xref: /openbmc/linux/drivers/thunderbolt/switch.c (revision 12676423)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 
18 #include "tb.h"
19 
20 /* Switch NVM support */
21 
22 #define NVM_DEVID		0x05
23 #define NVM_VERSION		0x08
24 #define NVM_CSS			0x10
25 #define NVM_FLASH_SIZE		0x45
26 
27 #define NVM_MIN_SIZE		SZ_32K
28 #define NVM_MAX_SIZE		SZ_512K
29 
30 static DEFINE_IDA(nvm_ida);
31 
32 struct nvm_auth_status {
33 	struct list_head list;
34 	uuid_t uuid;
35 	u32 status;
36 };
37 
38 /*
39  * Hold NVM authentication failure status per switch This information
40  * needs to stay around even when the switch gets power cycled so we
41  * keep it separately.
42  */
43 static LIST_HEAD(nvm_auth_status_cache);
44 static DEFINE_MUTEX(nvm_auth_status_lock);
45 
46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
47 {
48 	struct nvm_auth_status *st;
49 
50 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
51 		if (uuid_equal(&st->uuid, sw->uuid))
52 			return st;
53 	}
54 
55 	return NULL;
56 }
57 
58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
59 {
60 	struct nvm_auth_status *st;
61 
62 	mutex_lock(&nvm_auth_status_lock);
63 	st = __nvm_get_auth_status(sw);
64 	mutex_unlock(&nvm_auth_status_lock);
65 
66 	*status = st ? st->status : 0;
67 }
68 
69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
70 {
71 	struct nvm_auth_status *st;
72 
73 	if (WARN_ON(!sw->uuid))
74 		return;
75 
76 	mutex_lock(&nvm_auth_status_lock);
77 	st = __nvm_get_auth_status(sw);
78 
79 	if (!st) {
80 		st = kzalloc(sizeof(*st), GFP_KERNEL);
81 		if (!st)
82 			goto unlock;
83 
84 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
85 		INIT_LIST_HEAD(&st->list);
86 		list_add_tail(&st->list, &nvm_auth_status_cache);
87 	}
88 
89 	st->status = status;
90 unlock:
91 	mutex_unlock(&nvm_auth_status_lock);
92 }
93 
94 static void nvm_clear_auth_status(const struct tb_switch *sw)
95 {
96 	struct nvm_auth_status *st;
97 
98 	mutex_lock(&nvm_auth_status_lock);
99 	st = __nvm_get_auth_status(sw);
100 	if (st) {
101 		list_del(&st->list);
102 		kfree(st);
103 	}
104 	mutex_unlock(&nvm_auth_status_lock);
105 }
106 
107 static int nvm_validate_and_write(struct tb_switch *sw)
108 {
109 	unsigned int image_size, hdr_size;
110 	const u8 *buf = sw->nvm->buf;
111 	u16 ds_size;
112 	int ret;
113 
114 	if (!buf)
115 		return -EINVAL;
116 
117 	image_size = sw->nvm->buf_data_size;
118 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
119 		return -EINVAL;
120 
121 	/*
122 	 * FARB pointer must point inside the image and must at least
123 	 * contain parts of the digital section we will be reading here.
124 	 */
125 	hdr_size = (*(u32 *)buf) & 0xffffff;
126 	if (hdr_size + NVM_DEVID + 2 >= image_size)
127 		return -EINVAL;
128 
129 	/* Digital section start should be aligned to 4k page */
130 	if (!IS_ALIGNED(hdr_size, SZ_4K))
131 		return -EINVAL;
132 
133 	/*
134 	 * Read digital section size and check that it also fits inside
135 	 * the image.
136 	 */
137 	ds_size = *(u16 *)(buf + hdr_size);
138 	if (ds_size >= image_size)
139 		return -EINVAL;
140 
141 	if (!sw->safe_mode) {
142 		u16 device_id;
143 
144 		/*
145 		 * Make sure the device ID in the image matches the one
146 		 * we read from the switch config space.
147 		 */
148 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
149 		if (device_id != sw->config.device_id)
150 			return -EINVAL;
151 
152 		if (sw->generation < 3) {
153 			/* Write CSS headers first */
154 			ret = dma_port_flash_write(sw->dma_port,
155 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
156 				DMA_PORT_CSS_MAX_SIZE);
157 			if (ret)
158 				return ret;
159 		}
160 
161 		/* Skip headers in the image */
162 		buf += hdr_size;
163 		image_size -= hdr_size;
164 	}
165 
166 	if (tb_switch_is_usb4(sw))
167 		return usb4_switch_nvm_write(sw, 0, buf, image_size);
168 	return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
169 }
170 
171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
172 {
173 	int ret = 0;
174 
175 	/*
176 	 * Root switch NVM upgrade requires that we disconnect the
177 	 * existing paths first (in case it is not in safe mode
178 	 * already).
179 	 */
180 	if (!sw->safe_mode) {
181 		u32 status;
182 
183 		ret = tb_domain_disconnect_all_paths(sw->tb);
184 		if (ret)
185 			return ret;
186 		/*
187 		 * The host controller goes away pretty soon after this if
188 		 * everything goes well so getting timeout is expected.
189 		 */
190 		ret = dma_port_flash_update_auth(sw->dma_port);
191 		if (!ret || ret == -ETIMEDOUT)
192 			return 0;
193 
194 		/*
195 		 * Any error from update auth operation requires power
196 		 * cycling of the host router.
197 		 */
198 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 			nvm_set_auth_status(sw, status);
201 	}
202 
203 	/*
204 	 * From safe mode we can get out by just power cycling the
205 	 * switch.
206 	 */
207 	dma_port_power_cycle(sw->dma_port);
208 	return ret;
209 }
210 
211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
212 {
213 	int ret, retries = 10;
214 
215 	ret = dma_port_flash_update_auth(sw->dma_port);
216 	switch (ret) {
217 	case 0:
218 	case -ETIMEDOUT:
219 	case -EACCES:
220 	case -EINVAL:
221 		/* Power cycle is required */
222 		break;
223 	default:
224 		return ret;
225 	}
226 
227 	/*
228 	 * Poll here for the authentication status. It takes some time
229 	 * for the device to respond (we get timeout for a while). Once
230 	 * we get response the device needs to be power cycled in order
231 	 * to the new NVM to be taken into use.
232 	 */
233 	do {
234 		u32 status;
235 
236 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 		if (ret < 0 && ret != -ETIMEDOUT)
238 			return ret;
239 		if (ret > 0) {
240 			if (status) {
241 				tb_sw_warn(sw, "failed to authenticate NVM\n");
242 				nvm_set_auth_status(sw, status);
243 			}
244 
245 			tb_sw_info(sw, "power cycling the switch now\n");
246 			dma_port_power_cycle(sw->dma_port);
247 			return 0;
248 		}
249 
250 		msleep(500);
251 	} while (--retries);
252 
253 	return -ETIMEDOUT;
254 }
255 
256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257 {
258 	struct pci_dev *root_port;
259 
260 	/*
261 	 * During host router NVM upgrade we should not allow root port to
262 	 * go into D3cold because some root ports cannot trigger PME
263 	 * itself. To be on the safe side keep the root port in D0 during
264 	 * the whole upgrade process.
265 	 */
266 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
267 	if (root_port)
268 		pm_runtime_get_noresume(&root_port->dev);
269 }
270 
271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272 {
273 	struct pci_dev *root_port;
274 
275 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
276 	if (root_port)
277 		pm_runtime_put(&root_port->dev);
278 }
279 
280 static inline bool nvm_readable(struct tb_switch *sw)
281 {
282 	if (tb_switch_is_usb4(sw)) {
283 		/*
284 		 * USB4 devices must support NVM operations but it is
285 		 * optional for hosts. Therefore we query the NVM sector
286 		 * size here and if it is supported assume NVM
287 		 * operations are implemented.
288 		 */
289 		return usb4_switch_nvm_sector_size(sw) > 0;
290 	}
291 
292 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 	return !!sw->dma_port;
294 }
295 
296 static inline bool nvm_upgradeable(struct tb_switch *sw)
297 {
298 	if (sw->no_nvm_upgrade)
299 		return false;
300 	return nvm_readable(sw);
301 }
302 
303 static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 			   void *buf, size_t size)
305 {
306 	if (tb_switch_is_usb4(sw))
307 		return usb4_switch_nvm_read(sw, address, buf, size);
308 	return dma_port_flash_read(sw->dma_port, address, buf, size);
309 }
310 
311 static int nvm_authenticate(struct tb_switch *sw)
312 {
313 	int ret;
314 
315 	if (tb_switch_is_usb4(sw))
316 		return usb4_switch_nvm_authenticate(sw);
317 
318 	if (!tb_route(sw)) {
319 		nvm_authenticate_start_dma_port(sw);
320 		ret = nvm_authenticate_host_dma_port(sw);
321 	} else {
322 		ret = nvm_authenticate_device_dma_port(sw);
323 	}
324 
325 	return ret;
326 }
327 
328 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
329 			      size_t bytes)
330 {
331 	struct tb_switch *sw = priv;
332 	int ret;
333 
334 	pm_runtime_get_sync(&sw->dev);
335 
336 	if (!mutex_trylock(&sw->tb->lock)) {
337 		ret = restart_syscall();
338 		goto out;
339 	}
340 
341 	ret = nvm_read(sw, offset, val, bytes);
342 	mutex_unlock(&sw->tb->lock);
343 
344 out:
345 	pm_runtime_mark_last_busy(&sw->dev);
346 	pm_runtime_put_autosuspend(&sw->dev);
347 
348 	return ret;
349 }
350 
351 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
352 			       size_t bytes)
353 {
354 	struct tb_switch *sw = priv;
355 	int ret = 0;
356 
357 	if (!mutex_trylock(&sw->tb->lock))
358 		return restart_syscall();
359 
360 	/*
361 	 * Since writing the NVM image might require some special steps,
362 	 * for example when CSS headers are written, we cache the image
363 	 * locally here and handle the special cases when the user asks
364 	 * us to authenticate the image.
