failed\n"); 1878 return err; 1879 } 1880 if (sw->uid != uid) { 1881 tb_sw_info(sw, 1882 "changed while suspended (uid %#llx -> %#llx)\n", 1883 sw->uid, uid); 1884 return -ENODEV; 1885 } 1886 } 1887 1888 /* upload configuration */ 1889 err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3); 1890 if (err) 1891 return err; 1892 1893 err = tb_lc_configure_link(sw); 1894 if (err) 1895 return err; 1896 1897 err = tb_plug_events_active(sw, true); 1898 if (err) 1899 return err; 1900 1901 /* check for surviving downstream switches */ 1902 for (i = 1; i <= sw->config.max_port_number; i++) { 1903 struct tb_port *port = &sw->ports[i]; 1904 1905 if (!tb_port_has_remote(port) && !port->xdomain) 1906 continue; 1907 1908 if (tb_wait_for_port(port, true) <= 0) { 1909 tb_port_warn(port, 1910 "lost during suspend, disconnecting\n"); 1911 if (tb_port_has_remote(port)) 1912 tb_sw_set_unplugged(port->remote->sw); 1913 else if (port->xdomain) 1914 port->xdomain->is_unplugged = true; 1915 } else if (tb_port_has_remote(port)) { 1916 if (tb_switch_resume(port->remote->sw)) { 1917 tb_port_warn(port, 1918 "lost during suspend, disconnecting\n"); 1919 tb_sw_set_unplugged(port->remote->sw); 1920 } 1921 } 1922 } 1923 return 0; 1924 } 1925 1926 void tb_switch_suspend(struct tb_switch *sw) 1927 { 1928 int i, err; 1929 err = tb_plug_events_active(sw, false); 1930 if (err) 1931 return; 1932 1933 for (i = 1; i <= sw->config.max_port_number; i++) { 1934 if (tb_port_has_remote(&sw->ports[i])) 1935 tb_switch_suspend(sw->ports[i].remote->sw); 1936 } 1937 1938 tb_lc_set_sleep(sw); 1939 } 1940 1941 struct tb_sw_lookup { 1942 struct tb *tb; 1943 u8 link; 1944 u8 depth; 1945 const uuid_t *uuid; 1946 u64 route; 1947 }; 1948 1949 static int tb_switch_match(struct device *dev, void *data) 1950 { 1951 struct tb_switch *sw = tb_to_switch(dev); 1952 struct tb_sw_lookup *lookup = data; 1953 1954 if (!sw) 1955 return 0; 1956 if (sw->tb != lookup->tb) 1957 return 0; 1958 1959 if (lookup->uuid) 1960 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); 1961 1962 if (lookup->route) { 1963 return sw->config.route_lo == lower_32_bits(lookup->route) && 1964 sw->config.route_hi == upper_32_bits(lookup->route); 1965 } 1966 1967 /* Root switch is matched only by depth */ 1968 if (!lookup->depth) 1969 return !sw->depth; 1970 1971 return sw->link == lookup->link && sw->depth == lookup->depth; 1972 } 1973 1974 /** 1975 * tb_switch_find_by_link_depth() - Find switch by link and depth 1976 * @tb: Domain the switch belongs 1977 * @link: Link number the switch is connected 1978 * @depth: Depth of the switch in link 1979 * 1980 * Returned switch has reference count increased so the caller needs to 1981 * call tb_switch_put() when done with the switch. 1982 */ 1983 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) 1984 { 1985 struct tb_sw_lookup lookup; 1986 struct device *dev; 1987 1988 memset(&lookup, 0, sizeof(lookup)); 1989 lookup.tb = tb; 1990 lookup.link = link; 1991 lookup.depth = depth; 1992 1993 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 1994 if (dev) 1995 return tb_to_switch(dev); 1996 1997 return NULL; 1998 } 1999 2000 /** 2001 * tb_switch_find_by_uuid() - Find switch by UUID 2002 * @tb: Domain the switch belongs 2003 * @uuid: UUID to look for 2004 * 2005 * Returned switch has reference count increased so the caller needs to 2006 * call tb_switch_put() when done with the switch. 2007 */ 2008 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) 2009 { 2010 struct tb_sw_lookup lookup; 2011 struct device *dev; 2012 2013 memset(&lookup, 0, sizeof(lookup)); 2014 lookup.tb = tb; 2015 lookup.uuid = uuid; 2016 2017 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2018 if (dev) 2019 return tb_to_switch(dev); 2020 2021 return NULL; 2022 } 2023 2024 /** 2025 * tb_switch_find_by_route() - Find switch by route string 2026 * @tb: Domain the switch belongs 2027 * @route: Route string to look for 2028 * 2029 * Returned switch has reference count increased so the caller needs to 2030 * call tb_switch_put() when done with the switch. 2031 */ 2032 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route) 2033 { 2034 struct tb_sw_lookup lookup; 2035 struct device *dev; 2036 2037 if (!route) 2038 return tb_switch_get(tb->root_switch); 2039 2040 memset(&lookup, 0, sizeof(lookup)); 2041 lookup.tb = tb; 2042 lookup.route = route; 2043 2044 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); 2045 if (dev) 2046 return tb_to_switch(dev); 2047 2048 return NULL; 2049 } 2050 2051 void tb_switch_exit(void) 2052 { 2053 ida_destroy(&nvm_ida); 2054 } 2055