365 	 */
366 	if (!sw->nvm->buf) {
367 		sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
368 		if (!sw->nvm->buf) {
369 			ret = -ENOMEM;
370 			goto unlock;
371 		}
372 	}
373 
374 	sw->nvm->buf_data_size = offset + bytes;
375 	memcpy(sw->nvm->buf + offset, val, bytes);
376 
377 unlock:
378 	mutex_unlock(&sw->tb->lock);
379 
380 	return ret;
381 }
382 
383 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
384 					   size_t size, bool active)
385 {
386 	struct nvmem_config config;
387 
388 	memset(&config, 0, sizeof(config));
389 
390 	if (active) {
391 		config.name = "nvm_active";
392 		config.reg_read = tb_switch_nvm_read;
393 		config.read_only = true;
394 	} else {
395 		config.name = "nvm_non_active";
396 		config.reg_write = tb_switch_nvm_write;
397 		config.root_only = true;
398 	}
399 
400 	config.id = id;
401 	config.stride = 4;
402 	config.word_size = 4;
403 	config.size = size;
404 	config.dev = &sw->dev;
405 	config.owner = THIS_MODULE;
406 	config.priv = sw;
407 
408 	return nvmem_register(&config);
409 }
410 
411 static int tb_switch_nvm_add(struct tb_switch *sw)
412 {
413 	struct nvmem_device *nvm_dev;
414 	struct tb_switch_nvm *nvm;
415 	u32 val;
416 	int ret;
417 
418 	if (!nvm_readable(sw))
419 		return 0;
420 
421 	/*
422 	 * The NVM format of non-Intel hardware is not known so
423 	 * currently restrict NVM upgrade for Intel hardware. We may
424 	 * relax this in the future when we learn other NVM formats.
425 	 */
426 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) {
427 		dev_info(&sw->dev,
428 			 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
429 			 sw->config.vendor_id);
430 		return 0;
431 	}
432 
433 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
434 	if (!nvm)
435 		return -ENOMEM;
436 
437 	nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
438 
439 	/*
440 	 * If the switch is in safe-mode the only accessible portion of
441 	 * the NVM is the non-active one where userspace is expected to
442 	 * write new functional NVM.
443 	 */
444 	if (!sw->safe_mode) {
445 		u32 nvm_size, hdr_size;
446 
447 		ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
448 		if (ret)
449 			goto err_ida;
450 
451 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
452 		nvm_size = (SZ_1M << (val & 7)) / 8;
453 		nvm_size = (nvm_size - hdr_size) / 2;
454 
455 		ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
456 		if (ret)
457 			goto err_ida;
458 
459 		nvm->major = val >> 16;
460 		nvm->minor = val >> 8;
461 
462 		nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
463 		if (IS_ERR(nvm_dev)) {
464 			ret = PTR_ERR(nvm_dev);
465 			goto err_ida;
466 		}
467 		nvm->active = nvm_dev;
468 	}
469 
470 	if (!sw->no_nvm_upgrade) {
471 		nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
472 		if (IS_ERR(nvm_dev)) {
473 			ret = PTR_ERR(nvm_dev);
474 			goto err_nvm_active;
475 		}
476 		nvm->non_active = nvm_dev;
477 	}
478 
479 	sw->nvm = nvm;
480 	return 0;
481 
482 err_nvm_active:
483 	if (nvm->active)
484 		nvmem_unregister(nvm->active);
485 err_ida:
486 	ida_simple_remove(&nvm_ida, nvm->id);
487 	kfree(nvm);
488 
489 	return ret;
490 }
491 
492 static void tb_switch_nvm_remove(struct tb_switch *sw)
493 {
494 	struct tb_switch_nvm *nvm;
495 
496 	nvm = sw->nvm;
497 	sw->nvm = NULL;
498 
499 	if (!nvm)
500 		return;
501 
502 	/* Remove authentication status in case the switch is unplugged */
503 	if (!nvm->authenticating)
504 		nvm_clear_auth_status(sw);
505 
506 	if (nvm->non_active)
507 		nvmem_unregister(nvm->non_active);
508 	if (nvm->active)
509 		nvmem_unregister(nvm->active);
510 	ida_simple_remove(&nvm_ida, nvm->id);
511 	vfree(nvm->buf);
512 	kfree(nvm);
513 }
514 
515 /* port utility functions */
516 
517 static const char *tb_port_type(struct tb_regs_port_header *port)
518 {
519 	switch (port->type >> 16) {
520 	case 0:
521 		switch ((u8) port->type) {
522 		case 0:
523 			return "Inactive";
524 		case 1:
525 			return "Port";
526 		case 2:
527 			return "NHI";
528 		default:
529 			return "unknown";
530 		}
531 	case 0x2:
532 		return "Ethernet";
533 	case 0x8:
534 		return "SATA";
535 	case 0xe:
536 		return "DP/HDMI";
537 	case 0x10:
538 		return "PCIe";
539 	case 0x20:
540 		return "USB";
541 	default:
542 		return "unknown";
543 	}
544 }
545 
546 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
547 {
548 	tb_dbg(tb,
549 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
550 	       port->port_number, port->vendor_id, port->device_id,
551 	       port->revision, port->thunderbolt_version, tb_port_type(port),
552 	       port->type);
553 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
554 	       port->max_in_hop_id, port->max_out_hop_id);
555 	tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
556 	tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
557 }
558 
559 /**
560  * tb_port_state() - get connectedness state of a port
561  *
562  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
563  *
564  * Return: Returns an enum tb_port_state on success or an error code on failure.
565  */
566 static int tb_port_state(struct tb_port *port)
567 {
568 	struct tb_cap_phy phy;
569 	int res;
570 	if (port->cap_phy == 0) {
571 		tb_port_WARN(port, "does not have a PHY\n");
572 		return -EINVAL;
573 	}
574 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
575 	if (res)
576 		return res;
577 	return phy.state;
578 }
579 
580 /**
581  * tb_wait_for_port() - wait for a port to become ready
582  *
583  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
584  * wait_if_unplugged is set then we also wait if the port is in state
585  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
586  * switch resume). Otherwise we only wait if a device is registered but the link
587  * has not yet been established.
588  *
589  * Return: Returns an error code on failure. Returns 0 if the port is not
590  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
591  * if the port is connected and in state TB_PORT_UP.
592  */
593 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
594 {
595 	int retries = 10;
596 	int state;
597 	if (!port->cap_phy) {
598 		tb_port_WARN(port, "does not have PHY\n");
599 		return -EINVAL;
600 	}
601 	if (tb_is_upstream_port(port)) {
602 		tb_port_WARN(port, "is the upstream port\n");
603 		return -EINVAL;
604 	}
605 
606 	while (retries--) {
607 		state = tb_port_state(port);
608 		if (state < 0)
609 			return state;
610 		if (state == TB_PORT_DISABLED) {
611 			tb_port_dbg(port, "is disabled (state: 0)\n");
612 			return 0;
613 		}
614 		if (state == TB_PORT_UNPLUGGED) {
615 			if (wait_if_unplugged) {
616 				/* used during resume */
617 				tb_port_dbg(port,
618 					    "is unplugged (state: 7), retrying...\n");
619 				msleep(100);
620 				continue;
621 			}
622 			tb_port_dbg(port, "is unplugged (state: 7)\n");
623 			return 0;
624 		}
625 		if (state == TB_PORT_UP) {
626 			tb_port_dbg(port, "is connected, link is up (state: 2)\n");
627 			return 1;
628 		}
629 
630 		/*
631 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
632 		 * time.
633 		 */
634 		tb_port_dbg(port,
635 			    "is connected, link is not up (state: %d), retrying...\n",
636 			    state);
637 		msleep(100);
638 	}
639 	tb_port_warn(port,
640 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
641 	return 0;
642 }
643 
644 /**
645  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
646  *
647  * Change the number of NFC credits allocated to @port by @credits. To remove
648  * NFC credits pass a negative amount of credits.
649  *
650  * Return: Returns 0 on success or an error code on failure.
651  */
652 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
653 {
654 	u32 nfc_credits;
655 
656 	if (credits == 0 || port->sw->is_unplugged)
657 		return 0;
658 
659 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
660 	nfc_credits += credits;
661 
662 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
663 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
664 
665 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
666 	port->config.nfc_credits |= nfc_credits;
667 
668 	return tb_port_write(port, &port->config.nfc_credits,
669 			     TB_CFG_PORT, ADP_CS_4, 1);
670 }
671 
672 /**
673  * tb_port_set_initial_credits() - Set initial port link credits allocated
674  * @port: Port to set the initial credits
675  * @credits: Number of credits to to allocate
676  *
677  * Set initial credits value to be used for ingress shared buffering.
678  */
679 int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
680 {
681 	u32 data;
682 	int ret;
683 
684 	ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
685 	if (ret)
686 		return ret;
687 
688 	data &= ~ADP_CS_5_LCA_MASK;
689 	data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
690 
691 	return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
692 }
693 
694 /**
695  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
696  *
697  * Return: Returns 0 on success or an error code on failure.
698  */
699 int tb_port_clear_counter(struct tb_port *port, int counter)
700 {
701 	u32 zero[3] = { 0, 0, 0 };
702 	tb_port_dbg(port, "clearing counter %d\n", counter);
703 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
704 }
705 
706 /**
707  * tb_port_unlock() - Unlock downstream port
708  * @port: Port to unlock
709  *
710  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
711  * downstream router accessible for CM.
712  */
713 int tb_port_unlock(struct tb_port *port)
714 {
715 	if (tb_switch_is_icm(port->sw))
716 		return 0;
717 	if (!tb_port_is_null(port))
718 		return -EINVAL;
719 	if (tb_switch_is_usb4(port->sw))
720 		return usb4_port_unlock(port);
721 	return 0;
722 }
723 
724 /**
725  * tb_init_port() - initialize a port
726  *
727  * This is a helper method for tb_switch_alloc. Does not check or initialize
728  * any downstream switches.
729  *
730  * Return: Returns 0 on success or an error code on failure.
731  */
732 static int tb_init_port(struct tb_port *port)
733 {
734 	int res;
735 	int cap;
736 
737 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
738 	if (res) {
739 		if (res == -ENODEV) {
740 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
741 			       port->port);
742 			return 0;
743 		}
744 		return res;
745 	}
746 
747 	/* Port 0 is the switch itself and has no PHY. */
748 	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
749 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
750 
751 		if (cap > 0)
752 			port->cap_phy = cap;
753 		else
754 			tb_port_WARN(port, "non switch port without a PHY\n");
755 
756 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
757 		if (cap > 0)
758 			port->cap_usb4 = cap;
759 	} else if (port->port != 0) {
760 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
761 		if (cap > 0)
762 			port->cap_adap = cap;
763 	}
764 
765 	tb_dump_port(port->sw->tb, &port->config);
766 
767 	/* Control port does not need HopID allocation */
768 	if (port->port) {
769 		ida_init(&port->in_hopids);
770 		ida_init(&port->out_hopids);
771 	}
772 
773 	INIT_LIST_HEAD(&port->list);
774 	return 0;
775 
776 }
777 
778 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
779 			       int max_hopid)
780 {
781 	int port_max_hopid;
782 	struct ida *ida;
783 
784 	if (in) {
785 		port_max_hopid = port->config.max_in_hop_id;
786 		ida = &port->in_hopids;
787 	} else {
788 		port_max_hopid = port->config.max_out_hop_id;
789 		ida = &port->out_hopids;
790 	}
791 
792 	/*
793 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
794 	 * reserved.
795 	 */
796 	if (port->config.type != TB_TYPE_NHI && min_hopid < TB_PATH_MIN_HOPID)
797 		min_hopid = TB_PATH_MIN_HOPID;
798 
799 	if (max_hopid < 0 || max_hopid > port_max_hopid)
800 		max_hopid = port_max_hopid;
801 
802 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
803 }
804 
805 /**
806  * tb_port_alloc_in_hopid() - Allocate input HopID from port
807  * @port: Port to allocate HopID for
808  * @min_hopid: Minimum acceptable input HopID
809  * @max_hopid: Maximum acceptable input HopID
810  *
811  * Return: HopID between @min_hopid and @max_hopid or negative errno in
812  * case of error.
813  */
814 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
815 {
816 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
817 }
818 
819 /**
820  * tb_port_alloc_out_hopid() - Allocate output HopID from port
821  * @port: Port to allocate HopID for
822  * @min_hopid: Minimum acceptable output HopID
823  * @max_hopid: Maximum acceptable output HopID
824  *
825  * Return: HopID between @min_hopid and @max_hopid or negative errno in
826  * case of error.
827  */
828 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
829 {
830 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
831 }
832 
833 /**
834  * tb_port_release_in_hopid() - Release allocated input HopID from port
835  * @port: Port whose HopID to release
836  * @hopid: HopID to release
837  */
838 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
839 {
840 	ida_simple_remove(&port->in_hopids, hopid);
841 }
842 
843 /**
844  * tb_port_release_out_hopid() - Release allocated output HopID from port
845  * @port: Port whose HopID to release
846  * @hopid: HopID to release
847  */
848 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
849 {
850 	ida_simple_remove(&port->out_hopids, hopid);
851 }
852 
853 /**
854  * tb_next_port_on_path() - Return next port for given port on a path
855  * @start: Start port of the walk
856  * @end: End port of the walk
857  * @prev: Previous port (%NULL if this is the first)
858  *
859  * This function can be used to walk from one port to another if they
860  * are connected through zero or more switches. If the @prev is dual
861  * link port, the function follows that link and returns another end on
862  * that same link.
863  *
864  * If the @end port has been reached, return %NULL.
865  *
866  * Domain tb->lock must be held when this function is called.
867  */
868 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
869 				     struct tb_port *prev)
870 {
871 	struct tb_port *next;
872 
873 	if (!prev)
874 		return start;
875 
876 	if (prev->sw == end->sw) {
877 		if (prev == end)
878 			return NULL;
879 		return end;
880 	}
881 
882 	if (start->sw->config.depth < end->sw->config.depth) {
883 		if (prev->remote &&
884 		    prev->remote->sw->config.depth > prev->sw->config.depth)
885 			next = prev->remote;
886 		else
887 			next = tb_port_at(tb_route(end->sw), prev->sw);
888 	} else {
889 		if (tb_is_upstream_port(prev)) {
890 			next = prev->remote;
891 		} else {
892 			next = tb_upstream_port(prev->sw);
893 			/*
894 			 * Keep the same link if prev and next are both
895 			 * dual link ports.
896 			 */
897 			if (next->dual_link_port &&
898 			    next->link_nr != prev->link_nr) {
899 				next = next->dual_link_port;
900 			}
901 		}
902 	}
903 
904 	return next;
905 }
906 
907 static int tb_port_get_link_speed(struct tb_port *port)
908 {
909 	u32 val, speed;
910 	int ret;
911 
912 	if (!port->cap_phy)
913 		return -EINVAL;
914 
915 	ret = tb_port_read(port, &val, TB_CFG_PORT,
916 			   port->cap_phy + LANE_ADP_CS_1, 1);
917 	if (ret)
918 		return ret;
919 
920 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
921 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
922 	return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
923 }
924 
925 static int tb_port_get_link_width(struct tb_port *port)
926 {
927 	u32 val;
928 	int ret;
929 
930 	if (!port->cap_phy)
931 		return -EINVAL;
932 
933 	ret = tb_port_read(port, &val, TB_CFG_PORT,
934 			   port->cap_phy + LANE_ADP_CS_1, 1);
935 	if (ret)
936 		return ret;
937 
938 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
939 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
940 }
941 
942 static bool tb_port_is_width_supported(struct tb_port *port, int width)
943 {
944 	u32 phy, widths;
945 	int ret;
946 
947 	if (!port->cap_phy)
948 		return false;
949 
950 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
951 			   port->cap_phy + LANE_ADP_CS_0, 1);
952 	if (ret)
953 		return false;
954 
955 	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
956 		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
957 
958 	return !!(widths & width);
959 }
960 
961 static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
962 {
963 	u32 val;
964 	int ret;
965 
966 	if (!port->cap_phy)
967 		return -EINVAL;
968 
969 	ret = tb_port_read(port, &val, TB_CFG_PORT,
970 			   port->cap_phy + LANE_ADP_CS_1, 1);
971 	if (ret)
972 		return ret;
973 
974 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
975 	switch (width) {
976 	case 1:
977 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
978 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
979 		break;
980 	case 2:
981 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
982 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
983 		break;
984 	default:
985 		return -EINVAL;
986 	}
987 
988 	val |= LANE_ADP_CS_1_LB;
989 
990 	return tb_port_write(port, &val, TB_CFG_PORT,
991 			     port->cap_phy + LANE_ADP_CS_1, 1);
992 }
993 
994 static int tb_port_lane_bonding_enable(struct tb_port *port)
995 {
996 	int ret;
997 
998 	/*
999 	 * Enable lane bonding for both links if not already enabled by
1000 	 * for example the boot firmware.
1001 	 */
1002 	ret = tb_port_get_link_width(port);
1003 	if (ret == 1) {
1004 		ret = tb_port_set_link_width(port, 2);
1005 		if (ret)
1006 			return ret;
1007 	}
1008 
1009 	ret = tb_port_get_link_width(port->dual_link_port);
1010 	if (ret == 1) {
1011 		ret = tb_port_set_link_width(port->dual_link_port, 2);
1012 		if (ret) {
1013 			tb_port_set_link_width(port, 1);
1014 			return ret;
1015 		}
1016 	}
1017 
1018 	port->bonded = true;
1019 	port->dual_link_port->bonded = true;
1020 
1021 	return 0;
1022 }
1023 
1024 static void tb_port_lane_bonding_disable(struct tb_port *port)
1025 {
1026 	port->dual_link_port->bonded = false;
1027 	port->bonded = false;
1028 
1029 	tb_port_set_link_width(port->dual_link_port, 1);
1030 	tb_port_set_link_width(port, 1);
1031 }
1032 
1033 /**
1034  * tb_port_is_enabled() - Is the adapter port enabled
1035  * @port: Port to check
1036  */
1037 bool tb_port_is_enabled(struct tb_port *port)
1038 {
1039 	switch (port->config.type) {
1040 	case TB_TYPE_PCIE_UP:
1041 	case TB_TYPE_PCIE_DOWN:
1042 		return tb_pci_port_is_enabled(port);
1043 
1044 	case TB_TYPE_DP_HDMI_IN:
1045 	case TB_TYPE_DP_HDMI_OUT:
1046 		return tb_dp_port_is_enabled(port);
1047 
1048 	case TB_TYPE_USB3_UP:
1049 	case TB_TYPE_USB3_DOWN:
1050 		return tb_usb3_port_is_enabled(port);
1051 
1052 	default:
1053 		return false;
1054 	}
1055 }
1056 
1057 /**
1058  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1059  * @port: USB3 adapter port to check
1060  */
1061 bool tb_usb3_port_is_enabled(struct tb_port *port)
1062 {
1063 	u32 data;
1064 
1065 	if (tb_port_read(port, &data, TB_CFG_PORT,
1066 			 port->cap_adap + ADP_USB3_CS_0, 1))
1067 		return false;
1068 
1069 	return !!(data & ADP_USB3_CS_0_PE);
1070 }
1071 
1072 /**
1073  * tb_usb3_port_enable() - Enable USB3 adapter port
1074  * @port: USB3 adapter port to enable
1075  * @enable: Enable/disable the USB3 adapter
1076  */
1077 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1078 {
1079 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1080 			  : ADP_USB3_CS_0_V;
1081 
1082 	if (!port->cap_adap)
1083 		return -ENXIO;
1084 	return tb_port_write(port, &word, TB_CFG_PORT,
1085 			     port->cap_adap + ADP_USB3_CS_0, 1);
1086 }
1087 
1088 /**
1089  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1090  * @port: PCIe port to check
1091  */
1092 bool tb_pci_port_is_enabled(struct tb_port *port)
1093 {
1094 	u32 data;
1095 
1096 	if (tb_port_read(port, &data, TB_CFG_PORT,
1097 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1098 		return false;
1099 
1100 	return !!(data & ADP_PCIE_CS_0_PE);
1101 }
1102 
1103 /**
1104  * tb_pci_port_enable() - Enable PCIe adapter port
1105  * @port: PCIe port to enable
1106  * @enable: Enable/disable the PCIe adapter
1107  */
1108 int tb_pci_port_enable(struct tb_port *port, bool enable)
1109 {
1110 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1111 	if (!port->cap_adap)
1112 		return -ENXIO;
1113 	return tb_port_write(port, &word, TB_CFG_PORT,
1114 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1115 }
1116 
1117 /**
1118  * tb_dp_port_hpd_is_active() - Is HPD already active
1119  * @port: DP out port to check
1120  *
1121  * Checks if the DP OUT adapter port has HDP bit already set.
1122  */
1123 int tb_dp_port_hpd_is_active(struct tb_port *port)
1124 {
1125 	u32 data;
1126 	int ret;
1127 
1128 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1129 			   port->cap_adap + ADP_DP_CS_2, 1);
1130 	if (ret)
1131 		return ret;
1132 
1133 	return !!(data & ADP_DP_CS_2_HDP);
1134 }
1135 
1136 /**
1137  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1138  * @port: Port to clear HPD
1139  *
1140  * If the DP IN port has HDP set, this function can be used to clear it.
1141  */
1142 int tb_dp_port_hpd_clear(struct tb_port *port)
1143 {
1144 	u32 data;
1145 	int ret;
1146 
1147 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1148 			   port->cap_adap + ADP_DP_CS_3, 1);
1149 	if (ret)
1150 		return ret;
1151 
1152 	data |= ADP_DP_CS_3_HDPC;
1153 	return tb_port_write(port, &data, TB_CFG_PORT,
1154 			     port->cap_adap + ADP_DP_CS_3, 1);
1155 }
1156 
1157 /**
1158  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1159  * @port: DP IN/OUT port to set hops
1160  * @video: Video Hop ID
1161  * @aux_tx: AUX TX Hop ID
1162  * @aux_rx: AUX RX Hop ID
1163  *
1164  * Programs specified Hop IDs for DP IN/OUT port.
1165  */
1166 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1167 			unsigned int aux_tx, unsigned int aux_rx)
1168 {
1169 	u32 data[2];
1170 	int ret;
1171 
1172 	ret = tb_port_read(port, data, TB_CFG_PORT,
1173 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1174 	if (ret)
1175 		return ret;
1176 
1177 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1178 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1179 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1180 
1181 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1182 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1183 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1184 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1185 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1186 
1187 	return tb_port_write(port, data, TB_CFG_PORT,
1188 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1189 }
1190 
1191 /**
1192  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1193  * @port: DP adapter port to check
1194  */
1195 bool tb_dp_port_is_enabled(struct tb_port *port)
1196 {
1197 	u32 data[2];
1198 
1199 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1200 			 ARRAY_SIZE(data)))
1201 		return false;
1202 
1203 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1204 }
1205 
1206 /**
1207  * tb_dp_port_enable() - Enables/disables DP paths of a port
1208  * @port: DP IN/OUT port
1209  * @enable: Enable/disable DP path
1210  *
1211  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1212  * calling this function.
1213  */
1214 int tb_dp_port_enable(struct tb_port *port, bool enable)
1215 {
1216 	u32 data[2];
1217 	int ret;
1218 
1219 	ret = tb_port_read(port, data, TB_CFG_PORT,
1220 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1221 	if (ret)
1222 		return ret;
1223 
1224 	if (enable)
1225 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1226 	else
1227 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1228 
1229 	return tb_port_write(port, data, TB_CFG_PORT,
1230 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1231 }
1232 
1233 /* switch utility functions */
1234 
1235 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1236 {
1237 	switch (sw->generation) {
1238 	case 1:
1239 		return "Thunderbolt 1";
1240 	case 2:
1241 		return "Thunderbolt 2";
1242 	case 3:
1243 		return "Thunderbolt 3";
1244 	case 4:
1245 		return "USB4";
1246 	default:
1247 		return "Unknown";
1248 	}
1249 }
1250 
1251 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1252 {
1253 	const struct tb_regs_switch_header *regs = &sw->config;
1254 
1255 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1256 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1257 	       regs->revision, regs->thunderbolt_version);
1258 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1259 	tb_dbg(tb, "  Config:\n");
1260 	tb_dbg(tb,
1261 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1262 	       regs->upstream_port_number, regs->depth,
1263 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1264 	       regs->enabled, regs->plug_events_delay);
1265 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1266 	       regs->__unknown1, regs->__unknown4);
1267 }
1268 
1269 /**
1270  * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1271  *
1272  * Return: Returns 0 on success or an error code on failure.
1273  */
1274 int tb_switch_reset(struct tb *tb, u64 route)
1275 {
1276 	struct tb_cfg_result res;
1277 	struct tb_regs_switch_header header = {
1278 		header.route_hi = route >> 32,
1279 		header.route_lo = route,
1280 		header.enabled = true,
1281 	};
1282 	tb_dbg(tb, "resetting switch at %llx\n", route);
1283 	res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
1284 			0, 2, 2, 2);
1285 	if (res.err)
1286 		return res.err;
1287 	res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
1288 	if (res.err > 0)
1289 		return -EIO;
1290 	return res.err;
1291 }
1292 
1293 /**
1294  * tb_plug_events_active() - enable/disable plug events on a switch
1295  *
1296  * Also configures a sane plug_events_delay of 255ms.
1297  *
1298  * Return: Returns 0 on success or an error code on failure.
1299  */
1300 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1301 {
1302 	u32 data;
1303 	int res;
1304 
1305 	if (tb_switch_is_icm(sw))
1306 		return 0;
1307 
1308 	sw->config.plug_events_delay = 0xff;
1309 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1310 	if (res)
1311 		return res;
1312 
1313 	/* Plug events are always enabled in USB4 */
1314 	if (tb_switch_is_usb4(sw))
1315 		return 0;
1316 
1317 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1318 	if (res)
1319 		return res;
1320 
1321 	if (active) {
1322 		data = data & 0xFFFFFF83;
1323 		switch (sw->config.device_id) {
1324 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1325 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1326 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1327 			break;
1328 		default:
1329 			data |= 4;
1330 		}
1331 	} else {
1332 		data = data | 0x7c;
1333 	}
1334 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1335 			   sw->cap_plug_events + 1, 1);
1336 }
1337 
1338 static ssize_t authorized_show(struct device *dev,
1339 			       struct device_attribute *attr,
1340 			       char *buf)
1341 {
1342 	struct tb_switch *sw = tb_to_switch(dev);
1343 
1344 	return sprintf(buf, "%u\n", sw->authorized);
1345 }
1346 
1347 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1348 {
1349 	int ret = -EINVAL;
1350 
1351 	if (!mutex_trylock(&sw->tb->lock))
1352 		return restart_syscall();
1353 
1354 	if (sw->authorized)
1355 		goto unlock;
1356 
1357 	switch (val) {
1358 	/* Approve switch */
1359 	case 1:
1360 		if (sw->key)
1361 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1362 		else
1363 			ret = tb_domain_approve_switch(sw->tb, sw);
1364 		break;
1365 
1366 	/* Challenge switch */
1367 	case 2:
1368 		if (sw->key)
1369 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1370 		break;
1371 
1372 	default:
1373 		break;
1374 	}
1375 
1376 	if (!ret) {
1377 		sw->authorized = val;
1378 		/* Notify status change to the userspace */
1379 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1380 	}
1381 
1382 unlock:
1383 	mutex_unlock(&sw->tb->lock);
1384 	return ret;
1385 }
1386 
1387 static ssize_t authorized_store(struct device *dev,
1388 				struct device_attribute *attr,
1389 				const char *buf, size_t count)
1390 {
1391 	struct tb_switch *sw = tb_to_switch(dev);
1392 	unsigned int val;
1393 	ssize_t ret;
1394 
1395 	ret = kstrtouint(buf, 0, &val);
1396 	if (ret)
1397 		return ret;
1398 	if (val > 2)
1399 		return -EINVAL;
1400 
1401 	pm_runtime_get_sync(&sw->dev);
1402 	ret = tb_switch_set_authorized(sw, val);
1403 	pm_runtime_mark_last_busy(&sw->dev);
1404 	pm_runtime_put_autosuspend(&sw->dev);
1405 
1406 	return ret ? ret : count;
1407 }
1408 static DEVICE_ATTR_RW(authorized);
1409 
1410 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1411 			 char *buf)
1412 {
1413 	struct tb_switch *sw = tb_to_switch(dev);
1414 
1415 	return sprintf(buf, "%u\n", sw->boot);
1416 }
1417 static DEVICE_ATTR_RO(boot);
1418 
1419 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1420 			   char *buf)
1421 {
1422 	struct tb_switch *sw = tb_to_switch(dev);
1423 
1424 	return sprintf(buf, "%#x\n", sw->device);
1425 }
1426 static DEVICE_ATTR_RO(device);
1427 
1428 static ssize_t
1429 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1430 {
1431 	struct tb_switch *sw = tb_to_switch(dev);
1432 
1433 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1434 }
1435 static DEVICE_ATTR_RO(device_name);
1436 
1437 static ssize_t
1438 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1439 {
1440 	struct tb_switch *sw = tb_to_switch(dev);
1441 
1442 	return sprintf(buf, "%u\n", sw->generation);
1443 }
1444 static DEVICE_ATTR_RO(generation);
1445 
1446 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1447 			char *buf)
1448 {
1449 	struct tb_switch *sw = tb_to_switch(dev);
1450 	ssize_t ret;
1451 
1452 	if (!mutex_trylock(&sw->tb->lock))
1453 		return restart_syscall();
1454 
1455 	if (sw->key)
1456 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1457 	else
1458 		ret = sprintf(buf, "\n");
1459 
1460 	mutex_unlock(&sw->tb->lock);
1461 	return ret;
1462 }
1463 
1464 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1465 			 const char *buf, size_t count)
1466 {
1467 	struct tb_switch *sw = tb_to_switch(dev);
1468 	u8 key[TB_SWITCH_KEY_SIZE];
1469 	ssize_t ret = count;
1470 	bool clear = false;
1471 
1472 	if (!strcmp(buf, "\n"))
1473 		clear = true;
1474 	else if (hex2bin(key, buf, sizeof(key)))
1475 		return -EINVAL;
1476 
1477 	if (!mutex_trylock(&sw->tb->lock))
1478 		return restart_syscall();
1479 
1480 	if (sw->authorized) {
1481 		ret = -EBUSY;
1482 	} else {
1483 		kfree(sw->key);
1484 		if (clear) {
1485 			sw->key = NULL;
1486 		} else {
1487 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1488 			if (!sw->key)
1489 				ret = -ENOMEM;
1490 		}
1491 	}
1492 
1493 	mutex_unlock(&sw->tb->lock);
1494 	return ret;
1495 }
1496 static DEVICE_ATTR(key, 0600, key_show, key_store);
1497 
1498 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1499 			  char *buf)
1500 {
1501 	struct tb_switch *sw = tb_to_switch(dev);
1502 
1503 	return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1504 }
1505 
1506 /*
1507  * Currently all lanes must run at the same speed but we expose here
1508  * both directions to allow possible asymmetric links in the future.
1509  */
1510 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1511 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1512 
1513 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1514 			  char *buf)
1515 {
1516 	struct tb_switch *sw = tb_to_switch(dev);
1517 
1518 	return sprintf(buf, "%u\n", sw->link_width);
1519 }
1520 
1521 /*
1522  * Currently link has same amount of lanes both directions (1 or 2) but
1523  * expose them separately to allow possible asymmetric links in the future.
1524  */
1525 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1526 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1527 
1528 static ssize_t nvm_authenticate_show(struct device *dev,
1529 	struct device_attribute *attr, char *buf)
1530 {
1531 	struct tb_switch *sw = tb_to_switch(dev);
1532 	u32 status;
1533 
1534 	nvm_get_auth_status(sw, &status);
1535 	return sprintf(buf, "%#x\n", status);
1536 }
1537 
1538 static ssize_t nvm_authenticate_store(struct device *dev,
1539 	struct device_attribute *attr, const char *buf, size_t count)
1540 {
1541 	struct tb_switch *sw = tb_to_switch(dev);
1542 	bool val;
1543 	int ret;
1544 
1545 	pm_runtime_get_sync(&sw->dev);
1546 
1547 	if (!mutex_trylock(&sw->tb->lock)) {
1548 		ret = restart_syscall();
1549 		goto exit_rpm;
1550 	}
1551 
1552 	/* If NVMem devices are not yet added */
1553 	if (!sw->nvm) {
1554 		ret = -EAGAIN;
1555 		goto exit_unlock;
1556 	}
1557 
1558 	ret = kstrtobool(buf, &val);
1559 	if (ret)
1560 		goto exit_unlock;
1561 
1562 	/* Always clear the authentication status */
1563 	nvm_clear_auth_status(sw);
1564 
1565 	if (val) {
1566 		if (!sw->nvm->buf) {
1567 			ret = -EINVAL;
1568 			goto exit_unlock;
1569 		}
1570 
1571 		ret = nvm_validate_and_write(sw);
1572 		if (ret)
1573 			goto exit_unlock;
1574 
1575 		sw->nvm->authenticating = true;
1576 		ret = nvm_authenticate(sw);
1577 	}
1578 
1579 exit_unlock:
1580 	mutex_unlock(&sw->tb->lock);
1581 exit_rpm:
1582 	pm_runtime_mark_last_busy(&sw->dev);
1583 	pm_runtime_put_autosuspend(&sw->dev);
1584 
1585 	if (ret)
1586 		return ret;
1587 	return count;
1588 }
1589 static DEVICE_ATTR_RW(nvm_authenticate);
1590 
1591 static ssize_t nvm_version_show(struct device *dev,
1592 				struct device_attribute *attr, char *buf)
1593 {
1594 	struct tb_switch *sw = tb_to_switch(dev);
1595 	int ret;
1596 
1597 	if (!mutex_trylock(&sw->tb->lock))
1598 		return restart_syscall();
1599 
1600 	if (sw->safe_mode)
1601 		ret = -ENODATA;
1602 	else if (!sw->nvm)
1603 		ret = -EAGAIN;
1604 	else
1605 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1606 
1607 	mutex_unlock(&sw->tb->lock);
1608 
1609 	return ret;
1610 }
1611 static DEVICE_ATTR_RO(nvm_version);
1612 
1613 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1614 			   char *buf)
1615 {
1616 	struct tb_switch *sw = tb_to_switch(dev);
1617 
1618 	return sprintf(buf, "%#x\n", sw->vendor);
1619 }
1620 static DEVICE_ATTR_RO(vendor);
1621 
1622 static ssize_t
1623 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1624 {
1625 	struct tb_switch *sw = tb_to_switch(dev);
1626 
1627 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1628 }
1629 static DEVICE_ATTR_RO(vendor_name);
1630 
1631 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1632 			      char *buf)
1633 {
1634 	struct tb_switch *sw = tb_to_switch(dev);
1635 
1636 	return sprintf(buf, "%pUb\n", sw->uuid);
1637 }
1638 static DEVICE_ATTR_RO(unique_id);
1639 
1640 static struct attribute *switch_attrs[] = {
1641 	&dev_attr_authorized.attr,
1642 	&dev_attr_boot.attr,
1643 	&dev_attr_device.attr,
1644 	&dev_attr_device_name.attr,
1645 	&dev_attr_generation.attr,
1646 	&dev_attr_key.attr,
1647 	&dev_attr_nvm_authenticate.attr,
1648 	&dev_attr_nvm_version.attr,
1649 	&dev_attr_rx_speed.attr,
1650 	&dev_attr_rx_lanes.attr,
1651 	&dev_attr_tx_speed.attr,
1652 	&dev_attr_tx_lanes.attr,
1653 	&dev_attr_vendor.attr,
1654 	&dev_attr_vendor_name.attr,
1655 	&dev_attr_unique_id.attr,
1656 	NULL,
1657 };
1658 
1659 static umode_t switch_attr_is_visible(struct kobject *kobj,
1660 				      struct attribute *attr, int n)
1661 {
1662 	struct device *dev = container_of(kobj, struct device, kobj);
1663 	struct tb_switch *sw = tb_to_switch(dev);
1664 
1665 	if (attr == &dev_attr_device.attr) {
1666 		if (!sw->device)
1667 			return 0;
1668 	} else if (attr == &dev_attr_device_name.attr) {
1669 		if (!sw->device_name)
1670 			return 0;
1671 	} else if (attr == &dev_attr_vendor.attr)  {
1672 		if (!sw->vendor)
1673 			return 0;
1674 	} else if (attr == &dev_attr_vendor_name.attr)  {
1675 		if (!sw->vendor_name)
1676 			return 0;
1677 	} else if (attr == &dev_attr_key.attr) {
1678 		if (tb_route(sw) &&
1679 		    sw->tb->security_level == TB_SECURITY_SECURE &&
1680 		    sw->security_level == TB_SECURITY_SECURE)
1681 			return attr->mode;
1682 		return 0;
1683 	} else if (attr == &dev_attr_rx_speed.attr ||
1684 		   attr == &dev_attr_rx_lanes.attr ||
1685 		   attr == &dev_attr_tx_speed.attr ||
1686 		   attr == &dev_attr_tx_lanes.attr) {
1687 		if (tb_route(sw))
1688 			return attr->mode;
1689 		return 0;
1690 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
1691 		if (nvm_upgradeable(sw))
1692 			return attr->mode;
1693 		return 0;
1694 	} else if (attr == &dev_attr_nvm_version.attr) {
1695 		if (nvm_readable(sw))
1696 			return attr->mode;
1697 		return 0;
1698 	} else if (attr == &dev_attr_boot.attr) {
1699 		if (tb_route(sw))
1700 			return attr->mode;
1701 		return 0;
1702 	}
1703 
1704 	return sw->safe_mode ? 0 : attr->mode;
1705 }
1706 
1707 static struct attribute_group switch_group = {
1708 	.is_visible = switch_attr_is_visible,
1709 	.attrs = switch_attrs,
1710 };
1711 
1712 static const struct attribute_group *switch_groups[] = {
1713 	&switch_group,
1714 	NULL,
1715 };
1716 
1717 static void tb_switch_release(struct device *dev)
1718 {
1719 	struct tb_switch *sw = tb_to_switch(dev);
1720 	struct tb_port *port;
1721 
1722 	dma_port_free(sw->dma_port);
1723 
1724 	tb_switch_for_each_port(sw, port) {
1725 		if (!port->disabled) {
1726 			ida_destroy(&port->in_hopids);
1727 			ida_destroy(&port->out_hopids);
1728 		}
1729 	}
1730 
1731 	kfree(sw->uuid);
1732 	kfree(sw->device_name);
1733 	kfree(sw->vendor_name);
1734 	kfree(sw->ports);
1735 	kfree(sw->drom);
1736 	kfree(sw->key);
1737 	kfree(sw);
1738 }
1739 
1740 /*
1741  * Currently only need to provide the callbacks. Everything else is handled
1742  * in the connection manager.
1743  */
1744 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1745 {
1746 	struct tb_switch *sw = tb_to_switch(dev);
1747 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1748 
1749 	if (cm_ops->runtime_suspend_switch)
1750 		return cm_ops->runtime_suspend_switch(sw);
1751 
1752 	return 0;
1753 }
1754 
1755 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1756 {
1757 	struct tb_switch *sw = tb_to_switch(dev);
1758 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1759 
1760 	if (cm_ops->runtime_resume_switch)
1761 		return cm_ops->runtime_resume_switch(sw);
1762 	return 0;
1763 }
1764 
1765 static const struct dev_pm_ops tb_switch_pm_ops = {
1766 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1767 			   NULL)
1768 };
1769 
1770 struct device_type tb_switch_type = {
1771 	.name = "thunderbolt_device",
1772 	.release = tb_switch_release,
1773 	.pm = &tb_switch_pm_ops,
1774 };
1775 
1776 static int tb_switch_get_generation(struct tb_switch *sw)
1777 {
1778 	switch (sw->config.device_id) {
1779 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1780 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1781 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1782 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1783 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1784 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1785 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1786 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1787 		return 1;
1788 
1789 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1790 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1791 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1792 		return 2;
1793 
1794 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1795 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1796 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1797 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1798 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1799 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1800 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1801 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1802 	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1803 	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1804 		return 3;
1805 
1806 	default:
1807 		if (tb_switch_is_usb4(sw))
1808 			return 4;
1809 
1810 		/*
1811 		 * For unknown switches assume generation to be 1 to be
1812 		 * on the safe side.
1813 		 */
1814 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
1815 			   sw->config.device_id);
1816 		return 1;
1817 	}
1818 }
1819 
1820 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1821 {
1822 	int max_depth;
1823 
1824 	if (tb_switch_is_usb4(sw) ||
1825 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1826 		max_depth = USB4_SWITCH_MAX_DEPTH;
1827 	else
1828 		max_depth = TB_SWITCH_MAX_DEPTH;
1829 
1830 	return depth > max_depth;
1831 }
1832 
1833 /**
1834  * tb_switch_alloc() - allocate a switch
1835  * @tb: Pointer to the owning domain
1836  * @parent: Parent device for this switch
1837  * @route: Route string for this switch
1838  *
1839  * Allocates and initializes a switch. Will not upload configuration to
1840  * the switch. For that you need to call tb_switch_configure()
1841  * separately. The returned switch should be released by calling
1842  * tb_switch_put().
1843  *
1844  * Return: Pointer to the allocated switch or ERR_PTR() in case of
1845  * failure.
1846  */
1847 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1848 				  u64 route)
1849 {
1850 	struct tb_switch *sw;
1851 	int upstream_port;
1852 	int i, ret, depth;
1853 
1854 	/* Unlock the downstream port so we can access the switch below */
1855 	if (route) {
1856 		struct tb_switch *parent_sw = tb_to_switch(parent);
1857 		struct tb_port *down;
1858 
1859 		down = tb_port_at(route, parent_sw);
1860 		tb_port_unlock(down);
1861 	}
1862 
1863 	depth = tb_route_length(route);
1864 
1865 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1866 	if (upstream_port < 0)
1867 		return ERR_PTR(upstream_port);
1868 
1869 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1870 	if (!sw)
1871 		return ERR_PTR(-ENOMEM);
1872 
1873 	sw->tb = tb;
1874 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1875 	if (ret)
1876 		goto err_free_sw_ports;
1877 
1878 	sw->generation = tb_switch_get_generation(sw);
1879 
1880 	tb_dbg(tb, "current switch config:\n");
1881 	tb_dump_switch(tb, sw);
1882 
1883 	/* configure switch */
1884 	sw->config.upstream_port_number = upstream_port;
1885 	sw->config.depth = depth;
1886 	sw->config.route_hi = upper_32_bits(route);
1887 	sw->config.route_lo = lower_32_bits(route);
1888 	sw->config.enabled = 0;
1889 
1890 	/* Make sure we do not exceed maximum topology limit */
1891 	if (tb_switch_exceeds_max_depth(sw, depth)) {
1892 		ret = -EADDRNOTAVAIL;
1893 		goto err_free_sw_ports;
1894 	}
1895 
1896 	/* initialize ports */
1897 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1898 				GFP_KERNEL);
1899 	if (!sw->ports) {
1900 		ret = -ENOMEM;
1901 		goto err_free_sw_ports;
1902 	}
1903 
1904 	for (i = 0; i <= sw->config.max_port_number; i++) {
1905 		/* minimum setup for tb_find_cap and tb_drom_read to work */
1906 		sw->ports[i].sw = sw;
1907 		sw->ports[i].port = i;
1908 	}
1909 
1910 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1911 	if (ret > 0)
1912 		sw->cap_plug_events = ret;
1913 
1914 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1915 	if (ret > 0)
1916 		sw->cap_lc = ret;
1917 
1918 	/* Root switch is always authorized */
1919 	if (!route)
1920 		sw->authorized = true;
1921 
1922 	device_initialize(&sw->dev);
1923 	sw->dev.parent = parent;
1924 	sw->dev.bus = &tb_bus_type;
1925 	sw->dev.type = &tb_switch_type;
1926 	sw->dev.groups = switch_groups;
1927 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1928 
1929 	return sw;
1930 
1931 err_free_sw_ports:
1932 	kfree(sw->ports);
1933 	kfree(sw);
1934 
1935 	return ERR_PTR(ret);
1936 }
1937 
1938 /**
1939  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1940  * @tb: Pointer to the owning domain
1941  * @parent: Parent device for this switch
1942  * @route: Route string for this switch
1943  *
1944  * This creates a switch in safe mode. This means the switch pretty much
1945  * lacks all capabilities except DMA configuration port before it is
1946  * flashed with a valid NVM firmware.
1947  *
1948  * The returned switch must be released by calling tb_switch_put().
1949  *
1950  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1951  */
1952 struct tb_switch *
1953 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1954 {
1955 	struct tb_switch *sw;
1956 
1957 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1958 	if (!sw)
1959 		return ERR_PTR(-ENOMEM);
1960 
1961 	sw->tb = tb;
1962 	sw->config.depth = tb_route_length(route);
1963 	sw->config.route_hi = upper_32_bits(route);
1964 	sw->config.route_lo = lower_32_bits(route);
1965 	sw->safe_mode = true;
1966 
1967 	device_initialize(&sw->dev);
1968 	sw->dev.parent = parent;
1969 	sw->dev.bus = &tb_bus_type;
1970 	sw->dev.type = &tb_switch_type;
1971 	sw->dev.groups = switch_groups;
1972 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1973 
1974 	return sw;
1975 }
1976 
1977 /**
1978  * tb_switch_configure() - Uploads configuration to the switch
1979  * @sw: Switch to configure
1980  *
1981  * Call this function before the switch is added to the system. It will
1982  * upload configuration to the switch and makes it available for the
1983  * connection manager to use. Can be called to the switch again after
1984  * resume from low power states to re-initialize it.
1985  *
1986  * Return: %0 in case of success and negative errno in case of failure
1987  */
1988 int tb_switch_configure(struct tb_switch *sw)
1989 {
1990 	struct tb *tb = sw->tb;
1991 	u64 route;
1992 	int ret;
1993 
1994 	route = tb_route(sw);
1995 
1996 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
1997 	       sw->config.enabled ? "restoring " : "initializing", route,
1998 	       tb_route_length(route), sw->config.upstream_port_number);
1999 
2000 	sw->config.enabled = 1;
2001 
2002 	if (tb_switch_is_usb4(sw)) {
2003 		/*
2004 		 * For USB4 devices, we need to program the CM version
2005 		 * accordingly so that it knows to expose all the
2006 		 * additional capabilities.
2007 		 */
2008 		sw->config.cmuv = USB4_VERSION_1_0;
2009 
2010 		/* Enumerate the switch */
2011 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2012 				  ROUTER_CS_1, 4);
2013 		if (ret)
2014 			return ret;
2015 
2016 		ret = usb4_switch_setup(sw);
2017 		if (ret)
2018 			return ret;
2019 
2020 		ret = usb4_switch_configure_link(sw);
2021 	} else {
2022 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2023 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2024 				   sw->config.vendor_id);
2025 
2026 		if (!sw->cap_plug_events) {
2027 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2028 			return -ENODEV;
2029 		}
2030 
2031 		/* Enumerate the switch */
2032 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2033 				  ROUTER_CS_1, 3);
2034 		if (ret)
2035 			return ret;
2036 
2037 		ret = tb_lc_configure_link(sw);
2038 	}
2039 	if (ret)
2040 		return ret;
2041 
2042 	return tb_plug_events_active(sw, true);
2043 }
2044 
2045 static int tb_switch_set_uuid(struct tb_switch *sw)
2046 {
2047 	bool uid = false;
2048 	u32 uuid[4];
2049 	int ret;
2050 
2051 	if (sw->uuid)
2052 		return 0;
2053 
2054 	if (tb_switch_is_usb4(sw)) {
2055 		ret = usb4_switch_read_uid(sw, &sw->uid);
2056 		if (ret)
2057 			return ret;
2058 		uid = true;
2059 	} else {
2060 		/*
2061 		 * The newer controllers include fused UUID as part of
2062 		 * link controller specific registers
2063 		 */
2064 		ret = tb_lc_read_uuid(sw, uuid);
2065 		if (ret) {
2066 			if (ret != -EINVAL)
2067 				return ret;
2068 			uid = true;
2069 		}
2070 	}
2071 
2072 	if (uid) {
2073 		/*
2074 		 * ICM generates UUID based on UID and fills the upper
2075 		 * two words with ones. This is not strictly following
2076 		 * UUID format but we want to be compatible with it so
2077 		 * we do the same here.
2078 		 */
2079 		uuid[0] = sw->uid & 0xffffffff;
2080 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2081 		uuid[2] = 0xffffffff;
2082 		uuid[3] = 0xffffffff;
2083 	}
2084 
2085 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2086 	if (!sw->uuid)
2087 		return -ENOMEM;
2088 	return 0;
2089 }
2090 
2091 static int tb_switch_add_dma_port(struct tb_switch *sw)
2092 {
2093 	u32 status;
2094 	int ret;
2095 
2096 	switch (sw->generation) {
2097 	case 2:
2098 		/* Only root switch can be upgraded */
2099 		if (tb_route(sw))
2100 			return 0;
2101 
2102 		/* fallthrough */
2103 	case 3:
2104 		ret = tb_switch_set_uuid(sw);
2105 		if (ret)
2106 			return ret;
2107 		break;
2108 
2109 	default:
2110 		/*
2111 		 * DMA port is the only thing available when the switch
2112 		 * is in safe mode.
2113 		 */
2114 		if (!sw->safe_mode)
2115 			return 0;
2116 		break;
2117 	}
2118 
2119 	/* Root switch DMA port requires running firmware */
2120 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2121 		return 0;
2122 
2123 	sw->dma_port = dma_port_alloc(sw);
2124 	if (!sw->dma_port)
2125 		return 0;
2126 
2127 	if (sw->no_nvm_upgrade)
2128 		return 0;
2129 
2130 	/*
2131 	 * If there is status already set then authentication failed
2132 	 * when the dma_port_flash_update_auth() returned. Power cycling
2133 	 * is not needed (it was done already) so only thing we do here
2134 	 * is to unblock runtime PM of the root port.
2135 	 */
2136 	nvm_get_auth_status(sw, &status);
2137 	if (status) {
2138 		if (!tb_route(sw))
2139 			nvm_authenticate_complete_dma_port(sw);
2140 		return 0;
2141 	}
2142 
2143 	/*
2144 	 * Check status of the previous flash authentication. If there
2145 	 * is one we need to power cycle the switch in any case to make
2146 	 * it functional again.
2147 	 */
2148 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2149 	if (ret <= 0)
2150 		return ret;
2151 
2152 	/* Now we can allow root port to suspend again */
2153 	if (!tb_route(sw))
2154 		nvm_authenticate_complete_dma_port(sw);
2155 
2156 	if (status) {
2157 		tb_sw_info(sw, "switch flash authentication failed\n");
2158 		nvm_set_auth_status(sw, status);
2159 	}
2160 
2161 	tb_sw_info(sw, "power cycling the switch now\n");
2162 	dma_port_power_cycle(sw->dma_port);
2163 
2164 	/*
2165 	 * We return error here which causes the switch adding failure.
2166 	 * It should appear back after power cycle is complete.
2167 	 */
2168 	return -ESHUTDOWN;
2169 }
2170 
2171 static void tb_switch_default_link_ports(struct tb_switch *sw)
2172 {
2173 	int i;
2174 
2175 	for (i = 1; i <= sw->config.max_port_number; i += 2) {
2176 		struct tb_port *port = &sw->ports[i];
2177 		struct tb_port *subordinate;
2178 
2179 		if (!tb_port_is_null(port))
2180 			continue;
2181 
2182 		/* Check for the subordinate port */
2183 		if (i == sw->config.max_port_number ||
2184 		    !tb_port_is_null(&sw->ports[i + 1]))
2185 			continue;
2186 
2187 		/* Link them if not already done so (by DROM) */
2188 		subordinate = &sw->ports[i + 1];
2189 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2190 			port->link_nr = 0;
2191 			port->dual_link_port = subordinate;
2192 			subordinate->link_nr = 1;
2193 			subordinate->dual_link_port = port;
2194 
2195 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2196 				  port->port, subordinate->port);
2197 		}
2198 	}
2199 }
2200 
2201 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2202 {
2203 	const struct tb_port *up = tb_upstream_port(sw);
2204 
2205 	if (!up->dual_link_port || !up->dual_link_port->remote)
2206 		return false;
2207 
2208 	if (tb_switch_is_usb4(sw))
2209 		return usb4_switch_lane_bonding_possible(sw);
2210 	return tb_lc_lane_bonding_possible(sw);
2211 }
2212 
2213 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2214 {
2215 	struct tb_port *up;
2216 	bool change = false;
2217 	int ret;
2218 
2219 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2220 		return 0;
2221 
2222 	up = tb_upstream_port(sw);
2223 
2224 	ret = tb_port_get_link_speed(up);
2225 	if (ret < 0)
2226 		return ret;
2227 	if (sw->link_speed != ret)
2228 		change = true;
2229 	sw->link_speed = ret;
2230 
2231 	ret = tb_port_get_link_width(up);
2232 	if (ret < 0)
2233 		return ret;
2234 	if (sw->link_width != ret)
2235 		change = true;
2236 	sw->link_width = ret;
2237 
2238 	/* Notify userspace that there is possible link attribute change */
2239 	if (device_is_registered(&sw->dev) && change)
2240 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2241 
2242 	return 0;
2243 }
2244 
2245 /**
2246  * tb_switch_lane_bonding_enable() - Enable lane bonding
2247  * @sw: Switch to enable lane bonding
2248  *
2249  * Connection manager can call this function to enable lane bonding of a
2250  * switch. If conditions are correct and both switches support the feature,
2251  * lanes are bonded. It is safe to call this to any switch.
2252  */
2253 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2254 {
2255 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2256 	struct tb_port *up, *down;
2257 	u64 route = tb_route(sw);
2258 	int ret;
2259 
2260 	if (!route)
2261 		return 0;
2262 
2263 	if (!tb_switch_lane_bonding_possible(sw))
2264 		return 0;
2265 
2266 	up = tb_upstream_port(sw);
2267 	down = tb_port_at(route, parent);
2268 
2269 	if (!tb_port_is_width_supported(up, 2) ||
2270 	    !tb_port_is_width_supported(down, 2))
2271 		return 0;
2272 
2273 	ret = tb_port_lane_bonding_enable(up);
2274 	if (ret) {
2275 		tb_port_warn(up, "failed to enable lane bonding\n");
2276 		return ret;
2277 	}
2278 
2279 	ret = tb_port_lane_bonding_enable(down);
2280 	if (ret) {
2281 		tb_port_warn(down, "failed to enable lane bonding\n");
2282 		tb_port_lane_bonding_disable(up);
2283 		return ret;
2284 	}
2285 
2286 	tb_switch_update_link_attributes(sw);
2287 
2288 	tb_sw_dbg(sw, "lane bonding enabled\n");
2289 	return ret;
2290 }
2291 
2292 /**
2293  * tb_switch_lane_bonding_disable() - Disable lane bonding
2294  * @sw: Switch whose lane bonding to disable
2295  *
2296  * Disables lane bonding between @sw and parent. This can be called even
2297  * if lanes were not bonded originally.
2298  */
2299 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2300 {
2301 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2302 	struct tb_port *up, *down;
2303 
2304 	if (!tb_route(sw))
2305 		return;
2306 
2307 	up = tb_upstream_port(sw);
2308 	if (!up->bonded)
2309 		return;
2310 
2311 	down = tb_port_at(tb_route(sw), parent);
2312 
2313 	tb_port_lane_bonding_disable(up);
2314 	tb_port_lane_bonding_disable(down);
2315 
2316 	tb_switch_update_link_attributes(sw);
2317 	tb_sw_dbg(sw, "lane bonding disabled\n");
2318 }
2319 
2320 /**
2321  * tb_switch_add() - Add a switch to the domain
2322  * @sw: Switch to add
2323  *
2324  * This is the last step in adding switch to the domain. It will read
2325  * identification information from DROM and initializes ports so that
2326  * they can be used to connect other switches. The switch will be
2327  * exposed to the userspace when this function successfully returns. To
2328  * remove and release the switch, call tb_switch_remove().
2329  *
2330  * Return: %0 in case of success and negative errno in case of failure
2331  */
2332 int tb_switch_add(struct tb_switch *sw)
2333 {
2334 	int i, ret;
2335 
2336 	/*
2337 	 * Initialize DMA control port now before we read DROM. Recent
2338 	 * host controllers have more complete DROM on NVM that includes
2339 	 * vendor and model identification strings which we then expose
2340 	 * to the userspace. NVM can be accessed through DMA
2341 	 * configuration based mailbox.
2342 	 */
2343 	ret = tb_switch_add_dma_port(sw);
2344 	if (ret) {
2345 		dev_err(&sw->dev, "failed to add DMA port\n");
2346 		return ret;
2347 	}
2348 
2349 	if (!sw->safe_mode) {
2350 		/* read drom */
2351 		ret = tb_drom_read(sw);
2352 		if (ret) {
2353 			dev_err(&sw->dev, "reading DROM failed\n");
2354 			return ret;
2355 		}
2356 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2357 
2358 		ret = tb_switch_set_uuid(sw);
2359 		if (ret) {
2360 			dev_err(&sw->dev, "failed to set UUID\n");
2361 			return ret;
2362 		}
2363 
2364 		for (i = 0; i <= sw->config.max_port_number; i++) {
2365 			if (sw->ports[i].disabled) {
2366 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2367 				continue;
2368 			}
2369 			ret = tb_init_port(&sw->ports[i]);
2370 			if (ret) {
2371 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
2372 				return ret;
2373 			}
2374 		}
2375 
2376 		tb_switch_default_link_ports(sw);
2377 
2378 		ret = tb_switch_update_link_attributes(sw);
2379 		if (ret)
2380 			return ret;
2381 
2382 		ret = tb_switch_tmu_init(sw);
2383 		if (ret)
2384 			return ret;
2385 	}
2386 
2387 	ret = device_add(&sw->dev);
2388 	if (ret) {
2389 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
2390 		return ret;
2391 	}
2392 
2393 	if (tb_route(sw)) {
2394 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2395 			 sw->vendor, sw->device);
2396 		if (sw->vendor_name && sw->device_name)
2397 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2398 				 sw->device_name);
2399 	}
2400 
2401 	ret = tb_switch_nvm_add(sw);
2402 	if (ret) {
2403 		dev_err(&sw->dev, "failed to add NVM devices\n");
2404 		device_del(&sw->dev);
2405 		return ret;
2406 	}
2407 
2408 	pm_runtime_set_active(&sw->dev);
2409 	if (sw->rpm) {
2410 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2411 		pm_runtime_use_autosuspend(&sw->dev);
2412 		pm_runtime_mark_last_busy(&sw->dev);
2413 		pm_runtime_enable(&sw->dev);
2414 		pm_request_autosuspend(&sw->dev);
2415 	}
2416 
2417 	return 0;
2418 }
2419 
2420 /**
2421  * tb_switch_remove() - Remove and release a switch
2422  * @sw: Switch to remove
2423  *
2424  * This will remove the switch from the domain and release it after last
2425  * reference count drops to zero. If there are switches connected below
2426  * this switch, they will be removed as well.
2427  */
2428 void tb_switch_remove(struct tb_switch *sw)
2429 {
2430 	struct tb_port *port;
2431 
2432 	if (sw->rpm) {
2433 		pm_runtime_get_sync(&sw->dev);
2434 		pm_runtime_disable(&sw->dev);
2435 	}
2436 
2437 	/* port 0 is the switch itself and never has a remote */
2438 	tb_switch_for_each_port(sw, port) {
2439 		if (tb_port_has_remote(port)) {
2440 			tb_switch_remove(port->remote->sw);
2441 			port->remote = NULL;
2442 		} else if (port->xdomain) {
2443 			tb_xdomain_remove(port->xdomain);
2444 			port->xdomain = NULL;
2445 		}
2446 	}
2447 
2448 	if (!sw->is_unplugged)
2449 		tb_plug_events_active(sw, false);
2450 
2451 	if (tb_switch_is_usb4(sw))
2452 		usb4_switch_unconfigure_link(sw);
2453 	else
2454 		tb_lc_unconfigure_link(sw);
2455 
2456 	tb_switch_nvm_remove(sw);
2457 
2458 	if (tb_route(sw))
2459 		dev_info(&sw->dev, "device disconnected\n");
2460 	device_unregister(&sw->dev);
2461 }
2462 
2463 /**
2464  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2465  */
2466 void tb_sw_set_unplugged(struct tb_switch *sw)
2467 {
2468 	struct tb_port *port;
2469 
2470 	if (sw == sw->tb->root_switch) {
2471 		tb_sw_WARN(sw, "cannot unplug root switch\n");
2472 		return;
2473 	}
2474 	if (sw->is_unplugged) {
2475 		tb_sw_WARN(sw, "is_unplugged already set\n");
2476 		return;
2477 	}
2478 	sw->is_unplugged = true;
2479 	tb_switch_for_each_port(sw, port) {
2480 		if (tb_port_has_remote(port))
2481 			tb_sw_set_unplugged(port->remote->sw);
2482 		else if (port->xdomain)
2483 			port->xdomain->is_unplugged = true;
2484 	}
2485 }
2486 
2487 int tb_switch_resume(struct tb_switch *sw)
2488 {
2489 	struct tb_port *port;
2490 	int err;
2491 
2492 	tb_sw_dbg(sw, "resuming switch\n");
2493 
2494 	/*
2495 	 * Check for UID of the connected switches except for root
2496 	 * switch which we assume cannot be removed.
2497 	 */
2498 	if (tb_route(sw)) {
2499 		u64 uid;
2500 
2501 		/*
2502 		 * Check first that we can still read the switch config
2503 		 * space. It may be that there is now another domain
2504 		 * connected.
2505 		 */
2506 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2507 		if (err < 0) {
2508 			tb_sw_info(sw, "switch not present anymore\n");
2509 			return err;
2510 		}
2511 
2512 		if (tb_switch_is_usb4(sw))
2513 			err = usb4_switch_read_uid(sw, &uid);
2514 		else
2515 			err = tb_drom_read_uid_only(sw, &uid);
2516 		if (err) {
2517 			tb_sw_warn(sw, "uid read failed\n");
2518 			return err;
2519 		}
2520 		if (sw->uid != uid) {
2521 			tb_sw_info(sw,
2522 				"changed while suspended (uid %#llx -> %#llx)\n",
2523 				sw->uid, uid);
2524 			return -ENODEV;
2525 		}
2526 	}
2527 
2528 	err = tb_switch_configure(sw);
2529 	if (err)
2530 		return err;
2531 
2532 	/* check for surviving downstream switches */
2533 	tb_switch_for_each_port(sw, port) {
2534 		if (!tb_port_has_remote(port) && !port->xdomain)
2535 			continue;
2536 
2537 		if (tb_wait_for_port(port, true) <= 0) {
2538 			tb_port_warn(port,
2539 				     "lost during suspend, disconnecting\n");
2540 			if (tb_port_has_remote(port))
2541 				tb_sw_set_unplugged(port->remote->sw);
2542 			else if (port->xdomain)
2543 				port->xdomain->is_unplugged = true;
2544 		} else if (tb_port_has_remote(port) || port->xdomain) {
2545 			/*
2546 			 * Always unlock the port so the downstream
2547 			 * switch/domain is accessible.
2548 			 */
2549 			if (tb_port_unlock(port))
2550 				tb_port_warn(port, "failed to unlock port\n");
2551 			if (port->remote && tb_switch_resume(port->remote->sw)) {
2552 				tb_port_warn(port,
2553 					     "lost during suspend, disconnecting\n");
2554 				tb_sw_set_unplugged(port->remote->sw);
2555 			}
2556 		}
2557 	}
2558 	return 0;
2559 }
2560 
2561 void tb_switch_suspend(struct tb_switch *sw)
2562 {
2563 	struct tb_port *port;
2564 	int err;
2565 
2566 	err = tb_plug_events_active(sw, false);
2567 	if (err)
2568 		return;
2569 
2570 	tb_switch_for_each_port(sw, port) {
2571 		if (tb_port_has_remote(port))
2572 			tb_switch_suspend(port->remote->sw);
2573 	}
2574 
2575 	if (tb_switch_is_usb4(sw))
2576 		usb4_switch_set_sleep(sw);
2577 	else
2578 		tb_lc_set_sleep(sw);
2579 }
2580 
2581 /**
2582  * tb_switch_query_dp_resource() - Query availability of DP resource
2583  * @sw: Switch whose DP resource is queried
2584  * @in: DP IN port
2585  *
2586  * Queries availability of DP resource for DP tunneling using switch
2587  * specific means. Returns %true if resource is available.
2588  */
2589 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2590 {
2591 	if (tb_switch_is_usb4(sw))
2592 		return usb4_switch_query_dp_resource(sw, in);
2593 	return tb_lc_dp_sink_query(sw, in);
2594 }
2595 
2596 /**
2597  * tb_switch_alloc_dp_resource() - Allocate available DP resource
2598  * @sw: Switch whose DP resource is allocated
2599  * @in: DP IN port
2600  *
2601  * Allocates DP resource for DP tunneling. The resource must be
2602  * available for this to succeed (see tb_switch_query_dp_resource()).
2603  * Returns %0 in success and negative errno otherwise.
2604  */
2605 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2606 {
2607 	if (tb_switch_is_usb4(sw))
2608 		return usb4_switch_alloc_dp_resource(sw, in);
2609 	return tb_lc_dp_sink_alloc(sw, in);
2610 }
2611 
2612 /**
2613  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2614  * @sw: Switch whose DP resource is de-allocated
2615  * @in: DP IN port
2616  *
2617  * De-allocates DP resource that was previously allocated for DP
2618  * tunneling.
2619  */
2620 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2621 {
2622 	int ret;
2623 
2624 	if (tb_switch_is_usb4(sw))
2625 		ret = usb4_switch_dealloc_dp_resource(sw, in);
2626 	else
2627 		ret = tb_lc_dp_sink_dealloc(sw, in);
2628 
2629 	if (ret)
2630 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2631 			   in->port);
2632 }
2633 
2634 struct tb_sw_lookup {
2635 	struct tb *tb;
2636 	u8 link;
2637 	u8 depth;
2638 	const uuid_t *uuid;
2639 	u64 route;
2640 };
2641 
2642 static int tb_switch_match(struct device *dev, const void *data)
2643 {
2644 	struct tb_switch *sw = tb_to_switch(dev);
2645 	const struct tb_sw_lookup *lookup = data;
2646 
2647 	if (!sw)
2648 		return 0;
2649 	if (sw->tb != lookup->tb)
2650 		return 0;
2651 
2652 	if (lookup->uuid)
2653 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2654 
2655 	if (lookup->route) {
2656 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
2657 		       sw->config.route_hi == upper_32_bits(lookup->route);
2658 	}
2659 
2660 	/* Root switch is matched only by depth */
2661 	if (!lookup->depth)
2662 		return !sw->depth;
2663 
2664 	return sw->link == lookup->link && sw->depth == lookup->depth;
2665 }
2666 
2667 /**
2668  * tb_switch_find_by_link_depth() - Find switch by link and depth
2669  * @tb: Domain the switch belongs
2670  * @link: Link number the switch is connected
2671  * @depth: Depth of the switch in link
2672  *
2673  * Returned switch has reference count increased so the caller needs to
2674  * call tb_switch_put() when done with the switch.
2675  */
2676 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2677 {
2678 	struct tb_sw_lookup lookup;
2679 	struct device *dev;
2680 
2681 	memset(&lookup, 0, sizeof(lookup));
2682 	lookup.tb = tb;
2683 	lookup.link = link;
2684 	lookup.depth = depth;
2685 
2686 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2687 	if (dev)
2688 		return tb_to_switch(dev);
2689 
2690 	return NULL;
2691 }
2692 
2693 /**
2694  * tb_switch_find_by_uuid() - Find switch by UUID
2695  * @tb: Domain the switch belongs
2696  * @uuid: UUID to look for
2697  *
2698  * Returned switch has reference count increased so the caller needs to
2699  * call tb_switch_put() when done with the switch.
2700  */
2701 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2702 {
2703 	struct tb_sw_lookup lookup;
2704 	struct device *dev;
2705 
2706 	memset(&lookup, 0, sizeof(lookup));
2707 	lookup.tb = tb;
2708 	lookup.uuid = uuid;
2709 
2710 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2711 	if (dev)
2712 		return tb_to_switch(dev);
2713 
2714 	return NULL;
2715 }
2716 
2717 /**
2718  * tb_switch_find_by_route() - Find switch by route string
2719  * @tb: Domain the switch belongs
2720  * @route: Route string to look for
2721  *
2722  * Returned switch has reference count increased so the caller needs to
2723  * call tb_switch_put() when done with the switch.
2724  */
2725 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2726 {
2727 	struct tb_sw_lookup lookup;
2728 	struct device *dev;
2729 
2730 	if (!route)
2731 		return tb_switch_get(tb->root_switch);
2732 
2733 	memset(&lookup, 0, sizeof(lookup));
2734 	lookup.tb = tb;
2735 	lookup.route = route;
2736 
2737 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2738 	if (dev)
2739 		return tb_to_switch(dev);
2740 
2741 	return NULL;
2742 }
2743 
2744 /**
2745  * tb_switch_find_port() - return the first port of @type on @sw or NULL
2746  * @sw: Switch to find the port from
2747  * @type: Port type to look for
2748  */
2749 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2750 				    enum tb_port_type type)
2751 {
2752 	struct tb_port *port;
2753 
2754 	tb_switch_for_each_port(sw, port) {
2755 		if (port->config.type == type)
2756 			return port;
2757 	}
2758 
2759 	return NULL;
2760 }
2761 
2762 void tb_switch_exit(void)
2763 {
2764 	ida_destroy(&nvm_ida);
2765 }
2766